md: bitmap: improve bitmap maintenance code.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-table.c
blob429b50b975d5a14af8c8e97412425ae9169784d3
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
21 #define DM_MSG_PREFIX "table"
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 * The table has always exactly one reference from either mapped_device->map
30 * or hash_cell->new_map. This reference is not counted in table->holders.
31 * A pair of dm_create_table/dm_destroy_table functions is used for table
32 * creation/destruction.
34 * Temporary references from the other code increase table->holders. A pair
35 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 * When the table is about to be destroyed, we wait for table->holders to
38 * drop to zero.
41 struct dm_table {
42 struct mapped_device *md;
43 atomic_t holders;
45 /* btree table */
46 unsigned int depth;
47 unsigned int counts[MAX_DEPTH]; /* in nodes */
48 sector_t *index[MAX_DEPTH];
50 unsigned int num_targets;
51 unsigned int num_allocated;
52 sector_t *highs;
53 struct dm_target *targets;
56 * Indicates the rw permissions for the new logical
57 * device. This should be a combination of FMODE_READ
58 * and FMODE_WRITE.
60 fmode_t mode;
62 /* a list of devices used by this table */
63 struct list_head devices;
66 * These are optimistic limits taken from all the
67 * targets, some targets will need smaller limits.
69 struct io_restrictions limits;
71 /* events get handed up using this callback */
72 void (*event_fn)(void *);
73 void *event_context;
77 * Similar to ceiling(log_size(n))
79 static unsigned int int_log(unsigned int n, unsigned int base)
81 int result = 0;
83 while (n > 1) {
84 n = dm_div_up(n, base);
85 result++;
88 return result;
92 * Returns the minimum that is _not_ zero, unless both are zero.
94 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
97 * Combine two io_restrictions, always taking the lower value.
99 static void combine_restrictions_low(struct io_restrictions *lhs,
100 struct io_restrictions *rhs)
102 lhs->max_sectors =
103 min_not_zero(lhs->max_sectors, rhs->max_sectors);
105 lhs->max_phys_segments =
106 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
108 lhs->max_hw_segments =
109 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
111 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
113 lhs->max_segment_size =
114 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
116 lhs->max_hw_sectors =
117 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
119 lhs->seg_boundary_mask =
120 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
122 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
124 lhs->no_cluster |= rhs->no_cluster;
128 * Calculate the index of the child node of the n'th node k'th key.
130 static inline unsigned int get_child(unsigned int n, unsigned int k)
132 return (n * CHILDREN_PER_NODE) + k;
136 * Return the n'th node of level l from table t.
138 static inline sector_t *get_node(struct dm_table *t,
139 unsigned int l, unsigned int n)
141 return t->index[l] + (n * KEYS_PER_NODE);
145 * Return the highest key that you could lookup from the n'th
146 * node on level l of the btree.
148 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
150 for (; l < t->depth - 1; l++)
151 n = get_child(n, CHILDREN_PER_NODE - 1);
153 if (n >= t->counts[l])
154 return (sector_t) - 1;
156 return get_node(t, l, n)[KEYS_PER_NODE - 1];
160 * Fills in a level of the btree based on the highs of the level
161 * below it.
163 static int setup_btree_index(unsigned int l, struct dm_table *t)
165 unsigned int n, k;
166 sector_t *node;
168 for (n = 0U; n < t->counts[l]; n++) {
169 node = get_node(t, l, n);
171 for (k = 0U; k < KEYS_PER_NODE; k++)
172 node[k] = high(t, l + 1, get_child(n, k));
175 return 0;
178 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
180 unsigned long size;
181 void *addr;
184 * Check that we're not going to overflow.
186 if (nmemb > (ULONG_MAX / elem_size))
187 return NULL;
189 size = nmemb * elem_size;
190 addr = vmalloc(size);
191 if (addr)
192 memset(addr, 0, size);
194 return addr;
198 * highs, and targets are managed as dynamic arrays during a
199 * table load.
201 static int alloc_targets(struct dm_table *t, unsigned int num)
203 sector_t *n_highs;
204 struct dm_target *n_targets;
205 int n = t->num_targets;
208 * Allocate both the target array and offset array at once.
209 * Append an empty entry to catch sectors beyond the end of
210 * the device.
212 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
213 sizeof(sector_t));
214 if (!n_highs)
215 return -ENOMEM;
217 n_targets = (struct dm_target *) (n_highs + num);
219 if (n) {
220 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
221 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
224 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
225 vfree(t->highs);
227 t->num_allocated = num;
228 t->highs = n_highs;
229 t->targets = n_targets;
231 return 0;
234 int dm_table_create(struct dm_table **result, fmode_t mode,
235 unsigned num_targets, struct mapped_device *md)
237 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
239 if (!t)
240 return -ENOMEM;
242 INIT_LIST_HEAD(&t->devices);
243 atomic_set(&t->holders, 0);
245 if (!num_targets)
246 num_targets = KEYS_PER_NODE;
248 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
250 if (alloc_targets(t, num_targets)) {
251 kfree(t);
252 t = NULL;
253 return -ENOMEM;
256 t->mode = mode;
257 t->md = md;
258 *result = t;
259 return 0;
262 static void free_devices(struct list_head *devices)
264 struct list_head *tmp, *next;
266 list_for_each_safe(tmp, next, devices) {
267 struct dm_dev_internal *dd =
268 list_entry(tmp, struct dm_dev_internal, list);
269 kfree(dd);
273 void dm_table_destroy(struct dm_table *t)
275 unsigned int i;
277 while (atomic_read(&t->holders))
278 msleep(1);
279 smp_mb();
281 /* free the indexes (see dm_table_complete) */
282 if (t->depth >= 2)
283 vfree(t->index[t->depth - 2]);
285 /* free the targets */
286 for (i = 0; i < t->num_targets; i++) {
287 struct dm_target *tgt = t->targets + i;
289 if (tgt->type->dtr)
290 tgt->type->dtr(tgt);
292 dm_put_target_type(tgt->type);
295 vfree(t->highs);
297 /* free the device list */
298 if (t->devices.next != &t->devices) {
299 DMWARN("devices still present during destroy: "
300 "dm_table_remove_device calls missing");
302 free_devices(&t->devices);
305 kfree(t);
308 void dm_table_get(struct dm_table *t)
310 atomic_inc(&t->holders);
313 void dm_table_put(struct dm_table *t)
315 if (!t)
316 return;
318 smp_mb__before_atomic_dec();
319 atomic_dec(&t->holders);
323 * Checks to see if we need to extend highs or targets.
325 static inline int check_space(struct dm_table *t)
327 if (t->num_targets >= t->num_allocated)
328 return alloc_targets(t, t->num_allocated * 2);
330 return 0;
334 * See if we've already got a device in the list.
336 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
338 struct dm_dev_internal *dd;
340 list_for_each_entry (dd, l, list)
341 if (dd->dm_dev.bdev->bd_dev == dev)
342 return dd;
344 return NULL;
348 * Open a device so we can use it as a map destination.
350 static int open_dev(struct dm_dev_internal *d, dev_t dev,
351 struct mapped_device *md)
353 static char *_claim_ptr = "I belong to device-mapper";
354 struct block_device *bdev;
356 int r;
358 BUG_ON(d->dm_dev.bdev);
360 bdev = open_by_devnum(dev, d->dm_dev.mode);
361 if (IS_ERR(bdev))
362 return PTR_ERR(bdev);
363 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
364 if (r)
365 blkdev_put(bdev, d->dm_dev.mode);
366 else
367 d->dm_dev.bdev = bdev;
368 return r;
372 * Close a device that we've been using.
374 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
376 if (!d->dm_dev.bdev)
377 return;
379 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
380 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
381 d->dm_dev.bdev = NULL;
385 * If possible, this checks an area of a destination device is valid.
387 static int check_device_area(struct dm_dev_internal *dd, sector_t start,
388 sector_t len)
390 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT;
392 if (!dev_size)
393 return 1;
395 return ((start < dev_size) && (len <= (dev_size - start)));
399 * This upgrades the mode on an already open dm_dev, being
400 * careful to leave things as they were if we fail to reopen the
401 * device and not to touch the existing bdev field in case
402 * it is accessed concurrently inside dm_table_any_congested().
404 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
405 struct mapped_device *md)
407 int r;
408 struct dm_dev_internal dd_new, dd_old;
410 dd_new = dd_old = *dd;
412 dd_new.dm_dev.mode |= new_mode;
413 dd_new.dm_dev.bdev = NULL;
415 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
416 if (r)
417 return r;
419 dd->dm_dev.mode |= new_mode;
420 close_dev(&dd_old, md);
422 return 0;
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
429 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
430 const char *path, sector_t start, sector_t len,
431 fmode_t mode, struct dm_dev **result)
433 int r;
434 dev_t uninitialized_var(dev);
435 struct dm_dev_internal *dd;
436 unsigned int major, minor;
438 BUG_ON(!t);
440 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
441 /* Extract the major/minor numbers */
442 dev = MKDEV(major, minor);
443 if (MAJOR(dev) != major || MINOR(dev) != minor)
444 return -EOVERFLOW;
445 } else {
446 /* convert the path to a device */
447 struct block_device *bdev = lookup_bdev(path);
449 if (IS_ERR(bdev))
450 return PTR_ERR(bdev);
451 dev = bdev->bd_dev;
452 bdput(bdev);
455 dd = find_device(&t->devices, dev);
456 if (!dd) {
457 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
458 if (!dd)
459 return -ENOMEM;
461 dd->dm_dev.mode = mode;
462 dd->dm_dev.bdev = NULL;
464 if ((r = open_dev(dd, dev, t->md))) {
465 kfree(dd);
466 return r;
469 format_dev_t(dd->dm_dev.name, dev);
471 atomic_set(&dd->count, 0);
472 list_add(&dd->list, &t->devices);
474 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
475 r = upgrade_mode(dd, mode, t->md);
476 if (r)
477 return r;
479 atomic_inc(&dd->count);
481 if (!check_device_area(dd, start, len)) {
482 DMWARN("device %s too small for target", path);
483 dm_put_device(ti, &dd->dm_dev);
484 return -EINVAL;
487 *result = &dd->dm_dev;
489 return 0;
492 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
494 struct request_queue *q = bdev_get_queue(bdev);
495 struct io_restrictions *rs = &ti->limits;
496 char b[BDEVNAME_SIZE];
498 if (unlikely(!q)) {
499 DMWARN("%s: Cannot set limits for nonexistent device %s",
500 dm_device_name(ti->table->md), bdevname(bdev, b));
501 return;
505 * Combine the device limits low.
507 * FIXME: if we move an io_restriction struct
508 * into q this would just be a call to
509 * combine_restrictions_low()
511 rs->max_sectors =
512 min_not_zero(rs->max_sectors, q->max_sectors);
515 * Check if merge fn is supported.
516 * If not we'll force DM to use PAGE_SIZE or
517 * smaller I/O, just to be safe.
520 if (q->merge_bvec_fn && !ti->type->merge)
521 rs->max_sectors =
522 min_not_zero(rs->max_sectors,
523 (unsigned int) (PAGE_SIZE >> 9));
525 rs->max_phys_segments =
526 min_not_zero(rs->max_phys_segments,
527 q->max_phys_segments);
529 rs->max_hw_segments =
530 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
532 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
534 rs->max_segment_size =
535 min_not_zero(rs->max_segment_size, q->max_segment_size);
537 rs->max_hw_sectors =
538 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
540 rs->seg_boundary_mask =
541 min_not_zero(rs->seg_boundary_mask,
542 q->seg_boundary_mask);
544 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
546 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
548 EXPORT_SYMBOL_GPL(dm_set_device_limits);
550 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
551 sector_t len, fmode_t mode, struct dm_dev **result)
553 int r = __table_get_device(ti->table, ti, path,
554 start, len, mode, result);
556 if (!r)
557 dm_set_device_limits(ti, (*result)->bdev);
559 return r;
563 * Decrement a devices use count and remove it if necessary.
565 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
567 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
568 dm_dev);
570 if (atomic_dec_and_test(&dd->count)) {
571 close_dev(dd, ti->table->md);
572 list_del(&dd->list);
573 kfree(dd);
578 * Checks to see if the target joins onto the end of the table.
580 static int adjoin(struct dm_table *table, struct dm_target *ti)
582 struct dm_target *prev;
584 if (!table->num_targets)
585 return !ti->begin;
587 prev = &table->targets[table->num_targets - 1];
588 return (ti->begin == (prev->begin + prev->len));
592 * Used to dynamically allocate the arg array.
594 static char **realloc_argv(unsigned *array_size, char **old_argv)
596 char **argv;
597 unsigned new_size;
599 new_size = *array_size ? *array_size * 2 : 64;
600 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
601 if (argv) {
602 memcpy(argv, old_argv, *array_size * sizeof(*argv));
603 *array_size = new_size;
606 kfree(old_argv);
607 return argv;
611 * Destructively splits up the argument list to pass to ctr.
613 int dm_split_args(int *argc, char ***argvp, char *input)
615 char *start, *end = input, *out, **argv = NULL;
616 unsigned array_size = 0;
618 *argc = 0;
620 if (!input) {
621 *argvp = NULL;
622 return 0;
625 argv = realloc_argv(&array_size, argv);
626 if (!argv)
627 return -ENOMEM;
629 while (1) {
630 start = end;
632 /* Skip whitespace */
633 while (*start && isspace(*start))
634 start++;
636 if (!*start)
637 break; /* success, we hit the end */
639 /* 'out' is used to remove any back-quotes */
640 end = out = start;
641 while (*end) {
642 /* Everything apart from '\0' can be quoted */
643 if (*end == '\\' && *(end + 1)) {
644 *out++ = *(end + 1);
645 end += 2;
646 continue;
649 if (isspace(*end))
650 break; /* end of token */
652 *out++ = *end++;
655 /* have we already filled the array ? */
656 if ((*argc + 1) > array_size) {
657 argv = realloc_argv(&array_size, argv);
658 if (!argv)
659 return -ENOMEM;
662 /* we know this is whitespace */
663 if (*end)
664 end++;
666 /* terminate the string and put it in the array */
667 *out = '\0';
668 argv[*argc] = start;
669 (*argc)++;
672 *argvp = argv;
673 return 0;
676 static void check_for_valid_limits(struct io_restrictions *rs)
678 if (!rs->max_sectors)
679 rs->max_sectors = SAFE_MAX_SECTORS;
680 if (!rs->max_hw_sectors)
681 rs->max_hw_sectors = SAFE_MAX_SECTORS;
682 if (!rs->max_phys_segments)
683 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
684 if (!rs->max_hw_segments)
685 rs->max_hw_segments = MAX_HW_SEGMENTS;
686 if (!rs->hardsect_size)
687 rs->hardsect_size = 1 << SECTOR_SHIFT;
688 if (!rs->max_segment_size)
689 rs->max_segment_size = MAX_SEGMENT_SIZE;
690 if (!rs->seg_boundary_mask)
691 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
692 if (!rs->bounce_pfn)
693 rs->bounce_pfn = -1;
696 int dm_table_add_target(struct dm_table *t, const char *type,
697 sector_t start, sector_t len, char *params)
699 int r = -EINVAL, argc;
700 char **argv;
701 struct dm_target *tgt;
703 if ((r = check_space(t)))
704 return r;
706 tgt = t->targets + t->num_targets;
707 memset(tgt, 0, sizeof(*tgt));
709 if (!len) {
710 DMERR("%s: zero-length target", dm_device_name(t->md));
711 return -EINVAL;
714 tgt->type = dm_get_target_type(type);
715 if (!tgt->type) {
716 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
717 type);
718 return -EINVAL;
721 tgt->table = t;
722 tgt->begin = start;
723 tgt->len = len;
724 tgt->error = "Unknown error";
727 * Does this target adjoin the previous one ?
729 if (!adjoin(t, tgt)) {
730 tgt->error = "Gap in table";
731 r = -EINVAL;
732 goto bad;
735 r = dm_split_args(&argc, &argv, params);
736 if (r) {
737 tgt->error = "couldn't split parameters (insufficient memory)";
738 goto bad;
741 r = tgt->type->ctr(tgt, argc, argv);
742 kfree(argv);
743 if (r)
744 goto bad;
746 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
748 /* FIXME: the plan is to combine high here and then have
749 * the merge fn apply the target level restrictions. */
750 combine_restrictions_low(&t->limits, &tgt->limits);
751 return 0;
753 bad:
754 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
755 dm_put_target_type(tgt->type);
756 return r;
759 static int setup_indexes(struct dm_table *t)
761 int i;
762 unsigned int total = 0;
763 sector_t *indexes;
765 /* allocate the space for *all* the indexes */
766 for (i = t->depth - 2; i >= 0; i--) {
767 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
768 total += t->counts[i];
771 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
772 if (!indexes)
773 return -ENOMEM;
775 /* set up internal nodes, bottom-up */
776 for (i = t->depth - 2; i >= 0; i--) {
777 t->index[i] = indexes;
778 indexes += (KEYS_PER_NODE * t->counts[i]);
779 setup_btree_index(i, t);
782 return 0;
786 * Builds the btree to index the map.
788 int dm_table_complete(struct dm_table *t)
790 int r = 0;
791 unsigned int leaf_nodes;
793 check_for_valid_limits(&t->limits);
795 /* how many indexes will the btree have ? */
796 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
797 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
799 /* leaf layer has already been set up */
800 t->counts[t->depth - 1] = leaf_nodes;
801 t->index[t->depth - 1] = t->highs;
803 if (t->depth >= 2)
804 r = setup_indexes(t);
806 return r;
809 static DEFINE_MUTEX(_event_lock);
810 void dm_table_event_callback(struct dm_table *t,
811 void (*fn)(void *), void *context)
813 mutex_lock(&_event_lock);
814 t->event_fn = fn;
815 t->event_context = context;
816 mutex_unlock(&_event_lock);
819 void dm_table_event(struct dm_table *t)
822 * You can no longer call dm_table_event() from interrupt
823 * context, use a bottom half instead.
825 BUG_ON(in_interrupt());
827 mutex_lock(&_event_lock);
828 if (t->event_fn)
829 t->event_fn(t->event_context);
830 mutex_unlock(&_event_lock);
833 sector_t dm_table_get_size(struct dm_table *t)
835 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
838 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
840 if (index >= t->num_targets)
841 return NULL;
843 return t->targets + index;
847 * Search the btree for the correct target.
849 * Caller should check returned pointer with dm_target_is_valid()
850 * to trap I/O beyond end of device.
852 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
854 unsigned int l, n = 0, k = 0;
855 sector_t *node;
857 for (l = 0; l < t->depth; l++) {
858 n = get_child(n, k);
859 node = get_node(t, l, n);
861 for (k = 0; k < KEYS_PER_NODE; k++)
862 if (node[k] >= sector)
863 break;
866 return &t->targets[(KEYS_PER_NODE * n) + k];
870 * Set the integrity profile for this device if all devices used have
871 * matching profiles.
873 static void dm_table_set_integrity(struct dm_table *t)
875 struct list_head *devices = dm_table_get_devices(t);
876 struct dm_dev_internal *prev = NULL, *dd = NULL;
878 if (!blk_get_integrity(dm_disk(t->md)))
879 return;
881 list_for_each_entry(dd, devices, list) {
882 if (prev &&
883 blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
884 dd->dm_dev.bdev->bd_disk) < 0) {
885 DMWARN("%s: integrity not set: %s and %s mismatch",
886 dm_device_name(t->md),
887 prev->dm_dev.bdev->bd_disk->disk_name,
888 dd->dm_dev.bdev->bd_disk->disk_name);
889 goto no_integrity;
891 prev = dd;
894 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
895 goto no_integrity;
897 blk_integrity_register(dm_disk(t->md),
898 bdev_get_integrity(prev->dm_dev.bdev));
900 return;
902 no_integrity:
903 blk_integrity_register(dm_disk(t->md), NULL);
905 return;
908 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
911 * Make sure we obey the optimistic sub devices
912 * restrictions.
914 blk_queue_max_sectors(q, t->limits.max_sectors);
915 q->max_phys_segments = t->limits.max_phys_segments;
916 q->max_hw_segments = t->limits.max_hw_segments;
917 q->hardsect_size = t->limits.hardsect_size;
918 q->max_segment_size = t->limits.max_segment_size;
919 q->max_hw_sectors = t->limits.max_hw_sectors;
920 q->seg_boundary_mask = t->limits.seg_boundary_mask;
921 q->bounce_pfn = t->limits.bounce_pfn;
923 if (t->limits.no_cluster)
924 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
925 else
926 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
928 dm_table_set_integrity(t);
931 unsigned int dm_table_get_num_targets(struct dm_table *t)
933 return t->num_targets;
936 struct list_head *dm_table_get_devices(struct dm_table *t)
938 return &t->devices;
941 fmode_t dm_table_get_mode(struct dm_table *t)
943 return t->mode;
946 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
948 int i = t->num_targets;
949 struct dm_target *ti = t->targets;
951 while (i--) {
952 if (postsuspend) {
953 if (ti->type->postsuspend)
954 ti->type->postsuspend(ti);
955 } else if (ti->type->presuspend)
956 ti->type->presuspend(ti);
958 ti++;
962 void dm_table_presuspend_targets(struct dm_table *t)
964 if (!t)
965 return;
967 suspend_targets(t, 0);
970 void dm_table_postsuspend_targets(struct dm_table *t)
972 if (!t)
973 return;
975 suspend_targets(t, 1);
978 int dm_table_resume_targets(struct dm_table *t)
980 int i, r = 0;
982 for (i = 0; i < t->num_targets; i++) {
983 struct dm_target *ti = t->targets + i;
985 if (!ti->type->preresume)
986 continue;
988 r = ti->type->preresume(ti);
989 if (r)
990 return r;
993 for (i = 0; i < t->num_targets; i++) {
994 struct dm_target *ti = t->targets + i;
996 if (ti->type->resume)
997 ti->type->resume(ti);
1000 return 0;
1003 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1005 struct dm_dev_internal *dd;
1006 struct list_head *devices = dm_table_get_devices(t);
1007 int r = 0;
1009 list_for_each_entry(dd, devices, list) {
1010 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1011 char b[BDEVNAME_SIZE];
1013 if (likely(q))
1014 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1015 else
1016 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1017 dm_device_name(t->md),
1018 bdevname(dd->dm_dev.bdev, b));
1021 return r;
1024 void dm_table_unplug_all(struct dm_table *t)
1026 struct dm_dev_internal *dd;
1027 struct list_head *devices = dm_table_get_devices(t);
1029 list_for_each_entry(dd, devices, list) {
1030 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1031 char b[BDEVNAME_SIZE];
1033 if (likely(q))
1034 blk_unplug(q);
1035 else
1036 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1037 dm_device_name(t->md),
1038 bdevname(dd->dm_dev.bdev, b));
1042 struct mapped_device *dm_table_get_md(struct dm_table *t)
1044 dm_get(t->md);
1046 return t->md;
1049 EXPORT_SYMBOL(dm_vcalloc);
1050 EXPORT_SYMBOL(dm_get_device);
1051 EXPORT_SYMBOL(dm_put_device);
1052 EXPORT_SYMBOL(dm_table_event);
1053 EXPORT_SYMBOL(dm_table_get_size);
1054 EXPORT_SYMBOL(dm_table_get_mode);
1055 EXPORT_SYMBOL(dm_table_get_md);
1056 EXPORT_SYMBOL(dm_table_put);
1057 EXPORT_SYMBOL(dm_table_get);
1058 EXPORT_SYMBOL(dm_table_unplug_all);