2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/device.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
19 #define CAFE_NAND_CTRL1 0x00
20 #define CAFE_NAND_CTRL2 0x04
21 #define CAFE_NAND_CTRL3 0x08
22 #define CAFE_NAND_STATUS 0x0c
23 #define CAFE_NAND_IRQ 0x10
24 #define CAFE_NAND_IRQ_MASK 0x14
25 #define CAFE_NAND_DATA_LEN 0x18
26 #define CAFE_NAND_ADDR1 0x1c
27 #define CAFE_NAND_ADDR2 0x20
28 #define CAFE_NAND_TIMING1 0x24
29 #define CAFE_NAND_TIMING2 0x28
30 #define CAFE_NAND_TIMING3 0x2c
31 #define CAFE_NAND_NONMEM 0x30
32 #define CAFE_NAND_ECC_RESULT 0x3C
33 #define CAFE_NAND_DMA_CTRL 0x40
34 #define CAFE_NAND_DMA_ADDR0 0x44
35 #define CAFE_NAND_DMA_ADDR1 0x48
36 #define CAFE_NAND_ECC_SYN01 0x50
37 #define CAFE_NAND_ECC_SYN23 0x54
38 #define CAFE_NAND_ECC_SYN45 0x58
39 #define CAFE_NAND_ECC_SYN67 0x5c
40 #define CAFE_NAND_READ_DATA 0x1000
41 #define CAFE_NAND_WRITE_DATA 0x2000
43 #define CAFE_GLOBAL_CTRL 0x3004
44 #define CAFE_GLOBAL_IRQ 0x3008
45 #define CAFE_GLOBAL_IRQ_MASK 0x300c
46 #define CAFE_NAND_RESET 0x3034
48 int cafe_correct_ecc(unsigned char *buf
,
49 unsigned short *chk_syndrome_list
);
52 struct nand_chip nand
;
62 unsigned char *dmabuf
;
66 static int usedma
= 1;
67 module_param(usedma
, int, 0644);
69 static int skipbbt
= 0;
70 module_param(skipbbt
, int, 0644);
73 module_param(debug
, int, 0644);
75 static int regdebug
= 0;
76 module_param(regdebug
, int, 0644);
78 static int checkecc
= 1;
79 module_param(checkecc
, int, 0644);
81 static int slowtiming
= 0;
82 module_param(slowtiming
, int, 0644);
84 /* Hrm. Why isn't this already conditional on something in the struct device? */
85 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
87 /* Make it easier to switch to PIO if we need to */
88 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
89 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
91 static int cafe_device_ready(struct mtd_info
*mtd
)
93 struct cafe_priv
*cafe
= mtd
->priv
;
94 int result
= !!(cafe_readl(cafe
, NAND_STATUS
) | 0x40000000);
95 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
97 cafe_writel(cafe
, irqs
, NAND_IRQ
);
99 cafe_dev_dbg(&cafe
->pdev
->dev
, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
100 result
?"":" not", irqs
, cafe_readl(cafe
, NAND_IRQ
),
101 cafe_readl(cafe
, GLOBAL_IRQ
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
107 static void cafe_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
109 struct cafe_priv
*cafe
= mtd
->priv
;
112 memcpy(cafe
->dmabuf
+ cafe
->datalen
, buf
, len
);
114 memcpy_toio(cafe
->mmio
+ CAFE_NAND_WRITE_DATA
+ cafe
->datalen
, buf
, len
);
116 cafe
->datalen
+= len
;
118 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
122 static void cafe_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
124 struct cafe_priv
*cafe
= mtd
->priv
;
127 memcpy(buf
, cafe
->dmabuf
+ cafe
->datalen
, len
);
129 memcpy_fromio(buf
, cafe
->mmio
+ CAFE_NAND_READ_DATA
+ cafe
->datalen
, len
);
131 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
133 cafe
->datalen
+= len
;
136 static uint8_t cafe_read_byte(struct mtd_info
*mtd
)
138 struct cafe_priv
*cafe
= mtd
->priv
;
141 cafe_read_buf(mtd
, &d
, 1);
142 cafe_dev_dbg(&cafe
->pdev
->dev
, "Read %02x\n", d
);
147 static void cafe_nand_cmdfunc(struct mtd_info
*mtd
, unsigned command
,
148 int column
, int page_addr
)
150 struct cafe_priv
*cafe
= mtd
->priv
;
153 uint32_t doneint
= 0x80000000;
155 cafe_dev_dbg(&cafe
->pdev
->dev
, "cmdfunc %02x, 0x%x, 0x%x\n",
156 command
, column
, page_addr
);
158 if (command
== NAND_CMD_ERASE2
|| command
== NAND_CMD_PAGEPROG
) {
159 /* Second half of a command we already calculated */
160 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | command
, NAND_CTRL2
);
162 cafe_dev_dbg(&cafe
->pdev
->dev
, "Continue command, ctl1 %08x, #data %d\n",
163 cafe
->ctl1
, cafe
->nr_data
);
166 /* Reset ECC engine */
167 cafe_writel(cafe
, 0, NAND_CTRL2
);
169 /* Emulate NAND_CMD_READOOB on large-page chips */
170 if (mtd
->writesize
> 512 &&
171 command
== NAND_CMD_READOOB
) {
172 column
+= mtd
->writesize
;
173 command
= NAND_CMD_READ0
;
176 /* FIXME: Do we need to send read command before sending data
177 for small-page chips, to position the buffer correctly? */
180 cafe_writel(cafe
, column
, NAND_ADDR1
);
184 } else if (page_addr
!= -1) {
185 cafe_writel(cafe
, page_addr
& 0xffff, NAND_ADDR1
);
188 cafe_writel(cafe
, page_addr
, NAND_ADDR2
);
190 if (mtd
->size
> mtd
->writesize
<< 16)
194 cafe
->data_pos
= cafe
->datalen
= 0;
196 /* Set command valid bit */
197 ctl1
= 0x80000000 | command
;
199 /* Set RD or WR bits as appropriate */
200 if (command
== NAND_CMD_READID
|| command
== NAND_CMD_STATUS
) {
201 ctl1
|= (1<<26); /* rd */
202 /* Always 5 bytes, for now */
204 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
206 } else if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
207 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_RNDOUT
) {
208 ctl1
|= 1<<26; /* rd */
209 /* For now, assume just read to end of page */
210 cafe
->datalen
= mtd
->writesize
+ mtd
->oobsize
- column
;
211 } else if (command
== NAND_CMD_SEQIN
)
212 ctl1
|= 1<<25; /* wr */
214 /* Set number of address bytes */
216 ctl1
|= ((adrbytes
-1)|8) << 27;
218 if (command
== NAND_CMD_SEQIN
|| command
== NAND_CMD_ERASE1
) {
219 /* Ignore the first command of a pair; the hardware
220 deals with them both at once, later */
223 cafe_dev_dbg(&cafe
->pdev
->dev
, "Setup for delayed command, ctl1 %08x, dlen %x\n",
224 cafe
->ctl1
, cafe
->datalen
);
227 /* RNDOUT and READ0 commands need a following byte */
228 if (command
== NAND_CMD_RNDOUT
)
229 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_RNDOUTSTART
, NAND_CTRL2
);
230 else if (command
== NAND_CMD_READ0
&& mtd
->writesize
> 512)
231 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_READSTART
, NAND_CTRL2
);
234 cafe_dev_dbg(&cafe
->pdev
->dev
, "dlen %x, ctl1 %x, ctl2 %x\n",
235 cafe
->datalen
, ctl1
, cafe_readl(cafe
, NAND_CTRL2
));
237 /* NB: The datasheet lies -- we really should be subtracting 1 here */
238 cafe_writel(cafe
, cafe
->datalen
, NAND_DATA_LEN
);
239 cafe_writel(cafe
, 0x90000000, NAND_IRQ
);
240 if (usedma
&& (ctl1
& (3<<25))) {
241 uint32_t dmactl
= 0xc0000000 + cafe
->datalen
;
242 /* If WR or RD bits set, set up DMA */
243 if (ctl1
& (1<<26)) {
246 /* ... so it's done when the DMA is done, not just
248 doneint
= 0x10000000;
250 cafe_writel(cafe
, dmactl
, NAND_DMA_CTRL
);
254 if (unlikely(regdebug
)) {
256 printk("About to write command %08x to register 0\n", ctl1
);
257 for (i
=4; i
< 0x5c; i
+=4)
258 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
261 cafe_writel(cafe
, ctl1
, NAND_CTRL1
);
262 /* Apply this short delay always to ensure that we do wait tWB in
263 * any case on any machine. */
271 irqs
= cafe_readl(cafe
, NAND_IRQ
);
276 cafe_dev_dbg(&cafe
->pdev
->dev
, "Wait for ready, IRQ %x\n", irqs
);
279 cafe_writel(cafe
, doneint
, NAND_IRQ
);
280 cafe_dev_dbg(&cafe
->pdev
->dev
, "Command %x completed after %d usec, irqs %x (%x)\n",
281 command
, 500000-c
, irqs
, cafe_readl(cafe
, NAND_IRQ
));
285 cafe
->ctl2
&= ~(1<<8);
286 cafe
->ctl2
&= ~(1<<30);
290 case NAND_CMD_CACHEDPROG
:
291 case NAND_CMD_PAGEPROG
:
292 case NAND_CMD_ERASE1
:
293 case NAND_CMD_ERASE2
:
296 case NAND_CMD_STATUS
:
297 case NAND_CMD_DEPLETE1
:
298 case NAND_CMD_RNDOUT
:
299 case NAND_CMD_STATUS_ERROR
:
300 case NAND_CMD_STATUS_ERROR0
:
301 case NAND_CMD_STATUS_ERROR1
:
302 case NAND_CMD_STATUS_ERROR2
:
303 case NAND_CMD_STATUS_ERROR3
:
304 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
307 nand_wait_ready(mtd
);
308 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
311 static void cafe_select_chip(struct mtd_info
*mtd
, int chipnr
)
313 //struct cafe_priv *cafe = mtd->priv;
314 // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
317 static int cafe_nand_interrupt(int irq
, void *id
, struct pt_regs
*regs
)
319 struct mtd_info
*mtd
= id
;
320 struct cafe_priv
*cafe
= mtd
->priv
;
321 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
322 cafe_writel(cafe
, irqs
& ~0x90000000, NAND_IRQ
);
326 cafe_dev_dbg(&cafe
->pdev
->dev
, "irq, bits %x (%x)\n", irqs
, cafe_readl(cafe
, NAND_IRQ
));
330 static void cafe_nand_bug(struct mtd_info
*mtd
)
335 static int cafe_nand_write_oob(struct mtd_info
*mtd
,
336 struct nand_chip
*chip
, int page
)
340 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
341 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
342 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
343 status
= chip
->waitfunc(mtd
, chip
);
345 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
348 /* Don't use -- use nand_read_oob_std for now */
349 static int cafe_nand_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
350 int page
, int sndcmd
)
352 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
353 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
357 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
358 * @mtd: mtd info structure
359 * @chip: nand chip info structure
360 * @buf: buffer to store read data
362 * The hw generator calculates the error syndrome automatically. Therefor
363 * we need a special oob layout and handling.
365 static int cafe_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
368 struct cafe_priv
*cafe
= mtd
->priv
;
370 cafe_dev_dbg(&cafe
->pdev
->dev
, "ECC result %08x SYN1,2 %08x\n",
371 cafe_readl(cafe
, NAND_ECC_RESULT
),
372 cafe_readl(cafe
, NAND_ECC_SYN01
));
374 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
375 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
377 if (checkecc
&& cafe_readl(cafe
, NAND_ECC_RESULT
) & (1<<18)) {
378 unsigned short syn
[8];
381 for (i
=0; i
<8; i
+=2) {
382 uint32_t tmp
= cafe_readl(cafe
, NAND_ECC_SYN01
+ (i
*2));
383 syn
[i
] = tmp
& 0xfff;
384 syn
[i
+1] = (tmp
>> 16) & 0xfff;
387 if ((i
= cafe_correct_ecc(buf
, syn
)) < 0) {
388 dev_dbg(&cafe
->pdev
->dev
, "Failed to correct ECC at %08x\n",
389 cafe_readl(cafe
, NAND_ADDR2
) * 2048);
390 for (i
=0; i
< 0x5c; i
+=4)
391 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
392 mtd
->ecc_stats
.failed
++;
394 dev_dbg(&cafe
->pdev
->dev
, "Corrected %d symbol errors\n", i
);
395 mtd
->ecc_stats
.corrected
+= i
;
403 static struct nand_ecclayout cafe_oobinfo_2048
= {
405 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
406 .oobfree
= {{14, 50}}
409 /* Ick. The BBT code really ought to be able to work this bit out
410 for itself from the above, at least for the 2KiB case */
411 static uint8_t cafe_bbt_pattern_2048
[] = { 'B', 'b', 't', '0' };
412 static uint8_t cafe_mirror_pattern_2048
[] = { '1', 't', 'b', 'B' };
414 static uint8_t cafe_bbt_pattern_512
[] = { 0xBB };
415 static uint8_t cafe_mirror_pattern_512
[] = { 0xBC };
418 static struct nand_bbt_descr cafe_bbt_main_descr_2048
= {
419 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
420 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
425 .pattern
= cafe_bbt_pattern_2048
428 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048
= {
429 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
430 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
435 .pattern
= cafe_mirror_pattern_2048
438 static struct nand_ecclayout cafe_oobinfo_512
= {
440 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
444 static struct nand_bbt_descr cafe_bbt_main_descr_512
= {
445 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
446 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
451 .pattern
= cafe_bbt_pattern_512
454 static struct nand_bbt_descr cafe_bbt_mirror_descr_512
= {
455 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
456 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
461 .pattern
= cafe_mirror_pattern_512
465 static void cafe_nand_write_page_lowlevel(struct mtd_info
*mtd
,
466 struct nand_chip
*chip
, const uint8_t *buf
)
468 struct cafe_priv
*cafe
= mtd
->priv
;
470 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
471 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
473 /* Set up ECC autogeneration */
474 cafe
->ctl2
|= (1<<27) | (1<<30);
475 if (mtd
->writesize
== 2048)
476 cafe
->ctl2
|= (1<<29);
479 static int cafe_nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
480 const uint8_t *buf
, int page
, int cached
, int raw
)
484 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
487 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
489 chip
->ecc
.write_page(mtd
, chip
, buf
);
492 * Cached progamming disabled for now, Not sure if its worth the
493 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
497 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
499 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
500 status
= chip
->waitfunc(mtd
, chip
);
502 * See if operation failed and additional status checks are
505 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
506 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
509 if (status
& NAND_STATUS_FAIL
)
512 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
513 status
= chip
->waitfunc(mtd
, chip
);
516 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
517 /* Send command to read back the data */
518 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
520 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
526 static int cafe_nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
531 static int __devinit
cafe_nand_probe(struct pci_dev
*pdev
,
532 const struct pci_device_id
*ent
)
534 struct mtd_info
*mtd
;
535 struct cafe_priv
*cafe
;
539 err
= pci_enable_device(pdev
);
543 pci_set_master(pdev
);
545 mtd
= kzalloc(sizeof(*mtd
) + sizeof(struct cafe_priv
), GFP_KERNEL
);
547 dev_warn(&pdev
->dev
, "failed to alloc mtd_info\n");
550 cafe
= (void *)(&mtd
[1]);
553 mtd
->owner
= THIS_MODULE
;
556 cafe
->mmio
= pci_iomap(pdev
, 0, 0);
558 dev_warn(&pdev
->dev
, "failed to iomap\n");
562 cafe
->dmabuf
= dma_alloc_coherent(&cafe
->pdev
->dev
, 2112 + sizeof(struct nand_buffers
),
563 &cafe
->dmaaddr
, GFP_KERNEL
);
568 cafe
->nand
.buffers
= (void *)cafe
->dmabuf
+ 2112;
570 cafe
->nand
.cmdfunc
= cafe_nand_cmdfunc
;
571 cafe
->nand
.dev_ready
= cafe_device_ready
;
572 cafe
->nand
.read_byte
= cafe_read_byte
;
573 cafe
->nand
.read_buf
= cafe_read_buf
;
574 cafe
->nand
.write_buf
= cafe_write_buf
;
575 cafe
->nand
.select_chip
= cafe_select_chip
;
577 cafe
->nand
.chip_delay
= 0;
579 /* Enable the following for a flash based bad block table */
580 cafe
->nand
.options
= NAND_USE_FLASH_BBT
| NAND_NO_AUTOINCR
| NAND_OWN_BUFFERS
;
583 cafe
->nand
.options
|= NAND_SKIP_BBTSCAN
;
584 cafe
->nand
.block_bad
= cafe_nand_block_bad
;
587 /* Start off by resetting the NAND controller completely */
588 cafe_writel(cafe
, 1, NAND_RESET
);
589 cafe_writel(cafe
, 0, NAND_RESET
);
591 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
593 /* Timings from Marvell's test code (not verified or calculated by us) */
595 cafe_writel(cafe
, 0x01010a0a, NAND_TIMING1
);
596 cafe_writel(cafe
, 0x24121212, NAND_TIMING2
);
597 cafe_writel(cafe
, 0x11000000, NAND_TIMING3
);
599 cafe_writel(cafe
, 0xffffffff, NAND_TIMING1
);
600 cafe_writel(cafe
, 0xffffffff, NAND_TIMING2
);
601 cafe_writel(cafe
, 0xffffffff, NAND_TIMING3
);
603 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
604 err
= request_irq(pdev
->irq
, &cafe_nand_interrupt
, SA_SHIRQ
, "CAFE NAND", mtd
);
606 dev_warn(&pdev
->dev
, "Could not register IRQ %d\n", pdev
->irq
);
611 /* Disable master reset, enable NAND clock */
612 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
615 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
616 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
617 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
619 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
620 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
622 /* Set up DMA address */
623 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
624 if (sizeof(cafe
->dmaaddr
) > 4)
625 /* Shift in two parts to shut the compiler up */
626 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
628 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
630 cafe_dev_dbg(&cafe
->pdev
->dev
, "Set DMA address to %x (virt %p)\n",
631 cafe_readl(cafe
, NAND_DMA_ADDR0
), cafe
->dmabuf
);
633 /* Enable NAND IRQ in global IRQ mask register */
634 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
635 cafe_dev_dbg(&cafe
->pdev
->dev
, "Control %x, IRQ mask %x\n",
636 cafe_readl(cafe
, GLOBAL_CTRL
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
641 memset(cafe
->dmabuf
, 0x5a, 2112);
642 cafe
->nand
.cmdfunc(mtd
, NAND_CMD_READID
, 0, -1);
643 cafe
->nand
.read_byte(mtd
);
644 cafe
->nand
.read_byte(mtd
);
645 cafe
->nand
.read_byte(mtd
);
646 cafe
->nand
.read_byte(mtd
);
647 cafe
->nand
.read_byte(mtd
);
650 cafe
->nand
.cmdfunc(mtd
, NAND_CMD_READ0
, 0, 0);
651 // nand_wait_ready(mtd);
652 cafe
->nand
.read_byte(mtd
);
653 cafe
->nand
.read_byte(mtd
);
654 cafe
->nand
.read_byte(mtd
);
655 cafe
->nand
.read_byte(mtd
);
658 writel(0x84600070, cafe
->mmio
);
660 cafe_dev_dbg(&cafe
->pdev
->dev
, "Status %x\n", cafe_readl(cafe
, NAND_NONMEM
));
662 /* Scan to find existance of the device */
663 if (nand_scan_ident(mtd
, 1)) {
668 cafe
->ctl2
= 1<<27; /* Reed-Solomon ECC */
669 if (mtd
->writesize
== 2048)
670 cafe
->ctl2
|= 1<<29; /* 2KiB page size */
672 /* Set up ECC according to the type of chip we found */
673 if (mtd
->writesize
== 2048) {
674 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_2048
;
675 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_2048
;
676 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_2048
;
677 } else if (mtd
->writesize
== 512) {
678 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_512
;
679 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_512
;
680 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_512
;
682 printk(KERN_WARNING
"Unexpected NAND flash writesize %d. Aborting\n",
686 cafe
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
687 cafe
->nand
.ecc
.size
= mtd
->writesize
;
688 cafe
->nand
.ecc
.bytes
= 14;
689 cafe
->nand
.ecc
.hwctl
= (void *)cafe_nand_bug
;
690 cafe
->nand
.ecc
.calculate
= (void *)cafe_nand_bug
;
691 cafe
->nand
.ecc
.correct
= (void *)cafe_nand_bug
;
692 cafe
->nand
.write_page
= cafe_nand_write_page
;
693 cafe
->nand
.ecc
.write_page
= cafe_nand_write_page_lowlevel
;
694 cafe
->nand
.ecc
.write_oob
= cafe_nand_write_oob
;
695 cafe
->nand
.ecc
.read_page
= cafe_nand_read_page
;
696 cafe
->nand
.ecc
.read_oob
= cafe_nand_read_oob
;
698 err
= nand_scan_tail(mtd
);
702 pci_set_drvdata(pdev
, mtd
);
707 /* Disable NAND IRQ in global IRQ mask register */
708 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
709 free_irq(pdev
->irq
, mtd
);
711 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
713 pci_iounmap(pdev
, cafe
->mmio
);
720 static void __devexit
cafe_nand_remove(struct pci_dev
*pdev
)
722 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
723 struct cafe_priv
*cafe
= mtd
->priv
;
726 /* Disable NAND IRQ in global IRQ mask register */
727 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
728 free_irq(pdev
->irq
, mtd
);
730 pci_iounmap(pdev
, cafe
->mmio
);
731 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
735 static struct pci_device_id cafe_nand_tbl
[] = {
736 { 0x11ab, 0x4100, PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_MEMORY_FLASH
<< 8, 0xFFFF0 }
739 MODULE_DEVICE_TABLE(pci
, cafe_nand_tbl
);
741 static struct pci_driver cafe_nand_pci_driver
= {
743 .id_table
= cafe_nand_tbl
,
744 .probe
= cafe_nand_probe
,
745 .remove
= __devexit_p(cafe_nand_remove
),
747 .suspend
= cafe_nand_suspend
,
748 .resume
= cafe_nand_resume
,
752 static int cafe_nand_init(void)
754 return pci_register_driver(&cafe_nand_pci_driver
);
757 static void cafe_nand_exit(void)
759 pci_unregister_driver(&cafe_nand_pci_driver
);
761 module_init(cafe_nand_init
);
762 module_exit(cafe_nand_exit
);
764 MODULE_LICENSE("GPL");
765 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
766 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
768 /* Correct ECC for 2048 bytes of 0xff:
769 41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
771 /* dwmw2's B-test board, in case of completely screwing it:
772 Bad eraseblock 2394 at 0x12b40000
773 Bad eraseblock 2627 at 0x14860000
774 Bad eraseblock 3349 at 0x1a2a0000