[MTD] NAND: Add register debugging spew option to CAFÉ driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / cafe.c
blobc5d03b07f7a9319d122fcaac86e24baf8598f25d
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
6 */
8 #define DEBUG
10 #include <linux/device.h>
11 #undef DEBUG
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <asm/io.h>
19 #define CAFE_NAND_CTRL1 0x00
20 #define CAFE_NAND_CTRL2 0x04
21 #define CAFE_NAND_CTRL3 0x08
22 #define CAFE_NAND_STATUS 0x0c
23 #define CAFE_NAND_IRQ 0x10
24 #define CAFE_NAND_IRQ_MASK 0x14
25 #define CAFE_NAND_DATA_LEN 0x18
26 #define CAFE_NAND_ADDR1 0x1c
27 #define CAFE_NAND_ADDR2 0x20
28 #define CAFE_NAND_TIMING1 0x24
29 #define CAFE_NAND_TIMING2 0x28
30 #define CAFE_NAND_TIMING3 0x2c
31 #define CAFE_NAND_NONMEM 0x30
32 #define CAFE_NAND_ECC_RESULT 0x3C
33 #define CAFE_NAND_DMA_CTRL 0x40
34 #define CAFE_NAND_DMA_ADDR0 0x44
35 #define CAFE_NAND_DMA_ADDR1 0x48
36 #define CAFE_NAND_ECC_SYN01 0x50
37 #define CAFE_NAND_ECC_SYN23 0x54
38 #define CAFE_NAND_ECC_SYN45 0x58
39 #define CAFE_NAND_ECC_SYN67 0x5c
40 #define CAFE_NAND_READ_DATA 0x1000
41 #define CAFE_NAND_WRITE_DATA 0x2000
43 #define CAFE_GLOBAL_CTRL 0x3004
44 #define CAFE_GLOBAL_IRQ 0x3008
45 #define CAFE_GLOBAL_IRQ_MASK 0x300c
46 #define CAFE_NAND_RESET 0x3034
48 int cafe_correct_ecc(unsigned char *buf,
49 unsigned short *chk_syndrome_list);
51 struct cafe_priv {
52 struct nand_chip nand;
53 struct pci_dev *pdev;
54 void __iomem *mmio;
55 uint32_t ctl1;
56 uint32_t ctl2;
57 int datalen;
58 int nr_data;
59 int data_pos;
60 int page_addr;
61 dma_addr_t dmaaddr;
62 unsigned char *dmabuf;
66 static int usedma = 1;
67 module_param(usedma, int, 0644);
69 static int skipbbt = 0;
70 module_param(skipbbt, int, 0644);
72 static int debug = 0;
73 module_param(debug, int, 0644);
75 static int regdebug = 0;
76 module_param(regdebug, int, 0644);
78 static int checkecc = 1;
79 module_param(checkecc, int, 0644);
81 static int slowtiming = 0;
82 module_param(slowtiming, int, 0644);
84 /* Hrm. Why isn't this already conditional on something in the struct device? */
85 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
87 /* Make it easier to switch to PIO if we need to */
88 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
89 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
91 static int cafe_device_ready(struct mtd_info *mtd)
93 struct cafe_priv *cafe = mtd->priv;
94 int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
95 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
97 cafe_writel(cafe, irqs, NAND_IRQ);
99 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
100 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
101 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
103 return result;
107 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
109 struct cafe_priv *cafe = mtd->priv;
111 if (usedma)
112 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
113 else
114 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
116 cafe->datalen += len;
118 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
119 len, cafe->datalen);
122 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
124 struct cafe_priv *cafe = mtd->priv;
126 if (usedma)
127 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
128 else
129 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
131 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
132 len, cafe->datalen);
133 cafe->datalen += len;
136 static uint8_t cafe_read_byte(struct mtd_info *mtd)
138 struct cafe_priv *cafe = mtd->priv;
139 uint8_t d;
141 cafe_read_buf(mtd, &d, 1);
142 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
144 return d;
147 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
148 int column, int page_addr)
150 struct cafe_priv *cafe = mtd->priv;
151 int adrbytes = 0;
152 uint32_t ctl1;
153 uint32_t doneint = 0x80000000;
155 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
156 command, column, page_addr);
158 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
159 /* Second half of a command we already calculated */
160 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
161 ctl1 = cafe->ctl1;
162 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
163 cafe->ctl1, cafe->nr_data);
164 goto do_command;
166 /* Reset ECC engine */
167 cafe_writel(cafe, 0, NAND_CTRL2);
169 /* Emulate NAND_CMD_READOOB on large-page chips */
170 if (mtd->writesize > 512 &&
171 command == NAND_CMD_READOOB) {
172 column += mtd->writesize;
173 command = NAND_CMD_READ0;
176 /* FIXME: Do we need to send read command before sending data
177 for small-page chips, to position the buffer correctly? */
179 if (column != -1) {
180 cafe_writel(cafe, column, NAND_ADDR1);
181 adrbytes = 2;
182 if (page_addr != -1)
183 goto write_adr2;
184 } else if (page_addr != -1) {
185 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
186 page_addr >>= 16;
187 write_adr2:
188 cafe_writel(cafe, page_addr, NAND_ADDR2);
189 adrbytes += 2;
190 if (mtd->size > mtd->writesize << 16)
191 adrbytes++;
194 cafe->data_pos = cafe->datalen = 0;
196 /* Set command valid bit */
197 ctl1 = 0x80000000 | command;
199 /* Set RD or WR bits as appropriate */
200 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
201 ctl1 |= (1<<26); /* rd */
202 /* Always 5 bytes, for now */
203 cafe->datalen = 4;
204 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
205 adrbytes = 1;
206 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
207 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
208 ctl1 |= 1<<26; /* rd */
209 /* For now, assume just read to end of page */
210 cafe->datalen = mtd->writesize + mtd->oobsize - column;
211 } else if (command == NAND_CMD_SEQIN)
212 ctl1 |= 1<<25; /* wr */
214 /* Set number of address bytes */
215 if (adrbytes)
216 ctl1 |= ((adrbytes-1)|8) << 27;
218 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
219 /* Ignore the first command of a pair; the hardware
220 deals with them both at once, later */
221 cafe->ctl1 = ctl1;
222 cafe->ctl2 = 0;
223 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
224 cafe->ctl1, cafe->datalen);
225 return;
227 /* RNDOUT and READ0 commands need a following byte */
228 if (command == NAND_CMD_RNDOUT)
229 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
230 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
231 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
233 do_command:
234 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
235 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
237 /* NB: The datasheet lies -- we really should be subtracting 1 here */
238 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
239 cafe_writel(cafe, 0x90000000, NAND_IRQ);
240 if (usedma && (ctl1 & (3<<25))) {
241 uint32_t dmactl = 0xc0000000 + cafe->datalen;
242 /* If WR or RD bits set, set up DMA */
243 if (ctl1 & (1<<26)) {
244 /* It's a read */
245 dmactl |= (1<<29);
246 /* ... so it's done when the DMA is done, not just
247 the command. */
248 doneint = 0x10000000;
250 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
252 cafe->datalen = 0;
254 if (unlikely(regdebug)) {
255 int i;
256 printk("About to write command %08x to register 0\n", ctl1);
257 for (i=4; i< 0x5c; i+=4)
258 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
261 cafe_writel(cafe, ctl1, NAND_CTRL1);
262 /* Apply this short delay always to ensure that we do wait tWB in
263 * any case on any machine. */
264 ndelay(100);
266 if (1) {
267 int c = 500000;
268 uint32_t irqs;
270 while (c--) {
271 irqs = cafe_readl(cafe, NAND_IRQ);
272 if (irqs & doneint)
273 break;
274 udelay(1);
275 if (!(c % 100000))
276 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
277 cpu_relax();
279 cafe_writel(cafe, doneint, NAND_IRQ);
280 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
281 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
285 cafe->ctl2 &= ~(1<<8);
286 cafe->ctl2 &= ~(1<<30);
288 switch (command) {
290 case NAND_CMD_CACHEDPROG:
291 case NAND_CMD_PAGEPROG:
292 case NAND_CMD_ERASE1:
293 case NAND_CMD_ERASE2:
294 case NAND_CMD_SEQIN:
295 case NAND_CMD_RNDIN:
296 case NAND_CMD_STATUS:
297 case NAND_CMD_DEPLETE1:
298 case NAND_CMD_RNDOUT:
299 case NAND_CMD_STATUS_ERROR:
300 case NAND_CMD_STATUS_ERROR0:
301 case NAND_CMD_STATUS_ERROR1:
302 case NAND_CMD_STATUS_ERROR2:
303 case NAND_CMD_STATUS_ERROR3:
304 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
305 return;
307 nand_wait_ready(mtd);
308 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
311 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
313 //struct cafe_priv *cafe = mtd->priv;
314 // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
317 static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
319 struct mtd_info *mtd = id;
320 struct cafe_priv *cafe = mtd->priv;
321 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
322 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
323 if (!irqs)
324 return IRQ_NONE;
326 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
327 return IRQ_HANDLED;
330 static void cafe_nand_bug(struct mtd_info *mtd)
332 BUG();
335 static int cafe_nand_write_oob(struct mtd_info *mtd,
336 struct nand_chip *chip, int page)
338 int status = 0;
340 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
341 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
342 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
343 status = chip->waitfunc(mtd, chip);
345 return status & NAND_STATUS_FAIL ? -EIO : 0;
348 /* Don't use -- use nand_read_oob_std for now */
349 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
350 int page, int sndcmd)
352 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
353 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
354 return 1;
357 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
358 * @mtd: mtd info structure
359 * @chip: nand chip info structure
360 * @buf: buffer to store read data
362 * The hw generator calculates the error syndrome automatically. Therefor
363 * we need a special oob layout and handling.
365 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
366 uint8_t *buf)
368 struct cafe_priv *cafe = mtd->priv;
370 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
371 cafe_readl(cafe, NAND_ECC_RESULT),
372 cafe_readl(cafe, NAND_ECC_SYN01));
374 chip->read_buf(mtd, buf, mtd->writesize);
375 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
377 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
378 unsigned short syn[8];
379 int i;
381 for (i=0; i<8; i+=2) {
382 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
383 syn[i] = tmp & 0xfff;
384 syn[i+1] = (tmp >> 16) & 0xfff;
387 if ((i = cafe_correct_ecc(buf, syn)) < 0) {
388 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
389 cafe_readl(cafe, NAND_ADDR2) * 2048);
390 for (i=0; i< 0x5c; i+=4)
391 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
392 mtd->ecc_stats.failed++;
393 } else {
394 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
395 mtd->ecc_stats.corrected += i;
400 return 0;
403 static struct nand_ecclayout cafe_oobinfo_2048 = {
404 .eccbytes = 14,
405 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
406 .oobfree = {{14, 50}}
409 /* Ick. The BBT code really ought to be able to work this bit out
410 for itself from the above, at least for the 2KiB case */
411 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
412 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
414 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
415 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
418 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
419 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
420 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
421 .offs = 14,
422 .len = 4,
423 .veroffs = 18,
424 .maxblocks = 4,
425 .pattern = cafe_bbt_pattern_2048
428 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
429 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
430 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
431 .offs = 14,
432 .len = 4,
433 .veroffs = 18,
434 .maxblocks = 4,
435 .pattern = cafe_mirror_pattern_2048
438 static struct nand_ecclayout cafe_oobinfo_512 = {
439 .eccbytes = 14,
440 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
441 .oobfree = {{14, 2}}
444 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
445 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
446 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
447 .offs = 14,
448 .len = 1,
449 .veroffs = 15,
450 .maxblocks = 4,
451 .pattern = cafe_bbt_pattern_512
454 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
455 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
456 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
457 .offs = 14,
458 .len = 1,
459 .veroffs = 15,
460 .maxblocks = 4,
461 .pattern = cafe_mirror_pattern_512
465 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
466 struct nand_chip *chip, const uint8_t *buf)
468 struct cafe_priv *cafe = mtd->priv;
470 chip->write_buf(mtd, buf, mtd->writesize);
471 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
473 /* Set up ECC autogeneration */
474 cafe->ctl2 |= (1<<27) | (1<<30);
475 if (mtd->writesize == 2048)
476 cafe->ctl2 |= (1<<29);
479 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
480 const uint8_t *buf, int page, int cached, int raw)
482 int status;
484 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
486 if (unlikely(raw))
487 chip->ecc.write_page_raw(mtd, chip, buf);
488 else
489 chip->ecc.write_page(mtd, chip, buf);
492 * Cached progamming disabled for now, Not sure if its worth the
493 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
495 cached = 0;
497 if (!cached || !(chip->options & NAND_CACHEPRG)) {
499 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
500 status = chip->waitfunc(mtd, chip);
502 * See if operation failed and additional status checks are
503 * available
505 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
506 status = chip->errstat(mtd, chip, FL_WRITING, status,
507 page);
509 if (status & NAND_STATUS_FAIL)
510 return -EIO;
511 } else {
512 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
513 status = chip->waitfunc(mtd, chip);
516 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
517 /* Send command to read back the data */
518 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
520 if (chip->verify_buf(mtd, buf, mtd->writesize))
521 return -EIO;
522 #endif
523 return 0;
526 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
528 return 0;
531 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
532 const struct pci_device_id *ent)
534 struct mtd_info *mtd;
535 struct cafe_priv *cafe;
536 uint32_t ctrl;
537 int err = 0;
539 err = pci_enable_device(pdev);
540 if (err)
541 return err;
543 pci_set_master(pdev);
545 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
546 if (!mtd) {
547 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
548 return -ENOMEM;
550 cafe = (void *)(&mtd[1]);
552 mtd->priv = cafe;
553 mtd->owner = THIS_MODULE;
555 cafe->pdev = pdev;
556 cafe->mmio = pci_iomap(pdev, 0, 0);
557 if (!cafe->mmio) {
558 dev_warn(&pdev->dev, "failed to iomap\n");
559 err = -ENOMEM;
560 goto out_free_mtd;
562 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
563 &cafe->dmaaddr, GFP_KERNEL);
564 if (!cafe->dmabuf) {
565 err = -ENOMEM;
566 goto out_ior;
568 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
570 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
571 cafe->nand.dev_ready = cafe_device_ready;
572 cafe->nand.read_byte = cafe_read_byte;
573 cafe->nand.read_buf = cafe_read_buf;
574 cafe->nand.write_buf = cafe_write_buf;
575 cafe->nand.select_chip = cafe_select_chip;
577 cafe->nand.chip_delay = 0;
579 /* Enable the following for a flash based bad block table */
580 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
582 if (skipbbt) {
583 cafe->nand.options |= NAND_SKIP_BBTSCAN;
584 cafe->nand.block_bad = cafe_nand_block_bad;
587 /* Start off by resetting the NAND controller completely */
588 cafe_writel(cafe, 1, NAND_RESET);
589 cafe_writel(cafe, 0, NAND_RESET);
591 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
593 /* Timings from Marvell's test code (not verified or calculated by us) */
594 if (!slowtiming) {
595 cafe_writel(cafe, 0x01010a0a, NAND_TIMING1);
596 cafe_writel(cafe, 0x24121212, NAND_TIMING2);
597 cafe_writel(cafe, 0x11000000, NAND_TIMING3);
598 } else {
599 cafe_writel(cafe, 0xffffffff, NAND_TIMING1);
600 cafe_writel(cafe, 0xffffffff, NAND_TIMING2);
601 cafe_writel(cafe, 0xffffffff, NAND_TIMING3);
603 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
604 err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
605 if (err) {
606 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
608 goto out_free_dma;
610 #if 1
611 /* Disable master reset, enable NAND clock */
612 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
613 ctrl &= 0xffffeff0;
614 ctrl |= 0x00007000;
615 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
616 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
617 cafe_writel(cafe, 0, NAND_DMA_CTRL);
619 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
620 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
622 /* Set up DMA address */
623 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
624 if (sizeof(cafe->dmaaddr) > 4)
625 /* Shift in two parts to shut the compiler up */
626 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
627 else
628 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
630 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
631 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
633 /* Enable NAND IRQ in global IRQ mask register */
634 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
635 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
636 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
637 #endif
638 #if 1
639 mtd->writesize=2048;
640 mtd->oobsize = 0x40;
641 memset(cafe->dmabuf, 0x5a, 2112);
642 cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
643 cafe->nand.read_byte(mtd);
644 cafe->nand.read_byte(mtd);
645 cafe->nand.read_byte(mtd);
646 cafe->nand.read_byte(mtd);
647 cafe->nand.read_byte(mtd);
648 #endif
649 #if 0
650 cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
651 // nand_wait_ready(mtd);
652 cafe->nand.read_byte(mtd);
653 cafe->nand.read_byte(mtd);
654 cafe->nand.read_byte(mtd);
655 cafe->nand.read_byte(mtd);
656 #endif
657 #if 0
658 writel(0x84600070, cafe->mmio);
659 udelay(10);
660 cafe_dev_dbg(&cafe->pdev->dev, "Status %x\n", cafe_readl(cafe, NAND_NONMEM));
661 #endif
662 /* Scan to find existance of the device */
663 if (nand_scan_ident(mtd, 1)) {
664 err = -ENXIO;
665 goto out_irq;
668 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
669 if (mtd->writesize == 2048)
670 cafe->ctl2 |= 1<<29; /* 2KiB page size */
672 /* Set up ECC according to the type of chip we found */
673 if (mtd->writesize == 2048) {
674 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
675 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
676 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
677 } else if (mtd->writesize == 512) {
678 cafe->nand.ecc.layout = &cafe_oobinfo_512;
679 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
680 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
681 } else {
682 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
683 mtd->writesize);
684 goto out_irq;
686 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
687 cafe->nand.ecc.size = mtd->writesize;
688 cafe->nand.ecc.bytes = 14;
689 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
690 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
691 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
692 cafe->nand.write_page = cafe_nand_write_page;
693 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
694 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
695 cafe->nand.ecc.read_page = cafe_nand_read_page;
696 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
698 err = nand_scan_tail(mtd);
699 if (err)
700 goto out_irq;
702 pci_set_drvdata(pdev, mtd);
703 add_mtd_device(mtd);
704 goto out;
706 out_irq:
707 /* Disable NAND IRQ in global IRQ mask register */
708 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
709 free_irq(pdev->irq, mtd);
710 out_free_dma:
711 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
712 out_ior:
713 pci_iounmap(pdev, cafe->mmio);
714 out_free_mtd:
715 kfree(mtd);
716 out:
717 return err;
720 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
722 struct mtd_info *mtd = pci_get_drvdata(pdev);
723 struct cafe_priv *cafe = mtd->priv;
725 del_mtd_device(mtd);
726 /* Disable NAND IRQ in global IRQ mask register */
727 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
728 free_irq(pdev->irq, mtd);
729 nand_release(mtd);
730 pci_iounmap(pdev, cafe->mmio);
731 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
732 kfree(mtd);
735 static struct pci_device_id cafe_nand_tbl[] = {
736 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
739 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
741 static struct pci_driver cafe_nand_pci_driver = {
742 .name = "CAFÉ NAND",
743 .id_table = cafe_nand_tbl,
744 .probe = cafe_nand_probe,
745 .remove = __devexit_p(cafe_nand_remove),
746 #ifdef CONFIG_PMx
747 .suspend = cafe_nand_suspend,
748 .resume = cafe_nand_resume,
749 #endif
752 static int cafe_nand_init(void)
754 return pci_register_driver(&cafe_nand_pci_driver);
757 static void cafe_nand_exit(void)
759 pci_unregister_driver(&cafe_nand_pci_driver);
761 module_init(cafe_nand_init);
762 module_exit(cafe_nand_exit);
764 MODULE_LICENSE("GPL");
765 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
766 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
768 /* Correct ECC for 2048 bytes of 0xff:
769 41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
771 /* dwmw2's B-test board, in case of completely screwing it:
772 Bad eraseblock 2394 at 0x12b40000
773 Bad eraseblock 2627 at 0x14860000
774 Bad eraseblock 3349 at 0x1a2a0000