netfilter: xt_TCPOPTSTRIP: signed tcphoff for ipv6_skip_exthdr() retval
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / timer.c
blobf3d35d4ea42eff89e09db3e741022c22e593c3a9
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
45 #include <asm/io.h>
47 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
49 EXPORT_SYMBOL(jiffies_64);
52 * per-CPU timer vector definitions:
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
61 struct tvec {
62 struct list_head vec[TVN_SIZE];
65 struct tvec_root {
66 struct list_head vec[TVR_SIZE];
69 struct tvec_base {
70 spinlock_t lock;
71 struct timer_list *running_timer;
72 unsigned long timer_jiffies;
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
78 } ____cacheline_aligned;
80 struct tvec_base boot_tvec_bases;
81 EXPORT_SYMBOL(boot_tvec_bases);
82 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
89 #define TBASE_DEFERRABLE_FLAG (0x1)
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
102 static inline void timer_set_deferrable(struct timer_list *timer)
104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
105 TBASE_DEFERRABLE_FLAG));
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
116 * __round_jiffies - function to round jiffies to a full second
117 * @j: the time in (absolute) jiffies that should be rounded
118 * @cpu: the processor number on which the timeout will happen
120 * __round_jiffies() rounds an absolute time in the future (in jiffies)
121 * up or down to (approximately) full seconds. This is useful for timers
122 * for which the exact time they fire does not matter too much, as long as
123 * they fire approximately every X seconds.
125 * By rounding these timers to whole seconds, all such timers will fire
126 * at the same time, rather than at various times spread out. The goal
127 * of this is to have the CPU wake up less, which saves power.
129 * The exact rounding is skewed for each processor to avoid all
130 * processors firing at the exact same time, which could lead
131 * to lock contention or spurious cache line bouncing.
133 * The return value is the rounded version of the @j parameter.
135 unsigned long __round_jiffies(unsigned long j, int cpu)
137 int rem;
138 unsigned long original = j;
141 * We don't want all cpus firing their timers at once hitting the
142 * same lock or cachelines, so we skew each extra cpu with an extra
143 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
144 * already did this.
145 * The skew is done by adding 3*cpunr, then round, then subtract this
146 * extra offset again.
148 j += cpu * 3;
150 rem = j % HZ;
153 * If the target jiffie is just after a whole second (which can happen
154 * due to delays of the timer irq, long irq off times etc etc) then
155 * we should round down to the whole second, not up. Use 1/4th second
156 * as cutoff for this rounding as an extreme upper bound for this.
158 if (rem < HZ/4) /* round down */
159 j = j - rem;
160 else /* round up */
161 j = j - rem + HZ;
163 /* now that we have rounded, subtract the extra skew again */
164 j -= cpu * 3;
166 if (j <= jiffies) /* rounding ate our timeout entirely; */
167 return original;
168 return j;
170 EXPORT_SYMBOL_GPL(__round_jiffies);
173 * __round_jiffies_relative - function to round jiffies to a full second
174 * @j: the time in (relative) jiffies that should be rounded
175 * @cpu: the processor number on which the timeout will happen
177 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
178 * up or down to (approximately) full seconds. This is useful for timers
179 * for which the exact time they fire does not matter too much, as long as
180 * they fire approximately every X seconds.
182 * By rounding these timers to whole seconds, all such timers will fire
183 * at the same time, rather than at various times spread out. The goal
184 * of this is to have the CPU wake up less, which saves power.
186 * The exact rounding is skewed for each processor to avoid all
187 * processors firing at the exact same time, which could lead
188 * to lock contention or spurious cache line bouncing.
190 * The return value is the rounded version of the @j parameter.
192 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
195 * In theory the following code can skip a jiffy in case jiffies
196 * increments right between the addition and the later subtraction.
197 * However since the entire point of this function is to use approximate
198 * timeouts, it's entirely ok to not handle that.
200 return __round_jiffies(j + jiffies, cpu) - jiffies;
202 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
205 * round_jiffies - function to round jiffies to a full second
206 * @j: the time in (absolute) jiffies that should be rounded
208 * round_jiffies() rounds an absolute time in the future (in jiffies)
209 * up or down to (approximately) full seconds. This is useful for timers
210 * for which the exact time they fire does not matter too much, as long as
211 * they fire approximately every X seconds.
213 * By rounding these timers to whole seconds, all such timers will fire
214 * at the same time, rather than at various times spread out. The goal
215 * of this is to have the CPU wake up less, which saves power.
217 * The return value is the rounded version of the @j parameter.
219 unsigned long round_jiffies(unsigned long j)
221 return __round_jiffies(j, raw_smp_processor_id());
223 EXPORT_SYMBOL_GPL(round_jiffies);
226 * round_jiffies_relative - function to round jiffies to a full second
227 * @j: the time in (relative) jiffies that should be rounded
229 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
230 * up or down to (approximately) full seconds. This is useful for timers
231 * for which the exact time they fire does not matter too much, as long as
232 * they fire approximately every X seconds.
234 * By rounding these timers to whole seconds, all such timers will fire
235 * at the same time, rather than at various times spread out. The goal
236 * of this is to have the CPU wake up less, which saves power.
238 * The return value is the rounded version of the @j parameter.
240 unsigned long round_jiffies_relative(unsigned long j)
242 return __round_jiffies_relative(j, raw_smp_processor_id());
244 EXPORT_SYMBOL_GPL(round_jiffies_relative);
247 static inline void set_running_timer(struct tvec_base *base,
248 struct timer_list *timer)
250 #ifdef CONFIG_SMP
251 base->running_timer = timer;
252 #endif
255 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
257 unsigned long expires = timer->expires;
258 unsigned long idx = expires - base->timer_jiffies;
259 struct list_head *vec;
261 if (idx < TVR_SIZE) {
262 int i = expires & TVR_MASK;
263 vec = base->tv1.vec + i;
264 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
265 int i = (expires >> TVR_BITS) & TVN_MASK;
266 vec = base->tv2.vec + i;
267 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
268 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
269 vec = base->tv3.vec + i;
270 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
271 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
272 vec = base->tv4.vec + i;
273 } else if ((signed long) idx < 0) {
275 * Can happen if you add a timer with expires == jiffies,
276 * or you set a timer to go off in the past
278 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
279 } else {
280 int i;
281 /* If the timeout is larger than 0xffffffff on 64-bit
282 * architectures then we use the maximum timeout:
284 if (idx > 0xffffffffUL) {
285 idx = 0xffffffffUL;
286 expires = idx + base->timer_jiffies;
288 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
289 vec = base->tv5.vec + i;
292 * Timers are FIFO:
294 list_add_tail(&timer->entry, vec);
297 #ifdef CONFIG_TIMER_STATS
298 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
300 if (timer->start_site)
301 return;
303 timer->start_site = addr;
304 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
305 timer->start_pid = current->pid;
308 static void timer_stats_account_timer(struct timer_list *timer)
310 unsigned int flag = 0;
312 if (unlikely(tbase_get_deferrable(timer->base)))
313 flag |= TIMER_STATS_FLAG_DEFERRABLE;
315 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
316 timer->function, timer->start_comm, flag);
319 #else
320 static void timer_stats_account_timer(struct timer_list *timer) {}
321 #endif
324 * init_timer - initialize a timer.
325 * @timer: the timer to be initialized
327 * init_timer() must be done to a timer prior calling *any* of the
328 * other timer functions.
330 void init_timer(struct timer_list *timer)
332 timer->entry.next = NULL;
333 timer->base = __raw_get_cpu_var(tvec_bases);
334 #ifdef CONFIG_TIMER_STATS
335 timer->start_site = NULL;
336 timer->start_pid = -1;
337 memset(timer->start_comm, 0, TASK_COMM_LEN);
338 #endif
340 EXPORT_SYMBOL(init_timer);
342 void init_timer_deferrable(struct timer_list *timer)
344 init_timer(timer);
345 timer_set_deferrable(timer);
347 EXPORT_SYMBOL(init_timer_deferrable);
349 static inline void detach_timer(struct timer_list *timer,
350 int clear_pending)
352 struct list_head *entry = &timer->entry;
354 __list_del(entry->prev, entry->next);
355 if (clear_pending)
356 entry->next = NULL;
357 entry->prev = LIST_POISON2;
361 * We are using hashed locking: holding per_cpu(tvec_bases).lock
362 * means that all timers which are tied to this base via timer->base are
363 * locked, and the base itself is locked too.
365 * So __run_timers/migrate_timers can safely modify all timers which could
366 * be found on ->tvX lists.
368 * When the timer's base is locked, and the timer removed from list, it is
369 * possible to set timer->base = NULL and drop the lock: the timer remains
370 * locked.
372 static struct tvec_base *lock_timer_base(struct timer_list *timer,
373 unsigned long *flags)
374 __acquires(timer->base->lock)
376 struct tvec_base *base;
378 for (;;) {
379 struct tvec_base *prelock_base = timer->base;
380 base = tbase_get_base(prelock_base);
381 if (likely(base != NULL)) {
382 spin_lock_irqsave(&base->lock, *flags);
383 if (likely(prelock_base == timer->base))
384 return base;
385 /* The timer has migrated to another CPU */
386 spin_unlock_irqrestore(&base->lock, *flags);
388 cpu_relax();
392 int __mod_timer(struct timer_list *timer, unsigned long expires)
394 struct tvec_base *base, *new_base;
395 unsigned long flags;
396 int ret = 0;
398 timer_stats_timer_set_start_info(timer);
399 BUG_ON(!timer->function);
401 base = lock_timer_base(timer, &flags);
403 if (timer_pending(timer)) {
404 detach_timer(timer, 0);
405 ret = 1;
408 new_base = __get_cpu_var(tvec_bases);
410 if (base != new_base) {
412 * We are trying to schedule the timer on the local CPU.
413 * However we can't change timer's base while it is running,
414 * otherwise del_timer_sync() can't detect that the timer's
415 * handler yet has not finished. This also guarantees that
416 * the timer is serialized wrt itself.
418 if (likely(base->running_timer != timer)) {
419 /* See the comment in lock_timer_base() */
420 timer_set_base(timer, NULL);
421 spin_unlock(&base->lock);
422 base = new_base;
423 spin_lock(&base->lock);
424 timer_set_base(timer, base);
428 timer->expires = expires;
429 internal_add_timer(base, timer);
430 spin_unlock_irqrestore(&base->lock, flags);
432 return ret;
435 EXPORT_SYMBOL(__mod_timer);
438 * add_timer_on - start a timer on a particular CPU
439 * @timer: the timer to be added
440 * @cpu: the CPU to start it on
442 * This is not very scalable on SMP. Double adds are not possible.
444 void add_timer_on(struct timer_list *timer, int cpu)
446 struct tvec_base *base = per_cpu(tvec_bases, cpu);
447 unsigned long flags;
449 timer_stats_timer_set_start_info(timer);
450 BUG_ON(timer_pending(timer) || !timer->function);
451 spin_lock_irqsave(&base->lock, flags);
452 timer_set_base(timer, base);
453 internal_add_timer(base, timer);
455 * Check whether the other CPU is idle and needs to be
456 * triggered to reevaluate the timer wheel when nohz is
457 * active. We are protected against the other CPU fiddling
458 * with the timer by holding the timer base lock. This also
459 * makes sure that a CPU on the way to idle can not evaluate
460 * the timer wheel.
462 wake_up_idle_cpu(cpu);
463 spin_unlock_irqrestore(&base->lock, flags);
467 * mod_timer - modify a timer's timeout
468 * @timer: the timer to be modified
469 * @expires: new timeout in jiffies
471 * mod_timer() is a more efficient way to update the expire field of an
472 * active timer (if the timer is inactive it will be activated)
474 * mod_timer(timer, expires) is equivalent to:
476 * del_timer(timer); timer->expires = expires; add_timer(timer);
478 * Note that if there are multiple unserialized concurrent users of the
479 * same timer, then mod_timer() is the only safe way to modify the timeout,
480 * since add_timer() cannot modify an already running timer.
482 * The function returns whether it has modified a pending timer or not.
483 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
484 * active timer returns 1.)
486 int mod_timer(struct timer_list *timer, unsigned long expires)
488 BUG_ON(!timer->function);
490 timer_stats_timer_set_start_info(timer);
492 * This is a common optimization triggered by the
493 * networking code - if the timer is re-modified
494 * to be the same thing then just return:
496 if (timer->expires == expires && timer_pending(timer))
497 return 1;
499 return __mod_timer(timer, expires);
502 EXPORT_SYMBOL(mod_timer);
505 * del_timer - deactive a timer.
506 * @timer: the timer to be deactivated
508 * del_timer() deactivates a timer - this works on both active and inactive
509 * timers.
511 * The function returns whether it has deactivated a pending timer or not.
512 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
513 * active timer returns 1.)
515 int del_timer(struct timer_list *timer)
517 struct tvec_base *base;
518 unsigned long flags;
519 int ret = 0;
521 timer_stats_timer_clear_start_info(timer);
522 if (timer_pending(timer)) {
523 base = lock_timer_base(timer, &flags);
524 if (timer_pending(timer)) {
525 detach_timer(timer, 1);
526 ret = 1;
528 spin_unlock_irqrestore(&base->lock, flags);
531 return ret;
534 EXPORT_SYMBOL(del_timer);
536 #ifdef CONFIG_SMP
538 * try_to_del_timer_sync - Try to deactivate a timer
539 * @timer: timer do del
541 * This function tries to deactivate a timer. Upon successful (ret >= 0)
542 * exit the timer is not queued and the handler is not running on any CPU.
544 * It must not be called from interrupt contexts.
546 int try_to_del_timer_sync(struct timer_list *timer)
548 struct tvec_base *base;
549 unsigned long flags;
550 int ret = -1;
552 base = lock_timer_base(timer, &flags);
554 if (base->running_timer == timer)
555 goto out;
557 ret = 0;
558 if (timer_pending(timer)) {
559 detach_timer(timer, 1);
560 ret = 1;
562 out:
563 spin_unlock_irqrestore(&base->lock, flags);
565 return ret;
568 EXPORT_SYMBOL(try_to_del_timer_sync);
571 * del_timer_sync - deactivate a timer and wait for the handler to finish.
572 * @timer: the timer to be deactivated
574 * This function only differs from del_timer() on SMP: besides deactivating
575 * the timer it also makes sure the handler has finished executing on other
576 * CPUs.
578 * Synchronization rules: Callers must prevent restarting of the timer,
579 * otherwise this function is meaningless. It must not be called from
580 * interrupt contexts. The caller must not hold locks which would prevent
581 * completion of the timer's handler. The timer's handler must not call
582 * add_timer_on(). Upon exit the timer is not queued and the handler is
583 * not running on any CPU.
585 * The function returns whether it has deactivated a pending timer or not.
587 int del_timer_sync(struct timer_list *timer)
589 for (;;) {
590 int ret = try_to_del_timer_sync(timer);
591 if (ret >= 0)
592 return ret;
593 cpu_relax();
597 EXPORT_SYMBOL(del_timer_sync);
598 #endif
600 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
602 /* cascade all the timers from tv up one level */
603 struct timer_list *timer, *tmp;
604 struct list_head tv_list;
606 list_replace_init(tv->vec + index, &tv_list);
609 * We are removing _all_ timers from the list, so we
610 * don't have to detach them individually.
612 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
613 BUG_ON(tbase_get_base(timer->base) != base);
614 internal_add_timer(base, timer);
617 return index;
620 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
623 * __run_timers - run all expired timers (if any) on this CPU.
624 * @base: the timer vector to be processed.
626 * This function cascades all vectors and executes all expired timer
627 * vectors.
629 static inline void __run_timers(struct tvec_base *base)
631 struct timer_list *timer;
633 spin_lock_irq(&base->lock);
634 while (time_after_eq(jiffies, base->timer_jiffies)) {
635 struct list_head work_list;
636 struct list_head *head = &work_list;
637 int index = base->timer_jiffies & TVR_MASK;
640 * Cascade timers:
642 if (!index &&
643 (!cascade(base, &base->tv2, INDEX(0))) &&
644 (!cascade(base, &base->tv3, INDEX(1))) &&
645 !cascade(base, &base->tv4, INDEX(2)))
646 cascade(base, &base->tv5, INDEX(3));
647 ++base->timer_jiffies;
648 list_replace_init(base->tv1.vec + index, &work_list);
649 while (!list_empty(head)) {
650 void (*fn)(unsigned long);
651 unsigned long data;
653 timer = list_first_entry(head, struct timer_list,entry);
654 fn = timer->function;
655 data = timer->data;
657 timer_stats_account_timer(timer);
659 set_running_timer(base, timer);
660 detach_timer(timer, 1);
661 spin_unlock_irq(&base->lock);
663 int preempt_count = preempt_count();
664 fn(data);
665 if (preempt_count != preempt_count()) {
666 printk(KERN_ERR "huh, entered %p "
667 "with preempt_count %08x, exited"
668 " with %08x?\n",
669 fn, preempt_count,
670 preempt_count());
671 BUG();
674 spin_lock_irq(&base->lock);
677 set_running_timer(base, NULL);
678 spin_unlock_irq(&base->lock);
681 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
683 * Find out when the next timer event is due to happen. This
684 * is used on S/390 to stop all activity when a cpus is idle.
685 * This functions needs to be called disabled.
687 static unsigned long __next_timer_interrupt(struct tvec_base *base)
689 unsigned long timer_jiffies = base->timer_jiffies;
690 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
691 int index, slot, array, found = 0;
692 struct timer_list *nte;
693 struct tvec *varray[4];
695 /* Look for timer events in tv1. */
696 index = slot = timer_jiffies & TVR_MASK;
697 do {
698 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
699 if (tbase_get_deferrable(nte->base))
700 continue;
702 found = 1;
703 expires = nte->expires;
704 /* Look at the cascade bucket(s)? */
705 if (!index || slot < index)
706 goto cascade;
707 return expires;
709 slot = (slot + 1) & TVR_MASK;
710 } while (slot != index);
712 cascade:
713 /* Calculate the next cascade event */
714 if (index)
715 timer_jiffies += TVR_SIZE - index;
716 timer_jiffies >>= TVR_BITS;
718 /* Check tv2-tv5. */
719 varray[0] = &base->tv2;
720 varray[1] = &base->tv3;
721 varray[2] = &base->tv4;
722 varray[3] = &base->tv5;
724 for (array = 0; array < 4; array++) {
725 struct tvec *varp = varray[array];
727 index = slot = timer_jiffies & TVN_MASK;
728 do {
729 list_for_each_entry(nte, varp->vec + slot, entry) {
730 found = 1;
731 if (time_before(nte->expires, expires))
732 expires = nte->expires;
735 * Do we still search for the first timer or are
736 * we looking up the cascade buckets ?
738 if (found) {
739 /* Look at the cascade bucket(s)? */
740 if (!index || slot < index)
741 break;
742 return expires;
744 slot = (slot + 1) & TVN_MASK;
745 } while (slot != index);
747 if (index)
748 timer_jiffies += TVN_SIZE - index;
749 timer_jiffies >>= TVN_BITS;
751 return expires;
755 * Check, if the next hrtimer event is before the next timer wheel
756 * event:
758 static unsigned long cmp_next_hrtimer_event(unsigned long now,
759 unsigned long expires)
761 ktime_t hr_delta = hrtimer_get_next_event();
762 struct timespec tsdelta;
763 unsigned long delta;
765 if (hr_delta.tv64 == KTIME_MAX)
766 return expires;
769 * Expired timer available, let it expire in the next tick
771 if (hr_delta.tv64 <= 0)
772 return now + 1;
774 tsdelta = ktime_to_timespec(hr_delta);
775 delta = timespec_to_jiffies(&tsdelta);
778 * Limit the delta to the max value, which is checked in
779 * tick_nohz_stop_sched_tick():
781 if (delta > NEXT_TIMER_MAX_DELTA)
782 delta = NEXT_TIMER_MAX_DELTA;
785 * Take rounding errors in to account and make sure, that it
786 * expires in the next tick. Otherwise we go into an endless
787 * ping pong due to tick_nohz_stop_sched_tick() retriggering
788 * the timer softirq
790 if (delta < 1)
791 delta = 1;
792 now += delta;
793 if (time_before(now, expires))
794 return now;
795 return expires;
799 * get_next_timer_interrupt - return the jiffy of the next pending timer
800 * @now: current time (in jiffies)
802 unsigned long get_next_timer_interrupt(unsigned long now)
804 struct tvec_base *base = __get_cpu_var(tvec_bases);
805 unsigned long expires;
807 spin_lock(&base->lock);
808 expires = __next_timer_interrupt(base);
809 spin_unlock(&base->lock);
811 if (time_before_eq(expires, now))
812 return now;
814 return cmp_next_hrtimer_event(now, expires);
817 #ifdef CONFIG_NO_IDLE_HZ
818 unsigned long next_timer_interrupt(void)
820 return get_next_timer_interrupt(jiffies);
822 #endif
824 #endif
826 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
827 void account_process_tick(struct task_struct *p, int user_tick)
829 cputime_t one_jiffy = jiffies_to_cputime(1);
831 if (user_tick) {
832 account_user_time(p, one_jiffy);
833 account_user_time_scaled(p, cputime_to_scaled(one_jiffy));
834 } else {
835 account_system_time(p, HARDIRQ_OFFSET, one_jiffy);
836 account_system_time_scaled(p, cputime_to_scaled(one_jiffy));
839 #endif
842 * Called from the timer interrupt handler to charge one tick to the current
843 * process. user_tick is 1 if the tick is user time, 0 for system.
845 void update_process_times(int user_tick)
847 struct task_struct *p = current;
848 int cpu = smp_processor_id();
850 /* Note: this timer irq context must be accounted for as well. */
851 account_process_tick(p, user_tick);
852 run_local_timers();
853 if (rcu_pending(cpu))
854 rcu_check_callbacks(cpu, user_tick);
855 scheduler_tick();
856 run_posix_cpu_timers(p);
860 * Nr of active tasks - counted in fixed-point numbers
862 static unsigned long count_active_tasks(void)
864 return nr_active() * FIXED_1;
868 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
869 * imply that avenrun[] is the standard name for this kind of thing.
870 * Nothing else seems to be standardized: the fractional size etc
871 * all seem to differ on different machines.
873 * Requires xtime_lock to access.
875 unsigned long avenrun[3];
877 EXPORT_SYMBOL(avenrun);
880 * calc_load - given tick count, update the avenrun load estimates.
881 * This is called while holding a write_lock on xtime_lock.
883 static inline void calc_load(unsigned long ticks)
885 unsigned long active_tasks; /* fixed-point */
886 static int count = LOAD_FREQ;
888 count -= ticks;
889 if (unlikely(count < 0)) {
890 active_tasks = count_active_tasks();
891 do {
892 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
893 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
894 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
895 count += LOAD_FREQ;
896 } while (count < 0);
901 * This function runs timers and the timer-tq in bottom half context.
903 static void run_timer_softirq(struct softirq_action *h)
905 struct tvec_base *base = __get_cpu_var(tvec_bases);
907 hrtimer_run_pending();
909 if (time_after_eq(jiffies, base->timer_jiffies))
910 __run_timers(base);
914 * Called by the local, per-CPU timer interrupt on SMP.
916 void run_local_timers(void)
918 hrtimer_run_queues();
919 raise_softirq(TIMER_SOFTIRQ);
920 softlockup_tick();
924 * Called by the timer interrupt. xtime_lock must already be taken
925 * by the timer IRQ!
927 static inline void update_times(unsigned long ticks)
929 update_wall_time();
930 calc_load(ticks);
934 * The 64-bit jiffies value is not atomic - you MUST NOT read it
935 * without sampling the sequence number in xtime_lock.
936 * jiffies is defined in the linker script...
939 void do_timer(unsigned long ticks)
941 jiffies_64 += ticks;
942 update_times(ticks);
945 #ifdef __ARCH_WANT_SYS_ALARM
948 * For backwards compatibility? This can be done in libc so Alpha
949 * and all newer ports shouldn't need it.
951 asmlinkage unsigned long sys_alarm(unsigned int seconds)
953 return alarm_setitimer(seconds);
956 #endif
958 #ifndef __alpha__
961 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
962 * should be moved into arch/i386 instead?
966 * sys_getpid - return the thread group id of the current process
968 * Note, despite the name, this returns the tgid not the pid. The tgid and
969 * the pid are identical unless CLONE_THREAD was specified on clone() in
970 * which case the tgid is the same in all threads of the same group.
972 * This is SMP safe as current->tgid does not change.
974 asmlinkage long sys_getpid(void)
976 return task_tgid_vnr(current);
980 * Accessing ->real_parent is not SMP-safe, it could
981 * change from under us. However, we can use a stale
982 * value of ->real_parent under rcu_read_lock(), see
983 * release_task()->call_rcu(delayed_put_task_struct).
985 asmlinkage long sys_getppid(void)
987 int pid;
989 rcu_read_lock();
990 pid = task_tgid_vnr(current->real_parent);
991 rcu_read_unlock();
993 return pid;
996 asmlinkage long sys_getuid(void)
998 /* Only we change this so SMP safe */
999 return current->uid;
1002 asmlinkage long sys_geteuid(void)
1004 /* Only we change this so SMP safe */
1005 return current->euid;
1008 asmlinkage long sys_getgid(void)
1010 /* Only we change this so SMP safe */
1011 return current->gid;
1014 asmlinkage long sys_getegid(void)
1016 /* Only we change this so SMP safe */
1017 return current->egid;
1020 #endif
1022 static void process_timeout(unsigned long __data)
1024 wake_up_process((struct task_struct *)__data);
1028 * schedule_timeout - sleep until timeout
1029 * @timeout: timeout value in jiffies
1031 * Make the current task sleep until @timeout jiffies have
1032 * elapsed. The routine will return immediately unless
1033 * the current task state has been set (see set_current_state()).
1035 * You can set the task state as follows -
1037 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1038 * pass before the routine returns. The routine will return 0
1040 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1041 * delivered to the current task. In this case the remaining time
1042 * in jiffies will be returned, or 0 if the timer expired in time
1044 * The current task state is guaranteed to be TASK_RUNNING when this
1045 * routine returns.
1047 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1048 * the CPU away without a bound on the timeout. In this case the return
1049 * value will be %MAX_SCHEDULE_TIMEOUT.
1051 * In all cases the return value is guaranteed to be non-negative.
1053 signed long __sched schedule_timeout(signed long timeout)
1055 struct timer_list timer;
1056 unsigned long expire;
1058 switch (timeout)
1060 case MAX_SCHEDULE_TIMEOUT:
1062 * These two special cases are useful to be comfortable
1063 * in the caller. Nothing more. We could take
1064 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1065 * but I' d like to return a valid offset (>=0) to allow
1066 * the caller to do everything it want with the retval.
1068 schedule();
1069 goto out;
1070 default:
1072 * Another bit of PARANOID. Note that the retval will be
1073 * 0 since no piece of kernel is supposed to do a check
1074 * for a negative retval of schedule_timeout() (since it
1075 * should never happens anyway). You just have the printk()
1076 * that will tell you if something is gone wrong and where.
1078 if (timeout < 0) {
1079 printk(KERN_ERR "schedule_timeout: wrong timeout "
1080 "value %lx\n", timeout);
1081 dump_stack();
1082 current->state = TASK_RUNNING;
1083 goto out;
1087 expire = timeout + jiffies;
1089 setup_timer(&timer, process_timeout, (unsigned long)current);
1090 __mod_timer(&timer, expire);
1091 schedule();
1092 del_singleshot_timer_sync(&timer);
1094 timeout = expire - jiffies;
1096 out:
1097 return timeout < 0 ? 0 : timeout;
1099 EXPORT_SYMBOL(schedule_timeout);
1102 * We can use __set_current_state() here because schedule_timeout() calls
1103 * schedule() unconditionally.
1105 signed long __sched schedule_timeout_interruptible(signed long timeout)
1107 __set_current_state(TASK_INTERRUPTIBLE);
1108 return schedule_timeout(timeout);
1110 EXPORT_SYMBOL(schedule_timeout_interruptible);
1112 signed long __sched schedule_timeout_killable(signed long timeout)
1114 __set_current_state(TASK_KILLABLE);
1115 return schedule_timeout(timeout);
1117 EXPORT_SYMBOL(schedule_timeout_killable);
1119 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1121 __set_current_state(TASK_UNINTERRUPTIBLE);
1122 return schedule_timeout(timeout);
1124 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1126 /* Thread ID - the internal kernel "pid" */
1127 asmlinkage long sys_gettid(void)
1129 return task_pid_vnr(current);
1133 * do_sysinfo - fill in sysinfo struct
1134 * @info: pointer to buffer to fill
1136 int do_sysinfo(struct sysinfo *info)
1138 unsigned long mem_total, sav_total;
1139 unsigned int mem_unit, bitcount;
1140 unsigned long seq;
1142 memset(info, 0, sizeof(struct sysinfo));
1144 do {
1145 struct timespec tp;
1146 seq = read_seqbegin(&xtime_lock);
1149 * This is annoying. The below is the same thing
1150 * posix_get_clock_monotonic() does, but it wants to
1151 * take the lock which we want to cover the loads stuff
1152 * too.
1155 getnstimeofday(&tp);
1156 tp.tv_sec += wall_to_monotonic.tv_sec;
1157 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1158 monotonic_to_bootbased(&tp);
1159 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1160 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1161 tp.tv_sec++;
1163 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1165 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1166 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1167 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1169 info->procs = nr_threads;
1170 } while (read_seqretry(&xtime_lock, seq));
1172 si_meminfo(info);
1173 si_swapinfo(info);
1176 * If the sum of all the available memory (i.e. ram + swap)
1177 * is less than can be stored in a 32 bit unsigned long then
1178 * we can be binary compatible with 2.2.x kernels. If not,
1179 * well, in that case 2.2.x was broken anyways...
1181 * -Erik Andersen <andersee@debian.org>
1184 mem_total = info->totalram + info->totalswap;
1185 if (mem_total < info->totalram || mem_total < info->totalswap)
1186 goto out;
1187 bitcount = 0;
1188 mem_unit = info->mem_unit;
1189 while (mem_unit > 1) {
1190 bitcount++;
1191 mem_unit >>= 1;
1192 sav_total = mem_total;
1193 mem_total <<= 1;
1194 if (mem_total < sav_total)
1195 goto out;
1199 * If mem_total did not overflow, multiply all memory values by
1200 * info->mem_unit and set it to 1. This leaves things compatible
1201 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1202 * kernels...
1205 info->mem_unit = 1;
1206 info->totalram <<= bitcount;
1207 info->freeram <<= bitcount;
1208 info->sharedram <<= bitcount;
1209 info->bufferram <<= bitcount;
1210 info->totalswap <<= bitcount;
1211 info->freeswap <<= bitcount;
1212 info->totalhigh <<= bitcount;
1213 info->freehigh <<= bitcount;
1215 out:
1216 return 0;
1219 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1221 struct sysinfo val;
1223 do_sysinfo(&val);
1225 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1226 return -EFAULT;
1228 return 0;
1231 static int __cpuinit init_timers_cpu(int cpu)
1233 int j;
1234 struct tvec_base *base;
1235 static char __cpuinitdata tvec_base_done[NR_CPUS];
1237 if (!tvec_base_done[cpu]) {
1238 static char boot_done;
1240 if (boot_done) {
1242 * The APs use this path later in boot
1244 base = kmalloc_node(sizeof(*base),
1245 GFP_KERNEL | __GFP_ZERO,
1246 cpu_to_node(cpu));
1247 if (!base)
1248 return -ENOMEM;
1250 /* Make sure that tvec_base is 2 byte aligned */
1251 if (tbase_get_deferrable(base)) {
1252 WARN_ON(1);
1253 kfree(base);
1254 return -ENOMEM;
1256 per_cpu(tvec_bases, cpu) = base;
1257 } else {
1259 * This is for the boot CPU - we use compile-time
1260 * static initialisation because per-cpu memory isn't
1261 * ready yet and because the memory allocators are not
1262 * initialised either.
1264 boot_done = 1;
1265 base = &boot_tvec_bases;
1267 tvec_base_done[cpu] = 1;
1268 } else {
1269 base = per_cpu(tvec_bases, cpu);
1272 spin_lock_init(&base->lock);
1274 for (j = 0; j < TVN_SIZE; j++) {
1275 INIT_LIST_HEAD(base->tv5.vec + j);
1276 INIT_LIST_HEAD(base->tv4.vec + j);
1277 INIT_LIST_HEAD(base->tv3.vec + j);
1278 INIT_LIST_HEAD(base->tv2.vec + j);
1280 for (j = 0; j < TVR_SIZE; j++)
1281 INIT_LIST_HEAD(base->tv1.vec + j);
1283 base->timer_jiffies = jiffies;
1284 return 0;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1290 struct timer_list *timer;
1292 while (!list_empty(head)) {
1293 timer = list_first_entry(head, struct timer_list, entry);
1294 detach_timer(timer, 0);
1295 timer_set_base(timer, new_base);
1296 internal_add_timer(new_base, timer);
1300 static void __cpuinit migrate_timers(int cpu)
1302 struct tvec_base *old_base;
1303 struct tvec_base *new_base;
1304 int i;
1306 BUG_ON(cpu_online(cpu));
1307 old_base = per_cpu(tvec_bases, cpu);
1308 new_base = get_cpu_var(tvec_bases);
1310 local_irq_disable();
1311 spin_lock(&new_base->lock);
1312 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1314 BUG_ON(old_base->running_timer);
1316 for (i = 0; i < TVR_SIZE; i++)
1317 migrate_timer_list(new_base, old_base->tv1.vec + i);
1318 for (i = 0; i < TVN_SIZE; i++) {
1319 migrate_timer_list(new_base, old_base->tv2.vec + i);
1320 migrate_timer_list(new_base, old_base->tv3.vec + i);
1321 migrate_timer_list(new_base, old_base->tv4.vec + i);
1322 migrate_timer_list(new_base, old_base->tv5.vec + i);
1325 spin_unlock(&old_base->lock);
1326 spin_unlock(&new_base->lock);
1327 local_irq_enable();
1328 put_cpu_var(tvec_bases);
1330 #endif /* CONFIG_HOTPLUG_CPU */
1332 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1333 unsigned long action, void *hcpu)
1335 long cpu = (long)hcpu;
1336 switch(action) {
1337 case CPU_UP_PREPARE:
1338 case CPU_UP_PREPARE_FROZEN:
1339 if (init_timers_cpu(cpu) < 0)
1340 return NOTIFY_BAD;
1341 break;
1342 #ifdef CONFIG_HOTPLUG_CPU
1343 case CPU_DEAD:
1344 case CPU_DEAD_FROZEN:
1345 migrate_timers(cpu);
1346 break;
1347 #endif
1348 default:
1349 break;
1351 return NOTIFY_OK;
1354 static struct notifier_block __cpuinitdata timers_nb = {
1355 .notifier_call = timer_cpu_notify,
1359 void __init init_timers(void)
1361 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1362 (void *)(long)smp_processor_id());
1364 init_timer_stats();
1366 BUG_ON(err == NOTIFY_BAD);
1367 register_cpu_notifier(&timers_nb);
1368 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1372 * msleep - sleep safely even with waitqueue interruptions
1373 * @msecs: Time in milliseconds to sleep for
1375 void msleep(unsigned int msecs)
1377 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1379 while (timeout)
1380 timeout = schedule_timeout_uninterruptible(timeout);
1383 EXPORT_SYMBOL(msleep);
1386 * msleep_interruptible - sleep waiting for signals
1387 * @msecs: Time in milliseconds to sleep for
1389 unsigned long msleep_interruptible(unsigned int msecs)
1391 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1393 while (timeout && !signal_pending(current))
1394 timeout = schedule_timeout_interruptible(timeout);
1395 return jiffies_to_msecs(timeout);
1398 EXPORT_SYMBOL(msleep_interruptible);