2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
19 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
21 cputime_t cputime
= secs_to_cputime(rlim_new
);
23 spin_lock_irq(&task
->sighand
->siglock
);
24 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
25 spin_unlock_irq(&task
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
180 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
182 int error
= check_clock(which_clock
);
185 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
186 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
188 * If sched_clock is using a cycle counter, we
189 * don't have any idea of its true resolution
190 * exported, but it is much more than 1s/HZ.
199 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
202 * You can never reset a CPU clock, but we check for other errors
203 * in the call before failing with EPERM.
205 int error
= check_clock(which_clock
);
214 * Sample a per-thread clock for the given task.
216 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
217 union cpu_time_count
*cpu
)
219 switch (CPUCLOCK_WHICH(which_clock
)) {
223 cpu
->cpu
= prof_ticks(p
);
226 cpu
->cpu
= virt_ticks(p
);
229 cpu
->sched
= task_sched_runtime(p
);
235 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
237 struct signal_struct
*sig
= tsk
->signal
;
238 struct task_struct
*t
;
240 times
->utime
= sig
->utime
;
241 times
->stime
= sig
->stime
;
242 times
->sum_exec_runtime
= sig
->sum_sched_runtime
;
245 /* make sure we can trust tsk->thread_group list */
246 if (!likely(pid_alive(tsk
)))
251 times
->utime
= cputime_add(times
->utime
, t
->utime
);
252 times
->stime
= cputime_add(times
->stime
, t
->stime
);
253 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
254 } while_each_thread(tsk
, t
);
259 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
261 if (cputime_gt(b
->utime
, a
->utime
))
264 if (cputime_gt(b
->stime
, a
->stime
))
267 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
268 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
271 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
273 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
274 struct task_cputime sum
;
277 spin_lock_irqsave(&cputimer
->lock
, flags
);
278 if (!cputimer
->running
) {
279 cputimer
->running
= 1;
281 * The POSIX timer interface allows for absolute time expiry
282 * values through the TIMER_ABSTIME flag, therefore we have
283 * to synchronize the timer to the clock every time we start
286 thread_group_cputime(tsk
, &sum
);
287 update_gt_cputime(&cputimer
->cputime
, &sum
);
289 *times
= cputimer
->cputime
;
290 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
294 * Sample a process (thread group) clock for the given group_leader task.
295 * Must be called with tasklist_lock held for reading.
297 static int cpu_clock_sample_group(const clockid_t which_clock
,
298 struct task_struct
*p
,
299 union cpu_time_count
*cpu
)
301 struct task_cputime cputime
;
303 switch (CPUCLOCK_WHICH(which_clock
)) {
307 thread_group_cputime(p
, &cputime
);
308 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
311 thread_group_cputime(p
, &cputime
);
312 cpu
->cpu
= cputime
.utime
;
315 cpu
->sched
= thread_group_sched_runtime(p
);
322 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
324 const pid_t pid
= CPUCLOCK_PID(which_clock
);
326 union cpu_time_count rtn
;
330 * Special case constant value for our own clocks.
331 * We don't have to do any lookup to find ourselves.
333 if (CPUCLOCK_PERTHREAD(which_clock
)) {
335 * Sampling just ourselves we can do with no locking.
337 error
= cpu_clock_sample(which_clock
,
340 read_lock(&tasklist_lock
);
341 error
= cpu_clock_sample_group(which_clock
,
343 read_unlock(&tasklist_lock
);
347 * Find the given PID, and validate that the caller
348 * should be able to see it.
350 struct task_struct
*p
;
352 p
= find_task_by_vpid(pid
);
354 if (CPUCLOCK_PERTHREAD(which_clock
)) {
355 if (same_thread_group(p
, current
)) {
356 error
= cpu_clock_sample(which_clock
,
360 read_lock(&tasklist_lock
);
361 if (thread_group_leader(p
) && p
->sighand
) {
363 cpu_clock_sample_group(which_clock
,
366 read_unlock(&tasklist_lock
);
374 sample_to_timespec(which_clock
, rtn
, tp
);
380 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
381 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
382 * new timer already all-zeros initialized.
384 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
387 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
388 struct task_struct
*p
;
390 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
393 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
396 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
400 p
= find_task_by_vpid(pid
);
401 if (p
&& !same_thread_group(p
, current
))
406 p
= current
->group_leader
;
408 p
= find_task_by_vpid(pid
);
409 if (p
&& !has_group_leader_pid(p
))
413 new_timer
->it
.cpu
.task
= p
;
425 * Clean up a CPU-clock timer that is about to be destroyed.
426 * This is called from timer deletion with the timer already locked.
427 * If we return TIMER_RETRY, it's necessary to release the timer's lock
428 * and try again. (This happens when the timer is in the middle of firing.)
430 static int posix_cpu_timer_del(struct k_itimer
*timer
)
432 struct task_struct
*p
= timer
->it
.cpu
.task
;
435 if (likely(p
!= NULL
)) {
436 read_lock(&tasklist_lock
);
437 if (unlikely(p
->sighand
== NULL
)) {
439 * We raced with the reaping of the task.
440 * The deletion should have cleared us off the list.
442 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
444 spin_lock(&p
->sighand
->siglock
);
445 if (timer
->it
.cpu
.firing
)
448 list_del(&timer
->it
.cpu
.entry
);
449 spin_unlock(&p
->sighand
->siglock
);
451 read_unlock(&tasklist_lock
);
461 * Clean out CPU timers still ticking when a thread exited. The task
462 * pointer is cleared, and the expiry time is replaced with the residual
463 * time for later timer_gettime calls to return.
464 * This must be called with the siglock held.
466 static void cleanup_timers(struct list_head
*head
,
467 cputime_t utime
, cputime_t stime
,
468 unsigned long long sum_exec_runtime
)
470 struct cpu_timer_list
*timer
, *next
;
471 cputime_t ptime
= cputime_add(utime
, stime
);
473 list_for_each_entry_safe(timer
, next
, head
, entry
) {
474 list_del_init(&timer
->entry
);
475 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
476 timer
->expires
.cpu
= cputime_zero
;
478 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
484 list_for_each_entry_safe(timer
, next
, head
, entry
) {
485 list_del_init(&timer
->entry
);
486 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
487 timer
->expires
.cpu
= cputime_zero
;
489 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
495 list_for_each_entry_safe(timer
, next
, head
, entry
) {
496 list_del_init(&timer
->entry
);
497 if (timer
->expires
.sched
< sum_exec_runtime
) {
498 timer
->expires
.sched
= 0;
500 timer
->expires
.sched
-= sum_exec_runtime
;
506 * These are both called with the siglock held, when the current thread
507 * is being reaped. When the final (leader) thread in the group is reaped,
508 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
510 void posix_cpu_timers_exit(struct task_struct
*tsk
)
512 cleanup_timers(tsk
->cpu_timers
,
513 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
516 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
518 struct signal_struct
*const sig
= tsk
->signal
;
520 cleanup_timers(tsk
->signal
->cpu_timers
,
521 cputime_add(tsk
->utime
, sig
->utime
),
522 cputime_add(tsk
->stime
, sig
->stime
),
523 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
526 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
529 * That's all for this thread or process.
530 * We leave our residual in expires to be reported.
532 put_task_struct(timer
->it
.cpu
.task
);
533 timer
->it
.cpu
.task
= NULL
;
534 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
535 timer
->it
.cpu
.expires
,
539 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
541 return cputime_eq(expires
, cputime_zero
) ||
542 cputime_gt(expires
, new_exp
);
546 * Insert the timer on the appropriate list before any timers that
547 * expire later. This must be called with the tasklist_lock held
548 * for reading, interrupts disabled and p->sighand->siglock taken.
550 static void arm_timer(struct k_itimer
*timer
)
552 struct task_struct
*p
= timer
->it
.cpu
.task
;
553 struct list_head
*head
, *listpos
;
554 struct task_cputime
*cputime_expires
;
555 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
556 struct cpu_timer_list
*next
;
558 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
559 head
= p
->cpu_timers
;
560 cputime_expires
= &p
->cputime_expires
;
562 head
= p
->signal
->cpu_timers
;
563 cputime_expires
= &p
->signal
->cputime_expires
;
565 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
568 list_for_each_entry(next
, head
, entry
) {
569 if (cpu_time_before(timer
->it_clock
, nt
->expires
, next
->expires
))
571 listpos
= &next
->entry
;
573 list_add(&nt
->entry
, listpos
);
575 if (listpos
== head
) {
576 union cpu_time_count
*exp
= &nt
->expires
;
579 * We are the new earliest-expiring POSIX 1.b timer, hence
580 * need to update expiration cache. Take into account that
581 * for process timers we share expiration cache with itimers
582 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
585 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
587 if (expires_gt(cputime_expires
->prof_exp
, exp
->cpu
))
588 cputime_expires
->prof_exp
= exp
->cpu
;
591 if (expires_gt(cputime_expires
->virt_exp
, exp
->cpu
))
592 cputime_expires
->virt_exp
= exp
->cpu
;
595 if (cputime_expires
->sched_exp
== 0 ||
596 cputime_expires
->sched_exp
> exp
->sched
)
597 cputime_expires
->sched_exp
= exp
->sched
;
604 * The timer is locked, fire it and arrange for its reload.
606 static void cpu_timer_fire(struct k_itimer
*timer
)
608 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
610 * User don't want any signal.
612 timer
->it
.cpu
.expires
.sched
= 0;
613 } else if (unlikely(timer
->sigq
== NULL
)) {
615 * This a special case for clock_nanosleep,
616 * not a normal timer from sys_timer_create.
618 wake_up_process(timer
->it_process
);
619 timer
->it
.cpu
.expires
.sched
= 0;
620 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
622 * One-shot timer. Clear it as soon as it's fired.
624 posix_timer_event(timer
, 0);
625 timer
->it
.cpu
.expires
.sched
= 0;
626 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
628 * The signal did not get queued because the signal
629 * was ignored, so we won't get any callback to
630 * reload the timer. But we need to keep it
631 * ticking in case the signal is deliverable next time.
633 posix_cpu_timer_schedule(timer
);
638 * Sample a process (thread group) timer for the given group_leader task.
639 * Must be called with tasklist_lock held for reading.
641 static int cpu_timer_sample_group(const clockid_t which_clock
,
642 struct task_struct
*p
,
643 union cpu_time_count
*cpu
)
645 struct task_cputime cputime
;
647 thread_group_cputimer(p
, &cputime
);
648 switch (CPUCLOCK_WHICH(which_clock
)) {
652 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
655 cpu
->cpu
= cputime
.utime
;
658 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
665 * Guts of sys_timer_settime for CPU timers.
666 * This is called with the timer locked and interrupts disabled.
667 * If we return TIMER_RETRY, it's necessary to release the timer's lock
668 * and try again. (This happens when the timer is in the middle of firing.)
670 static int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
671 struct itimerspec
*new, struct itimerspec
*old
)
673 struct task_struct
*p
= timer
->it
.cpu
.task
;
674 union cpu_time_count old_expires
, new_expires
, old_incr
, val
;
677 if (unlikely(p
== NULL
)) {
679 * Timer refers to a dead task's clock.
684 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
686 read_lock(&tasklist_lock
);
688 * We need the tasklist_lock to protect against reaping that
689 * clears p->sighand. If p has just been reaped, we can no
690 * longer get any information about it at all.
692 if (unlikely(p
->sighand
== NULL
)) {
693 read_unlock(&tasklist_lock
);
695 timer
->it
.cpu
.task
= NULL
;
700 * Disarm any old timer after extracting its expiry time.
702 BUG_ON(!irqs_disabled());
705 old_incr
= timer
->it
.cpu
.incr
;
706 spin_lock(&p
->sighand
->siglock
);
707 old_expires
= timer
->it
.cpu
.expires
;
708 if (unlikely(timer
->it
.cpu
.firing
)) {
709 timer
->it
.cpu
.firing
= -1;
712 list_del_init(&timer
->it
.cpu
.entry
);
715 * We need to sample the current value to convert the new
716 * value from to relative and absolute, and to convert the
717 * old value from absolute to relative. To set a process
718 * timer, we need a sample to balance the thread expiry
719 * times (in arm_timer). With an absolute time, we must
720 * check if it's already passed. In short, we need a sample.
722 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
723 cpu_clock_sample(timer
->it_clock
, p
, &val
);
725 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
729 if (old_expires
.sched
== 0) {
730 old
->it_value
.tv_sec
= 0;
731 old
->it_value
.tv_nsec
= 0;
734 * Update the timer in case it has
735 * overrun already. If it has,
736 * we'll report it as having overrun
737 * and with the next reloaded timer
738 * already ticking, though we are
739 * swallowing that pending
740 * notification here to install the
743 bump_cpu_timer(timer
, val
);
744 if (cpu_time_before(timer
->it_clock
, val
,
745 timer
->it
.cpu
.expires
)) {
746 old_expires
= cpu_time_sub(
748 timer
->it
.cpu
.expires
, val
);
749 sample_to_timespec(timer
->it_clock
,
753 old
->it_value
.tv_nsec
= 1;
754 old
->it_value
.tv_sec
= 0;
761 * We are colliding with the timer actually firing.
762 * Punt after filling in the timer's old value, and
763 * disable this firing since we are already reporting
764 * it as an overrun (thanks to bump_cpu_timer above).
766 spin_unlock(&p
->sighand
->siglock
);
767 read_unlock(&tasklist_lock
);
771 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
772 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
776 * Install the new expiry time (or zero).
777 * For a timer with no notification action, we don't actually
778 * arm the timer (we'll just fake it for timer_gettime).
780 timer
->it
.cpu
.expires
= new_expires
;
781 if (new_expires
.sched
!= 0 &&
782 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
786 spin_unlock(&p
->sighand
->siglock
);
787 read_unlock(&tasklist_lock
);
790 * Install the new reload setting, and
791 * set up the signal and overrun bookkeeping.
793 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
797 * This acts as a modification timestamp for the timer,
798 * so any automatic reload attempt will punt on seeing
799 * that we have reset the timer manually.
801 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
803 timer
->it_overrun_last
= 0;
804 timer
->it_overrun
= -1;
806 if (new_expires
.sched
!= 0 &&
807 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
809 * The designated time already passed, so we notify
810 * immediately, even if the thread never runs to
811 * accumulate more time on this clock.
813 cpu_timer_fire(timer
);
819 sample_to_timespec(timer
->it_clock
,
820 old_incr
, &old
->it_interval
);
825 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
827 union cpu_time_count now
;
828 struct task_struct
*p
= timer
->it
.cpu
.task
;
832 * Easy part: convert the reload time.
834 sample_to_timespec(timer
->it_clock
,
835 timer
->it
.cpu
.incr
, &itp
->it_interval
);
837 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
838 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
842 if (unlikely(p
== NULL
)) {
844 * This task already died and the timer will never fire.
845 * In this case, expires is actually the dead value.
848 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
854 * Sample the clock to take the difference with the expiry time.
856 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
857 cpu_clock_sample(timer
->it_clock
, p
, &now
);
858 clear_dead
= p
->exit_state
;
860 read_lock(&tasklist_lock
);
861 if (unlikely(p
->sighand
== NULL
)) {
863 * The process has been reaped.
864 * We can't even collect a sample any more.
865 * Call the timer disarmed, nothing else to do.
868 timer
->it
.cpu
.task
= NULL
;
869 timer
->it
.cpu
.expires
.sched
= 0;
870 read_unlock(&tasklist_lock
);
873 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
874 clear_dead
= (unlikely(p
->exit_state
) &&
875 thread_group_empty(p
));
877 read_unlock(&tasklist_lock
);
880 if (unlikely(clear_dead
)) {
882 * We've noticed that the thread is dead, but
883 * not yet reaped. Take this opportunity to
886 clear_dead_task(timer
, now
);
890 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
891 sample_to_timespec(timer
->it_clock
,
892 cpu_time_sub(timer
->it_clock
,
893 timer
->it
.cpu
.expires
, now
),
897 * The timer should have expired already, but the firing
898 * hasn't taken place yet. Say it's just about to expire.
900 itp
->it_value
.tv_nsec
= 1;
901 itp
->it_value
.tv_sec
= 0;
906 * Check for any per-thread CPU timers that have fired and move them off
907 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
908 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
910 static void check_thread_timers(struct task_struct
*tsk
,
911 struct list_head
*firing
)
914 struct list_head
*timers
= tsk
->cpu_timers
;
915 struct signal_struct
*const sig
= tsk
->signal
;
919 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
920 while (!list_empty(timers
)) {
921 struct cpu_timer_list
*t
= list_first_entry(timers
,
922 struct cpu_timer_list
,
924 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
925 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
929 list_move_tail(&t
->entry
, firing
);
934 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
935 while (!list_empty(timers
)) {
936 struct cpu_timer_list
*t
= list_first_entry(timers
,
937 struct cpu_timer_list
,
939 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
940 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
944 list_move_tail(&t
->entry
, firing
);
949 tsk
->cputime_expires
.sched_exp
= 0;
950 while (!list_empty(timers
)) {
951 struct cpu_timer_list
*t
= list_first_entry(timers
,
952 struct cpu_timer_list
,
954 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
955 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
959 list_move_tail(&t
->entry
, firing
);
963 * Check for the special case thread timers.
965 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
966 if (soft
!= RLIM_INFINITY
) {
968 ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
970 if (hard
!= RLIM_INFINITY
&&
971 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
973 * At the hard limit, we just die.
974 * No need to calculate anything else now.
976 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
979 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
981 * At the soft limit, send a SIGXCPU every second.
984 soft
+= USEC_PER_SEC
;
985 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
988 "RT Watchdog Timeout: %s[%d]\n",
989 tsk
->comm
, task_pid_nr(tsk
));
990 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
995 static void stop_process_timers(struct signal_struct
*sig
)
997 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
1000 spin_lock_irqsave(&cputimer
->lock
, flags
);
1001 cputimer
->running
= 0;
1002 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1005 static u32 onecputick
;
1007 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
1008 cputime_t
*expires
, cputime_t cur_time
, int signo
)
1010 if (cputime_eq(it
->expires
, cputime_zero
))
1013 if (cputime_ge(cur_time
, it
->expires
)) {
1014 if (!cputime_eq(it
->incr
, cputime_zero
)) {
1015 it
->expires
= cputime_add(it
->expires
, it
->incr
);
1016 it
->error
+= it
->incr_error
;
1017 if (it
->error
>= onecputick
) {
1018 it
->expires
= cputime_sub(it
->expires
,
1020 it
->error
-= onecputick
;
1023 it
->expires
= cputime_zero
;
1026 trace_itimer_expire(signo
== SIGPROF
?
1027 ITIMER_PROF
: ITIMER_VIRTUAL
,
1028 tsk
->signal
->leader_pid
, cur_time
);
1029 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1032 if (!cputime_eq(it
->expires
, cputime_zero
) &&
1033 (cputime_eq(*expires
, cputime_zero
) ||
1034 cputime_lt(it
->expires
, *expires
))) {
1035 *expires
= it
->expires
;
1040 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1042 * @cputime: The struct to compare.
1044 * Checks @cputime to see if all fields are zero. Returns true if all fields
1045 * are zero, false if any field is nonzero.
1047 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1049 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1050 cputime_eq(cputime
->stime
, cputime_zero
) &&
1051 cputime
->sum_exec_runtime
== 0)
1057 * Check for any per-thread CPU timers that have fired and move them
1058 * off the tsk->*_timers list onto the firing list. Per-thread timers
1059 * have already been taken off.
1061 static void check_process_timers(struct task_struct
*tsk
,
1062 struct list_head
*firing
)
1065 struct signal_struct
*const sig
= tsk
->signal
;
1066 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1067 unsigned long long sum_sched_runtime
, sched_expires
;
1068 struct list_head
*timers
= sig
->cpu_timers
;
1069 struct task_cputime cputime
;
1073 * Collect the current process totals.
1075 thread_group_cputimer(tsk
, &cputime
);
1076 utime
= cputime
.utime
;
1077 ptime
= cputime_add(utime
, cputime
.stime
);
1078 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1080 prof_expires
= cputime_zero
;
1081 while (!list_empty(timers
)) {
1082 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1083 struct cpu_timer_list
,
1085 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1086 prof_expires
= tl
->expires
.cpu
;
1090 list_move_tail(&tl
->entry
, firing
);
1095 virt_expires
= cputime_zero
;
1096 while (!list_empty(timers
)) {
1097 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1098 struct cpu_timer_list
,
1100 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1101 virt_expires
= tl
->expires
.cpu
;
1105 list_move_tail(&tl
->entry
, firing
);
1111 while (!list_empty(timers
)) {
1112 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1113 struct cpu_timer_list
,
1115 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1116 sched_expires
= tl
->expires
.sched
;
1120 list_move_tail(&tl
->entry
, firing
);
1124 * Check for the special case process timers.
1126 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1128 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1130 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1131 if (soft
!= RLIM_INFINITY
) {
1132 unsigned long psecs
= cputime_to_secs(ptime
);
1133 unsigned long hard
=
1134 ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
1136 if (psecs
>= hard
) {
1138 * At the hard limit, we just die.
1139 * No need to calculate anything else now.
1141 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1144 if (psecs
>= soft
) {
1146 * At the soft limit, send a SIGXCPU every second.
1148 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1151 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1154 x
= secs_to_cputime(soft
);
1155 if (cputime_eq(prof_expires
, cputime_zero
) ||
1156 cputime_lt(x
, prof_expires
)) {
1161 sig
->cputime_expires
.prof_exp
= prof_expires
;
1162 sig
->cputime_expires
.virt_exp
= virt_expires
;
1163 sig
->cputime_expires
.sched_exp
= sched_expires
;
1164 if (task_cputime_zero(&sig
->cputime_expires
))
1165 stop_process_timers(sig
);
1169 * This is called from the signal code (via do_schedule_next_timer)
1170 * when the last timer signal was delivered and we have to reload the timer.
1172 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1174 struct task_struct
*p
= timer
->it
.cpu
.task
;
1175 union cpu_time_count now
;
1177 if (unlikely(p
== NULL
))
1179 * The task was cleaned up already, no future firings.
1184 * Fetch the current sample and update the timer's expiry time.
1186 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1187 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1188 bump_cpu_timer(timer
, now
);
1189 if (unlikely(p
->exit_state
)) {
1190 clear_dead_task(timer
, now
);
1193 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1194 spin_lock(&p
->sighand
->siglock
);
1196 read_lock(&tasklist_lock
);
1197 if (unlikely(p
->sighand
== NULL
)) {
1199 * The process has been reaped.
1200 * We can't even collect a sample any more.
1203 timer
->it
.cpu
.task
= p
= NULL
;
1204 timer
->it
.cpu
.expires
.sched
= 0;
1206 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1208 * We've noticed that the thread is dead, but
1209 * not yet reaped. Take this opportunity to
1210 * drop our task ref.
1212 clear_dead_task(timer
, now
);
1215 spin_lock(&p
->sighand
->siglock
);
1216 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1217 bump_cpu_timer(timer
, now
);
1218 /* Leave the tasklist_lock locked for the call below. */
1222 * Now re-arm for the new expiry time.
1224 BUG_ON(!irqs_disabled());
1226 spin_unlock(&p
->sighand
->siglock
);
1229 read_unlock(&tasklist_lock
);
1232 timer
->it_overrun_last
= timer
->it_overrun
;
1233 timer
->it_overrun
= -1;
1234 ++timer
->it_requeue_pending
;
1238 * task_cputime_expired - Compare two task_cputime entities.
1240 * @sample: The task_cputime structure to be checked for expiration.
1241 * @expires: Expiration times, against which @sample will be checked.
1243 * Checks @sample against @expires to see if any field of @sample has expired.
1244 * Returns true if any field of the former is greater than the corresponding
1245 * field of the latter if the latter field is set. Otherwise returns false.
1247 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1248 const struct task_cputime
*expires
)
1250 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1251 cputime_ge(sample
->utime
, expires
->utime
))
1253 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1254 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1257 if (expires
->sum_exec_runtime
!= 0 &&
1258 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1264 * fastpath_timer_check - POSIX CPU timers fast path.
1266 * @tsk: The task (thread) being checked.
1268 * Check the task and thread group timers. If both are zero (there are no
1269 * timers set) return false. Otherwise snapshot the task and thread group
1270 * timers and compare them with the corresponding expiration times. Return
1271 * true if a timer has expired, else return false.
1273 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1275 struct signal_struct
*sig
;
1277 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1278 struct task_cputime task_sample
= {
1279 .utime
= tsk
->utime
,
1280 .stime
= tsk
->stime
,
1281 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1284 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1289 if (sig
->cputimer
.running
) {
1290 struct task_cputime group_sample
;
1292 spin_lock(&sig
->cputimer
.lock
);
1293 group_sample
= sig
->cputimer
.cputime
;
1294 spin_unlock(&sig
->cputimer
.lock
);
1296 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1304 * This is called from the timer interrupt handler. The irq handler has
1305 * already updated our counts. We need to check if any timers fire now.
1306 * Interrupts are disabled.
1308 void run_posix_cpu_timers(struct task_struct
*tsk
)
1311 struct k_itimer
*timer
, *next
;
1312 unsigned long flags
;
1314 BUG_ON(!irqs_disabled());
1317 * The fast path checks that there are no expired thread or thread
1318 * group timers. If that's so, just return.
1320 if (!fastpath_timer_check(tsk
))
1323 if (!lock_task_sighand(tsk
, &flags
))
1326 * Here we take off tsk->signal->cpu_timers[N] and
1327 * tsk->cpu_timers[N] all the timers that are firing, and
1328 * put them on the firing list.
1330 check_thread_timers(tsk
, &firing
);
1332 * If there are any active process wide timers (POSIX 1.b, itimers,
1333 * RLIMIT_CPU) cputimer must be running.
1335 if (tsk
->signal
->cputimer
.running
)
1336 check_process_timers(tsk
, &firing
);
1339 * We must release these locks before taking any timer's lock.
1340 * There is a potential race with timer deletion here, as the
1341 * siglock now protects our private firing list. We have set
1342 * the firing flag in each timer, so that a deletion attempt
1343 * that gets the timer lock before we do will give it up and
1344 * spin until we've taken care of that timer below.
1346 unlock_task_sighand(tsk
, &flags
);
1349 * Now that all the timers on our list have the firing flag,
1350 * no one will touch their list entries but us. We'll take
1351 * each timer's lock before clearing its firing flag, so no
1352 * timer call will interfere.
1354 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1357 spin_lock(&timer
->it_lock
);
1358 list_del_init(&timer
->it
.cpu
.entry
);
1359 cpu_firing
= timer
->it
.cpu
.firing
;
1360 timer
->it
.cpu
.firing
= 0;
1362 * The firing flag is -1 if we collided with a reset
1363 * of the timer, which already reported this
1364 * almost-firing as an overrun. So don't generate an event.
1366 if (likely(cpu_firing
>= 0))
1367 cpu_timer_fire(timer
);
1368 spin_unlock(&timer
->it_lock
);
1373 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1374 * The tsk->sighand->siglock must be held by the caller.
1376 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1377 cputime_t
*newval
, cputime_t
*oldval
)
1379 union cpu_time_count now
;
1381 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1382 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1386 * We are setting itimer. The *oldval is absolute and we update
1387 * it to be relative, *newval argument is relative and we update
1388 * it to be absolute.
1390 if (!cputime_eq(*oldval
, cputime_zero
)) {
1391 if (cputime_le(*oldval
, now
.cpu
)) {
1392 /* Just about to fire. */
1393 *oldval
= cputime_one_jiffy
;
1395 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1399 if (cputime_eq(*newval
, cputime_zero
))
1401 *newval
= cputime_add(*newval
, now
.cpu
);
1405 * Update expiration cache if we are the earliest timer, or eventually
1406 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1408 switch (clock_idx
) {
1410 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1411 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1414 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1415 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1420 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1421 struct timespec
*rqtp
, struct itimerspec
*it
)
1423 struct k_itimer timer
;
1427 * Set up a temporary timer and then wait for it to go off.
1429 memset(&timer
, 0, sizeof timer
);
1430 spin_lock_init(&timer
.it_lock
);
1431 timer
.it_clock
= which_clock
;
1432 timer
.it_overrun
= -1;
1433 error
= posix_cpu_timer_create(&timer
);
1434 timer
.it_process
= current
;
1436 static struct itimerspec zero_it
;
1438 memset(it
, 0, sizeof *it
);
1439 it
->it_value
= *rqtp
;
1441 spin_lock_irq(&timer
.it_lock
);
1442 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1444 spin_unlock_irq(&timer
.it_lock
);
1448 while (!signal_pending(current
)) {
1449 if (timer
.it
.cpu
.expires
.sched
== 0) {
1451 * Our timer fired and was reset.
1453 spin_unlock_irq(&timer
.it_lock
);
1458 * Block until cpu_timer_fire (or a signal) wakes us.
1460 __set_current_state(TASK_INTERRUPTIBLE
);
1461 spin_unlock_irq(&timer
.it_lock
);
1463 spin_lock_irq(&timer
.it_lock
);
1467 * We were interrupted by a signal.
1469 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1470 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1471 spin_unlock_irq(&timer
.it_lock
);
1473 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1475 * It actually did fire already.
1480 error
= -ERESTART_RESTARTBLOCK
;
1486 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1488 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1489 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1491 struct restart_block
*restart_block
=
1492 ¤t_thread_info()->restart_block
;
1493 struct itimerspec it
;
1497 * Diagnose required errors first.
1499 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1500 (CPUCLOCK_PID(which_clock
) == 0 ||
1501 CPUCLOCK_PID(which_clock
) == current
->pid
))
1504 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1506 if (error
== -ERESTART_RESTARTBLOCK
) {
1508 if (flags
& TIMER_ABSTIME
)
1509 return -ERESTARTNOHAND
;
1511 * Report back to the user the time still remaining.
1513 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1516 restart_block
->fn
= posix_cpu_nsleep_restart
;
1517 restart_block
->nanosleep
.clockid
= which_clock
;
1518 restart_block
->nanosleep
.rmtp
= rmtp
;
1519 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1524 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1526 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1528 struct itimerspec it
;
1531 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1533 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1535 if (error
== -ERESTART_RESTARTBLOCK
) {
1536 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1538 * Report back to the user the time still remaining.
1540 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1543 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1549 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1550 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1552 static int process_cpu_clock_getres(const clockid_t which_clock
,
1553 struct timespec
*tp
)
1555 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1557 static int process_cpu_clock_get(const clockid_t which_clock
,
1558 struct timespec
*tp
)
1560 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1562 static int process_cpu_timer_create(struct k_itimer
*timer
)
1564 timer
->it_clock
= PROCESS_CLOCK
;
1565 return posix_cpu_timer_create(timer
);
1567 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1568 struct timespec
*rqtp
,
1569 struct timespec __user
*rmtp
)
1571 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1573 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1577 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1578 struct timespec
*tp
)
1580 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1582 static int thread_cpu_clock_get(const clockid_t which_clock
,
1583 struct timespec
*tp
)
1585 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1587 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1589 timer
->it_clock
= THREAD_CLOCK
;
1590 return posix_cpu_timer_create(timer
);
1593 struct k_clock clock_posix_cpu
= {
1594 .clock_getres
= posix_cpu_clock_getres
,
1595 .clock_set
= posix_cpu_clock_set
,
1596 .clock_get
= posix_cpu_clock_get
,
1597 .timer_create
= posix_cpu_timer_create
,
1598 .nsleep
= posix_cpu_nsleep
,
1599 .nsleep_restart
= posix_cpu_nsleep_restart
,
1600 .timer_set
= posix_cpu_timer_set
,
1601 .timer_del
= posix_cpu_timer_del
,
1602 .timer_get
= posix_cpu_timer_get
,
1605 static __init
int init_posix_cpu_timers(void)
1607 struct k_clock process
= {
1608 .clock_getres
= process_cpu_clock_getres
,
1609 .clock_get
= process_cpu_clock_get
,
1610 .timer_create
= process_cpu_timer_create
,
1611 .nsleep
= process_cpu_nsleep
,
1612 .nsleep_restart
= process_cpu_nsleep_restart
,
1614 struct k_clock thread
= {
1615 .clock_getres
= thread_cpu_clock_getres
,
1616 .clock_get
= thread_cpu_clock_get
,
1617 .timer_create
= thread_cpu_timer_create
,
1621 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1622 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1624 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1625 onecputick
= ts
.tv_nsec
;
1626 WARN_ON(ts
.tv_sec
!= 0);
1630 __initcall(init_posix_cpu_timers
);