1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle
= 3;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
53 #define esp_log_intr(f, a...) \
54 do { if (esp_debug & ESP_DEBUG_INTR) \
58 #define esp_log_reset(f, a...) \
59 do { if (esp_debug & ESP_DEBUG_RESET) \
63 #define esp_log_msgin(f, a...) \
64 do { if (esp_debug & ESP_DEBUG_MSGIN) \
68 #define esp_log_msgout(f, a...) \
69 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
73 #define esp_log_cmddone(f, a...) \
74 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
78 #define esp_log_disconnect(f, a...) \
79 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
83 #define esp_log_datastart(f, a...) \
84 do { if (esp_debug & ESP_DEBUG_DATASTART) \
88 #define esp_log_datadone(f, a...) \
89 do { if (esp_debug & ESP_DEBUG_DATADONE) \
93 #define esp_log_reconnect(f, a...) \
94 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
98 #define esp_log_autosense(f, a...) \
99 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
103 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
106 static void esp_log_fill_regs(struct esp
*esp
,
107 struct esp_event_ent
*p
)
110 p
->seqreg
= esp
->seqreg
;
111 p
->sreg2
= esp
->sreg2
;
113 p
->select_state
= esp
->select_state
;
114 p
->event
= esp
->event
;
117 void scsi_esp_cmd(struct esp
*esp
, u8 val
)
119 struct esp_event_ent
*p
;
120 int idx
= esp
->esp_event_cur
;
122 p
= &esp
->esp_event_log
[idx
];
123 p
->type
= ESP_EVENT_TYPE_CMD
;
125 esp_log_fill_regs(esp
, p
);
127 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
129 esp_write8(val
, ESP_CMD
);
131 EXPORT_SYMBOL(scsi_esp_cmd
);
133 static void esp_event(struct esp
*esp
, u8 val
)
135 struct esp_event_ent
*p
;
136 int idx
= esp
->esp_event_cur
;
138 p
= &esp
->esp_event_log
[idx
];
139 p
->type
= ESP_EVENT_TYPE_EVENT
;
141 esp_log_fill_regs(esp
, p
);
143 esp
->esp_event_cur
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
148 static void esp_dump_cmd_log(struct esp
*esp
)
150 int idx
= esp
->esp_event_cur
;
153 printk(KERN_INFO PFX
"esp%d: Dumping command log\n",
154 esp
->host
->unique_id
);
156 struct esp_event_ent
*p
= &esp
->esp_event_log
[idx
];
158 printk(KERN_INFO PFX
"esp%d: ent[%d] %s ",
159 esp
->host
->unique_id
, idx
,
160 p
->type
== ESP_EVENT_TYPE_CMD
? "CMD" : "EVENT");
162 printk("val[%02x] sreg[%02x] seqreg[%02x] "
163 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164 p
->val
, p
->sreg
, p
->seqreg
,
165 p
->sreg2
, p
->ireg
, p
->select_state
, p
->event
);
167 idx
= (idx
+ 1) & (ESP_EVENT_LOG_SZ
- 1);
168 } while (idx
!= stop
);
171 static void esp_flush_fifo(struct esp
*esp
)
173 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
174 if (esp
->rev
== ESP236
) {
177 while (esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
) {
179 printk(KERN_ALERT PFX
"esp%d: ESP_FF_BYTES "
181 esp
->host
->unique_id
);
189 static void hme_read_fifo(struct esp
*esp
)
191 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
195 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
196 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
198 if (esp
->sreg2
& ESP_STAT2_F1BYTE
) {
199 esp_write8(0, ESP_FDATA
);
200 esp
->fifo
[idx
++] = esp_read8(ESP_FDATA
);
201 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
206 static void esp_set_all_config3(struct esp
*esp
, u8 val
)
210 for (i
= 0; i
< ESP_MAX_TARGET
; i
++)
211 esp
->target
[i
].esp_config3
= val
;
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp
*esp
)
217 u8 family_code
, version
;
219 /* Now reset the ESP chip */
220 scsi_esp_cmd(esp
, ESP_CMD_RC
);
221 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
222 if (esp
->rev
== FAST
)
223 esp_write8(ESP_CONFIG2_FENAB
, ESP_CFG2
);
224 scsi_esp_cmd(esp
, ESP_CMD_NULL
| ESP_CMD_DMA
);
226 /* This is the only point at which it is reliable to read
227 * the ID-code for a fast ESP chip variants.
229 esp
->max_period
= ((35 * esp
->ccycle
) / 1000);
230 if (esp
->rev
== FAST
) {
231 version
= esp_read8(ESP_UID
);
232 family_code
= (version
& 0xf8) >> 3;
233 if (family_code
== 0x02)
235 else if (family_code
== 0x0a)
236 esp
->rev
= FASHME
; /* Version is usually '5'. */
239 esp
->min_period
= ((4 * esp
->ccycle
) / 1000);
241 esp
->min_period
= ((5 * esp
->ccycle
) / 1000);
243 esp
->max_period
= (esp
->max_period
+ 3)>>2;
244 esp
->min_period
= (esp
->min_period
+ 3)>>2;
246 esp_write8(esp
->config1
, ESP_CFG1
);
253 esp_write8(esp
->config2
, ESP_CFG2
);
258 esp_write8(esp
->config2
, ESP_CFG2
);
259 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
260 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
264 esp
->config2
|= (ESP_CONFIG2_HME32
| ESP_CONFIG2_HMEFENAB
);
268 /* Fast 236 or HME */
269 esp_write8(esp
->config2
, ESP_CFG2
);
270 if (esp
->rev
== FASHME
) {
271 u8 cfg3
= esp
->target
[0].esp_config3
;
273 cfg3
|= ESP_CONFIG3_FCLOCK
| ESP_CONFIG3_OBPUSH
;
274 if (esp
->scsi_id
>= 8)
275 cfg3
|= ESP_CONFIG3_IDBIT3
;
276 esp_set_all_config3(esp
, cfg3
);
278 u32 cfg3
= esp
->target
[0].esp_config3
;
280 cfg3
|= ESP_CONFIG3_FCLK
;
281 esp_set_all_config3(esp
, cfg3
);
283 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
284 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
285 if (esp
->rev
== FASHME
) {
288 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
297 esp_write8(esp
->config2
, ESP_CFG2
);
298 esp_set_all_config3(esp
,
299 (esp
->target
[0].esp_config3
|
300 ESP_CONFIG3_FCLOCK
));
301 esp
->prev_cfg3
= esp
->target
[0].esp_config3
;
302 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
310 /* Reload the configuration registers */
311 esp_write8(esp
->cfact
, ESP_CFACT
);
314 esp_write8(esp
->prev_stp
, ESP_STP
);
317 esp_write8(esp
->prev_soff
, ESP_SOFF
);
319 esp_write8(esp
->neg_defp
, ESP_TIMEO
);
321 /* Eat any bitrot in the chip */
322 esp_read8(ESP_INTRPT
);
326 static void esp_map_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
328 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
329 struct scatterlist
*sg
= scsi_sglist(cmd
);
330 int dir
= cmd
->sc_data_direction
;
336 spriv
->u
.num_sg
= esp
->ops
->map_sg(esp
, sg
, scsi_sg_count(cmd
), dir
);
337 spriv
->cur_residue
= sg_dma_len(sg
);
341 for (i
= 0; i
< spriv
->u
.num_sg
; i
++)
342 total
+= sg_dma_len(&sg
[i
]);
343 spriv
->tot_residue
= total
;
346 static dma_addr_t
esp_cur_dma_addr(struct esp_cmd_entry
*ent
,
347 struct scsi_cmnd
*cmd
)
349 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
351 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
352 return ent
->sense_dma
+
353 (ent
->sense_ptr
- cmd
->sense_buffer
);
356 return sg_dma_address(p
->cur_sg
) +
357 (sg_dma_len(p
->cur_sg
) -
361 static unsigned int esp_cur_dma_len(struct esp_cmd_entry
*ent
,
362 struct scsi_cmnd
*cmd
)
364 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
366 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
367 return SCSI_SENSE_BUFFERSIZE
-
368 (ent
->sense_ptr
- cmd
->sense_buffer
);
370 return p
->cur_residue
;
373 static void esp_advance_dma(struct esp
*esp
, struct esp_cmd_entry
*ent
,
374 struct scsi_cmnd
*cmd
, unsigned int len
)
376 struct esp_cmd_priv
*p
= ESP_CMD_PRIV(cmd
);
378 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
379 ent
->sense_ptr
+= len
;
383 p
->cur_residue
-= len
;
384 p
->tot_residue
-= len
;
385 if (p
->cur_residue
< 0 || p
->tot_residue
< 0) {
386 printk(KERN_ERR PFX
"esp%d: Data transfer overflow.\n",
387 esp
->host
->unique_id
);
388 printk(KERN_ERR PFX
"esp%d: cur_residue[%d] tot_residue[%d] "
390 esp
->host
->unique_id
,
391 p
->cur_residue
, p
->tot_residue
, len
);
395 if (!p
->cur_residue
&& p
->tot_residue
) {
397 p
->cur_residue
= sg_dma_len(p
->cur_sg
);
401 static void esp_unmap_dma(struct esp
*esp
, struct scsi_cmnd
*cmd
)
403 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
404 int dir
= cmd
->sc_data_direction
;
409 esp
->ops
->unmap_sg(esp
, scsi_sglist(cmd
), spriv
->u
.num_sg
, dir
);
412 static void esp_save_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
414 struct scsi_cmnd
*cmd
= ent
->cmd
;
415 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
417 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
418 ent
->saved_sense_ptr
= ent
->sense_ptr
;
421 ent
->saved_cur_residue
= spriv
->cur_residue
;
422 ent
->saved_cur_sg
= spriv
->cur_sg
;
423 ent
->saved_tot_residue
= spriv
->tot_residue
;
426 static void esp_restore_pointers(struct esp
*esp
, struct esp_cmd_entry
*ent
)
428 struct scsi_cmnd
*cmd
= ent
->cmd
;
429 struct esp_cmd_priv
*spriv
= ESP_CMD_PRIV(cmd
);
431 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
432 ent
->sense_ptr
= ent
->saved_sense_ptr
;
435 spriv
->cur_residue
= ent
->saved_cur_residue
;
436 spriv
->cur_sg
= ent
->saved_cur_sg
;
437 spriv
->tot_residue
= ent
->saved_tot_residue
;
440 static void esp_check_command_len(struct esp
*esp
, struct scsi_cmnd
*cmd
)
442 if (cmd
->cmd_len
== 6 ||
443 cmd
->cmd_len
== 10 ||
444 cmd
->cmd_len
== 12) {
445 esp
->flags
&= ~ESP_FLAG_DOING_SLOWCMD
;
447 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
451 static void esp_write_tgt_config3(struct esp
*esp
, int tgt
)
453 if (esp
->rev
> ESP100A
) {
454 u8 val
= esp
->target
[tgt
].esp_config3
;
456 if (val
!= esp
->prev_cfg3
) {
457 esp
->prev_cfg3
= val
;
458 esp_write8(val
, ESP_CFG3
);
463 static void esp_write_tgt_sync(struct esp
*esp
, int tgt
)
465 u8 off
= esp
->target
[tgt
].esp_offset
;
466 u8 per
= esp
->target
[tgt
].esp_period
;
468 if (off
!= esp
->prev_soff
) {
469 esp
->prev_soff
= off
;
470 esp_write8(off
, ESP_SOFF
);
472 if (per
!= esp
->prev_stp
) {
474 esp_write8(per
, ESP_STP
);
478 static u32
esp_dma_length_limit(struct esp
*esp
, u32 dma_addr
, u32 dma_len
)
480 if (esp
->rev
== FASHME
) {
481 /* Arbitrary segment boundaries, 24-bit counts. */
482 if (dma_len
> (1U << 24))
483 dma_len
= (1U << 24);
487 /* ESP chip limits other variants by 16-bits of transfer
488 * count. Actually on FAS100A and FAS236 we could get
489 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
490 * in the ESP_CFG2 register but that causes other unwanted
491 * changes so we don't use it currently.
493 if (dma_len
> (1U << 16))
494 dma_len
= (1U << 16);
496 /* All of the DMA variants hooked up to these chips
497 * cannot handle crossing a 24-bit address boundary.
499 base
= dma_addr
& ((1U << 24) - 1U);
500 end
= base
+ dma_len
;
501 if (end
> (1U << 24))
503 dma_len
= end
- base
;
508 static int esp_need_to_nego_wide(struct esp_target_data
*tp
)
510 struct scsi_target
*target
= tp
->starget
;
512 return spi_width(target
) != tp
->nego_goal_width
;
515 static int esp_need_to_nego_sync(struct esp_target_data
*tp
)
517 struct scsi_target
*target
= tp
->starget
;
519 /* When offset is zero, period is "don't care". */
520 if (!spi_offset(target
) && !tp
->nego_goal_offset
)
523 if (spi_offset(target
) == tp
->nego_goal_offset
&&
524 spi_period(target
) == tp
->nego_goal_period
)
530 static int esp_alloc_lun_tag(struct esp_cmd_entry
*ent
,
531 struct esp_lun_data
*lp
)
534 /* Non-tagged, slot already taken? */
535 if (lp
->non_tagged_cmd
)
539 /* We are being held by active tagged
545 /* Tagged commands completed, we can unplug
546 * the queue and run this untagged command.
549 } else if (lp
->num_tagged
) {
550 /* Plug the queue until num_tagged decreases
551 * to zero in esp_free_lun_tag.
557 lp
->non_tagged_cmd
= ent
;
560 /* Tagged command, see if blocked by a
563 if (lp
->non_tagged_cmd
|| lp
->hold
)
567 BUG_ON(lp
->tagged_cmds
[ent
->tag
[1]]);
569 lp
->tagged_cmds
[ent
->tag
[1]] = ent
;
575 static void esp_free_lun_tag(struct esp_cmd_entry
*ent
,
576 struct esp_lun_data
*lp
)
579 BUG_ON(lp
->tagged_cmds
[ent
->tag
[1]] != ent
);
580 lp
->tagged_cmds
[ent
->tag
[1]] = NULL
;
583 BUG_ON(lp
->non_tagged_cmd
!= ent
);
584 lp
->non_tagged_cmd
= NULL
;
588 /* When a contingent allegiance conditon is created, we force feed a
589 * REQUEST_SENSE command to the device to fetch the sense data. I
590 * tried many other schemes, relying on the scsi error handling layer
591 * to send out the REQUEST_SENSE automatically, but this was difficult
592 * to get right especially in the presence of applications like smartd
593 * which use SG_IO to send out their own REQUEST_SENSE commands.
595 static void esp_autosense(struct esp
*esp
, struct esp_cmd_entry
*ent
)
597 struct scsi_cmnd
*cmd
= ent
->cmd
;
598 struct scsi_device
*dev
= cmd
->device
;
606 if (!ent
->sense_ptr
) {
607 esp_log_autosense("esp%d: Doing auto-sense for "
609 esp
->host
->unique_id
, tgt
, lun
);
611 ent
->sense_ptr
= cmd
->sense_buffer
;
612 ent
->sense_dma
= esp
->ops
->map_single(esp
,
614 SCSI_SENSE_BUFFERSIZE
,
617 ent
->saved_sense_ptr
= ent
->sense_ptr
;
619 esp
->active_cmd
= ent
;
621 p
= esp
->command_block
;
622 esp
->msg_out_len
= 0;
624 *p
++ = IDENTIFY(0, lun
);
625 *p
++ = REQUEST_SENSE
;
626 *p
++ = ((dev
->scsi_level
<= SCSI_2
) ?
630 *p
++ = SCSI_SENSE_BUFFERSIZE
;
633 esp
->select_state
= ESP_SELECT_BASIC
;
636 if (esp
->rev
== FASHME
)
637 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
638 esp_write8(val
, ESP_BUSID
);
640 esp_write_tgt_sync(esp
, tgt
);
641 esp_write_tgt_config3(esp
, tgt
);
643 val
= (p
- esp
->command_block
);
645 if (esp
->rev
== FASHME
)
646 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
647 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
648 val
, 16, 0, ESP_CMD_DMA
| ESP_CMD_SELA
);
651 static struct esp_cmd_entry
*find_and_prep_issuable_command(struct esp
*esp
)
653 struct esp_cmd_entry
*ent
;
655 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
656 struct scsi_cmnd
*cmd
= ent
->cmd
;
657 struct scsi_device
*dev
= cmd
->device
;
658 struct esp_lun_data
*lp
= dev
->hostdata
;
660 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
666 if (!scsi_populate_tag_msg(cmd
, &ent
->tag
[0])) {
671 if (esp_alloc_lun_tag(ent
, lp
) < 0)
680 static void esp_maybe_execute_command(struct esp
*esp
)
682 struct esp_target_data
*tp
;
683 struct esp_lun_data
*lp
;
684 struct scsi_device
*dev
;
685 struct scsi_cmnd
*cmd
;
686 struct esp_cmd_entry
*ent
;
691 if (esp
->active_cmd
||
692 (esp
->flags
& ESP_FLAG_RESETTING
))
695 ent
= find_and_prep_issuable_command(esp
);
699 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
700 esp_autosense(esp
, ent
);
708 tp
= &esp
->target
[tgt
];
711 list_del(&ent
->list
);
712 list_add(&ent
->list
, &esp
->active_cmds
);
714 esp
->active_cmd
= ent
;
716 esp_map_dma(esp
, cmd
);
717 esp_save_pointers(esp
, ent
);
719 esp_check_command_len(esp
, cmd
);
721 p
= esp
->command_block
;
723 esp
->msg_out_len
= 0;
724 if (tp
->flags
& ESP_TGT_CHECK_NEGO
) {
725 /* Need to negotiate. If the target is broken
726 * go for synchronous transfers and non-wide.
728 if (tp
->flags
& ESP_TGT_BROKEN
) {
729 tp
->flags
&= ~ESP_TGT_DISCONNECT
;
730 tp
->nego_goal_period
= 0;
731 tp
->nego_goal_offset
= 0;
732 tp
->nego_goal_width
= 0;
733 tp
->nego_goal_tags
= 0;
736 /* If the settings are not changing, skip this. */
737 if (spi_width(tp
->starget
) == tp
->nego_goal_width
&&
738 spi_period(tp
->starget
) == tp
->nego_goal_period
&&
739 spi_offset(tp
->starget
) == tp
->nego_goal_offset
) {
740 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
744 if (esp
->rev
== FASHME
&& esp_need_to_nego_wide(tp
)) {
746 spi_populate_width_msg(&esp
->msg_out
[0],
747 (tp
->nego_goal_width
?
749 tp
->flags
|= ESP_TGT_NEGO_WIDE
;
750 } else if (esp_need_to_nego_sync(tp
)) {
752 spi_populate_sync_msg(&esp
->msg_out
[0],
753 tp
->nego_goal_period
,
754 tp
->nego_goal_offset
);
755 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
757 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
760 /* Process it like a slow command. */
761 if (tp
->flags
& (ESP_TGT_NEGO_WIDE
| ESP_TGT_NEGO_SYNC
))
762 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
766 /* If we don't have a lun-data struct yet, we're probing
767 * so do not disconnect. Also, do not disconnect unless
768 * we have a tag on this command.
770 if (lp
&& (tp
->flags
& ESP_TGT_DISCONNECT
) && ent
->tag
[0])
771 *p
++ = IDENTIFY(1, lun
);
773 *p
++ = IDENTIFY(0, lun
);
775 if (ent
->tag
[0] && esp
->rev
== ESP100
) {
776 /* ESP100 lacks select w/atn3 command, use select
779 esp
->flags
|= ESP_FLAG_DOING_SLOWCMD
;
782 if (!(esp
->flags
& ESP_FLAG_DOING_SLOWCMD
)) {
783 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SELA
;
788 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SA3
;
791 for (i
= 0; i
< cmd
->cmd_len
; i
++)
794 esp
->select_state
= ESP_SELECT_BASIC
;
796 esp
->cmd_bytes_left
= cmd
->cmd_len
;
797 esp
->cmd_bytes_ptr
= &cmd
->cmnd
[0];
800 for (i
= esp
->msg_out_len
- 1;
802 esp
->msg_out
[i
+ 2] = esp
->msg_out
[i
];
803 esp
->msg_out
[0] = ent
->tag
[0];
804 esp
->msg_out
[1] = ent
->tag
[1];
805 esp
->msg_out_len
+= 2;
808 start_cmd
= ESP_CMD_DMA
| ESP_CMD_SELAS
;
809 esp
->select_state
= ESP_SELECT_MSGOUT
;
812 if (esp
->rev
== FASHME
)
813 val
|= ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
;
814 esp_write8(val
, ESP_BUSID
);
816 esp_write_tgt_sync(esp
, tgt
);
817 esp_write_tgt_config3(esp
, tgt
);
819 val
= (p
- esp
->command_block
);
821 if (esp_debug
& ESP_DEBUG_SCSICMD
) {
822 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt
, lun
);
823 for (i
= 0; i
< cmd
->cmd_len
; i
++)
824 printk("%02x ", cmd
->cmnd
[i
]);
828 if (esp
->rev
== FASHME
)
829 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
830 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
831 val
, 16, 0, start_cmd
);
834 static struct esp_cmd_entry
*esp_get_ent(struct esp
*esp
)
836 struct list_head
*head
= &esp
->esp_cmd_pool
;
837 struct esp_cmd_entry
*ret
;
839 if (list_empty(head
)) {
840 ret
= kzalloc(sizeof(struct esp_cmd_entry
), GFP_ATOMIC
);
842 ret
= list_entry(head
->next
, struct esp_cmd_entry
, list
);
843 list_del(&ret
->list
);
844 memset(ret
, 0, sizeof(*ret
));
849 static void esp_put_ent(struct esp
*esp
, struct esp_cmd_entry
*ent
)
851 list_add(&ent
->list
, &esp
->esp_cmd_pool
);
854 static void esp_cmd_is_done(struct esp
*esp
, struct esp_cmd_entry
*ent
,
855 struct scsi_cmnd
*cmd
, unsigned int result
)
857 struct scsi_device
*dev
= cmd
->device
;
861 esp
->active_cmd
= NULL
;
862 esp_unmap_dma(esp
, cmd
);
863 esp_free_lun_tag(ent
, dev
->hostdata
);
864 cmd
->result
= result
;
867 complete(ent
->eh_done
);
871 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
872 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
873 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
874 ent
->sense_ptr
= NULL
;
876 /* Restore the message/status bytes to what we actually
877 * saw originally. Also, report that we are providing
880 cmd
->result
= ((DRIVER_SENSE
<< 24) |
882 (COMMAND_COMPLETE
<< 8) |
883 (SAM_STAT_CHECK_CONDITION
<< 0));
885 ent
->flags
&= ~ESP_CMD_FLAG_AUTOSENSE
;
886 if (esp_debug
& ESP_DEBUG_AUTOSENSE
) {
889 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
890 esp
->host
->unique_id
, tgt
, lun
);
891 for (i
= 0; i
< 18; i
++)
892 printk("%02x ", cmd
->sense_buffer
[i
]);
899 list_del(&ent
->list
);
900 esp_put_ent(esp
, ent
);
902 esp_maybe_execute_command(esp
);
905 static unsigned int compose_result(unsigned int status
, unsigned int message
,
906 unsigned int driver_code
)
908 return (status
| (message
<< 8) | (driver_code
<< 16));
911 static void esp_event_queue_full(struct esp
*esp
, struct esp_cmd_entry
*ent
)
913 struct scsi_device
*dev
= ent
->cmd
->device
;
914 struct esp_lun_data
*lp
= dev
->hostdata
;
916 scsi_track_queue_full(dev
, lp
->num_tagged
- 1);
919 static int esp_queuecommand(struct scsi_cmnd
*cmd
, void (*done
)(struct scsi_cmnd
*))
921 struct scsi_device
*dev
= cmd
->device
;
922 struct esp
*esp
= shost_priv(dev
->host
);
923 struct esp_cmd_priv
*spriv
;
924 struct esp_cmd_entry
*ent
;
926 ent
= esp_get_ent(esp
);
928 return SCSI_MLQUEUE_HOST_BUSY
;
932 cmd
->scsi_done
= done
;
934 spriv
= ESP_CMD_PRIV(cmd
);
935 spriv
->u
.dma_addr
= ~(dma_addr_t
)0x0;
937 list_add_tail(&ent
->list
, &esp
->queued_cmds
);
939 esp_maybe_execute_command(esp
);
944 static int esp_check_gross_error(struct esp
*esp
)
946 if (esp
->sreg
& ESP_STAT_SPAM
) {
947 /* Gross Error, could be one of:
948 * - top of fifo overwritten
949 * - top of command register overwritten
950 * - DMA programmed with wrong direction
951 * - improper phase change
953 printk(KERN_ERR PFX
"esp%d: Gross error sreg[%02x]\n",
954 esp
->host
->unique_id
, esp
->sreg
);
955 /* XXX Reset the chip. XXX */
961 static int esp_check_spur_intr(struct esp
*esp
)
966 /* The interrupt pending bit of the status register cannot
967 * be trusted on these revisions.
969 esp
->sreg
&= ~ESP_STAT_INTR
;
973 if (!(esp
->sreg
& ESP_STAT_INTR
)) {
974 esp
->ireg
= esp_read8(ESP_INTRPT
);
975 if (esp
->ireg
& ESP_INTR_SR
)
978 /* If the DMA is indicating interrupt pending and the
979 * ESP is not, the only possibility is a DMA error.
981 if (!esp
->ops
->dma_error(esp
)) {
982 printk(KERN_ERR PFX
"esp%d: Spurious irq, "
984 esp
->host
->unique_id
, esp
->sreg
);
988 printk(KERN_ERR PFX
"esp%d: DMA error\n",
989 esp
->host
->unique_id
);
991 /* XXX Reset the chip. XXX */
1000 static void esp_schedule_reset(struct esp
*esp
)
1002 esp_log_reset("ESP: esp_schedule_reset() from %p\n",
1003 __builtin_return_address(0));
1004 esp
->flags
|= ESP_FLAG_RESETTING
;
1005 esp_event(esp
, ESP_EVENT_RESET
);
1008 /* In order to avoid having to add a special half-reconnected state
1009 * into the driver we just sit here and poll through the rest of
1010 * the reselection process to get the tag message bytes.
1012 static struct esp_cmd_entry
*esp_reconnect_with_tag(struct esp
*esp
,
1013 struct esp_lun_data
*lp
)
1015 struct esp_cmd_entry
*ent
;
1018 if (!lp
->num_tagged
) {
1019 printk(KERN_ERR PFX
"esp%d: Reconnect w/num_tagged==0\n",
1020 esp
->host
->unique_id
);
1024 esp_log_reconnect("ESP: reconnect tag, ");
1026 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
1027 if (esp
->ops
->irq_pending(esp
))
1030 if (i
== ESP_QUICKIRQ_LIMIT
) {
1031 printk(KERN_ERR PFX
"esp%d: Reconnect IRQ1 timeout\n",
1032 esp
->host
->unique_id
);
1036 esp
->sreg
= esp_read8(ESP_STATUS
);
1037 esp
->ireg
= esp_read8(ESP_INTRPT
);
1039 esp_log_reconnect("IRQ(%d:%x:%x), ",
1040 i
, esp
->ireg
, esp
->sreg
);
1042 if (esp
->ireg
& ESP_INTR_DC
) {
1043 printk(KERN_ERR PFX
"esp%d: Reconnect, got disconnect.\n",
1044 esp
->host
->unique_id
);
1048 if ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_MIP
) {
1049 printk(KERN_ERR PFX
"esp%d: Reconnect, not MIP sreg[%02x].\n",
1050 esp
->host
->unique_id
, esp
->sreg
);
1054 /* DMA in the tag bytes... */
1055 esp
->command_block
[0] = 0xff;
1056 esp
->command_block
[1] = 0xff;
1057 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
1058 2, 2, 1, ESP_CMD_DMA
| ESP_CMD_TI
);
1060 /* ACK the msssage. */
1061 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1063 for (i
= 0; i
< ESP_RESELECT_TAG_LIMIT
; i
++) {
1064 if (esp
->ops
->irq_pending(esp
)) {
1065 esp
->sreg
= esp_read8(ESP_STATUS
);
1066 esp
->ireg
= esp_read8(ESP_INTRPT
);
1067 if (esp
->ireg
& ESP_INTR_FDONE
)
1072 if (i
== ESP_RESELECT_TAG_LIMIT
) {
1073 printk(KERN_ERR PFX
"esp%d: Reconnect IRQ2 timeout\n",
1074 esp
->host
->unique_id
);
1077 esp
->ops
->dma_drain(esp
);
1078 esp
->ops
->dma_invalidate(esp
);
1080 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1081 i
, esp
->ireg
, esp
->sreg
,
1082 esp
->command_block
[0],
1083 esp
->command_block
[1]);
1085 if (esp
->command_block
[0] < SIMPLE_QUEUE_TAG
||
1086 esp
->command_block
[0] > ORDERED_QUEUE_TAG
) {
1087 printk(KERN_ERR PFX
"esp%d: Reconnect, bad tag "
1089 esp
->host
->unique_id
, esp
->command_block
[0]);
1093 ent
= lp
->tagged_cmds
[esp
->command_block
[1]];
1095 printk(KERN_ERR PFX
"esp%d: Reconnect, no entry for "
1097 esp
->host
->unique_id
, esp
->command_block
[1]);
1104 static int esp_reconnect(struct esp
*esp
)
1106 struct esp_cmd_entry
*ent
;
1107 struct esp_target_data
*tp
;
1108 struct esp_lun_data
*lp
;
1109 struct scsi_device
*dev
;
1112 BUG_ON(esp
->active_cmd
);
1113 if (esp
->rev
== FASHME
) {
1114 /* FASHME puts the target and lun numbers directly
1117 target
= esp
->fifo
[0];
1118 lun
= esp
->fifo
[1] & 0x7;
1120 u8 bits
= esp_read8(ESP_FDATA
);
1122 /* Older chips put the lun directly into the fifo, but
1123 * the target is given as a sample of the arbitration
1124 * lines on the bus at reselection time. So we should
1125 * see the ID of the ESP and the one reconnecting target
1126 * set in the bitmap.
1128 if (!(bits
& esp
->scsi_id_mask
))
1130 bits
&= ~esp
->scsi_id_mask
;
1131 if (!bits
|| (bits
& (bits
- 1)))
1134 target
= ffs(bits
) - 1;
1135 lun
= (esp_read8(ESP_FDATA
) & 0x7);
1137 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1138 if (esp
->rev
== ESP100
) {
1139 u8 ireg
= esp_read8(ESP_INTRPT
);
1140 /* This chip has a bug during reselection that can
1141 * cause a spurious illegal-command interrupt, which
1142 * we simply ACK here. Another possibility is a bus
1143 * reset so we must check for that.
1145 if (ireg
& ESP_INTR_SR
)
1148 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1151 esp_write_tgt_sync(esp
, target
);
1152 esp_write_tgt_config3(esp
, target
);
1154 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1156 if (esp
->rev
== FASHME
)
1157 esp_write8(target
| ESP_BUSID_RESELID
| ESP_BUSID_CTR32BIT
,
1160 tp
= &esp
->target
[target
];
1161 dev
= __scsi_device_lookup_by_target(tp
->starget
, lun
);
1163 printk(KERN_ERR PFX
"esp%d: Reconnect, no lp "
1164 "tgt[%u] lun[%u]\n",
1165 esp
->host
->unique_id
, target
, lun
);
1170 ent
= lp
->non_tagged_cmd
;
1172 ent
= esp_reconnect_with_tag(esp
, lp
);
1177 esp
->active_cmd
= ent
;
1179 if (ent
->flags
& ESP_CMD_FLAG_ABORT
) {
1180 esp
->msg_out
[0] = ABORT_TASK_SET
;
1181 esp
->msg_out_len
= 1;
1182 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1185 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1186 esp_restore_pointers(esp
, ent
);
1187 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1191 esp_schedule_reset(esp
);
1195 static int esp_finish_select(struct esp
*esp
)
1197 struct esp_cmd_entry
*ent
;
1198 struct scsi_cmnd
*cmd
;
1199 u8 orig_select_state
;
1201 orig_select_state
= esp
->select_state
;
1203 /* No longer selecting. */
1204 esp
->select_state
= ESP_SELECT_NONE
;
1206 esp
->seqreg
= esp_read8(ESP_SSTEP
) & ESP_STEP_VBITS
;
1207 ent
= esp
->active_cmd
;
1210 if (esp
->ops
->dma_error(esp
)) {
1211 /* If we see a DMA error during or as a result of selection,
1214 esp_schedule_reset(esp
);
1215 esp_cmd_is_done(esp
, ent
, cmd
, (DID_ERROR
<< 16));
1219 esp
->ops
->dma_invalidate(esp
);
1221 if (esp
->ireg
== (ESP_INTR_RSEL
| ESP_INTR_FDONE
)) {
1222 struct esp_target_data
*tp
= &esp
->target
[cmd
->device
->id
];
1224 /* Carefully back out of the selection attempt. Release
1225 * resources (such as DMA mapping & TAG) and reset state (such
1226 * as message out and command delivery variables).
1228 if (!(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1229 esp_unmap_dma(esp
, cmd
);
1230 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
1231 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_NEGO_WIDE
);
1232 esp
->flags
&= ~ESP_FLAG_DOING_SLOWCMD
;
1233 esp
->cmd_bytes_ptr
= NULL
;
1234 esp
->cmd_bytes_left
= 0;
1236 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
1237 SCSI_SENSE_BUFFERSIZE
,
1239 ent
->sense_ptr
= NULL
;
1242 /* Now that the state is unwound properly, put back onto
1243 * the issue queue. This command is no longer active.
1245 list_del(&ent
->list
);
1246 list_add(&ent
->list
, &esp
->queued_cmds
);
1247 esp
->active_cmd
= NULL
;
1249 /* Return value ignored by caller, it directly invokes
1255 if (esp
->ireg
== ESP_INTR_DC
) {
1256 struct scsi_device
*dev
= cmd
->device
;
1258 /* Disconnect. Make sure we re-negotiate sync and
1259 * wide parameters if this target starts responding
1260 * again in the future.
1262 esp
->target
[dev
->id
].flags
|= ESP_TGT_CHECK_NEGO
;
1264 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1265 esp_cmd_is_done(esp
, ent
, cmd
, (DID_BAD_TARGET
<< 16));
1269 if (esp
->ireg
== (ESP_INTR_FDONE
| ESP_INTR_BSERV
)) {
1270 /* Selection successful. On pre-FAST chips we have
1271 * to do a NOP and possibly clean out the FIFO.
1273 if (esp
->rev
<= ESP236
) {
1274 int fcnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1276 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1280 ((esp
->sreg
& ESP_STAT_PMASK
) != ESP_DIP
)))
1281 esp_flush_fifo(esp
);
1284 /* If we are doing a slow command, negotiation, etc.
1285 * we'll do the right thing as we transition to the
1288 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1292 printk("ESP: Unexpected selection completion ireg[%x].\n",
1294 esp_schedule_reset(esp
);
1298 static int esp_data_bytes_sent(struct esp
*esp
, struct esp_cmd_entry
*ent
,
1299 struct scsi_cmnd
*cmd
)
1301 int fifo_cnt
, ecount
, bytes_sent
, flush_fifo
;
1303 fifo_cnt
= esp_read8(ESP_FFLAGS
) & ESP_FF_FBYTES
;
1304 if (esp
->prev_cfg3
& ESP_CONFIG3_EWIDE
)
1308 if (!(esp
->sreg
& ESP_STAT_TCNT
)) {
1309 ecount
= ((unsigned int)esp_read8(ESP_TCLOW
) |
1310 (((unsigned int)esp_read8(ESP_TCMED
)) << 8));
1311 if (esp
->rev
== FASHME
)
1312 ecount
|= ((unsigned int)esp_read8(FAS_RLO
)) << 16;
1315 bytes_sent
= esp
->data_dma_len
;
1316 bytes_sent
-= ecount
;
1318 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1319 bytes_sent
-= fifo_cnt
;
1322 if (!esp
->prev_soff
) {
1323 /* Synchronous data transfer, always flush fifo. */
1326 if (esp
->rev
== ESP100
) {
1329 /* ESP100 has a chip bug where in the synchronous data
1330 * phase it can mistake a final long REQ pulse from the
1331 * target as an extra data byte. Fun.
1333 * To detect this case we resample the status register
1334 * and fifo flags. If we're still in a data phase and
1335 * we see spurious chunks in the fifo, we return error
1336 * to the caller which should reset and set things up
1337 * such that we only try future transfers to this
1338 * target in synchronous mode.
1340 esp
->sreg
= esp_read8(ESP_STATUS
);
1341 phase
= esp
->sreg
& ESP_STAT_PMASK
;
1342 fflags
= esp_read8(ESP_FFLAGS
);
1344 if ((phase
== ESP_DOP
&&
1345 (fflags
& ESP_FF_ONOTZERO
)) ||
1346 (phase
== ESP_DIP
&&
1347 (fflags
& ESP_FF_FBYTES
)))
1350 if (!(ent
->flags
& ESP_CMD_FLAG_WRITE
))
1355 esp_flush_fifo(esp
);
1360 static void esp_setsync(struct esp
*esp
, struct esp_target_data
*tp
,
1361 u8 scsi_period
, u8 scsi_offset
,
1362 u8 esp_stp
, u8 esp_soff
)
1364 spi_period(tp
->starget
) = scsi_period
;
1365 spi_offset(tp
->starget
) = scsi_offset
;
1366 spi_width(tp
->starget
) = (tp
->flags
& ESP_TGT_WIDE
) ? 1 : 0;
1370 esp_soff
|= esp
->radelay
;
1371 if (esp
->rev
>= FAS236
) {
1372 u8 bit
= ESP_CONFIG3_FSCSI
;
1373 if (esp
->rev
>= FAS100A
)
1374 bit
= ESP_CONFIG3_FAST
;
1376 if (scsi_period
< 50) {
1377 if (esp
->rev
== FASHME
)
1378 esp_soff
&= ~esp
->radelay
;
1379 tp
->esp_config3
|= bit
;
1381 tp
->esp_config3
&= ~bit
;
1383 esp
->prev_cfg3
= tp
->esp_config3
;
1384 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
1388 tp
->esp_period
= esp
->prev_stp
= esp_stp
;
1389 tp
->esp_offset
= esp
->prev_soff
= esp_soff
;
1391 esp_write8(esp_soff
, ESP_SOFF
);
1392 esp_write8(esp_stp
, ESP_STP
);
1394 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1396 spi_display_xfer_agreement(tp
->starget
);
1399 static void esp_msgin_reject(struct esp
*esp
)
1401 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1402 struct scsi_cmnd
*cmd
= ent
->cmd
;
1403 struct esp_target_data
*tp
;
1406 tgt
= cmd
->device
->id
;
1407 tp
= &esp
->target
[tgt
];
1409 if (tp
->flags
& ESP_TGT_NEGO_WIDE
) {
1410 tp
->flags
&= ~(ESP_TGT_NEGO_WIDE
| ESP_TGT_WIDE
);
1412 if (!esp_need_to_nego_sync(tp
)) {
1413 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1414 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1417 spi_populate_sync_msg(&esp
->msg_out
[0],
1418 tp
->nego_goal_period
,
1419 tp
->nego_goal_offset
);
1420 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1421 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1426 if (tp
->flags
& ESP_TGT_NEGO_SYNC
) {
1427 tp
->flags
&= ~(ESP_TGT_NEGO_SYNC
| ESP_TGT_CHECK_NEGO
);
1430 esp_setsync(esp
, tp
, 0, 0, 0, 0);
1431 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1435 esp
->msg_out
[0] = ABORT_TASK_SET
;
1436 esp
->msg_out_len
= 1;
1437 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1440 static void esp_msgin_sdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1442 u8 period
= esp
->msg_in
[3];
1443 u8 offset
= esp
->msg_in
[4];
1446 if (!(tp
->flags
& ESP_TGT_NEGO_SYNC
))
1452 if (esp
->flags
& ESP_FLAG_DISABLE_SYNC
)
1458 if (period
> esp
->max_period
) {
1459 period
= offset
= 0;
1462 if (period
< esp
->min_period
)
1465 one_clock
= esp
->ccycle
/ 1000;
1466 stp
= DIV_ROUND_UP(period
<< 2, one_clock
);
1467 if (stp
&& esp
->rev
>= FAS236
) {
1475 esp_setsync(esp
, tp
, period
, offset
, stp
, offset
);
1479 esp
->msg_out
[0] = MESSAGE_REJECT
;
1480 esp
->msg_out_len
= 1;
1481 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1485 tp
->nego_goal_period
= period
;
1486 tp
->nego_goal_offset
= offset
;
1488 spi_populate_sync_msg(&esp
->msg_out
[0],
1489 tp
->nego_goal_period
,
1490 tp
->nego_goal_offset
);
1491 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1494 static void esp_msgin_wdtr(struct esp
*esp
, struct esp_target_data
*tp
)
1496 int size
= 8 << esp
->msg_in
[3];
1499 if (esp
->rev
!= FASHME
)
1502 if (size
!= 8 && size
!= 16)
1505 if (!(tp
->flags
& ESP_TGT_NEGO_WIDE
))
1508 cfg3
= tp
->esp_config3
;
1510 tp
->flags
|= ESP_TGT_WIDE
;
1511 cfg3
|= ESP_CONFIG3_EWIDE
;
1513 tp
->flags
&= ~ESP_TGT_WIDE
;
1514 cfg3
&= ~ESP_CONFIG3_EWIDE
;
1516 tp
->esp_config3
= cfg3
;
1517 esp
->prev_cfg3
= cfg3
;
1518 esp_write8(cfg3
, ESP_CFG3
);
1520 tp
->flags
&= ~ESP_TGT_NEGO_WIDE
;
1522 spi_period(tp
->starget
) = 0;
1523 spi_offset(tp
->starget
) = 0;
1524 if (!esp_need_to_nego_sync(tp
)) {
1525 tp
->flags
&= ~ESP_TGT_CHECK_NEGO
;
1526 scsi_esp_cmd(esp
, ESP_CMD_RATN
);
1529 spi_populate_sync_msg(&esp
->msg_out
[0],
1530 tp
->nego_goal_period
,
1531 tp
->nego_goal_offset
);
1532 tp
->flags
|= ESP_TGT_NEGO_SYNC
;
1533 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1538 esp
->msg_out
[0] = MESSAGE_REJECT
;
1539 esp
->msg_out_len
= 1;
1540 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1543 static void esp_msgin_extended(struct esp
*esp
)
1545 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1546 struct scsi_cmnd
*cmd
= ent
->cmd
;
1547 struct esp_target_data
*tp
;
1548 int tgt
= cmd
->device
->id
;
1550 tp
= &esp
->target
[tgt
];
1551 if (esp
->msg_in
[2] == EXTENDED_SDTR
) {
1552 esp_msgin_sdtr(esp
, tp
);
1555 if (esp
->msg_in
[2] == EXTENDED_WDTR
) {
1556 esp_msgin_wdtr(esp
, tp
);
1560 printk("ESP: Unexpected extended msg type %x\n",
1563 esp
->msg_out
[0] = ABORT_TASK_SET
;
1564 esp
->msg_out_len
= 1;
1565 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1568 /* Analyze msgin bytes received from target so far. Return non-zero
1569 * if there are more bytes needed to complete the message.
1571 static int esp_msgin_process(struct esp
*esp
)
1573 u8 msg0
= esp
->msg_in
[0];
1574 int len
= esp
->msg_in_len
;
1578 printk("ESP: Unexpected msgin identify\n");
1583 case EXTENDED_MESSAGE
:
1586 if (len
< esp
->msg_in
[1] + 2)
1588 esp_msgin_extended(esp
);
1591 case IGNORE_WIDE_RESIDUE
: {
1592 struct esp_cmd_entry
*ent
;
1593 struct esp_cmd_priv
*spriv
;
1597 if (esp
->msg_in
[1] != 1)
1600 ent
= esp
->active_cmd
;
1601 spriv
= ESP_CMD_PRIV(ent
->cmd
);
1603 if (spriv
->cur_residue
== sg_dma_len(spriv
->cur_sg
)) {
1605 spriv
->cur_residue
= 1;
1607 spriv
->cur_residue
++;
1608 spriv
->tot_residue
++;
1613 case RESTORE_POINTERS
:
1614 esp_restore_pointers(esp
, esp
->active_cmd
);
1617 esp_save_pointers(esp
, esp
->active_cmd
);
1620 case COMMAND_COMPLETE
:
1622 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1624 ent
->message
= msg0
;
1625 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1626 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1629 case MESSAGE_REJECT
:
1630 esp_msgin_reject(esp
);
1635 esp
->msg_out
[0] = MESSAGE_REJECT
;
1636 esp
->msg_out_len
= 1;
1637 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
1642 static int esp_process_event(struct esp
*esp
)
1648 switch (esp
->event
) {
1649 case ESP_EVENT_CHECK_PHASE
:
1650 switch (esp
->sreg
& ESP_STAT_PMASK
) {
1652 esp_event(esp
, ESP_EVENT_DATA_OUT
);
1655 esp_event(esp
, ESP_EVENT_DATA_IN
);
1658 esp_flush_fifo(esp
);
1659 scsi_esp_cmd(esp
, ESP_CMD_ICCSEQ
);
1660 esp_event(esp
, ESP_EVENT_STATUS
);
1661 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1665 esp_event(esp
, ESP_EVENT_MSGOUT
);
1669 esp_event(esp
, ESP_EVENT_MSGIN
);
1673 esp_event(esp
, ESP_EVENT_CMD_START
);
1677 printk("ESP: Unexpected phase, sreg=%02x\n",
1679 esp_schedule_reset(esp
);
1685 case ESP_EVENT_DATA_IN
:
1689 case ESP_EVENT_DATA_OUT
: {
1690 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1691 struct scsi_cmnd
*cmd
= ent
->cmd
;
1692 dma_addr_t dma_addr
= esp_cur_dma_addr(ent
, cmd
);
1693 unsigned int dma_len
= esp_cur_dma_len(ent
, cmd
);
1695 if (esp
->rev
== ESP100
)
1696 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1699 ent
->flags
|= ESP_CMD_FLAG_WRITE
;
1701 ent
->flags
&= ~ESP_CMD_FLAG_WRITE
;
1703 if (esp
->ops
->dma_length_limit
)
1704 dma_len
= esp
->ops
->dma_length_limit(esp
, dma_addr
,
1707 dma_len
= esp_dma_length_limit(esp
, dma_addr
, dma_len
);
1709 esp
->data_dma_len
= dma_len
;
1712 printk(KERN_ERR PFX
"esp%d: DMA length is zero!\n",
1713 esp
->host
->unique_id
);
1714 printk(KERN_ERR PFX
"esp%d: cur adr[%08llx] len[%08x]\n",
1715 esp
->host
->unique_id
,
1716 (unsigned long long)esp_cur_dma_addr(ent
, cmd
),
1717 esp_cur_dma_len(ent
, cmd
));
1718 esp_schedule_reset(esp
);
1722 esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1724 (unsigned long long)dma_addr
, dma_len
, write
);
1726 esp
->ops
->send_dma_cmd(esp
, dma_addr
, dma_len
, dma_len
,
1727 write
, ESP_CMD_DMA
| ESP_CMD_TI
);
1728 esp_event(esp
, ESP_EVENT_DATA_DONE
);
1731 case ESP_EVENT_DATA_DONE
: {
1732 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1733 struct scsi_cmnd
*cmd
= ent
->cmd
;
1736 if (esp
->ops
->dma_error(esp
)) {
1737 printk("ESP: data done, DMA error, resetting\n");
1738 esp_schedule_reset(esp
);
1742 if (ent
->flags
& ESP_CMD_FLAG_WRITE
) {
1743 /* XXX parity errors, etc. XXX */
1745 esp
->ops
->dma_drain(esp
);
1747 esp
->ops
->dma_invalidate(esp
);
1749 if (esp
->ireg
!= ESP_INTR_BSERV
) {
1750 /* We should always see exactly a bus-service
1751 * interrupt at the end of a successful transfer.
1753 printk("ESP: data done, not BSERV, resetting\n");
1754 esp_schedule_reset(esp
);
1758 bytes_sent
= esp_data_bytes_sent(esp
, ent
, cmd
);
1760 esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1761 ent
->flags
, bytes_sent
);
1763 if (bytes_sent
< 0) {
1764 /* XXX force sync mode for this target XXX */
1765 esp_schedule_reset(esp
);
1769 esp_advance_dma(esp
, ent
, cmd
, bytes_sent
);
1770 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1774 case ESP_EVENT_STATUS
: {
1775 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1777 if (esp
->ireg
& ESP_INTR_FDONE
) {
1778 ent
->status
= esp_read8(ESP_FDATA
);
1779 ent
->message
= esp_read8(ESP_FDATA
);
1780 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1781 } else if (esp
->ireg
== ESP_INTR_BSERV
) {
1782 ent
->status
= esp_read8(ESP_FDATA
);
1783 ent
->message
= 0xff;
1784 esp_event(esp
, ESP_EVENT_MSGIN
);
1788 if (ent
->message
!= COMMAND_COMPLETE
) {
1789 printk("ESP: Unexpected message %x in status\n",
1791 esp_schedule_reset(esp
);
1795 esp_event(esp
, ESP_EVENT_FREE_BUS
);
1796 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1799 case ESP_EVENT_FREE_BUS
: {
1800 struct esp_cmd_entry
*ent
= esp
->active_cmd
;
1801 struct scsi_cmnd
*cmd
= ent
->cmd
;
1803 if (ent
->message
== COMMAND_COMPLETE
||
1804 ent
->message
== DISCONNECT
)
1805 scsi_esp_cmd(esp
, ESP_CMD_ESEL
);
1807 if (ent
->message
== COMMAND_COMPLETE
) {
1808 esp_log_cmddone("ESP: Command done status[%x] "
1810 ent
->status
, ent
->message
);
1811 if (ent
->status
== SAM_STAT_TASK_SET_FULL
)
1812 esp_event_queue_full(esp
, ent
);
1814 if (ent
->status
== SAM_STAT_CHECK_CONDITION
&&
1815 !(ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
)) {
1816 ent
->flags
|= ESP_CMD_FLAG_AUTOSENSE
;
1817 esp_autosense(esp
, ent
);
1819 esp_cmd_is_done(esp
, ent
, cmd
,
1820 compose_result(ent
->status
,
1824 } else if (ent
->message
== DISCONNECT
) {
1825 esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1828 ent
->tag
[0], ent
->tag
[1]);
1830 esp
->active_cmd
= NULL
;
1831 esp_maybe_execute_command(esp
);
1833 printk("ESP: Unexpected message %x in freebus\n",
1835 esp_schedule_reset(esp
);
1838 if (esp
->active_cmd
)
1839 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1842 case ESP_EVENT_MSGOUT
: {
1843 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1845 if (esp_debug
& ESP_DEBUG_MSGOUT
) {
1847 printk("ESP: Sending message [ ");
1848 for (i
= 0; i
< esp
->msg_out_len
; i
++)
1849 printk("%02x ", esp
->msg_out
[i
]);
1853 if (esp
->rev
== FASHME
) {
1856 /* Always use the fifo. */
1857 for (i
= 0; i
< esp
->msg_out_len
; i
++) {
1858 esp_write8(esp
->msg_out
[i
], ESP_FDATA
);
1859 esp_write8(0, ESP_FDATA
);
1861 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1863 if (esp
->msg_out_len
== 1) {
1864 esp_write8(esp
->msg_out
[0], ESP_FDATA
);
1865 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1868 memcpy(esp
->command_block
,
1872 esp
->ops
->send_dma_cmd(esp
,
1873 esp
->command_block_dma
,
1877 ESP_CMD_DMA
|ESP_CMD_TI
);
1880 esp_event(esp
, ESP_EVENT_MSGOUT_DONE
);
1883 case ESP_EVENT_MSGOUT_DONE
:
1884 if (esp
->rev
== FASHME
) {
1885 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1887 if (esp
->msg_out_len
> 1)
1888 esp
->ops
->dma_invalidate(esp
);
1891 if (!(esp
->ireg
& ESP_INTR_DC
)) {
1892 if (esp
->rev
!= FASHME
)
1893 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1895 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1897 case ESP_EVENT_MSGIN
:
1898 if (esp
->ireg
& ESP_INTR_BSERV
) {
1899 if (esp
->rev
== FASHME
) {
1900 if (!(esp_read8(ESP_STATUS2
) &
1902 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1904 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1905 if (esp
->rev
== ESP100
)
1906 scsi_esp_cmd(esp
, ESP_CMD_NULL
);
1908 scsi_esp_cmd(esp
, ESP_CMD_TI
);
1909 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1912 if (esp
->ireg
& ESP_INTR_FDONE
) {
1915 if (esp
->rev
== FASHME
)
1918 val
= esp_read8(ESP_FDATA
);
1919 esp
->msg_in
[esp
->msg_in_len
++] = val
;
1921 esp_log_msgin("ESP: Got msgin byte %x\n", val
);
1923 if (!esp_msgin_process(esp
))
1924 esp
->msg_in_len
= 0;
1926 if (esp
->rev
== FASHME
)
1927 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1929 scsi_esp_cmd(esp
, ESP_CMD_MOK
);
1931 if (esp
->event
!= ESP_EVENT_FREE_BUS
)
1932 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1934 printk("ESP: MSGIN neither BSERV not FDON, resetting");
1935 esp_schedule_reset(esp
);
1939 case ESP_EVENT_CMD_START
:
1940 memcpy(esp
->command_block
, esp
->cmd_bytes_ptr
,
1941 esp
->cmd_bytes_left
);
1942 if (esp
->rev
== FASHME
)
1943 scsi_esp_cmd(esp
, ESP_CMD_FLUSH
);
1944 esp
->ops
->send_dma_cmd(esp
, esp
->command_block_dma
,
1945 esp
->cmd_bytes_left
, 16, 0,
1946 ESP_CMD_DMA
| ESP_CMD_TI
);
1947 esp_event(esp
, ESP_EVENT_CMD_DONE
);
1948 esp
->flags
|= ESP_FLAG_QUICKIRQ_CHECK
;
1950 case ESP_EVENT_CMD_DONE
:
1951 esp
->ops
->dma_invalidate(esp
);
1952 if (esp
->ireg
& ESP_INTR_BSERV
) {
1953 esp_event(esp
, ESP_EVENT_CHECK_PHASE
);
1956 esp_schedule_reset(esp
);
1960 case ESP_EVENT_RESET
:
1961 scsi_esp_cmd(esp
, ESP_CMD_RS
);
1965 printk("ESP: Unexpected event %x, resetting\n",
1967 esp_schedule_reset(esp
);
1974 static void esp_reset_cleanup_one(struct esp
*esp
, struct esp_cmd_entry
*ent
)
1976 struct scsi_cmnd
*cmd
= ent
->cmd
;
1978 esp_unmap_dma(esp
, cmd
);
1979 esp_free_lun_tag(ent
, cmd
->device
->hostdata
);
1980 cmd
->result
= DID_RESET
<< 16;
1982 if (ent
->flags
& ESP_CMD_FLAG_AUTOSENSE
) {
1983 esp
->ops
->unmap_single(esp
, ent
->sense_dma
,
1984 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
1985 ent
->sense_ptr
= NULL
;
1988 cmd
->scsi_done(cmd
);
1989 list_del(&ent
->list
);
1990 esp_put_ent(esp
, ent
);
1993 static void esp_clear_hold(struct scsi_device
*dev
, void *data
)
1995 struct esp_lun_data
*lp
= dev
->hostdata
;
1997 BUG_ON(lp
->num_tagged
);
2001 static void esp_reset_cleanup(struct esp
*esp
)
2003 struct esp_cmd_entry
*ent
, *tmp
;
2006 list_for_each_entry_safe(ent
, tmp
, &esp
->queued_cmds
, list
) {
2007 struct scsi_cmnd
*cmd
= ent
->cmd
;
2009 list_del(&ent
->list
);
2010 cmd
->result
= DID_RESET
<< 16;
2011 cmd
->scsi_done(cmd
);
2012 esp_put_ent(esp
, ent
);
2015 list_for_each_entry_safe(ent
, tmp
, &esp
->active_cmds
, list
) {
2016 if (ent
== esp
->active_cmd
)
2017 esp
->active_cmd
= NULL
;
2018 esp_reset_cleanup_one(esp
, ent
);
2021 BUG_ON(esp
->active_cmd
!= NULL
);
2023 /* Force renegotiation of sync/wide transfers. */
2024 for (i
= 0; i
< ESP_MAX_TARGET
; i
++) {
2025 struct esp_target_data
*tp
= &esp
->target
[i
];
2029 tp
->esp_config3
&= ~(ESP_CONFIG3_EWIDE
|
2032 tp
->flags
&= ~ESP_TGT_WIDE
;
2033 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2036 __starget_for_each_device(tp
->starget
, NULL
,
2039 esp
->flags
&= ~ESP_FLAG_RESETTING
;
2042 /* Runs under host->lock */
2043 static void __esp_interrupt(struct esp
*esp
)
2045 int finish_reset
, intr_done
;
2048 esp
->sreg
= esp_read8(ESP_STATUS
);
2050 if (esp
->flags
& ESP_FLAG_RESETTING
) {
2053 if (esp_check_gross_error(esp
))
2056 finish_reset
= esp_check_spur_intr(esp
);
2057 if (finish_reset
< 0)
2061 esp
->ireg
= esp_read8(ESP_INTRPT
);
2063 if (esp
->ireg
& ESP_INTR_SR
)
2067 esp_reset_cleanup(esp
);
2068 if (esp
->eh_reset
) {
2069 complete(esp
->eh_reset
);
2070 esp
->eh_reset
= NULL
;
2075 phase
= (esp
->sreg
& ESP_STAT_PMASK
);
2076 if (esp
->rev
== FASHME
) {
2077 if (((phase
!= ESP_DIP
&& phase
!= ESP_DOP
) &&
2078 esp
->select_state
== ESP_SELECT_NONE
&&
2079 esp
->event
!= ESP_EVENT_STATUS
&&
2080 esp
->event
!= ESP_EVENT_DATA_DONE
) ||
2081 (esp
->ireg
& ESP_INTR_RSEL
)) {
2082 esp
->sreg2
= esp_read8(ESP_STATUS2
);
2083 if (!(esp
->sreg2
& ESP_STAT2_FEMPTY
) ||
2084 (esp
->sreg2
& ESP_STAT2_F1BYTE
))
2089 esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2090 "sreg2[%02x] ireg[%02x]\n",
2091 esp
->sreg
, esp
->seqreg
, esp
->sreg2
, esp
->ireg
);
2095 if (esp
->ireg
& (ESP_INTR_S
| ESP_INTR_SATN
| ESP_INTR_IC
)) {
2096 printk("ESP: unexpected IREG %02x\n", esp
->ireg
);
2097 if (esp
->ireg
& ESP_INTR_IC
)
2098 esp_dump_cmd_log(esp
);
2100 esp_schedule_reset(esp
);
2102 if (!(esp
->ireg
& ESP_INTR_RSEL
)) {
2103 /* Some combination of FDONE, BSERV, DC. */
2104 if (esp
->select_state
!= ESP_SELECT_NONE
)
2105 intr_done
= esp_finish_select(esp
);
2106 } else if (esp
->ireg
& ESP_INTR_RSEL
) {
2107 if (esp
->active_cmd
)
2108 (void) esp_finish_select(esp
);
2109 intr_done
= esp_reconnect(esp
);
2113 intr_done
= esp_process_event(esp
);
2116 irqreturn_t
scsi_esp_intr(int irq
, void *dev_id
)
2118 struct esp
*esp
= dev_id
;
2119 unsigned long flags
;
2122 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2124 if (esp
->ops
->irq_pending(esp
)) {
2129 __esp_interrupt(esp
);
2130 if (!(esp
->flags
& ESP_FLAG_QUICKIRQ_CHECK
))
2132 esp
->flags
&= ~ESP_FLAG_QUICKIRQ_CHECK
;
2134 for (i
= 0; i
< ESP_QUICKIRQ_LIMIT
; i
++) {
2135 if (esp
->ops
->irq_pending(esp
))
2138 if (i
== ESP_QUICKIRQ_LIMIT
)
2142 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2146 EXPORT_SYMBOL(scsi_esp_intr
);
2148 static void esp_get_revision(struct esp
*esp
)
2152 esp
->config1
= (ESP_CONFIG1_PENABLE
| (esp
->scsi_id
& 7));
2153 esp
->config2
= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
);
2154 esp_write8(esp
->config2
, ESP_CFG2
);
2156 val
= esp_read8(ESP_CFG2
);
2157 val
&= ~ESP_CONFIG2_MAGIC
;
2158 if (val
!= (ESP_CONFIG2_SCSI2ENAB
| ESP_CONFIG2_REGPARITY
)) {
2159 /* If what we write to cfg2 does not come back, cfg2 is not
2160 * implemented, therefore this must be a plain esp100.
2165 esp_set_all_config3(esp
, 5);
2167 esp_write8(esp
->config2
, ESP_CFG2
);
2168 esp_write8(0, ESP_CFG3
);
2169 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2171 val
= esp_read8(ESP_CFG3
);
2173 /* The cfg2 register is implemented, however
2174 * cfg3 is not, must be esp100a.
2178 esp_set_all_config3(esp
, 0);
2180 esp_write8(esp
->prev_cfg3
, ESP_CFG3
);
2182 /* All of cfg{1,2,3} implemented, must be one of
2183 * the fas variants, figure out which one.
2185 if (esp
->cfact
== 0 || esp
->cfact
> ESP_CCF_F5
) {
2187 esp
->sync_defp
= SYNC_DEFP_FAST
;
2192 esp_write8(esp
->config2
, ESP_CFG2
);
2197 static void esp_init_swstate(struct esp
*esp
)
2201 INIT_LIST_HEAD(&esp
->queued_cmds
);
2202 INIT_LIST_HEAD(&esp
->active_cmds
);
2203 INIT_LIST_HEAD(&esp
->esp_cmd_pool
);
2205 /* Start with a clear state, domain validation (via ->slave_configure,
2206 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2209 for (i
= 0 ; i
< ESP_MAX_TARGET
; i
++) {
2210 esp
->target
[i
].flags
= 0;
2211 esp
->target
[i
].nego_goal_period
= 0;
2212 esp
->target
[i
].nego_goal_offset
= 0;
2213 esp
->target
[i
].nego_goal_width
= 0;
2214 esp
->target
[i
].nego_goal_tags
= 0;
2218 /* This places the ESP into a known state at boot time. */
2219 static void esp_bootup_reset(struct esp
*esp
)
2224 esp
->ops
->reset_dma(esp
);
2229 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2230 val
= esp_read8(ESP_CFG1
);
2231 val
|= ESP_CONFIG1_SRRDISAB
;
2232 esp_write8(val
, ESP_CFG1
);
2234 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2237 esp_write8(esp
->config1
, ESP_CFG1
);
2239 /* Eat any bitrot in the chip and we are done... */
2240 esp_read8(ESP_INTRPT
);
2243 static void esp_set_clock_params(struct esp
*esp
)
2248 /* This is getting messy but it has to be done correctly or else
2249 * you get weird behavior all over the place. We are trying to
2250 * basically figure out three pieces of information.
2252 * a) Clock Conversion Factor
2254 * This is a representation of the input crystal clock frequency
2255 * going into the ESP on this machine. Any operation whose timing
2256 * is longer than 400ns depends on this value being correct. For
2257 * example, you'll get blips for arbitration/selection during high
2258 * load or with multiple targets if this is not set correctly.
2260 * b) Selection Time-Out
2262 * The ESP isn't very bright and will arbitrate for the bus and try
2263 * to select a target forever if you let it. This value tells the
2264 * ESP when it has taken too long to negotiate and that it should
2265 * interrupt the CPU so we can see what happened. The value is
2266 * computed as follows (from NCR/Symbios chip docs).
2268 * (Time Out Period) * (Input Clock)
2269 * STO = ----------------------------------
2270 * (8192) * (Clock Conversion Factor)
2272 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2274 * c) Imperical constants for synchronous offset and transfer period
2277 * This entails the smallest and largest sync period we could ever
2278 * handle on this ESP.
2282 ccf
= ((fhz
/ 1000000) + 4) / 5;
2286 /* If we can't find anything reasonable, just assume 20MHZ.
2287 * This is the clock frequency of the older sun4c's where I've
2288 * been unable to find the clock-frequency PROM property. All
2289 * other machines provide useful values it seems.
2291 if (fhz
<= 5000000 || ccf
< 1 || ccf
> 8) {
2296 esp
->cfact
= (ccf
== 8 ? 0 : ccf
);
2298 esp
->ccycle
= ESP_HZ_TO_CYCLE(fhz
);
2299 esp
->ctick
= ESP_TICK(ccf
, esp
->ccycle
);
2300 esp
->neg_defp
= ESP_NEG_DEFP(fhz
, ccf
);
2301 esp
->sync_defp
= SYNC_DEFP_SLOW
;
2304 static const char *esp_chip_names
[] = {
2314 static struct scsi_transport_template
*esp_transport_template
;
2316 int scsi_esp_register(struct esp
*esp
, struct device
*dev
)
2318 static int instance
;
2321 esp
->host
->transportt
= esp_transport_template
;
2322 esp
->host
->max_lun
= ESP_MAX_LUN
;
2323 esp
->host
->cmd_per_lun
= 2;
2324 esp
->host
->unique_id
= instance
;
2326 esp_set_clock_params(esp
);
2328 esp_get_revision(esp
);
2330 esp_init_swstate(esp
);
2332 esp_bootup_reset(esp
);
2334 printk(KERN_INFO PFX
"esp%u, regs[%1p:%1p] irq[%u]\n",
2335 esp
->host
->unique_id
, esp
->regs
, esp
->dma_regs
,
2337 printk(KERN_INFO PFX
"esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2338 esp
->host
->unique_id
, esp_chip_names
[esp
->rev
],
2339 esp
->cfreq
/ 1000000, esp
->cfact
, esp
->scsi_id
);
2341 /* Let the SCSI bus reset settle. */
2342 ssleep(esp_bus_reset_settle
);
2344 err
= scsi_add_host(esp
->host
, dev
);
2350 scsi_scan_host(esp
->host
);
2354 EXPORT_SYMBOL(scsi_esp_register
);
2356 void scsi_esp_unregister(struct esp
*esp
)
2358 scsi_remove_host(esp
->host
);
2360 EXPORT_SYMBOL(scsi_esp_unregister
);
2362 static int esp_target_alloc(struct scsi_target
*starget
)
2364 struct esp
*esp
= shost_priv(dev_to_shost(&starget
->dev
));
2365 struct esp_target_data
*tp
= &esp
->target
[starget
->id
];
2367 tp
->starget
= starget
;
2372 static void esp_target_destroy(struct scsi_target
*starget
)
2374 struct esp
*esp
= shost_priv(dev_to_shost(&starget
->dev
));
2375 struct esp_target_data
*tp
= &esp
->target
[starget
->id
];
2380 static int esp_slave_alloc(struct scsi_device
*dev
)
2382 struct esp
*esp
= shost_priv(dev
->host
);
2383 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2384 struct esp_lun_data
*lp
;
2386 lp
= kzalloc(sizeof(*lp
), GFP_KERNEL
);
2391 spi_min_period(tp
->starget
) = esp
->min_period
;
2392 spi_max_offset(tp
->starget
) = 15;
2394 if (esp
->flags
& ESP_FLAG_WIDE_CAPABLE
)
2395 spi_max_width(tp
->starget
) = 1;
2397 spi_max_width(tp
->starget
) = 0;
2402 static int esp_slave_configure(struct scsi_device
*dev
)
2404 struct esp
*esp
= shost_priv(dev
->host
);
2405 struct esp_target_data
*tp
= &esp
->target
[dev
->id
];
2406 int goal_tags
, queue_depth
;
2408 if (esp
->flags
& ESP_FLAG_DISABLE_SYNC
) {
2409 /* Bypass async domain validation */
2416 if (dev
->tagged_supported
) {
2417 /* XXX make this configurable somehow XXX */
2418 goal_tags
= ESP_DEFAULT_TAGS
;
2420 if (goal_tags
> ESP_MAX_TAG
)
2421 goal_tags
= ESP_MAX_TAG
;
2424 queue_depth
= goal_tags
;
2425 if (queue_depth
< dev
->host
->cmd_per_lun
)
2426 queue_depth
= dev
->host
->cmd_per_lun
;
2429 scsi_set_tag_type(dev
, MSG_ORDERED_TAG
);
2430 scsi_activate_tcq(dev
, queue_depth
);
2432 scsi_deactivate_tcq(dev
, queue_depth
);
2434 tp
->flags
|= ESP_TGT_DISCONNECT
;
2436 if (!spi_initial_dv(dev
->sdev_target
))
2442 static void esp_slave_destroy(struct scsi_device
*dev
)
2444 struct esp_lun_data
*lp
= dev
->hostdata
;
2447 dev
->hostdata
= NULL
;
2450 static int esp_eh_abort_handler(struct scsi_cmnd
*cmd
)
2452 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2453 struct esp_cmd_entry
*ent
, *tmp
;
2454 struct completion eh_done
;
2455 unsigned long flags
;
2457 /* XXX This helps a lot with debugging but might be a bit
2458 * XXX much for the final driver.
2460 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2461 printk(KERN_ERR PFX
"esp%d: Aborting command [%p:%02x]\n",
2462 esp
->host
->unique_id
, cmd
, cmd
->cmnd
[0]);
2463 ent
= esp
->active_cmd
;
2465 printk(KERN_ERR PFX
"esp%d: Current command [%p:%02x]\n",
2466 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2467 list_for_each_entry(ent
, &esp
->queued_cmds
, list
) {
2468 printk(KERN_ERR PFX
"esp%d: Queued command [%p:%02x]\n",
2469 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2471 list_for_each_entry(ent
, &esp
->active_cmds
, list
) {
2472 printk(KERN_ERR PFX
"esp%d: Active command [%p:%02x]\n",
2473 esp
->host
->unique_id
, ent
->cmd
, ent
->cmd
->cmnd
[0]);
2475 esp_dump_cmd_log(esp
);
2476 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2478 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2481 list_for_each_entry(tmp
, &esp
->queued_cmds
, list
) {
2482 if (tmp
->cmd
== cmd
) {
2489 /* Easiest case, we didn't even issue the command
2490 * yet so it is trivial to abort.
2492 list_del(&ent
->list
);
2494 cmd
->result
= DID_ABORT
<< 16;
2495 cmd
->scsi_done(cmd
);
2497 esp_put_ent(esp
, ent
);
2502 init_completion(&eh_done
);
2504 ent
= esp
->active_cmd
;
2505 if (ent
&& ent
->cmd
== cmd
) {
2506 /* Command is the currently active command on
2507 * the bus. If we already have an output message
2510 if (esp
->msg_out_len
)
2513 /* Send out an abort, encouraging the target to
2514 * go to MSGOUT phase by asserting ATN.
2516 esp
->msg_out
[0] = ABORT_TASK_SET
;
2517 esp
->msg_out_len
= 1;
2518 ent
->eh_done
= &eh_done
;
2520 scsi_esp_cmd(esp
, ESP_CMD_SATN
);
2522 /* The command is disconnected. This is not easy to
2523 * abort. For now we fail and let the scsi error
2524 * handling layer go try a scsi bus reset or host
2527 * What we could do is put together a scsi command
2528 * solely for the purpose of sending an abort message
2529 * to the target. Coming up with all the code to
2530 * cook up scsi commands, special case them everywhere,
2531 * etc. is for questionable gain and it would be better
2532 * if the generic scsi error handling layer could do at
2533 * least some of that for us.
2535 * Anyways this is an area for potential future improvement
2541 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2543 if (!wait_for_completion_timeout(&eh_done
, 5 * HZ
)) {
2544 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2545 ent
->eh_done
= NULL
;
2546 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2554 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2558 /* XXX This might be a good location to set ESP_TGT_BROKEN
2559 * XXX since we know which target/lun in particular is
2560 * XXX causing trouble.
2562 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2566 static int esp_eh_bus_reset_handler(struct scsi_cmnd
*cmd
)
2568 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2569 struct completion eh_reset
;
2570 unsigned long flags
;
2572 init_completion(&eh_reset
);
2574 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2576 esp
->eh_reset
= &eh_reset
;
2578 /* XXX This is too simple... We should add lots of
2579 * XXX checks here so that if we find that the chip is
2580 * XXX very wedged we return failure immediately so
2581 * XXX that we can perform a full chip reset.
2583 esp
->flags
|= ESP_FLAG_RESETTING
;
2584 scsi_esp_cmd(esp
, ESP_CMD_RS
);
2586 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2588 ssleep(esp_bus_reset_settle
);
2590 if (!wait_for_completion_timeout(&eh_reset
, 5 * HZ
)) {
2591 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2592 esp
->eh_reset
= NULL
;
2593 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2601 /* All bets are off, reset the entire device. */
2602 static int esp_eh_host_reset_handler(struct scsi_cmnd
*cmd
)
2604 struct esp
*esp
= shost_priv(cmd
->device
->host
);
2605 unsigned long flags
;
2607 spin_lock_irqsave(esp
->host
->host_lock
, flags
);
2608 esp_bootup_reset(esp
);
2609 esp_reset_cleanup(esp
);
2610 spin_unlock_irqrestore(esp
->host
->host_lock
, flags
);
2612 ssleep(esp_bus_reset_settle
);
2617 static const char *esp_info(struct Scsi_Host
*host
)
2622 struct scsi_host_template scsi_esp_template
= {
2623 .module
= THIS_MODULE
,
2626 .queuecommand
= esp_queuecommand
,
2627 .target_alloc
= esp_target_alloc
,
2628 .target_destroy
= esp_target_destroy
,
2629 .slave_alloc
= esp_slave_alloc
,
2630 .slave_configure
= esp_slave_configure
,
2631 .slave_destroy
= esp_slave_destroy
,
2632 .eh_abort_handler
= esp_eh_abort_handler
,
2633 .eh_bus_reset_handler
= esp_eh_bus_reset_handler
,
2634 .eh_host_reset_handler
= esp_eh_host_reset_handler
,
2637 .sg_tablesize
= SG_ALL
,
2638 .use_clustering
= ENABLE_CLUSTERING
,
2639 .max_sectors
= 0xffff,
2640 .skip_settle_delay
= 1,
2642 EXPORT_SYMBOL(scsi_esp_template
);
2644 static void esp_get_signalling(struct Scsi_Host
*host
)
2646 struct esp
*esp
= shost_priv(host
);
2647 enum spi_signal_type type
;
2649 if (esp
->flags
& ESP_FLAG_DIFFERENTIAL
)
2650 type
= SPI_SIGNAL_HVD
;
2652 type
= SPI_SIGNAL_SE
;
2654 spi_signalling(host
) = type
;
2657 static void esp_set_offset(struct scsi_target
*target
, int offset
)
2659 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2660 struct esp
*esp
= shost_priv(host
);
2661 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2663 tp
->nego_goal_offset
= offset
;
2664 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2667 static void esp_set_period(struct scsi_target
*target
, int period
)
2669 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2670 struct esp
*esp
= shost_priv(host
);
2671 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2673 tp
->nego_goal_period
= period
;
2674 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2677 static void esp_set_width(struct scsi_target
*target
, int width
)
2679 struct Scsi_Host
*host
= dev_to_shost(target
->dev
.parent
);
2680 struct esp
*esp
= shost_priv(host
);
2681 struct esp_target_data
*tp
= &esp
->target
[target
->id
];
2683 tp
->nego_goal_width
= (width
? 1 : 0);
2684 tp
->flags
|= ESP_TGT_CHECK_NEGO
;
2687 static struct spi_function_template esp_transport_ops
= {
2688 .set_offset
= esp_set_offset
,
2690 .set_period
= esp_set_period
,
2692 .set_width
= esp_set_width
,
2694 .get_signalling
= esp_get_signalling
,
2697 static int __init
esp_init(void)
2699 BUILD_BUG_ON(sizeof(struct scsi_pointer
) <
2700 sizeof(struct esp_cmd_priv
));
2702 esp_transport_template
= spi_attach_transport(&esp_transport_ops
);
2703 if (!esp_transport_template
)
2709 static void __exit
esp_exit(void)
2711 spi_release_transport(esp_transport_template
);
2714 MODULE_DESCRIPTION("ESP SCSI driver core");
2715 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2716 MODULE_LICENSE("GPL");
2717 MODULE_VERSION(DRV_VERSION
);
2719 module_param(esp_bus_reset_settle
, int, 0);
2720 MODULE_PARM_DESC(esp_bus_reset_settle
,
2721 "ESP scsi bus reset delay in seconds");
2723 module_param(esp_debug
, int, 0);
2724 MODULE_PARM_DESC(esp_debug
,
2725 "ESP bitmapped debugging message enable value:\n"
2726 " 0x00000001 Log interrupt events\n"
2727 " 0x00000002 Log scsi commands\n"
2728 " 0x00000004 Log resets\n"
2729 " 0x00000008 Log message in events\n"
2730 " 0x00000010 Log message out events\n"
2731 " 0x00000020 Log command completion\n"
2732 " 0x00000040 Log disconnects\n"
2733 " 0x00000080 Log data start\n"
2734 " 0x00000100 Log data done\n"
2735 " 0x00000200 Log reconnects\n"
2736 " 0x00000400 Log auto-sense data\n"
2739 module_init(esp_init
);
2740 module_exit(esp_exit
);