2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
64 #include <net/net_namespace.h>
66 #include <net/inet_hashtables.h>
68 #include <net/transp_v6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
84 int sysctl_tcp_tw_reuse __read_mostly
;
85 int sysctl_tcp_low_latency __read_mostly
;
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
,
91 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
92 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
);
95 struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
101 struct inet_hashinfo tcp_hashinfo
;
103 static inline __u32
tcp_v4_init_sequence(struct sk_buff
*skb
)
105 return secure_tcp_sequence_number(ip_hdr(skb
)->daddr
,
108 tcp_hdr(skb
)->source
);
111 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
113 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
114 struct tcp_sock
*tp
= tcp_sk(sk
);
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
127 if (tcptw
->tw_ts_recent_stamp
&&
128 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
129 get_seconds() - tcptw
->tw_ts_recent_stamp
> 1))) {
130 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
131 if (tp
->write_seq
== 0)
133 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
134 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
147 struct inet_sock
*inet
= inet_sk(sk
);
148 struct tcp_sock
*tp
= tcp_sk(sk
);
149 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
151 __be32 daddr
, nexthop
;
155 if (addr_len
< sizeof(struct sockaddr_in
))
158 if (usin
->sin_family
!= AF_INET
)
159 return -EAFNOSUPPORT
;
161 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
162 if (inet
->opt
&& inet
->opt
->srr
) {
165 nexthop
= inet
->opt
->faddr
;
168 tmp
= ip_route_connect(&rt
, nexthop
, inet
->inet_saddr
,
169 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
171 inet
->inet_sport
, usin
->sin_port
, sk
, 1);
173 if (tmp
== -ENETUNREACH
)
174 IP_INC_STATS_BH(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
178 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
183 if (!inet
->opt
|| !inet
->opt
->srr
)
186 if (!inet
->inet_saddr
)
187 inet
->inet_saddr
= rt
->rt_src
;
188 inet
->inet_rcv_saddr
= inet
->inet_saddr
;
190 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->inet_daddr
!= daddr
) {
191 /* Reset inherited state */
192 tp
->rx_opt
.ts_recent
= 0;
193 tp
->rx_opt
.ts_recent_stamp
= 0;
197 if (tcp_death_row
.sysctl_tw_recycle
&&
198 !tp
->rx_opt
.ts_recent_stamp
&& rt
->rt_dst
== daddr
) {
199 struct inet_peer
*peer
= rt_get_peer(rt
);
201 * VJ's idea. We save last timestamp seen from
202 * the destination in peer table, when entering state
203 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 * when trying new connection.
207 (u32
)get_seconds() - peer
->tcp_ts_stamp
<= TCP_PAWS_MSL
) {
208 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
209 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
213 inet
->inet_dport
= usin
->sin_port
;
214 inet
->inet_daddr
= daddr
;
216 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
218 inet_csk(sk
)->icsk_ext_hdr_len
= inet
->opt
->optlen
;
220 tp
->rx_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
222 /* Socket identity is still unknown (sport may be zero).
223 * However we set state to SYN-SENT and not releasing socket
224 * lock select source port, enter ourselves into the hash tables and
225 * complete initialization after this.
227 tcp_set_state(sk
, TCP_SYN_SENT
);
228 err
= inet_hash_connect(&tcp_death_row
, sk
);
232 err
= ip_route_newports(&rt
, IPPROTO_TCP
,
233 inet
->inet_sport
, inet
->inet_dport
, sk
);
237 /* OK, now commit destination to socket. */
238 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
239 sk_setup_caps(sk
, &rt
->u
.dst
);
242 tp
->write_seq
= secure_tcp_sequence_number(inet
->inet_saddr
,
247 inet
->inet_id
= tp
->write_seq
^ jiffies
;
249 err
= tcp_connect(sk
);
258 * This unhashes the socket and releases the local port,
261 tcp_set_state(sk
, TCP_CLOSE
);
263 sk
->sk_route_caps
= 0;
264 inet
->inet_dport
= 0;
269 * This routine does path mtu discovery as defined in RFC1191.
271 static void do_pmtu_discovery(struct sock
*sk
, struct iphdr
*iph
, u32 mtu
)
273 struct dst_entry
*dst
;
274 struct inet_sock
*inet
= inet_sk(sk
);
276 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 * send out by Linux are always <576bytes so they should go through
280 if (sk
->sk_state
== TCP_LISTEN
)
283 /* We don't check in the destentry if pmtu discovery is forbidden
284 * on this route. We just assume that no packet_to_big packets
285 * are send back when pmtu discovery is not active.
286 * There is a small race when the user changes this flag in the
287 * route, but I think that's acceptable.
289 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
292 dst
->ops
->update_pmtu(dst
, mtu
);
294 /* Something is about to be wrong... Remember soft error
295 * for the case, if this connection will not able to recover.
297 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
298 sk
->sk_err_soft
= EMSGSIZE
;
302 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
303 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
304 tcp_sync_mss(sk
, mtu
);
306 /* Resend the TCP packet because it's
307 * clear that the old packet has been
308 * dropped. This is the new "fast" path mtu
311 tcp_simple_retransmit(sk
);
312 } /* else let the usual retransmit timer handle it */
316 * This routine is called by the ICMP module when it gets some
317 * sort of error condition. If err < 0 then the socket should
318 * be closed and the error returned to the user. If err > 0
319 * it's just the icmp type << 8 | icmp code. After adjustment
320 * header points to the first 8 bytes of the tcp header. We need
321 * to find the appropriate port.
323 * The locking strategy used here is very "optimistic". When
324 * someone else accesses the socket the ICMP is just dropped
325 * and for some paths there is no check at all.
326 * A more general error queue to queue errors for later handling
327 * is probably better.
331 void tcp_v4_err(struct sk_buff
*icmp_skb
, u32 info
)
333 struct iphdr
*iph
= (struct iphdr
*)icmp_skb
->data
;
334 struct tcphdr
*th
= (struct tcphdr
*)(icmp_skb
->data
+ (iph
->ihl
<< 2));
335 struct inet_connection_sock
*icsk
;
337 struct inet_sock
*inet
;
338 const int type
= icmp_hdr(icmp_skb
)->type
;
339 const int code
= icmp_hdr(icmp_skb
)->code
;
345 struct net
*net
= dev_net(icmp_skb
->dev
);
347 if (icmp_skb
->len
< (iph
->ihl
<< 2) + 8) {
348 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
352 sk
= inet_lookup(net
, &tcp_hashinfo
, iph
->daddr
, th
->dest
,
353 iph
->saddr
, th
->source
, inet_iif(icmp_skb
));
355 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
358 if (sk
->sk_state
== TCP_TIME_WAIT
) {
359 inet_twsk_put(inet_twsk(sk
));
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
367 if (sock_owned_by_user(sk
))
368 NET_INC_STATS_BH(net
, LINUX_MIB_LOCKDROPPEDICMPS
);
370 if (sk
->sk_state
== TCP_CLOSE
)
373 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
374 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
380 seq
= ntohl(th
->seq
);
381 if (sk
->sk_state
!= TCP_LISTEN
&&
382 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
383 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
388 case ICMP_SOURCE_QUENCH
:
389 /* Just silently ignore these. */
391 case ICMP_PARAMETERPROB
:
394 case ICMP_DEST_UNREACH
:
395 if (code
> NR_ICMP_UNREACH
)
398 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
399 if (!sock_owned_by_user(sk
))
400 do_pmtu_discovery(sk
, iph
, info
);
404 err
= icmp_err_convert
[code
].errno
;
405 /* check if icmp_skb allows revert of backoff
406 * (see draft-zimmermann-tcp-lcd) */
407 if (code
!= ICMP_NET_UNREACH
&& code
!= ICMP_HOST_UNREACH
)
409 if (seq
!= tp
->snd_una
|| !icsk
->icsk_retransmits
||
413 icsk
->icsk_backoff
--;
414 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
) <<
418 skb
= tcp_write_queue_head(sk
);
421 remaining
= icsk
->icsk_rto
- min(icsk
->icsk_rto
,
422 tcp_time_stamp
- TCP_SKB_CB(skb
)->when
);
425 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
426 remaining
, TCP_RTO_MAX
);
427 } else if (sock_owned_by_user(sk
)) {
428 /* RTO revert clocked out retransmission,
429 * but socket is locked. Will defer. */
430 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
433 /* RTO revert clocked out retransmission.
434 * Will retransmit now */
435 tcp_retransmit_timer(sk
);
439 case ICMP_TIME_EXCEEDED
:
446 switch (sk
->sk_state
) {
447 struct request_sock
*req
, **prev
;
449 if (sock_owned_by_user(sk
))
452 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
453 iph
->daddr
, iph
->saddr
);
457 /* ICMPs are not backlogged, hence we cannot get
458 an established socket here.
462 if (seq
!= tcp_rsk(req
)->snt_isn
) {
463 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
468 * Still in SYN_RECV, just remove it silently.
469 * There is no good way to pass the error to the newly
470 * created socket, and POSIX does not want network
471 * errors returned from accept().
473 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
477 case TCP_SYN_RECV
: /* Cannot happen.
478 It can f.e. if SYNs crossed.
480 if (!sock_owned_by_user(sk
)) {
483 sk
->sk_error_report(sk
);
487 sk
->sk_err_soft
= err
;
492 /* If we've already connected we will keep trying
493 * until we time out, or the user gives up.
495 * rfc1122 4.2.3.9 allows to consider as hard errors
496 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
497 * but it is obsoleted by pmtu discovery).
499 * Note, that in modern internet, where routing is unreliable
500 * and in each dark corner broken firewalls sit, sending random
501 * errors ordered by their masters even this two messages finally lose
502 * their original sense (even Linux sends invalid PORT_UNREACHs)
504 * Now we are in compliance with RFCs.
509 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
511 sk
->sk_error_report(sk
);
512 } else { /* Only an error on timeout */
513 sk
->sk_err_soft
= err
;
521 /* This routine computes an IPv4 TCP checksum. */
522 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
)
524 struct inet_sock
*inet
= inet_sk(sk
);
525 struct tcphdr
*th
= tcp_hdr(skb
);
527 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
528 th
->check
= ~tcp_v4_check(len
, inet
->inet_saddr
,
529 inet
->inet_daddr
, 0);
530 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
531 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
533 th
->check
= tcp_v4_check(len
, inet
->inet_saddr
,
541 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
543 const struct iphdr
*iph
;
546 if (!pskb_may_pull(skb
, sizeof(*th
)))
553 th
->check
= ~tcp_v4_check(skb
->len
, iph
->saddr
, iph
->daddr
, 0);
554 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
555 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
556 skb
->ip_summed
= CHECKSUM_PARTIAL
;
561 * This routine will send an RST to the other tcp.
563 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
565 * Answer: if a packet caused RST, it is not for a socket
566 * existing in our system, if it is matched to a socket,
567 * it is just duplicate segment or bug in other side's TCP.
568 * So that we build reply only basing on parameters
569 * arrived with segment.
570 * Exception: precedence violation. We do not implement it in any case.
573 static void tcp_v4_send_reset(struct sock
*sk
, struct sk_buff
*skb
)
575 struct tcphdr
*th
= tcp_hdr(skb
);
578 #ifdef CONFIG_TCP_MD5SIG
579 __be32 opt
[(TCPOLEN_MD5SIG_ALIGNED
>> 2)];
582 struct ip_reply_arg arg
;
583 #ifdef CONFIG_TCP_MD5SIG
584 struct tcp_md5sig_key
*key
;
588 /* Never send a reset in response to a reset. */
592 if (skb_rtable(skb
)->rt_type
!= RTN_LOCAL
)
595 /* Swap the send and the receive. */
596 memset(&rep
, 0, sizeof(rep
));
597 rep
.th
.dest
= th
->source
;
598 rep
.th
.source
= th
->dest
;
599 rep
.th
.doff
= sizeof(struct tcphdr
) / 4;
603 rep
.th
.seq
= th
->ack_seq
;
606 rep
.th
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
607 skb
->len
- (th
->doff
<< 2));
610 memset(&arg
, 0, sizeof(arg
));
611 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
612 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
614 #ifdef CONFIG_TCP_MD5SIG
615 key
= sk
? tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
) : NULL
;
617 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) |
619 (TCPOPT_MD5SIG
<< 8) |
621 /* Update length and the length the header thinks exists */
622 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
623 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
625 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[1],
626 key
, ip_hdr(skb
)->saddr
,
627 ip_hdr(skb
)->daddr
, &rep
.th
);
630 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
631 ip_hdr(skb
)->saddr
, /* XXX */
632 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
633 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
634 arg
.flags
= (sk
&& inet_sk(sk
)->transparent
) ? IP_REPLY_ARG_NOSRCCHECK
: 0;
636 net
= dev_net(skb_dst(skb
)->dev
);
637 ip_send_reply(net
->ipv4
.tcp_sock
, skb
,
638 &arg
, arg
.iov
[0].iov_len
);
640 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
641 TCP_INC_STATS_BH(net
, TCP_MIB_OUTRSTS
);
644 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
645 outside socket context is ugly, certainly. What can I do?
648 static void tcp_v4_send_ack(struct sk_buff
*skb
, u32 seq
, u32 ack
,
649 u32 win
, u32 ts
, int oif
,
650 struct tcp_md5sig_key
*key
,
653 struct tcphdr
*th
= tcp_hdr(skb
);
656 __be32 opt
[(TCPOLEN_TSTAMP_ALIGNED
>> 2)
657 #ifdef CONFIG_TCP_MD5SIG
658 + (TCPOLEN_MD5SIG_ALIGNED
>> 2)
662 struct ip_reply_arg arg
;
663 struct net
*net
= dev_net(skb_dst(skb
)->dev
);
665 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
666 memset(&arg
, 0, sizeof(arg
));
668 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
669 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
671 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
672 (TCPOPT_TIMESTAMP
<< 8) |
674 rep
.opt
[1] = htonl(tcp_time_stamp
);
675 rep
.opt
[2] = htonl(ts
);
676 arg
.iov
[0].iov_len
+= TCPOLEN_TSTAMP_ALIGNED
;
679 /* Swap the send and the receive. */
680 rep
.th
.dest
= th
->source
;
681 rep
.th
.source
= th
->dest
;
682 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
683 rep
.th
.seq
= htonl(seq
);
684 rep
.th
.ack_seq
= htonl(ack
);
686 rep
.th
.window
= htons(win
);
688 #ifdef CONFIG_TCP_MD5SIG
690 int offset
= (ts
) ? 3 : 0;
692 rep
.opt
[offset
++] = htonl((TCPOPT_NOP
<< 24) |
694 (TCPOPT_MD5SIG
<< 8) |
696 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
697 rep
.th
.doff
= arg
.iov
[0].iov_len
/4;
699 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[offset
],
700 key
, ip_hdr(skb
)->saddr
,
701 ip_hdr(skb
)->daddr
, &rep
.th
);
704 arg
.flags
= reply_flags
;
705 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
706 ip_hdr(skb
)->saddr
, /* XXX */
707 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
708 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
710 arg
.bound_dev_if
= oif
;
712 ip_send_reply(net
->ipv4
.tcp_sock
, skb
,
713 &arg
, arg
.iov
[0].iov_len
);
715 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
718 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
720 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
721 struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
723 tcp_v4_send_ack(skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
724 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
,
727 tcp_twsk_md5_key(tcptw
),
728 tw
->tw_transparent
? IP_REPLY_ARG_NOSRCCHECK
: 0
734 static void tcp_v4_reqsk_send_ack(struct sock
*sk
, struct sk_buff
*skb
,
735 struct request_sock
*req
)
737 tcp_v4_send_ack(skb
, tcp_rsk(req
)->snt_isn
+ 1,
738 tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
741 tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
),
742 inet_rsk(req
)->no_srccheck
? IP_REPLY_ARG_NOSRCCHECK
: 0);
746 * Send a SYN-ACK after having received a SYN.
747 * This still operates on a request_sock only, not on a big
750 static int tcp_v4_send_synack(struct sock
*sk
, struct dst_entry
*dst
,
751 struct request_sock
*req
,
752 struct request_values
*rvp
)
754 const struct inet_request_sock
*ireq
= inet_rsk(req
);
756 struct sk_buff
* skb
;
758 /* First, grab a route. */
759 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
762 skb
= tcp_make_synack(sk
, dst
, req
, rvp
);
765 struct tcphdr
*th
= tcp_hdr(skb
);
767 th
->check
= tcp_v4_check(skb
->len
,
770 csum_partial(th
, skb
->len
,
773 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
776 err
= net_xmit_eval(err
);
783 static int tcp_v4_rtx_synack(struct sock
*sk
, struct request_sock
*req
,
784 struct request_values
*rvp
)
786 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
787 return tcp_v4_send_synack(sk
, NULL
, req
, rvp
);
791 * IPv4 request_sock destructor.
793 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
795 kfree(inet_rsk(req
)->opt
);
798 #ifdef CONFIG_SYN_COOKIES
799 static void syn_flood_warning(struct sk_buff
*skb
)
801 static unsigned long warntime
;
803 if (time_after(jiffies
, (warntime
+ HZ
* 60))) {
806 "possible SYN flooding on port %d. Sending cookies.\n",
807 ntohs(tcp_hdr(skb
)->dest
));
813 * Save and compile IPv4 options into the request_sock if needed.
815 static struct ip_options
*tcp_v4_save_options(struct sock
*sk
,
818 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
819 struct ip_options
*dopt
= NULL
;
821 if (opt
&& opt
->optlen
) {
822 int opt_size
= optlength(opt
);
823 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
825 if (ip_options_echo(dopt
, skb
)) {
834 #ifdef CONFIG_TCP_MD5SIG
836 * RFC2385 MD5 checksumming requires a mapping of
837 * IP address->MD5 Key.
838 * We need to maintain these in the sk structure.
841 /* Find the Key structure for an address. */
842 static struct tcp_md5sig_key
*
843 tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
845 struct tcp_sock
*tp
= tcp_sk(sk
);
848 if (!tp
->md5sig_info
|| !tp
->md5sig_info
->entries4
)
850 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
851 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
)
852 return &tp
->md5sig_info
->keys4
[i
].base
;
857 struct tcp_md5sig_key
*tcp_v4_md5_lookup(struct sock
*sk
,
858 struct sock
*addr_sk
)
860 return tcp_v4_md5_do_lookup(sk
, inet_sk(addr_sk
)->inet_daddr
);
863 EXPORT_SYMBOL(tcp_v4_md5_lookup
);
865 static struct tcp_md5sig_key
*tcp_v4_reqsk_md5_lookup(struct sock
*sk
,
866 struct request_sock
*req
)
868 return tcp_v4_md5_do_lookup(sk
, inet_rsk(req
)->rmt_addr
);
871 /* This can be called on a newly created socket, from other files */
872 int tcp_v4_md5_do_add(struct sock
*sk
, __be32 addr
,
873 u8
*newkey
, u8 newkeylen
)
875 /* Add Key to the list */
876 struct tcp_md5sig_key
*key
;
877 struct tcp_sock
*tp
= tcp_sk(sk
);
878 struct tcp4_md5sig_key
*keys
;
880 key
= tcp_v4_md5_do_lookup(sk
, addr
);
882 /* Pre-existing entry - just update that one. */
885 key
->keylen
= newkeylen
;
887 struct tcp_md5sig_info
*md5sig
;
889 if (!tp
->md5sig_info
) {
890 tp
->md5sig_info
= kzalloc(sizeof(*tp
->md5sig_info
),
892 if (!tp
->md5sig_info
) {
896 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
898 if (tcp_alloc_md5sig_pool(sk
) == NULL
) {
902 md5sig
= tp
->md5sig_info
;
904 if (md5sig
->alloced4
== md5sig
->entries4
) {
905 keys
= kmalloc((sizeof(*keys
) *
906 (md5sig
->entries4
+ 1)), GFP_ATOMIC
);
909 tcp_free_md5sig_pool();
913 if (md5sig
->entries4
)
914 memcpy(keys
, md5sig
->keys4
,
915 sizeof(*keys
) * md5sig
->entries4
);
917 /* Free old key list, and reference new one */
918 kfree(md5sig
->keys4
);
919 md5sig
->keys4
= keys
;
923 md5sig
->keys4
[md5sig
->entries4
- 1].addr
= addr
;
924 md5sig
->keys4
[md5sig
->entries4
- 1].base
.key
= newkey
;
925 md5sig
->keys4
[md5sig
->entries4
- 1].base
.keylen
= newkeylen
;
930 EXPORT_SYMBOL(tcp_v4_md5_do_add
);
932 static int tcp_v4_md5_add_func(struct sock
*sk
, struct sock
*addr_sk
,
933 u8
*newkey
, u8 newkeylen
)
935 return tcp_v4_md5_do_add(sk
, inet_sk(addr_sk
)->inet_daddr
,
939 int tcp_v4_md5_do_del(struct sock
*sk
, __be32 addr
)
941 struct tcp_sock
*tp
= tcp_sk(sk
);
944 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
945 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
) {
947 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
948 tp
->md5sig_info
->entries4
--;
950 if (tp
->md5sig_info
->entries4
== 0) {
951 kfree(tp
->md5sig_info
->keys4
);
952 tp
->md5sig_info
->keys4
= NULL
;
953 tp
->md5sig_info
->alloced4
= 0;
954 } else if (tp
->md5sig_info
->entries4
!= i
) {
955 /* Need to do some manipulation */
956 memmove(&tp
->md5sig_info
->keys4
[i
],
957 &tp
->md5sig_info
->keys4
[i
+1],
958 (tp
->md5sig_info
->entries4
- i
) *
959 sizeof(struct tcp4_md5sig_key
));
961 tcp_free_md5sig_pool();
968 EXPORT_SYMBOL(tcp_v4_md5_do_del
);
970 static void tcp_v4_clear_md5_list(struct sock
*sk
)
972 struct tcp_sock
*tp
= tcp_sk(sk
);
974 /* Free each key, then the set of key keys,
975 * the crypto element, and then decrement our
976 * hold on the last resort crypto.
978 if (tp
->md5sig_info
->entries4
) {
980 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++)
981 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
982 tp
->md5sig_info
->entries4
= 0;
983 tcp_free_md5sig_pool();
985 if (tp
->md5sig_info
->keys4
) {
986 kfree(tp
->md5sig_info
->keys4
);
987 tp
->md5sig_info
->keys4
= NULL
;
988 tp
->md5sig_info
->alloced4
= 0;
992 static int tcp_v4_parse_md5_keys(struct sock
*sk
, char __user
*optval
,
995 struct tcp_md5sig cmd
;
996 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&cmd
.tcpm_addr
;
999 if (optlen
< sizeof(cmd
))
1002 if (copy_from_user(&cmd
, optval
, sizeof(cmd
)))
1005 if (sin
->sin_family
!= AF_INET
)
1008 if (!cmd
.tcpm_key
|| !cmd
.tcpm_keylen
) {
1009 if (!tcp_sk(sk
)->md5sig_info
)
1011 return tcp_v4_md5_do_del(sk
, sin
->sin_addr
.s_addr
);
1014 if (cmd
.tcpm_keylen
> TCP_MD5SIG_MAXKEYLEN
)
1017 if (!tcp_sk(sk
)->md5sig_info
) {
1018 struct tcp_sock
*tp
= tcp_sk(sk
);
1019 struct tcp_md5sig_info
*p
;
1021 p
= kzalloc(sizeof(*p
), sk
->sk_allocation
);
1025 tp
->md5sig_info
= p
;
1026 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1029 newkey
= kmemdup(cmd
.tcpm_key
, cmd
.tcpm_keylen
, sk
->sk_allocation
);
1032 return tcp_v4_md5_do_add(sk
, sin
->sin_addr
.s_addr
,
1033 newkey
, cmd
.tcpm_keylen
);
1036 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool
*hp
,
1037 __be32 daddr
, __be32 saddr
, int nbytes
)
1039 struct tcp4_pseudohdr
*bp
;
1040 struct scatterlist sg
;
1042 bp
= &hp
->md5_blk
.ip4
;
1045 * 1. the TCP pseudo-header (in the order: source IP address,
1046 * destination IP address, zero-padded protocol number, and
1052 bp
->protocol
= IPPROTO_TCP
;
1053 bp
->len
= cpu_to_be16(nbytes
);
1055 sg_init_one(&sg
, bp
, sizeof(*bp
));
1056 return crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(*bp
));
1059 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
1060 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
)
1062 struct tcp_md5sig_pool
*hp
;
1063 struct hash_desc
*desc
;
1065 hp
= tcp_get_md5sig_pool();
1067 goto clear_hash_noput
;
1068 desc
= &hp
->md5_desc
;
1070 if (crypto_hash_init(desc
))
1072 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, th
->doff
<< 2))
1074 if (tcp_md5_hash_header(hp
, th
))
1076 if (tcp_md5_hash_key(hp
, key
))
1078 if (crypto_hash_final(desc
, md5_hash
))
1081 tcp_put_md5sig_pool();
1085 tcp_put_md5sig_pool();
1087 memset(md5_hash
, 0, 16);
1091 int tcp_v4_md5_hash_skb(char *md5_hash
, struct tcp_md5sig_key
*key
,
1092 struct sock
*sk
, struct request_sock
*req
,
1093 struct sk_buff
*skb
)
1095 struct tcp_md5sig_pool
*hp
;
1096 struct hash_desc
*desc
;
1097 struct tcphdr
*th
= tcp_hdr(skb
);
1098 __be32 saddr
, daddr
;
1101 saddr
= inet_sk(sk
)->inet_saddr
;
1102 daddr
= inet_sk(sk
)->inet_daddr
;
1104 saddr
= inet_rsk(req
)->loc_addr
;
1105 daddr
= inet_rsk(req
)->rmt_addr
;
1107 const struct iphdr
*iph
= ip_hdr(skb
);
1112 hp
= tcp_get_md5sig_pool();
1114 goto clear_hash_noput
;
1115 desc
= &hp
->md5_desc
;
1117 if (crypto_hash_init(desc
))
1120 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, skb
->len
))
1122 if (tcp_md5_hash_header(hp
, th
))
1124 if (tcp_md5_hash_skb_data(hp
, skb
, th
->doff
<< 2))
1126 if (tcp_md5_hash_key(hp
, key
))
1128 if (crypto_hash_final(desc
, md5_hash
))
1131 tcp_put_md5sig_pool();
1135 tcp_put_md5sig_pool();
1137 memset(md5_hash
, 0, 16);
1141 EXPORT_SYMBOL(tcp_v4_md5_hash_skb
);
1143 static int tcp_v4_inbound_md5_hash(struct sock
*sk
, struct sk_buff
*skb
)
1146 * This gets called for each TCP segment that arrives
1147 * so we want to be efficient.
1148 * We have 3 drop cases:
1149 * o No MD5 hash and one expected.
1150 * o MD5 hash and we're not expecting one.
1151 * o MD5 hash and its wrong.
1153 __u8
*hash_location
= NULL
;
1154 struct tcp_md5sig_key
*hash_expected
;
1155 const struct iphdr
*iph
= ip_hdr(skb
);
1156 struct tcphdr
*th
= tcp_hdr(skb
);
1158 unsigned char newhash
[16];
1160 hash_expected
= tcp_v4_md5_do_lookup(sk
, iph
->saddr
);
1161 hash_location
= tcp_parse_md5sig_option(th
);
1163 /* We've parsed the options - do we have a hash? */
1164 if (!hash_expected
&& !hash_location
)
1167 if (hash_expected
&& !hash_location
) {
1168 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5NOTFOUND
);
1172 if (!hash_expected
&& hash_location
) {
1173 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5UNEXPECTED
);
1177 /* Okay, so this is hash_expected and hash_location -
1178 * so we need to calculate the checksum.
1180 genhash
= tcp_v4_md5_hash_skb(newhash
,
1184 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
1185 if (net_ratelimit()) {
1186 printk(KERN_INFO
"MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1187 &iph
->saddr
, ntohs(th
->source
),
1188 &iph
->daddr
, ntohs(th
->dest
),
1189 genhash
? " tcp_v4_calc_md5_hash failed" : "");
1198 struct request_sock_ops tcp_request_sock_ops __read_mostly
= {
1200 .obj_size
= sizeof(struct tcp_request_sock
),
1201 .rtx_syn_ack
= tcp_v4_rtx_synack
,
1202 .send_ack
= tcp_v4_reqsk_send_ack
,
1203 .destructor
= tcp_v4_reqsk_destructor
,
1204 .send_reset
= tcp_v4_send_reset
,
1205 .syn_ack_timeout
= tcp_syn_ack_timeout
,
1208 #ifdef CONFIG_TCP_MD5SIG
1209 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops
= {
1210 .md5_lookup
= tcp_v4_reqsk_md5_lookup
,
1211 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1215 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
1216 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
1217 .twsk_unique
= tcp_twsk_unique
,
1218 .twsk_destructor
= tcp_twsk_destructor
,
1221 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
1223 struct tcp_extend_values tmp_ext
;
1224 struct tcp_options_received tmp_opt
;
1226 struct request_sock
*req
;
1227 struct inet_request_sock
*ireq
;
1228 struct tcp_sock
*tp
= tcp_sk(sk
);
1229 struct dst_entry
*dst
= NULL
;
1230 __be32 saddr
= ip_hdr(skb
)->saddr
;
1231 __be32 daddr
= ip_hdr(skb
)->daddr
;
1232 __u32 isn
= TCP_SKB_CB(skb
)->when
;
1233 #ifdef CONFIG_SYN_COOKIES
1234 int want_cookie
= 0;
1236 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1239 /* Never answer to SYNs send to broadcast or multicast */
1240 if (skb_rtable(skb
)->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
))
1243 /* TW buckets are converted to open requests without
1244 * limitations, they conserve resources and peer is
1245 * evidently real one.
1247 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
1248 #ifdef CONFIG_SYN_COOKIES
1249 if (sysctl_tcp_syncookies
) {
1256 /* Accept backlog is full. If we have already queued enough
1257 * of warm entries in syn queue, drop request. It is better than
1258 * clogging syn queue with openreqs with exponentially increasing
1261 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
1264 req
= inet_reqsk_alloc(&tcp_request_sock_ops
);
1268 #ifdef CONFIG_TCP_MD5SIG
1269 tcp_rsk(req
)->af_specific
= &tcp_request_sock_ipv4_ops
;
1272 tcp_clear_options(&tmp_opt
);
1273 tmp_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
1274 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
1275 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0);
1277 if (tmp_opt
.cookie_plus
> 0 &&
1278 tmp_opt
.saw_tstamp
&&
1279 !tp
->rx_opt
.cookie_out_never
&&
1280 (sysctl_tcp_cookie_size
> 0 ||
1281 (tp
->cookie_values
!= NULL
&&
1282 tp
->cookie_values
->cookie_desired
> 0))) {
1284 u32
*mess
= &tmp_ext
.cookie_bakery
[COOKIE_DIGEST_WORDS
];
1285 int l
= tmp_opt
.cookie_plus
- TCPOLEN_COOKIE_BASE
;
1287 if (tcp_cookie_generator(&tmp_ext
.cookie_bakery
[0]) != 0)
1288 goto drop_and_release
;
1290 /* Secret recipe starts with IP addresses */
1294 /* plus variable length Initiator Cookie */
1297 *c
++ ^= *hash_location
++;
1299 #ifdef CONFIG_SYN_COOKIES
1300 want_cookie
= 0; /* not our kind of cookie */
1302 tmp_ext
.cookie_out_never
= 0; /* false */
1303 tmp_ext
.cookie_plus
= tmp_opt
.cookie_plus
;
1304 } else if (!tp
->rx_opt
.cookie_in_always
) {
1305 /* redundant indications, but ensure initialization. */
1306 tmp_ext
.cookie_out_never
= 1; /* true */
1307 tmp_ext
.cookie_plus
= 0;
1309 goto drop_and_release
;
1311 tmp_ext
.cookie_in_always
= tp
->rx_opt
.cookie_in_always
;
1313 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
1314 tcp_clear_options(&tmp_opt
);
1316 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
1317 tcp_openreq_init(req
, &tmp_opt
, skb
);
1319 ireq
= inet_rsk(req
);
1320 ireq
->loc_addr
= daddr
;
1321 ireq
->rmt_addr
= saddr
;
1322 ireq
->no_srccheck
= inet_sk(sk
)->transparent
;
1323 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
1325 if (security_inet_conn_request(sk
, skb
, req
))
1329 TCP_ECN_create_request(req
, tcp_hdr(skb
));
1332 #ifdef CONFIG_SYN_COOKIES
1333 syn_flood_warning(skb
);
1334 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
1336 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
1338 struct inet_peer
*peer
= NULL
;
1340 /* VJ's idea. We save last timestamp seen
1341 * from the destination in peer table, when entering
1342 * state TIME-WAIT, and check against it before
1343 * accepting new connection request.
1345 * If "isn" is not zero, this request hit alive
1346 * timewait bucket, so that all the necessary checks
1347 * are made in the function processing timewait state.
1349 if (tmp_opt
.saw_tstamp
&&
1350 tcp_death_row
.sysctl_tw_recycle
&&
1351 (dst
= inet_csk_route_req(sk
, req
)) != NULL
&&
1352 (peer
= rt_get_peer((struct rtable
*)dst
)) != NULL
&&
1353 peer
->v4daddr
== saddr
) {
1354 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
< TCP_PAWS_MSL
&&
1355 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
1357 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
1358 goto drop_and_release
;
1361 /* Kill the following clause, if you dislike this way. */
1362 else if (!sysctl_tcp_syncookies
&&
1363 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
1364 (sysctl_max_syn_backlog
>> 2)) &&
1365 (!peer
|| !peer
->tcp_ts_stamp
) &&
1366 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
1367 /* Without syncookies last quarter of
1368 * backlog is filled with destinations,
1369 * proven to be alive.
1370 * It means that we continue to communicate
1371 * to destinations, already remembered
1372 * to the moment of synflood.
1374 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open request from %pI4/%u\n",
1375 &saddr
, ntohs(tcp_hdr(skb
)->source
));
1376 goto drop_and_release
;
1379 isn
= tcp_v4_init_sequence(skb
);
1381 tcp_rsk(req
)->snt_isn
= isn
;
1383 if (tcp_v4_send_synack(sk
, dst
, req
,
1384 (struct request_values
*)&tmp_ext
) ||
1388 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
1401 * The three way handshake has completed - we got a valid synack -
1402 * now create the new socket.
1404 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
1405 struct request_sock
*req
,
1406 struct dst_entry
*dst
)
1408 struct inet_request_sock
*ireq
;
1409 struct inet_sock
*newinet
;
1410 struct tcp_sock
*newtp
;
1412 #ifdef CONFIG_TCP_MD5SIG
1413 struct tcp_md5sig_key
*key
;
1416 if (sk_acceptq_is_full(sk
))
1419 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
1422 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
1426 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
1427 sk_setup_caps(newsk
, dst
);
1429 newtp
= tcp_sk(newsk
);
1430 newinet
= inet_sk(newsk
);
1431 ireq
= inet_rsk(req
);
1432 newinet
->inet_daddr
= ireq
->rmt_addr
;
1433 newinet
->inet_rcv_saddr
= ireq
->loc_addr
;
1434 newinet
->inet_saddr
= ireq
->loc_addr
;
1435 newinet
->opt
= ireq
->opt
;
1437 newinet
->mc_index
= inet_iif(skb
);
1438 newinet
->mc_ttl
= ip_hdr(skb
)->ttl
;
1439 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
1441 inet_csk(newsk
)->icsk_ext_hdr_len
= newinet
->opt
->optlen
;
1442 newinet
->inet_id
= newtp
->write_seq
^ jiffies
;
1444 tcp_mtup_init(newsk
);
1445 tcp_sync_mss(newsk
, dst_mtu(dst
));
1446 newtp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
1447 if (tcp_sk(sk
)->rx_opt
.user_mss
&&
1448 tcp_sk(sk
)->rx_opt
.user_mss
< newtp
->advmss
)
1449 newtp
->advmss
= tcp_sk(sk
)->rx_opt
.user_mss
;
1451 tcp_initialize_rcv_mss(newsk
);
1453 #ifdef CONFIG_TCP_MD5SIG
1454 /* Copy over the MD5 key from the original socket */
1455 key
= tcp_v4_md5_do_lookup(sk
, newinet
->inet_daddr
);
1458 * We're using one, so create a matching key
1459 * on the newsk structure. If we fail to get
1460 * memory, then we end up not copying the key
1463 char *newkey
= kmemdup(key
->key
, key
->keylen
, GFP_ATOMIC
);
1465 tcp_v4_md5_do_add(newsk
, newinet
->inet_daddr
,
1466 newkey
, key
->keylen
);
1467 newsk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1471 __inet_hash_nolisten(newsk
, NULL
);
1472 __inet_inherit_port(sk
, newsk
);
1477 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
1479 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
1484 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
1486 struct tcphdr
*th
= tcp_hdr(skb
);
1487 const struct iphdr
*iph
= ip_hdr(skb
);
1489 struct request_sock
**prev
;
1490 /* Find possible connection requests. */
1491 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
1492 iph
->saddr
, iph
->daddr
);
1494 return tcp_check_req(sk
, skb
, req
, prev
);
1496 nsk
= inet_lookup_established(sock_net(sk
), &tcp_hashinfo
, iph
->saddr
,
1497 th
->source
, iph
->daddr
, th
->dest
, inet_iif(skb
));
1500 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
1504 inet_twsk_put(inet_twsk(nsk
));
1508 #ifdef CONFIG_SYN_COOKIES
1509 if (!th
->rst
&& !th
->syn
&& th
->ack
)
1510 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
1515 static __sum16
tcp_v4_checksum_init(struct sk_buff
*skb
)
1517 const struct iphdr
*iph
= ip_hdr(skb
);
1519 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1520 if (!tcp_v4_check(skb
->len
, iph
->saddr
,
1521 iph
->daddr
, skb
->csum
)) {
1522 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1527 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1528 skb
->len
, IPPROTO_TCP
, 0);
1530 if (skb
->len
<= 76) {
1531 return __skb_checksum_complete(skb
);
1537 /* The socket must have it's spinlock held when we get
1540 * We have a potential double-lock case here, so even when
1541 * doing backlog processing we use the BH locking scheme.
1542 * This is because we cannot sleep with the original spinlock
1545 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1548 #ifdef CONFIG_TCP_MD5SIG
1550 * We really want to reject the packet as early as possible
1552 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1553 * o There is an MD5 option and we're not expecting one
1555 if (tcp_v4_inbound_md5_hash(sk
, skb
))
1559 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1560 TCP_CHECK_TIMER(sk
);
1561 if (tcp_rcv_established(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1565 TCP_CHECK_TIMER(sk
);
1569 if (skb
->len
< tcp_hdrlen(skb
) || tcp_checksum_complete(skb
))
1572 if (sk
->sk_state
== TCP_LISTEN
) {
1573 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1578 if (tcp_child_process(sk
, nsk
, skb
)) {
1586 TCP_CHECK_TIMER(sk
);
1587 if (tcp_rcv_state_process(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1591 TCP_CHECK_TIMER(sk
);
1595 tcp_v4_send_reset(rsk
, skb
);
1598 /* Be careful here. If this function gets more complicated and
1599 * gcc suffers from register pressure on the x86, sk (in %ebx)
1600 * might be destroyed here. This current version compiles correctly,
1601 * but you have been warned.
1606 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
1614 int tcp_v4_rcv(struct sk_buff
*skb
)
1616 const struct iphdr
*iph
;
1620 struct net
*net
= dev_net(skb
->dev
);
1622 if (skb
->pkt_type
!= PACKET_HOST
)
1625 /* Count it even if it's bad */
1626 TCP_INC_STATS_BH(net
, TCP_MIB_INSEGS
);
1628 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1633 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1635 if (!pskb_may_pull(skb
, th
->doff
* 4))
1638 /* An explanation is required here, I think.
1639 * Packet length and doff are validated by header prediction,
1640 * provided case of th->doff==0 is eliminated.
1641 * So, we defer the checks. */
1642 if (!skb_csum_unnecessary(skb
) && tcp_v4_checksum_init(skb
))
1647 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1648 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1649 skb
->len
- th
->doff
* 4);
1650 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1651 TCP_SKB_CB(skb
)->when
= 0;
1652 TCP_SKB_CB(skb
)->flags
= iph
->tos
;
1653 TCP_SKB_CB(skb
)->sacked
= 0;
1655 sk
= __inet_lookup_skb(&tcp_hashinfo
, skb
, th
->source
, th
->dest
);
1660 if (sk
->sk_state
== TCP_TIME_WAIT
)
1663 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
1664 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
1665 goto discard_and_relse
;
1668 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1669 goto discard_and_relse
;
1672 if (sk_filter(sk
, skb
))
1673 goto discard_and_relse
;
1677 bh_lock_sock_nested(sk
);
1679 if (!sock_owned_by_user(sk
)) {
1680 #ifdef CONFIG_NET_DMA
1681 struct tcp_sock
*tp
= tcp_sk(sk
);
1682 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1683 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
1684 if (tp
->ucopy
.dma_chan
)
1685 ret
= tcp_v4_do_rcv(sk
, skb
);
1689 if (!tcp_prequeue(sk
, skb
))
1690 ret
= tcp_v4_do_rcv(sk
, skb
);
1692 } else if (unlikely(sk_add_backlog(sk
, skb
))) {
1694 NET_INC_STATS_BH(net
, LINUX_MIB_TCPBACKLOGDROP
);
1695 goto discard_and_relse
;
1704 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1707 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1709 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1711 tcp_v4_send_reset(NULL
, skb
);
1715 /* Discard frame. */
1724 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1725 inet_twsk_put(inet_twsk(sk
));
1729 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1730 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1731 inet_twsk_put(inet_twsk(sk
));
1734 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1736 struct sock
*sk2
= inet_lookup_listener(dev_net(skb
->dev
),
1738 iph
->daddr
, th
->dest
,
1741 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1742 inet_twsk_put(inet_twsk(sk
));
1746 /* Fall through to ACK */
1749 tcp_v4_timewait_ack(sk
, skb
);
1753 case TCP_TW_SUCCESS
:;
1758 /* VJ's idea. Save last timestamp seen from this destination
1759 * and hold it at least for normal timewait interval to use for duplicate
1760 * segment detection in subsequent connections, before they enter synchronized
1764 int tcp_v4_remember_stamp(struct sock
*sk
)
1766 struct inet_sock
*inet
= inet_sk(sk
);
1767 struct tcp_sock
*tp
= tcp_sk(sk
);
1768 struct rtable
*rt
= (struct rtable
*)__sk_dst_get(sk
);
1769 struct inet_peer
*peer
= NULL
;
1772 if (!rt
|| rt
->rt_dst
!= inet
->inet_daddr
) {
1773 peer
= inet_getpeer(inet
->inet_daddr
, 1);
1777 rt_bind_peer(rt
, 1);
1782 if ((s32
)(peer
->tcp_ts
- tp
->rx_opt
.ts_recent
) <= 0 ||
1783 ((u32
)get_seconds() - peer
->tcp_ts_stamp
> TCP_PAWS_MSL
&&
1784 peer
->tcp_ts_stamp
<= (u32
)tp
->rx_opt
.ts_recent_stamp
)) {
1785 peer
->tcp_ts_stamp
= (u32
)tp
->rx_opt
.ts_recent_stamp
;
1786 peer
->tcp_ts
= tp
->rx_opt
.ts_recent
;
1796 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock
*tw
)
1798 struct inet_peer
*peer
= inet_getpeer(tw
->tw_daddr
, 1);
1801 const struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
1803 if ((s32
)(peer
->tcp_ts
- tcptw
->tw_ts_recent
) <= 0 ||
1804 ((u32
)get_seconds() - peer
->tcp_ts_stamp
> TCP_PAWS_MSL
&&
1805 peer
->tcp_ts_stamp
<= (u32
)tcptw
->tw_ts_recent_stamp
)) {
1806 peer
->tcp_ts_stamp
= (u32
)tcptw
->tw_ts_recent_stamp
;
1807 peer
->tcp_ts
= tcptw
->tw_ts_recent
;
1816 const struct inet_connection_sock_af_ops ipv4_specific
= {
1817 .queue_xmit
= ip_queue_xmit
,
1818 .send_check
= tcp_v4_send_check
,
1819 .rebuild_header
= inet_sk_rebuild_header
,
1820 .conn_request
= tcp_v4_conn_request
,
1821 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1822 .remember_stamp
= tcp_v4_remember_stamp
,
1823 .net_header_len
= sizeof(struct iphdr
),
1824 .setsockopt
= ip_setsockopt
,
1825 .getsockopt
= ip_getsockopt
,
1826 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1827 .sockaddr_len
= sizeof(struct sockaddr_in
),
1828 .bind_conflict
= inet_csk_bind_conflict
,
1829 #ifdef CONFIG_COMPAT
1830 .compat_setsockopt
= compat_ip_setsockopt
,
1831 .compat_getsockopt
= compat_ip_getsockopt
,
1835 #ifdef CONFIG_TCP_MD5SIG
1836 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific
= {
1837 .md5_lookup
= tcp_v4_md5_lookup
,
1838 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1839 .md5_add
= tcp_v4_md5_add_func
,
1840 .md5_parse
= tcp_v4_parse_md5_keys
,
1844 /* NOTE: A lot of things set to zero explicitly by call to
1845 * sk_alloc() so need not be done here.
1847 static int tcp_v4_init_sock(struct sock
*sk
)
1849 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1850 struct tcp_sock
*tp
= tcp_sk(sk
);
1852 skb_queue_head_init(&tp
->out_of_order_queue
);
1853 tcp_init_xmit_timers(sk
);
1854 tcp_prequeue_init(tp
);
1856 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1857 tp
->mdev
= TCP_TIMEOUT_INIT
;
1859 /* So many TCP implementations out there (incorrectly) count the
1860 * initial SYN frame in their delayed-ACK and congestion control
1861 * algorithms that we must have the following bandaid to talk
1862 * efficiently to them. -DaveM
1866 /* See draft-stevens-tcpca-spec-01 for discussion of the
1867 * initialization of these values.
1869 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
1870 tp
->snd_cwnd_clamp
= ~0;
1871 tp
->mss_cache
= TCP_MSS_DEFAULT
;
1873 tp
->reordering
= sysctl_tcp_reordering
;
1874 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1876 sk
->sk_state
= TCP_CLOSE
;
1878 sk
->sk_write_space
= sk_stream_write_space
;
1879 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1881 icsk
->icsk_af_ops
= &ipv4_specific
;
1882 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1883 #ifdef CONFIG_TCP_MD5SIG
1884 tp
->af_specific
= &tcp_sock_ipv4_specific
;
1887 /* TCP Cookie Transactions */
1888 if (sysctl_tcp_cookie_size
> 0) {
1889 /* Default, cookies without s_data_payload. */
1891 kzalloc(sizeof(*tp
->cookie_values
),
1893 if (tp
->cookie_values
!= NULL
)
1894 kref_init(&tp
->cookie_values
->kref
);
1896 /* Presumed zeroed, in order of appearance:
1897 * cookie_in_always, cookie_out_never,
1898 * s_data_constant, s_data_in, s_data_out
1900 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1901 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1904 percpu_counter_inc(&tcp_sockets_allocated
);
1910 void tcp_v4_destroy_sock(struct sock
*sk
)
1912 struct tcp_sock
*tp
= tcp_sk(sk
);
1914 tcp_clear_xmit_timers(sk
);
1916 tcp_cleanup_congestion_control(sk
);
1918 /* Cleanup up the write buffer. */
1919 tcp_write_queue_purge(sk
);
1921 /* Cleans up our, hopefully empty, out_of_order_queue. */
1922 __skb_queue_purge(&tp
->out_of_order_queue
);
1924 #ifdef CONFIG_TCP_MD5SIG
1925 /* Clean up the MD5 key list, if any */
1926 if (tp
->md5sig_info
) {
1927 tcp_v4_clear_md5_list(sk
);
1928 kfree(tp
->md5sig_info
);
1929 tp
->md5sig_info
= NULL
;
1933 #ifdef CONFIG_NET_DMA
1934 /* Cleans up our sk_async_wait_queue */
1935 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1938 /* Clean prequeue, it must be empty really */
1939 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1941 /* Clean up a referenced TCP bind bucket. */
1942 if (inet_csk(sk
)->icsk_bind_hash
)
1946 * If sendmsg cached page exists, toss it.
1948 if (sk
->sk_sndmsg_page
) {
1949 __free_page(sk
->sk_sndmsg_page
);
1950 sk
->sk_sndmsg_page
= NULL
;
1953 /* TCP Cookie Transactions */
1954 if (tp
->cookie_values
!= NULL
) {
1955 kref_put(&tp
->cookie_values
->kref
,
1956 tcp_cookie_values_release
);
1957 tp
->cookie_values
= NULL
;
1960 percpu_counter_dec(&tcp_sockets_allocated
);
1963 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1965 #ifdef CONFIG_PROC_FS
1966 /* Proc filesystem TCP sock list dumping. */
1968 static inline struct inet_timewait_sock
*tw_head(struct hlist_nulls_head
*head
)
1970 return hlist_nulls_empty(head
) ? NULL
:
1971 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1974 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1976 return !is_a_nulls(tw
->tw_node
.next
) ?
1977 hlist_nulls_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1980 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1982 struct inet_connection_sock
*icsk
;
1983 struct hlist_nulls_node
*node
;
1984 struct sock
*sk
= cur
;
1985 struct inet_listen_hashbucket
*ilb
;
1986 struct tcp_iter_state
*st
= seq
->private;
1987 struct net
*net
= seq_file_net(seq
);
1991 ilb
= &tcp_hashinfo
.listening_hash
[0];
1992 spin_lock_bh(&ilb
->lock
);
1993 sk
= sk_nulls_head(&ilb
->head
);
1996 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
1999 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
2000 struct request_sock
*req
= cur
;
2002 icsk
= inet_csk(st
->syn_wait_sk
);
2006 if (req
->rsk_ops
->family
== st
->family
) {
2012 if (++st
->sbucket
>= icsk
->icsk_accept_queue
.listen_opt
->nr_table_entries
)
2015 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
2017 sk
= sk_next(st
->syn_wait_sk
);
2018 st
->state
= TCP_SEQ_STATE_LISTENING
;
2019 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2021 icsk
= inet_csk(sk
);
2022 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2023 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
2025 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2029 sk_nulls_for_each_from(sk
, node
) {
2030 if (sk
->sk_family
== st
->family
&& net_eq(sock_net(sk
), net
)) {
2034 icsk
= inet_csk(sk
);
2035 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2036 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
2038 st
->uid
= sock_i_uid(sk
);
2039 st
->syn_wait_sk
= sk
;
2040 st
->state
= TCP_SEQ_STATE_OPENREQ
;
2044 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2046 spin_unlock_bh(&ilb
->lock
);
2047 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
2048 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2049 spin_lock_bh(&ilb
->lock
);
2050 sk
= sk_nulls_head(&ilb
->head
);
2058 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2060 void *rc
= listening_get_next(seq
, NULL
);
2062 while (rc
&& *pos
) {
2063 rc
= listening_get_next(seq
, rc
);
2069 static inline int empty_bucket(struct tcp_iter_state
*st
)
2071 return hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].chain
) &&
2072 hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2075 static void *established_get_first(struct seq_file
*seq
)
2077 struct tcp_iter_state
*st
= seq
->private;
2078 struct net
*net
= seq_file_net(seq
);
2081 for (st
->bucket
= 0; st
->bucket
<= tcp_hashinfo
.ehash_mask
; ++st
->bucket
) {
2083 struct hlist_nulls_node
*node
;
2084 struct inet_timewait_sock
*tw
;
2085 spinlock_t
*lock
= inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
);
2087 /* Lockless fast path for the common case of empty buckets */
2088 if (empty_bucket(st
))
2092 sk_nulls_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
2093 if (sk
->sk_family
!= st
->family
||
2094 !net_eq(sock_net(sk
), net
)) {
2100 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2101 inet_twsk_for_each(tw
, node
,
2102 &tcp_hashinfo
.ehash
[st
->bucket
].twchain
) {
2103 if (tw
->tw_family
!= st
->family
||
2104 !net_eq(twsk_net(tw
), net
)) {
2110 spin_unlock_bh(lock
);
2111 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2117 static void *established_get_next(struct seq_file
*seq
, void *cur
)
2119 struct sock
*sk
= cur
;
2120 struct inet_timewait_sock
*tw
;
2121 struct hlist_nulls_node
*node
;
2122 struct tcp_iter_state
*st
= seq
->private;
2123 struct net
*net
= seq_file_net(seq
);
2127 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
2131 while (tw
&& (tw
->tw_family
!= st
->family
|| !net_eq(twsk_net(tw
), net
))) {
2138 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2139 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2141 /* Look for next non empty bucket */
2142 while (++st
->bucket
<= tcp_hashinfo
.ehash_mask
&&
2145 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2148 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2149 sk
= sk_nulls_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
2151 sk
= sk_nulls_next(sk
);
2153 sk_nulls_for_each_from(sk
, node
) {
2154 if (sk
->sk_family
== st
->family
&& net_eq(sock_net(sk
), net
))
2158 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2159 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2167 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
2169 void *rc
= established_get_first(seq
);
2172 rc
= established_get_next(seq
, rc
);
2178 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
2181 struct tcp_iter_state
*st
= seq
->private;
2183 st
->state
= TCP_SEQ_STATE_LISTENING
;
2184 rc
= listening_get_idx(seq
, &pos
);
2187 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2188 rc
= established_get_idx(seq
, pos
);
2194 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2196 struct tcp_iter_state
*st
= seq
->private;
2197 st
->state
= TCP_SEQ_STATE_LISTENING
;
2199 return *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
2202 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2205 struct tcp_iter_state
*st
;
2207 if (v
== SEQ_START_TOKEN
) {
2208 rc
= tcp_get_idx(seq
, 0);
2213 switch (st
->state
) {
2214 case TCP_SEQ_STATE_OPENREQ
:
2215 case TCP_SEQ_STATE_LISTENING
:
2216 rc
= listening_get_next(seq
, v
);
2218 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2219 rc
= established_get_first(seq
);
2222 case TCP_SEQ_STATE_ESTABLISHED
:
2223 case TCP_SEQ_STATE_TIME_WAIT
:
2224 rc
= established_get_next(seq
, v
);
2232 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
2234 struct tcp_iter_state
*st
= seq
->private;
2236 switch (st
->state
) {
2237 case TCP_SEQ_STATE_OPENREQ
:
2239 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
2240 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2242 case TCP_SEQ_STATE_LISTENING
:
2243 if (v
!= SEQ_START_TOKEN
)
2244 spin_unlock_bh(&tcp_hashinfo
.listening_hash
[st
->bucket
].lock
);
2246 case TCP_SEQ_STATE_TIME_WAIT
:
2247 case TCP_SEQ_STATE_ESTABLISHED
:
2249 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2254 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
2256 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2257 struct tcp_iter_state
*s
;
2260 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2261 sizeof(struct tcp_iter_state
));
2265 s
= ((struct seq_file
*)file
->private_data
)->private;
2266 s
->family
= afinfo
->family
;
2270 int tcp_proc_register(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2273 struct proc_dir_entry
*p
;
2275 afinfo
->seq_fops
.open
= tcp_seq_open
;
2276 afinfo
->seq_fops
.read
= seq_read
;
2277 afinfo
->seq_fops
.llseek
= seq_lseek
;
2278 afinfo
->seq_fops
.release
= seq_release_net
;
2280 afinfo
->seq_ops
.start
= tcp_seq_start
;
2281 afinfo
->seq_ops
.next
= tcp_seq_next
;
2282 afinfo
->seq_ops
.stop
= tcp_seq_stop
;
2284 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2285 &afinfo
->seq_fops
, afinfo
);
2291 void tcp_proc_unregister(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2293 proc_net_remove(net
, afinfo
->name
);
2296 static void get_openreq4(struct sock
*sk
, struct request_sock
*req
,
2297 struct seq_file
*f
, int i
, int uid
, int *len
)
2299 const struct inet_request_sock
*ireq
= inet_rsk(req
);
2300 int ttd
= req
->expires
- jiffies
;
2302 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2303 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2306 ntohs(inet_sk(sk
)->inet_sport
),
2308 ntohs(ireq
->rmt_port
),
2310 0, 0, /* could print option size, but that is af dependent. */
2311 1, /* timers active (only the expire timer) */
2312 jiffies_to_clock_t(ttd
),
2315 0, /* non standard timer */
2316 0, /* open_requests have no inode */
2317 atomic_read(&sk
->sk_refcnt
),
2322 static void get_tcp4_sock(struct sock
*sk
, struct seq_file
*f
, int i
, int *len
)
2325 unsigned long timer_expires
;
2326 struct tcp_sock
*tp
= tcp_sk(sk
);
2327 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2328 struct inet_sock
*inet
= inet_sk(sk
);
2329 __be32 dest
= inet
->inet_daddr
;
2330 __be32 src
= inet
->inet_rcv_saddr
;
2331 __u16 destp
= ntohs(inet
->inet_dport
);
2332 __u16 srcp
= ntohs(inet
->inet_sport
);
2335 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
2337 timer_expires
= icsk
->icsk_timeout
;
2338 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
2340 timer_expires
= icsk
->icsk_timeout
;
2341 } else if (timer_pending(&sk
->sk_timer
)) {
2343 timer_expires
= sk
->sk_timer
.expires
;
2346 timer_expires
= jiffies
;
2349 if (sk
->sk_state
== TCP_LISTEN
)
2350 rx_queue
= sk
->sk_ack_backlog
;
2353 * because we dont lock socket, we might find a transient negative value
2355 rx_queue
= max_t(int, tp
->rcv_nxt
- tp
->copied_seq
, 0);
2357 seq_printf(f
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2358 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2359 i
, src
, srcp
, dest
, destp
, sk
->sk_state
,
2360 tp
->write_seq
- tp
->snd_una
,
2363 jiffies_to_clock_t(timer_expires
- jiffies
),
2364 icsk
->icsk_retransmits
,
2366 icsk
->icsk_probes_out
,
2368 atomic_read(&sk
->sk_refcnt
), sk
,
2369 jiffies_to_clock_t(icsk
->icsk_rto
),
2370 jiffies_to_clock_t(icsk
->icsk_ack
.ato
),
2371 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
2373 tcp_in_initial_slowstart(tp
) ? -1 : tp
->snd_ssthresh
,
2377 static void get_timewait4_sock(struct inet_timewait_sock
*tw
,
2378 struct seq_file
*f
, int i
, int *len
)
2382 int ttd
= tw
->tw_ttd
- jiffies
;
2387 dest
= tw
->tw_daddr
;
2388 src
= tw
->tw_rcv_saddr
;
2389 destp
= ntohs(tw
->tw_dport
);
2390 srcp
= ntohs(tw
->tw_sport
);
2392 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2393 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2394 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
2395 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
2396 atomic_read(&tw
->tw_refcnt
), tw
, len
);
2401 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
2403 struct tcp_iter_state
*st
;
2406 if (v
== SEQ_START_TOKEN
) {
2407 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
2408 " sl local_address rem_address st tx_queue "
2409 "rx_queue tr tm->when retrnsmt uid timeout "
2415 switch (st
->state
) {
2416 case TCP_SEQ_STATE_LISTENING
:
2417 case TCP_SEQ_STATE_ESTABLISHED
:
2418 get_tcp4_sock(v
, seq
, st
->num
, &len
);
2420 case TCP_SEQ_STATE_OPENREQ
:
2421 get_openreq4(st
->syn_wait_sk
, v
, seq
, st
->num
, st
->uid
, &len
);
2423 case TCP_SEQ_STATE_TIME_WAIT
:
2424 get_timewait4_sock(v
, seq
, st
->num
, &len
);
2427 seq_printf(seq
, "%*s\n", TMPSZ
- 1 - len
, "");
2432 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
2436 .owner
= THIS_MODULE
,
2439 .show
= tcp4_seq_show
,
2443 static int __net_init
tcp4_proc_init_net(struct net
*net
)
2445 return tcp_proc_register(net
, &tcp4_seq_afinfo
);
2448 static void __net_exit
tcp4_proc_exit_net(struct net
*net
)
2450 tcp_proc_unregister(net
, &tcp4_seq_afinfo
);
2453 static struct pernet_operations tcp4_net_ops
= {
2454 .init
= tcp4_proc_init_net
,
2455 .exit
= tcp4_proc_exit_net
,
2458 int __init
tcp4_proc_init(void)
2460 return register_pernet_subsys(&tcp4_net_ops
);
2463 void tcp4_proc_exit(void)
2465 unregister_pernet_subsys(&tcp4_net_ops
);
2467 #endif /* CONFIG_PROC_FS */
2469 struct sk_buff
**tcp4_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2471 struct iphdr
*iph
= skb_gro_network_header(skb
);
2473 switch (skb
->ip_summed
) {
2474 case CHECKSUM_COMPLETE
:
2475 if (!tcp_v4_check(skb_gro_len(skb
), iph
->saddr
, iph
->daddr
,
2477 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2483 NAPI_GRO_CB(skb
)->flush
= 1;
2487 return tcp_gro_receive(head
, skb
);
2489 EXPORT_SYMBOL(tcp4_gro_receive
);
2491 int tcp4_gro_complete(struct sk_buff
*skb
)
2493 struct iphdr
*iph
= ip_hdr(skb
);
2494 struct tcphdr
*th
= tcp_hdr(skb
);
2496 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
2497 iph
->saddr
, iph
->daddr
, 0);
2498 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
2500 return tcp_gro_complete(skb
);
2502 EXPORT_SYMBOL(tcp4_gro_complete
);
2504 struct proto tcp_prot
= {
2506 .owner
= THIS_MODULE
,
2508 .connect
= tcp_v4_connect
,
2509 .disconnect
= tcp_disconnect
,
2510 .accept
= inet_csk_accept
,
2512 .init
= tcp_v4_init_sock
,
2513 .destroy
= tcp_v4_destroy_sock
,
2514 .shutdown
= tcp_shutdown
,
2515 .setsockopt
= tcp_setsockopt
,
2516 .getsockopt
= tcp_getsockopt
,
2517 .recvmsg
= tcp_recvmsg
,
2518 .backlog_rcv
= tcp_v4_do_rcv
,
2520 .unhash
= inet_unhash
,
2521 .get_port
= inet_csk_get_port
,
2522 .enter_memory_pressure
= tcp_enter_memory_pressure
,
2523 .sockets_allocated
= &tcp_sockets_allocated
,
2524 .orphan_count
= &tcp_orphan_count
,
2525 .memory_allocated
= &tcp_memory_allocated
,
2526 .memory_pressure
= &tcp_memory_pressure
,
2527 .sysctl_mem
= sysctl_tcp_mem
,
2528 .sysctl_wmem
= sysctl_tcp_wmem
,
2529 .sysctl_rmem
= sysctl_tcp_rmem
,
2530 .max_header
= MAX_TCP_HEADER
,
2531 .obj_size
= sizeof(struct tcp_sock
),
2532 .slab_flags
= SLAB_DESTROY_BY_RCU
,
2533 .twsk_prot
= &tcp_timewait_sock_ops
,
2534 .rsk_prot
= &tcp_request_sock_ops
,
2535 .h
.hashinfo
= &tcp_hashinfo
,
2536 #ifdef CONFIG_COMPAT
2537 .compat_setsockopt
= compat_tcp_setsockopt
,
2538 .compat_getsockopt
= compat_tcp_getsockopt
,
2543 static int __net_init
tcp_sk_init(struct net
*net
)
2545 return inet_ctl_sock_create(&net
->ipv4
.tcp_sock
,
2546 PF_INET
, SOCK_RAW
, IPPROTO_TCP
, net
);
2549 static void __net_exit
tcp_sk_exit(struct net
*net
)
2551 inet_ctl_sock_destroy(net
->ipv4
.tcp_sock
);
2554 static void __net_exit
tcp_sk_exit_batch(struct list_head
*net_exit_list
)
2556 inet_twsk_purge(&tcp_hashinfo
, &tcp_death_row
, AF_INET
);
2559 static struct pernet_operations __net_initdata tcp_sk_ops
= {
2560 .init
= tcp_sk_init
,
2561 .exit
= tcp_sk_exit
,
2562 .exit_batch
= tcp_sk_exit_batch
,
2565 void __init
tcp_v4_init(void)
2567 inet_hashinfo_init(&tcp_hashinfo
);
2568 if (register_pernet_subsys(&tcp_sk_ops
))
2569 panic("Failed to create the TCP control socket.\n");
2572 EXPORT_SYMBOL(ipv4_specific
);
2573 EXPORT_SYMBOL(tcp_hashinfo
);
2574 EXPORT_SYMBOL(tcp_prot
);
2575 EXPORT_SYMBOL(tcp_v4_conn_request
);
2576 EXPORT_SYMBOL(tcp_v4_connect
);
2577 EXPORT_SYMBOL(tcp_v4_do_rcv
);
2578 EXPORT_SYMBOL(tcp_v4_remember_stamp
);
2579 EXPORT_SYMBOL(tcp_v4_send_check
);
2580 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
2582 #ifdef CONFIG_PROC_FS
2583 EXPORT_SYMBOL(tcp_proc_register
);
2584 EXPORT_SYMBOL(tcp_proc_unregister
);
2586 EXPORT_SYMBOL(sysctl_tcp_low_latency
);