Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_input.c
blobc096a4218b8f5e44a4e495152bb385bd8e80cc38
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_thin_dupack __read_mostly;
94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95 int sysctl_tcp_abc __read_mostly;
97 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
98 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
99 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
100 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
101 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
102 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
103 #define FLAG_ECE 0x40 /* ECE in this ACK */
104 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
105 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
106 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
107 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
108 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
109 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
110 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
112 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
113 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
114 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
115 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
116 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121 /* Adapt the MSS value used to make delayed ack decision to the
122 * real world.
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
130 icsk->icsk_ack.last_seg_size = 0;
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
135 len = skb_shinfo(skb)->gso_size ? : skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
142 * "len" is invariant segment length, including TCP header.
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 static void tcp_incr_quickack(struct sock *sk)
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175 if (quickacks == 0)
176 quickacks = 2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 void tcp_enter_quickack_mode(struct sock *sk)
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 if (tp->ecn_flags & TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 if (tp->ecn_flags & TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244 return 1;
245 return 0;
248 /* Buffer size and advertised window tuning.
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
253 static void tcp_fixup_sndbuf(struct sock *sk)
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize) >> 1;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299 truesize >>= 1;
300 window >>= 1;
302 return 0;
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
307 struct tcp_sock *tp = tcp_sk(sk);
309 /* Check #1 */
310 if (tp->rcv_ssthresh < tp->window_clamp &&
311 (int)tp->rcv_ssthresh < tcp_space(sk) &&
312 !tcp_memory_pressure) {
313 int incr;
315 /* Check #2. Increase window, if skb with such overhead
316 * will fit to rcvbuf in future.
318 if (tcp_win_from_space(skb->truesize) <= skb->len)
319 incr = 2 * tp->advmss;
320 else
321 incr = __tcp_grow_window(sk, skb);
323 if (incr) {
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325 tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
331 /* 3. Tuning rcvbuf, when connection enters established state. */
333 static void tcp_fixup_rcvbuf(struct sock *sk)
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
351 static void tcp_init_buffer_space(struct sock *sk)
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
361 tp->rcvq_space.space = tp->rcv_wnd;
363 maxwin = tcp_full_space(sk);
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
390 icsk->icsk_ack.quick = 0;
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
403 /* Initialize RCV_MSS value.
404 * RCV_MSS is an our guess about MSS used by the peer.
405 * We haven't any direct information about the MSS.
406 * It's better to underestimate the RCV_MSS rather than overestimate.
407 * Overestimations make us ACKing less frequently than needed.
408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 void tcp_initialize_rcv_mss(struct sock *sk)
412 struct tcp_sock *tp = tcp_sk(sk);
413 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415 hint = min(hint, tp->rcv_wnd / 2);
416 hint = min(hint, TCP_MSS_DEFAULT);
417 hint = max(hint, TCP_MIN_MSS);
419 inet_csk(sk)->icsk_ack.rcv_mss = hint;
422 /* Receiver "autotuning" code.
424 * The algorithm for RTT estimation w/o timestamps is based on
425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 * More detail on this code can be found at
429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430 * though this reference is out of date. A new paper
431 * is pending.
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 u32 new_sample = tp->rcv_rtt_est.rtt;
436 long m = sample;
438 if (m == 0)
439 m = 1;
441 if (new_sample != 0) {
442 /* If we sample in larger samples in the non-timestamp
443 * case, we could grossly overestimate the RTT especially
444 * with chatty applications or bulk transfer apps which
445 * are stalled on filesystem I/O.
447 * Also, since we are only going for a minimum in the
448 * non-timestamp case, we do not smooth things out
449 * else with timestamps disabled convergence takes too
450 * long.
452 if (!win_dep) {
453 m -= (new_sample >> 3);
454 new_sample += m;
455 } else if (m < new_sample)
456 new_sample = m << 3;
457 } else {
458 /* No previous measure. */
459 new_sample = m << 3;
462 if (tp->rcv_rtt_est.rtt != new_sample)
463 tp->rcv_rtt_est.rtt = new_sample;
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 if (tp->rcv_rtt_est.time == 0)
469 goto new_measure;
470 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471 return;
472 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
474 new_measure:
475 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476 tp->rcv_rtt_est.time = tcp_time_stamp;
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480 const struct sk_buff *skb)
482 struct tcp_sock *tp = tcp_sk(sk);
483 if (tp->rx_opt.rcv_tsecr &&
484 (TCP_SKB_CB(skb)->end_seq -
485 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
490 * This function should be called every time data is copied to user space.
491 * It calculates the appropriate TCP receive buffer space.
493 void tcp_rcv_space_adjust(struct sock *sk)
495 struct tcp_sock *tp = tcp_sk(sk);
496 int time;
497 int space;
499 if (tp->rcvq_space.time == 0)
500 goto new_measure;
502 time = tcp_time_stamp - tp->rcvq_space.time;
503 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504 return;
506 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
508 space = max(tp->rcvq_space.space, space);
510 if (tp->rcvq_space.space != space) {
511 int rcvmem;
513 tp->rcvq_space.space = space;
515 if (sysctl_tcp_moderate_rcvbuf &&
516 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517 int new_clamp = space;
519 /* Receive space grows, normalize in order to
520 * take into account packet headers and sk_buff
521 * structure overhead.
523 space /= tp->advmss;
524 if (!space)
525 space = 1;
526 rcvmem = (tp->advmss + MAX_TCP_HEADER +
527 16 + sizeof(struct sk_buff));
528 while (tcp_win_from_space(rcvmem) < tp->advmss)
529 rcvmem += 128;
530 space *= rcvmem;
531 space = min(space, sysctl_tcp_rmem[2]);
532 if (space > sk->sk_rcvbuf) {
533 sk->sk_rcvbuf = space;
535 /* Make the window clamp follow along. */
536 tp->window_clamp = new_clamp;
541 new_measure:
542 tp->rcvq_space.seq = tp->copied_seq;
543 tp->rcvq_space.time = tcp_time_stamp;
546 /* There is something which you must keep in mind when you analyze the
547 * behavior of the tp->ato delayed ack timeout interval. When a
548 * connection starts up, we want to ack as quickly as possible. The
549 * problem is that "good" TCP's do slow start at the beginning of data
550 * transmission. The means that until we send the first few ACK's the
551 * sender will sit on his end and only queue most of his data, because
552 * he can only send snd_cwnd unacked packets at any given time. For
553 * each ACK we send, he increments snd_cwnd and transmits more of his
554 * queue. -DaveM
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
558 struct tcp_sock *tp = tcp_sk(sk);
559 struct inet_connection_sock *icsk = inet_csk(sk);
560 u32 now;
562 inet_csk_schedule_ack(sk);
564 tcp_measure_rcv_mss(sk, skb);
566 tcp_rcv_rtt_measure(tp);
568 now = tcp_time_stamp;
570 if (!icsk->icsk_ack.ato) {
571 /* The _first_ data packet received, initialize
572 * delayed ACK engine.
574 tcp_incr_quickack(sk);
575 icsk->icsk_ack.ato = TCP_ATO_MIN;
576 } else {
577 int m = now - icsk->icsk_ack.lrcvtime;
579 if (m <= TCP_ATO_MIN / 2) {
580 /* The fastest case is the first. */
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582 } else if (m < icsk->icsk_ack.ato) {
583 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584 if (icsk->icsk_ack.ato > icsk->icsk_rto)
585 icsk->icsk_ack.ato = icsk->icsk_rto;
586 } else if (m > icsk->icsk_rto) {
587 /* Too long gap. Apparently sender failed to
588 * restart window, so that we send ACKs quickly.
590 tcp_incr_quickack(sk);
591 sk_mem_reclaim(sk);
594 icsk->icsk_ack.lrcvtime = now;
596 TCP_ECN_check_ce(tp, skb);
598 if (skb->len >= 128)
599 tcp_grow_window(sk, skb);
602 /* Called to compute a smoothed rtt estimate. The data fed to this
603 * routine either comes from timestamps, or from segments that were
604 * known _not_ to have been retransmitted [see Karn/Partridge
605 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
606 * piece by Van Jacobson.
607 * NOTE: the next three routines used to be one big routine.
608 * To save cycles in the RFC 1323 implementation it was better to break
609 * it up into three procedures. -- erics
611 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
613 struct tcp_sock *tp = tcp_sk(sk);
614 long m = mrtt; /* RTT */
616 /* The following amusing code comes from Jacobson's
617 * article in SIGCOMM '88. Note that rtt and mdev
618 * are scaled versions of rtt and mean deviation.
619 * This is designed to be as fast as possible
620 * m stands for "measurement".
622 * On a 1990 paper the rto value is changed to:
623 * RTO = rtt + 4 * mdev
625 * Funny. This algorithm seems to be very broken.
626 * These formulae increase RTO, when it should be decreased, increase
627 * too slowly, when it should be increased quickly, decrease too quickly
628 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629 * does not matter how to _calculate_ it. Seems, it was trap
630 * that VJ failed to avoid. 8)
632 if (m == 0)
633 m = 1;
634 if (tp->srtt != 0) {
635 m -= (tp->srtt >> 3); /* m is now error in rtt est */
636 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
637 if (m < 0) {
638 m = -m; /* m is now abs(error) */
639 m -= (tp->mdev >> 2); /* similar update on mdev */
640 /* This is similar to one of Eifel findings.
641 * Eifel blocks mdev updates when rtt decreases.
642 * This solution is a bit different: we use finer gain
643 * for mdev in this case (alpha*beta).
644 * Like Eifel it also prevents growth of rto,
645 * but also it limits too fast rto decreases,
646 * happening in pure Eifel.
648 if (m > 0)
649 m >>= 3;
650 } else {
651 m -= (tp->mdev >> 2); /* similar update on mdev */
653 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
654 if (tp->mdev > tp->mdev_max) {
655 tp->mdev_max = tp->mdev;
656 if (tp->mdev_max > tp->rttvar)
657 tp->rttvar = tp->mdev_max;
659 if (after(tp->snd_una, tp->rtt_seq)) {
660 if (tp->mdev_max < tp->rttvar)
661 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
662 tp->rtt_seq = tp->snd_nxt;
663 tp->mdev_max = tcp_rto_min(sk);
665 } else {
666 /* no previous measure. */
667 tp->srtt = m << 3; /* take the measured time to be rtt */
668 tp->mdev = m << 1; /* make sure rto = 3*rtt */
669 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
670 tp->rtt_seq = tp->snd_nxt;
674 /* Calculate rto without backoff. This is the second half of Van Jacobson's
675 * routine referred to above.
677 static inline void tcp_set_rto(struct sock *sk)
679 const struct tcp_sock *tp = tcp_sk(sk);
680 /* Old crap is replaced with new one. 8)
682 * More seriously:
683 * 1. If rtt variance happened to be less 50msec, it is hallucination.
684 * It cannot be less due to utterly erratic ACK generation made
685 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
686 * to do with delayed acks, because at cwnd>2 true delack timeout
687 * is invisible. Actually, Linux-2.4 also generates erratic
688 * ACKs in some circumstances.
690 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
692 /* 2. Fixups made earlier cannot be right.
693 * If we do not estimate RTO correctly without them,
694 * all the algo is pure shit and should be replaced
695 * with correct one. It is exactly, which we pretend to do.
698 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
699 * guarantees that rto is higher.
701 tcp_bound_rto(sk);
704 /* Save metrics learned by this TCP session.
705 This function is called only, when TCP finishes successfully
706 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
708 void tcp_update_metrics(struct sock *sk)
710 struct tcp_sock *tp = tcp_sk(sk);
711 struct dst_entry *dst = __sk_dst_get(sk);
713 if (sysctl_tcp_nometrics_save)
714 return;
716 dst_confirm(dst);
718 if (dst && (dst->flags & DST_HOST)) {
719 const struct inet_connection_sock *icsk = inet_csk(sk);
720 int m;
721 unsigned long rtt;
723 if (icsk->icsk_backoff || !tp->srtt) {
724 /* This session failed to estimate rtt. Why?
725 * Probably, no packets returned in time.
726 * Reset our results.
728 if (!(dst_metric_locked(dst, RTAX_RTT)))
729 dst->metrics[RTAX_RTT - 1] = 0;
730 return;
733 rtt = dst_metric_rtt(dst, RTAX_RTT);
734 m = rtt - tp->srtt;
736 /* If newly calculated rtt larger than stored one,
737 * store new one. Otherwise, use EWMA. Remember,
738 * rtt overestimation is always better than underestimation.
740 if (!(dst_metric_locked(dst, RTAX_RTT))) {
741 if (m <= 0)
742 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
743 else
744 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
747 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
748 unsigned long var;
749 if (m < 0)
750 m = -m;
752 /* Scale deviation to rttvar fixed point */
753 m >>= 1;
754 if (m < tp->mdev)
755 m = tp->mdev;
757 var = dst_metric_rtt(dst, RTAX_RTTVAR);
758 if (m >= var)
759 var = m;
760 else
761 var -= (var - m) >> 2;
763 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
766 if (tcp_in_initial_slowstart(tp)) {
767 /* Slow start still did not finish. */
768 if (dst_metric(dst, RTAX_SSTHRESH) &&
769 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
770 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
771 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
772 if (!dst_metric_locked(dst, RTAX_CWND) &&
773 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
774 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
775 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
776 icsk->icsk_ca_state == TCP_CA_Open) {
777 /* Cong. avoidance phase, cwnd is reliable. */
778 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
779 dst->metrics[RTAX_SSTHRESH-1] =
780 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
781 if (!dst_metric_locked(dst, RTAX_CWND))
782 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
783 } else {
784 /* Else slow start did not finish, cwnd is non-sense,
785 ssthresh may be also invalid.
787 if (!dst_metric_locked(dst, RTAX_CWND))
788 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
789 if (dst_metric(dst, RTAX_SSTHRESH) &&
790 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
791 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
792 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
795 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
796 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
797 tp->reordering != sysctl_tcp_reordering)
798 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
803 /* Numbers are taken from RFC3390.
805 * John Heffner states:
807 * The RFC specifies a window of no more than 4380 bytes
808 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
809 * is a bit misleading because they use a clamp at 4380 bytes
810 * rather than use a multiplier in the relevant range.
812 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
814 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
816 if (!cwnd) {
817 if (tp->mss_cache > 1460)
818 cwnd = 2;
819 else
820 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
822 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
825 /* Set slow start threshold and cwnd not falling to slow start */
826 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
828 struct tcp_sock *tp = tcp_sk(sk);
829 const struct inet_connection_sock *icsk = inet_csk(sk);
831 tp->prior_ssthresh = 0;
832 tp->bytes_acked = 0;
833 if (icsk->icsk_ca_state < TCP_CA_CWR) {
834 tp->undo_marker = 0;
835 if (set_ssthresh)
836 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
837 tp->snd_cwnd = min(tp->snd_cwnd,
838 tcp_packets_in_flight(tp) + 1U);
839 tp->snd_cwnd_cnt = 0;
840 tp->high_seq = tp->snd_nxt;
841 tp->snd_cwnd_stamp = tcp_time_stamp;
842 TCP_ECN_queue_cwr(tp);
844 tcp_set_ca_state(sk, TCP_CA_CWR);
849 * Packet counting of FACK is based on in-order assumptions, therefore TCP
850 * disables it when reordering is detected
852 static void tcp_disable_fack(struct tcp_sock *tp)
854 /* RFC3517 uses different metric in lost marker => reset on change */
855 if (tcp_is_fack(tp))
856 tp->lost_skb_hint = NULL;
857 tp->rx_opt.sack_ok &= ~2;
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock *tp)
863 tp->rx_opt.sack_ok |= 4;
866 /* Initialize metrics on socket. */
868 static void tcp_init_metrics(struct sock *sk)
870 struct tcp_sock *tp = tcp_sk(sk);
871 struct dst_entry *dst = __sk_dst_get(sk);
873 if (dst == NULL)
874 goto reset;
876 dst_confirm(dst);
878 if (dst_metric_locked(dst, RTAX_CWND))
879 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
880 if (dst_metric(dst, RTAX_SSTHRESH)) {
881 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
882 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
883 tp->snd_ssthresh = tp->snd_cwnd_clamp;
885 if (dst_metric(dst, RTAX_REORDERING) &&
886 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
887 tcp_disable_fack(tp);
888 tp->reordering = dst_metric(dst, RTAX_REORDERING);
891 if (dst_metric(dst, RTAX_RTT) == 0)
892 goto reset;
894 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
895 goto reset;
897 /* Initial rtt is determined from SYN,SYN-ACK.
898 * The segment is small and rtt may appear much
899 * less than real one. Use per-dst memory
900 * to make it more realistic.
902 * A bit of theory. RTT is time passed after "normal" sized packet
903 * is sent until it is ACKed. In normal circumstances sending small
904 * packets force peer to delay ACKs and calculation is correct too.
905 * The algorithm is adaptive and, provided we follow specs, it
906 * NEVER underestimate RTT. BUT! If peer tries to make some clever
907 * tricks sort of "quick acks" for time long enough to decrease RTT
908 * to low value, and then abruptly stops to do it and starts to delay
909 * ACKs, wait for troubles.
911 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
912 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
913 tp->rtt_seq = tp->snd_nxt;
915 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
916 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
917 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
919 tcp_set_rto(sk);
920 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
921 goto reset;
923 cwnd:
924 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
925 tp->snd_cwnd_stamp = tcp_time_stamp;
926 return;
928 reset:
929 /* Play conservative. If timestamps are not
930 * supported, TCP will fail to recalculate correct
931 * rtt, if initial rto is too small. FORGET ALL AND RESET!
933 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
934 tp->srtt = 0;
935 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
936 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
938 goto cwnd;
941 static void tcp_update_reordering(struct sock *sk, const int metric,
942 const int ts)
944 struct tcp_sock *tp = tcp_sk(sk);
945 if (metric > tp->reordering) {
946 int mib_idx;
948 tp->reordering = min(TCP_MAX_REORDERING, metric);
950 /* This exciting event is worth to be remembered. 8) */
951 if (ts)
952 mib_idx = LINUX_MIB_TCPTSREORDER;
953 else if (tcp_is_reno(tp))
954 mib_idx = LINUX_MIB_TCPRENOREORDER;
955 else if (tcp_is_fack(tp))
956 mib_idx = LINUX_MIB_TCPFACKREORDER;
957 else
958 mib_idx = LINUX_MIB_TCPSACKREORDER;
960 NET_INC_STATS_BH(sock_net(sk), mib_idx);
961 #if FASTRETRANS_DEBUG > 1
962 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
963 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
964 tp->reordering,
965 tp->fackets_out,
966 tp->sacked_out,
967 tp->undo_marker ? tp->undo_retrans : 0);
968 #endif
969 tcp_disable_fack(tp);
973 /* This must be called before lost_out is incremented */
974 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
976 if ((tp->retransmit_skb_hint == NULL) ||
977 before(TCP_SKB_CB(skb)->seq,
978 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
979 tp->retransmit_skb_hint = skb;
981 if (!tp->lost_out ||
982 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
983 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
986 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
988 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
989 tcp_verify_retransmit_hint(tp, skb);
991 tp->lost_out += tcp_skb_pcount(skb);
992 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
997 struct sk_buff *skb)
999 tcp_verify_retransmit_hint(tp, skb);
1001 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1002 tp->lost_out += tcp_skb_pcount(skb);
1003 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 /* This procedure tags the retransmission queue when SACKs arrive.
1009 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1010 * Packets in queue with these bits set are counted in variables
1011 * sacked_out, retrans_out and lost_out, correspondingly.
1013 * Valid combinations are:
1014 * Tag InFlight Description
1015 * 0 1 - orig segment is in flight.
1016 * S 0 - nothing flies, orig reached receiver.
1017 * L 0 - nothing flies, orig lost by net.
1018 * R 2 - both orig and retransmit are in flight.
1019 * L|R 1 - orig is lost, retransmit is in flight.
1020 * S|R 1 - orig reached receiver, retrans is still in flight.
1021 * (L|S|R is logically valid, it could occur when L|R is sacked,
1022 * but it is equivalent to plain S and code short-curcuits it to S.
1023 * L|S is logically invalid, it would mean -1 packet in flight 8))
1025 * These 6 states form finite state machine, controlled by the following events:
1026 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1027 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1028 * 3. Loss detection event of one of three flavors:
1029 * A. Scoreboard estimator decided the packet is lost.
1030 * A'. Reno "three dupacks" marks head of queue lost.
1031 * A''. Its FACK modfication, head until snd.fack is lost.
1032 * B. SACK arrives sacking data transmitted after never retransmitted
1033 * hole was sent out.
1034 * C. SACK arrives sacking SND.NXT at the moment, when the
1035 * segment was retransmitted.
1036 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1038 * It is pleasant to note, that state diagram turns out to be commutative,
1039 * so that we are allowed not to be bothered by order of our actions,
1040 * when multiple events arrive simultaneously. (see the function below).
1042 * Reordering detection.
1043 * --------------------
1044 * Reordering metric is maximal distance, which a packet can be displaced
1045 * in packet stream. With SACKs we can estimate it:
1047 * 1. SACK fills old hole and the corresponding segment was not
1048 * ever retransmitted -> reordering. Alas, we cannot use it
1049 * when segment was retransmitted.
1050 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1051 * for retransmitted and already SACKed segment -> reordering..
1052 * Both of these heuristics are not used in Loss state, when we cannot
1053 * account for retransmits accurately.
1055 * SACK block validation.
1056 * ----------------------
1058 * SACK block range validation checks that the received SACK block fits to
1059 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1060 * Note that SND.UNA is not included to the range though being valid because
1061 * it means that the receiver is rather inconsistent with itself reporting
1062 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1063 * perfectly valid, however, in light of RFC2018 which explicitly states
1064 * that "SACK block MUST reflect the newest segment. Even if the newest
1065 * segment is going to be discarded ...", not that it looks very clever
1066 * in case of head skb. Due to potentional receiver driven attacks, we
1067 * choose to avoid immediate execution of a walk in write queue due to
1068 * reneging and defer head skb's loss recovery to standard loss recovery
1069 * procedure that will eventually trigger (nothing forbids us doing this).
1071 * Implements also blockage to start_seq wrap-around. Problem lies in the
1072 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1073 * there's no guarantee that it will be before snd_nxt (n). The problem
1074 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1075 * wrap (s_w):
1077 * <- outs wnd -> <- wrapzone ->
1078 * u e n u_w e_w s n_w
1079 * | | | | | | |
1080 * |<------------+------+----- TCP seqno space --------------+---------->|
1081 * ...-- <2^31 ->| |<--------...
1082 * ...---- >2^31 ------>| |<--------...
1084 * Current code wouldn't be vulnerable but it's better still to discard such
1085 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1086 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1087 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1088 * equal to the ideal case (infinite seqno space without wrap caused issues).
1090 * With D-SACK the lower bound is extended to cover sequence space below
1091 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1092 * again, D-SACK block must not to go across snd_una (for the same reason as
1093 * for the normal SACK blocks, explained above). But there all simplicity
1094 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1095 * fully below undo_marker they do not affect behavior in anyway and can
1096 * therefore be safely ignored. In rare cases (which are more or less
1097 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1098 * fragmentation and packet reordering past skb's retransmission. To consider
1099 * them correctly, the acceptable range must be extended even more though
1100 * the exact amount is rather hard to quantify. However, tp->max_window can
1101 * be used as an exaggerated estimate.
1103 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1104 u32 start_seq, u32 end_seq)
1106 /* Too far in future, or reversed (interpretation is ambiguous) */
1107 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1108 return 0;
1110 /* Nasty start_seq wrap-around check (see comments above) */
1111 if (!before(start_seq, tp->snd_nxt))
1112 return 0;
1114 /* In outstanding window? ...This is valid exit for D-SACKs too.
1115 * start_seq == snd_una is non-sensical (see comments above)
1117 if (after(start_seq, tp->snd_una))
1118 return 1;
1120 if (!is_dsack || !tp->undo_marker)
1121 return 0;
1123 /* ...Then it's D-SACK, and must reside below snd_una completely */
1124 if (!after(end_seq, tp->snd_una))
1125 return 0;
1127 if (!before(start_seq, tp->undo_marker))
1128 return 1;
1130 /* Too old */
1131 if (!after(end_seq, tp->undo_marker))
1132 return 0;
1134 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1135 * start_seq < undo_marker and end_seq >= undo_marker.
1137 return !before(start_seq, end_seq - tp->max_window);
1140 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1141 * Event "C". Later note: FACK people cheated me again 8), we have to account
1142 * for reordering! Ugly, but should help.
1144 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1145 * less than what is now known to be received by the other end (derived from
1146 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1147 * retransmitted skbs to avoid some costly processing per ACKs.
1149 static void tcp_mark_lost_retrans(struct sock *sk)
1151 const struct inet_connection_sock *icsk = inet_csk(sk);
1152 struct tcp_sock *tp = tcp_sk(sk);
1153 struct sk_buff *skb;
1154 int cnt = 0;
1155 u32 new_low_seq = tp->snd_nxt;
1156 u32 received_upto = tcp_highest_sack_seq(tp);
1158 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1159 !after(received_upto, tp->lost_retrans_low) ||
1160 icsk->icsk_ca_state != TCP_CA_Recovery)
1161 return;
1163 tcp_for_write_queue(skb, sk) {
1164 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1166 if (skb == tcp_send_head(sk))
1167 break;
1168 if (cnt == tp->retrans_out)
1169 break;
1170 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1171 continue;
1173 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1174 continue;
1176 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1177 * constraint here (see above) but figuring out that at
1178 * least tp->reordering SACK blocks reside between ack_seq
1179 * and received_upto is not easy task to do cheaply with
1180 * the available datastructures.
1182 * Whether FACK should check here for tp->reordering segs
1183 * in-between one could argue for either way (it would be
1184 * rather simple to implement as we could count fack_count
1185 * during the walk and do tp->fackets_out - fack_count).
1187 if (after(received_upto, ack_seq)) {
1188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1189 tp->retrans_out -= tcp_skb_pcount(skb);
1191 tcp_skb_mark_lost_uncond_verify(tp, skb);
1192 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1193 } else {
1194 if (before(ack_seq, new_low_seq))
1195 new_low_seq = ack_seq;
1196 cnt += tcp_skb_pcount(skb);
1200 if (tp->retrans_out)
1201 tp->lost_retrans_low = new_low_seq;
1204 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1205 struct tcp_sack_block_wire *sp, int num_sacks,
1206 u32 prior_snd_una)
1208 struct tcp_sock *tp = tcp_sk(sk);
1209 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1210 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1211 int dup_sack = 0;
1213 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1214 dup_sack = 1;
1215 tcp_dsack_seen(tp);
1216 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1217 } else if (num_sacks > 1) {
1218 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1219 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221 if (!after(end_seq_0, end_seq_1) &&
1222 !before(start_seq_0, start_seq_1)) {
1223 dup_sack = 1;
1224 tcp_dsack_seen(tp);
1225 NET_INC_STATS_BH(sock_net(sk),
1226 LINUX_MIB_TCPDSACKOFORECV);
1230 /* D-SACK for already forgotten data... Do dumb counting. */
1231 if (dup_sack &&
1232 !after(end_seq_0, prior_snd_una) &&
1233 after(end_seq_0, tp->undo_marker))
1234 tp->undo_retrans--;
1236 return dup_sack;
1239 struct tcp_sacktag_state {
1240 int reord;
1241 int fack_count;
1242 int flag;
1245 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1246 * the incoming SACK may not exactly match but we can find smaller MSS
1247 * aligned portion of it that matches. Therefore we might need to fragment
1248 * which may fail and creates some hassle (caller must handle error case
1249 * returns).
1251 * FIXME: this could be merged to shift decision code
1253 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1254 u32 start_seq, u32 end_seq)
1256 int in_sack, err;
1257 unsigned int pkt_len;
1258 unsigned int mss;
1260 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1261 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1263 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1264 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1265 mss = tcp_skb_mss(skb);
1266 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1268 if (!in_sack) {
1269 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1270 if (pkt_len < mss)
1271 pkt_len = mss;
1272 } else {
1273 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1274 if (pkt_len < mss)
1275 return -EINVAL;
1278 /* Round if necessary so that SACKs cover only full MSSes
1279 * and/or the remaining small portion (if present)
1281 if (pkt_len > mss) {
1282 unsigned int new_len = (pkt_len / mss) * mss;
1283 if (!in_sack && new_len < pkt_len) {
1284 new_len += mss;
1285 if (new_len > skb->len)
1286 return 0;
1288 pkt_len = new_len;
1290 err = tcp_fragment(sk, skb, pkt_len, mss);
1291 if (err < 0)
1292 return err;
1295 return in_sack;
1298 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1299 struct tcp_sacktag_state *state,
1300 int dup_sack, int pcount)
1302 struct tcp_sock *tp = tcp_sk(sk);
1303 u8 sacked = TCP_SKB_CB(skb)->sacked;
1304 int fack_count = state->fack_count;
1306 /* Account D-SACK for retransmitted packet. */
1307 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1308 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1309 tp->undo_retrans--;
1310 if (sacked & TCPCB_SACKED_ACKED)
1311 state->reord = min(fack_count, state->reord);
1314 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1316 return sacked;
1318 if (!(sacked & TCPCB_SACKED_ACKED)) {
1319 if (sacked & TCPCB_SACKED_RETRANS) {
1320 /* If the segment is not tagged as lost,
1321 * we do not clear RETRANS, believing
1322 * that retransmission is still in flight.
1324 if (sacked & TCPCB_LOST) {
1325 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1326 tp->lost_out -= pcount;
1327 tp->retrans_out -= pcount;
1329 } else {
1330 if (!(sacked & TCPCB_RETRANS)) {
1331 /* New sack for not retransmitted frame,
1332 * which was in hole. It is reordering.
1334 if (before(TCP_SKB_CB(skb)->seq,
1335 tcp_highest_sack_seq(tp)))
1336 state->reord = min(fack_count,
1337 state->reord);
1339 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1341 state->flag |= FLAG_ONLY_ORIG_SACKED;
1344 if (sacked & TCPCB_LOST) {
1345 sacked &= ~TCPCB_LOST;
1346 tp->lost_out -= pcount;
1350 sacked |= TCPCB_SACKED_ACKED;
1351 state->flag |= FLAG_DATA_SACKED;
1352 tp->sacked_out += pcount;
1354 fack_count += pcount;
1356 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1358 before(TCP_SKB_CB(skb)->seq,
1359 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1360 tp->lost_cnt_hint += pcount;
1362 if (fack_count > tp->fackets_out)
1363 tp->fackets_out = fack_count;
1366 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1367 * frames and clear it. undo_retrans is decreased above, L|R frames
1368 * are accounted above as well.
1370 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1371 sacked &= ~TCPCB_SACKED_RETRANS;
1372 tp->retrans_out -= pcount;
1375 return sacked;
1378 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1379 struct tcp_sacktag_state *state,
1380 unsigned int pcount, int shifted, int mss,
1381 int dup_sack)
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1386 BUG_ON(!pcount);
1388 /* Tweak before seqno plays */
1389 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1390 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1391 tp->lost_cnt_hint += pcount;
1393 TCP_SKB_CB(prev)->end_seq += shifted;
1394 TCP_SKB_CB(skb)->seq += shifted;
1396 skb_shinfo(prev)->gso_segs += pcount;
1397 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1398 skb_shinfo(skb)->gso_segs -= pcount;
1400 /* When we're adding to gso_segs == 1, gso_size will be zero,
1401 * in theory this shouldn't be necessary but as long as DSACK
1402 * code can come after this skb later on it's better to keep
1403 * setting gso_size to something.
1405 if (!skb_shinfo(prev)->gso_size) {
1406 skb_shinfo(prev)->gso_size = mss;
1407 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1410 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1411 if (skb_shinfo(skb)->gso_segs <= 1) {
1412 skb_shinfo(skb)->gso_size = 0;
1413 skb_shinfo(skb)->gso_type = 0;
1416 /* We discard results */
1417 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1419 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1420 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1422 if (skb->len > 0) {
1423 BUG_ON(!tcp_skb_pcount(skb));
1424 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1425 return 0;
1428 /* Whole SKB was eaten :-) */
1430 if (skb == tp->retransmit_skb_hint)
1431 tp->retransmit_skb_hint = prev;
1432 if (skb == tp->scoreboard_skb_hint)
1433 tp->scoreboard_skb_hint = prev;
1434 if (skb == tp->lost_skb_hint) {
1435 tp->lost_skb_hint = prev;
1436 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1439 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1440 if (skb == tcp_highest_sack(sk))
1441 tcp_advance_highest_sack(sk, skb);
1443 tcp_unlink_write_queue(skb, sk);
1444 sk_wmem_free_skb(sk, skb);
1446 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1448 return 1;
1451 /* I wish gso_size would have a bit more sane initialization than
1452 * something-or-zero which complicates things
1454 static int tcp_skb_seglen(struct sk_buff *skb)
1456 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1459 /* Shifting pages past head area doesn't work */
1460 static int skb_can_shift(struct sk_buff *skb)
1462 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1465 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1466 * skb.
1468 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1469 struct tcp_sacktag_state *state,
1470 u32 start_seq, u32 end_seq,
1471 int dup_sack)
1473 struct tcp_sock *tp = tcp_sk(sk);
1474 struct sk_buff *prev;
1475 int mss;
1476 int pcount = 0;
1477 int len;
1478 int in_sack;
1480 if (!sk_can_gso(sk))
1481 goto fallback;
1483 /* Normally R but no L won't result in plain S */
1484 if (!dup_sack &&
1485 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1486 goto fallback;
1487 if (!skb_can_shift(skb))
1488 goto fallback;
1489 /* This frame is about to be dropped (was ACKed). */
1490 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1491 goto fallback;
1493 /* Can only happen with delayed DSACK + discard craziness */
1494 if (unlikely(skb == tcp_write_queue_head(sk)))
1495 goto fallback;
1496 prev = tcp_write_queue_prev(sk, skb);
1498 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1499 goto fallback;
1501 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1502 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1504 if (in_sack) {
1505 len = skb->len;
1506 pcount = tcp_skb_pcount(skb);
1507 mss = tcp_skb_seglen(skb);
1509 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1510 * drop this restriction as unnecessary
1512 if (mss != tcp_skb_seglen(prev))
1513 goto fallback;
1514 } else {
1515 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1516 goto noop;
1517 /* CHECKME: This is non-MSS split case only?, this will
1518 * cause skipped skbs due to advancing loop btw, original
1519 * has that feature too
1521 if (tcp_skb_pcount(skb) <= 1)
1522 goto noop;
1524 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1525 if (!in_sack) {
1526 /* TODO: head merge to next could be attempted here
1527 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1528 * though it might not be worth of the additional hassle
1530 * ...we can probably just fallback to what was done
1531 * previously. We could try merging non-SACKed ones
1532 * as well but it probably isn't going to buy off
1533 * because later SACKs might again split them, and
1534 * it would make skb timestamp tracking considerably
1535 * harder problem.
1537 goto fallback;
1540 len = end_seq - TCP_SKB_CB(skb)->seq;
1541 BUG_ON(len < 0);
1542 BUG_ON(len > skb->len);
1544 /* MSS boundaries should be honoured or else pcount will
1545 * severely break even though it makes things bit trickier.
1546 * Optimize common case to avoid most of the divides
1548 mss = tcp_skb_mss(skb);
1550 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1551 * drop this restriction as unnecessary
1553 if (mss != tcp_skb_seglen(prev))
1554 goto fallback;
1556 if (len == mss) {
1557 pcount = 1;
1558 } else if (len < mss) {
1559 goto noop;
1560 } else {
1561 pcount = len / mss;
1562 len = pcount * mss;
1566 if (!skb_shift(prev, skb, len))
1567 goto fallback;
1568 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1569 goto out;
1571 /* Hole filled allows collapsing with the next as well, this is very
1572 * useful when hole on every nth skb pattern happens
1574 if (prev == tcp_write_queue_tail(sk))
1575 goto out;
1576 skb = tcp_write_queue_next(sk, prev);
1578 if (!skb_can_shift(skb) ||
1579 (skb == tcp_send_head(sk)) ||
1580 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1581 (mss != tcp_skb_seglen(skb)))
1582 goto out;
1584 len = skb->len;
1585 if (skb_shift(prev, skb, len)) {
1586 pcount += tcp_skb_pcount(skb);
1587 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1590 out:
1591 state->fack_count += pcount;
1592 return prev;
1594 noop:
1595 return skb;
1597 fallback:
1598 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1599 return NULL;
1602 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1603 struct tcp_sack_block *next_dup,
1604 struct tcp_sacktag_state *state,
1605 u32 start_seq, u32 end_seq,
1606 int dup_sack_in)
1608 struct tcp_sock *tp = tcp_sk(sk);
1609 struct sk_buff *tmp;
1611 tcp_for_write_queue_from(skb, sk) {
1612 int in_sack = 0;
1613 int dup_sack = dup_sack_in;
1615 if (skb == tcp_send_head(sk))
1616 break;
1618 /* queue is in-order => we can short-circuit the walk early */
1619 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1620 break;
1622 if ((next_dup != NULL) &&
1623 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1624 in_sack = tcp_match_skb_to_sack(sk, skb,
1625 next_dup->start_seq,
1626 next_dup->end_seq);
1627 if (in_sack > 0)
1628 dup_sack = 1;
1631 /* skb reference here is a bit tricky to get right, since
1632 * shifting can eat and free both this skb and the next,
1633 * so not even _safe variant of the loop is enough.
1635 if (in_sack <= 0) {
1636 tmp = tcp_shift_skb_data(sk, skb, state,
1637 start_seq, end_seq, dup_sack);
1638 if (tmp != NULL) {
1639 if (tmp != skb) {
1640 skb = tmp;
1641 continue;
1644 in_sack = 0;
1645 } else {
1646 in_sack = tcp_match_skb_to_sack(sk, skb,
1647 start_seq,
1648 end_seq);
1652 if (unlikely(in_sack < 0))
1653 break;
1655 if (in_sack) {
1656 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1657 state,
1658 dup_sack,
1659 tcp_skb_pcount(skb));
1661 if (!before(TCP_SKB_CB(skb)->seq,
1662 tcp_highest_sack_seq(tp)))
1663 tcp_advance_highest_sack(sk, skb);
1666 state->fack_count += tcp_skb_pcount(skb);
1668 return skb;
1671 /* Avoid all extra work that is being done by sacktag while walking in
1672 * a normal way
1674 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1675 struct tcp_sacktag_state *state,
1676 u32 skip_to_seq)
1678 tcp_for_write_queue_from(skb, sk) {
1679 if (skb == tcp_send_head(sk))
1680 break;
1682 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1683 break;
1685 state->fack_count += tcp_skb_pcount(skb);
1687 return skb;
1690 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1691 struct sock *sk,
1692 struct tcp_sack_block *next_dup,
1693 struct tcp_sacktag_state *state,
1694 u32 skip_to_seq)
1696 if (next_dup == NULL)
1697 return skb;
1699 if (before(next_dup->start_seq, skip_to_seq)) {
1700 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1701 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1702 next_dup->start_seq, next_dup->end_seq,
1706 return skb;
1709 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1711 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1714 static int
1715 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1716 u32 prior_snd_una)
1718 const struct inet_connection_sock *icsk = inet_csk(sk);
1719 struct tcp_sock *tp = tcp_sk(sk);
1720 unsigned char *ptr = (skb_transport_header(ack_skb) +
1721 TCP_SKB_CB(ack_skb)->sacked);
1722 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1723 struct tcp_sack_block sp[TCP_NUM_SACKS];
1724 struct tcp_sack_block *cache;
1725 struct tcp_sacktag_state state;
1726 struct sk_buff *skb;
1727 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1728 int used_sacks;
1729 int found_dup_sack = 0;
1730 int i, j;
1731 int first_sack_index;
1733 state.flag = 0;
1734 state.reord = tp->packets_out;
1736 if (!tp->sacked_out) {
1737 if (WARN_ON(tp->fackets_out))
1738 tp->fackets_out = 0;
1739 tcp_highest_sack_reset(sk);
1742 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1743 num_sacks, prior_snd_una);
1744 if (found_dup_sack)
1745 state.flag |= FLAG_DSACKING_ACK;
1747 /* Eliminate too old ACKs, but take into
1748 * account more or less fresh ones, they can
1749 * contain valid SACK info.
1751 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1752 return 0;
1754 if (!tp->packets_out)
1755 goto out;
1757 used_sacks = 0;
1758 first_sack_index = 0;
1759 for (i = 0; i < num_sacks; i++) {
1760 int dup_sack = !i && found_dup_sack;
1762 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1763 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1765 if (!tcp_is_sackblock_valid(tp, dup_sack,
1766 sp[used_sacks].start_seq,
1767 sp[used_sacks].end_seq)) {
1768 int mib_idx;
1770 if (dup_sack) {
1771 if (!tp->undo_marker)
1772 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1773 else
1774 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1775 } else {
1776 /* Don't count olds caused by ACK reordering */
1777 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1778 !after(sp[used_sacks].end_seq, tp->snd_una))
1779 continue;
1780 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1783 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1784 if (i == 0)
1785 first_sack_index = -1;
1786 continue;
1789 /* Ignore very old stuff early */
1790 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1791 continue;
1793 used_sacks++;
1796 /* order SACK blocks to allow in order walk of the retrans queue */
1797 for (i = used_sacks - 1; i > 0; i--) {
1798 for (j = 0; j < i; j++) {
1799 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1800 swap(sp[j], sp[j + 1]);
1802 /* Track where the first SACK block goes to */
1803 if (j == first_sack_index)
1804 first_sack_index = j + 1;
1809 skb = tcp_write_queue_head(sk);
1810 state.fack_count = 0;
1811 i = 0;
1813 if (!tp->sacked_out) {
1814 /* It's already past, so skip checking against it */
1815 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1816 } else {
1817 cache = tp->recv_sack_cache;
1818 /* Skip empty blocks in at head of the cache */
1819 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1820 !cache->end_seq)
1821 cache++;
1824 while (i < used_sacks) {
1825 u32 start_seq = sp[i].start_seq;
1826 u32 end_seq = sp[i].end_seq;
1827 int dup_sack = (found_dup_sack && (i == first_sack_index));
1828 struct tcp_sack_block *next_dup = NULL;
1830 if (found_dup_sack && ((i + 1) == first_sack_index))
1831 next_dup = &sp[i + 1];
1833 /* Event "B" in the comment above. */
1834 if (after(end_seq, tp->high_seq))
1835 state.flag |= FLAG_DATA_LOST;
1837 /* Skip too early cached blocks */
1838 while (tcp_sack_cache_ok(tp, cache) &&
1839 !before(start_seq, cache->end_seq))
1840 cache++;
1842 /* Can skip some work by looking recv_sack_cache? */
1843 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1844 after(end_seq, cache->start_seq)) {
1846 /* Head todo? */
1847 if (before(start_seq, cache->start_seq)) {
1848 skb = tcp_sacktag_skip(skb, sk, &state,
1849 start_seq);
1850 skb = tcp_sacktag_walk(skb, sk, next_dup,
1851 &state,
1852 start_seq,
1853 cache->start_seq,
1854 dup_sack);
1857 /* Rest of the block already fully processed? */
1858 if (!after(end_seq, cache->end_seq))
1859 goto advance_sp;
1861 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1862 &state,
1863 cache->end_seq);
1865 /* ...tail remains todo... */
1866 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1867 /* ...but better entrypoint exists! */
1868 skb = tcp_highest_sack(sk);
1869 if (skb == NULL)
1870 break;
1871 state.fack_count = tp->fackets_out;
1872 cache++;
1873 goto walk;
1876 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1877 /* Check overlap against next cached too (past this one already) */
1878 cache++;
1879 continue;
1882 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1883 skb = tcp_highest_sack(sk);
1884 if (skb == NULL)
1885 break;
1886 state.fack_count = tp->fackets_out;
1888 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1890 walk:
1891 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1892 start_seq, end_seq, dup_sack);
1894 advance_sp:
1895 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896 * due to in-order walk
1898 if (after(end_seq, tp->frto_highmark))
1899 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1901 i++;
1904 /* Clear the head of the cache sack blocks so we can skip it next time */
1905 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1906 tp->recv_sack_cache[i].start_seq = 0;
1907 tp->recv_sack_cache[i].end_seq = 0;
1909 for (j = 0; j < used_sacks; j++)
1910 tp->recv_sack_cache[i++] = sp[j];
1912 tcp_mark_lost_retrans(sk);
1914 tcp_verify_left_out(tp);
1916 if ((state.reord < tp->fackets_out) &&
1917 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1918 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1919 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1921 out:
1923 #if FASTRETRANS_DEBUG > 0
1924 WARN_ON((int)tp->sacked_out < 0);
1925 WARN_ON((int)tp->lost_out < 0);
1926 WARN_ON((int)tp->retrans_out < 0);
1927 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1928 #endif
1929 return state.flag;
1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1933 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1937 u32 holes;
1939 holes = max(tp->lost_out, 1U);
1940 holes = min(holes, tp->packets_out);
1942 if ((tp->sacked_out + holes) > tp->packets_out) {
1943 tp->sacked_out = tp->packets_out - holes;
1944 return 1;
1946 return 0;
1949 /* If we receive more dupacks than we expected counting segments
1950 * in assumption of absent reordering, interpret this as reordering.
1951 * The only another reason could be bug in receiver TCP.
1953 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1955 struct tcp_sock *tp = tcp_sk(sk);
1956 if (tcp_limit_reno_sacked(tp))
1957 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1962 static void tcp_add_reno_sack(struct sock *sk)
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 tp->sacked_out++;
1966 tcp_check_reno_reordering(sk, 0);
1967 tcp_verify_left_out(tp);
1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1972 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1974 struct tcp_sock *tp = tcp_sk(sk);
1976 if (acked > 0) {
1977 /* One ACK acked hole. The rest eat duplicate ACKs. */
1978 if (acked - 1 >= tp->sacked_out)
1979 tp->sacked_out = 0;
1980 else
1981 tp->sacked_out -= acked - 1;
1983 tcp_check_reno_reordering(sk, acked);
1984 tcp_verify_left_out(tp);
1987 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1989 tp->sacked_out = 0;
1992 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1994 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1997 /* F-RTO can only be used if TCP has never retransmitted anything other than
1998 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000 int tcp_use_frto(struct sock *sk)
2002 const struct tcp_sock *tp = tcp_sk(sk);
2003 const struct inet_connection_sock *icsk = inet_csk(sk);
2004 struct sk_buff *skb;
2006 if (!sysctl_tcp_frto)
2007 return 0;
2009 /* MTU probe and F-RTO won't really play nicely along currently */
2010 if (icsk->icsk_mtup.probe_size)
2011 return 0;
2013 if (tcp_is_sackfrto(tp))
2014 return 1;
2016 /* Avoid expensive walking of rexmit queue if possible */
2017 if (tp->retrans_out > 1)
2018 return 0;
2020 skb = tcp_write_queue_head(sk);
2021 if (tcp_skb_is_last(sk, skb))
2022 return 1;
2023 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2024 tcp_for_write_queue_from(skb, sk) {
2025 if (skb == tcp_send_head(sk))
2026 break;
2027 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2028 return 0;
2029 /* Short-circuit when first non-SACKed skb has been checked */
2030 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2031 break;
2033 return 1;
2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041 * bits are handled if the Loss state is really to be entered (in
2042 * tcp_enter_frto_loss).
2044 * Do like tcp_enter_loss() would; when RTO expires the second time it
2045 * does:
2046 * "Reduce ssthresh if it has not yet been made inside this window."
2048 void tcp_enter_frto(struct sock *sk)
2050 const struct inet_connection_sock *icsk = inet_csk(sk);
2051 struct tcp_sock *tp = tcp_sk(sk);
2052 struct sk_buff *skb;
2054 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2055 tp->snd_una == tp->high_seq ||
2056 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2057 !icsk->icsk_retransmits)) {
2058 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2059 /* Our state is too optimistic in ssthresh() call because cwnd
2060 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061 * recovery has not yet completed. Pattern would be this: RTO,
2062 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2063 * up here twice).
2064 * RFC4138 should be more specific on what to do, even though
2065 * RTO is quite unlikely to occur after the first Cumulative ACK
2066 * due to back-off and complexity of triggering events ...
2068 if (tp->frto_counter) {
2069 u32 stored_cwnd;
2070 stored_cwnd = tp->snd_cwnd;
2071 tp->snd_cwnd = 2;
2072 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2073 tp->snd_cwnd = stored_cwnd;
2074 } else {
2075 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077 /* ... in theory, cong.control module could do "any tricks" in
2078 * ssthresh(), which means that ca_state, lost bits and lost_out
2079 * counter would have to be faked before the call occurs. We
2080 * consider that too expensive, unlikely and hacky, so modules
2081 * using these in ssthresh() must deal these incompatibility
2082 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084 tcp_ca_event(sk, CA_EVENT_FRTO);
2087 tp->undo_marker = tp->snd_una;
2088 tp->undo_retrans = 0;
2090 skb = tcp_write_queue_head(sk);
2091 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2092 tp->undo_marker = 0;
2093 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2094 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2095 tp->retrans_out -= tcp_skb_pcount(skb);
2097 tcp_verify_left_out(tp);
2099 /* Too bad if TCP was application limited */
2100 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2102 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2103 * The last condition is necessary at least in tp->frto_counter case.
2105 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2106 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2107 after(tp->high_seq, tp->snd_una)) {
2108 tp->frto_highmark = tp->high_seq;
2109 } else {
2110 tp->frto_highmark = tp->snd_nxt;
2112 tcp_set_ca_state(sk, TCP_CA_Disorder);
2113 tp->high_seq = tp->snd_nxt;
2114 tp->frto_counter = 1;
2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118 * which indicates that we should follow the traditional RTO recovery,
2119 * i.e. mark everything lost and do go-back-N retransmission.
2121 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2123 struct tcp_sock *tp = tcp_sk(sk);
2124 struct sk_buff *skb;
2126 tp->lost_out = 0;
2127 tp->retrans_out = 0;
2128 if (tcp_is_reno(tp))
2129 tcp_reset_reno_sack(tp);
2131 tcp_for_write_queue(skb, sk) {
2132 if (skb == tcp_send_head(sk))
2133 break;
2135 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2137 * Count the retransmission made on RTO correctly (only when
2138 * waiting for the first ACK and did not get it)...
2140 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2141 /* For some reason this R-bit might get cleared? */
2142 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2143 tp->retrans_out += tcp_skb_pcount(skb);
2144 /* ...enter this if branch just for the first segment */
2145 flag |= FLAG_DATA_ACKED;
2146 } else {
2147 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2148 tp->undo_marker = 0;
2149 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2152 /* Marking forward transmissions that were made after RTO lost
2153 * can cause unnecessary retransmissions in some scenarios,
2154 * SACK blocks will mitigate that in some but not in all cases.
2155 * We used to not mark them but it was causing break-ups with
2156 * receivers that do only in-order receival.
2158 * TODO: we could detect presence of such receiver and select
2159 * different behavior per flow.
2161 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2162 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2163 tp->lost_out += tcp_skb_pcount(skb);
2164 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2167 tcp_verify_left_out(tp);
2169 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2170 tp->snd_cwnd_cnt = 0;
2171 tp->snd_cwnd_stamp = tcp_time_stamp;
2172 tp->frto_counter = 0;
2173 tp->bytes_acked = 0;
2175 tp->reordering = min_t(unsigned int, tp->reordering,
2176 sysctl_tcp_reordering);
2177 tcp_set_ca_state(sk, TCP_CA_Loss);
2178 tp->high_seq = tp->snd_nxt;
2179 TCP_ECN_queue_cwr(tp);
2181 tcp_clear_all_retrans_hints(tp);
2184 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2186 tp->retrans_out = 0;
2187 tp->lost_out = 0;
2189 tp->undo_marker = 0;
2190 tp->undo_retrans = 0;
2193 void tcp_clear_retrans(struct tcp_sock *tp)
2195 tcp_clear_retrans_partial(tp);
2197 tp->fackets_out = 0;
2198 tp->sacked_out = 0;
2201 /* Enter Loss state. If "how" is not zero, forget all SACK information
2202 * and reset tags completely, otherwise preserve SACKs. If receiver
2203 * dropped its ofo queue, we will know this due to reneging detection.
2205 void tcp_enter_loss(struct sock *sk, int how)
2207 const struct inet_connection_sock *icsk = inet_csk(sk);
2208 struct tcp_sock *tp = tcp_sk(sk);
2209 struct sk_buff *skb;
2211 /* Reduce ssthresh if it has not yet been made inside this window. */
2212 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2213 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2214 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2215 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2216 tcp_ca_event(sk, CA_EVENT_LOSS);
2218 tp->snd_cwnd = 1;
2219 tp->snd_cwnd_cnt = 0;
2220 tp->snd_cwnd_stamp = tcp_time_stamp;
2222 tp->bytes_acked = 0;
2223 tcp_clear_retrans_partial(tp);
2225 if (tcp_is_reno(tp))
2226 tcp_reset_reno_sack(tp);
2228 if (!how) {
2229 /* Push undo marker, if it was plain RTO and nothing
2230 * was retransmitted. */
2231 tp->undo_marker = tp->snd_una;
2232 } else {
2233 tp->sacked_out = 0;
2234 tp->fackets_out = 0;
2236 tcp_clear_all_retrans_hints(tp);
2238 tcp_for_write_queue(skb, sk) {
2239 if (skb == tcp_send_head(sk))
2240 break;
2242 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2243 tp->undo_marker = 0;
2244 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2245 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2246 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2247 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2248 tp->lost_out += tcp_skb_pcount(skb);
2249 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2252 tcp_verify_left_out(tp);
2254 tp->reordering = min_t(unsigned int, tp->reordering,
2255 sysctl_tcp_reordering);
2256 tcp_set_ca_state(sk, TCP_CA_Loss);
2257 tp->high_seq = tp->snd_nxt;
2258 TCP_ECN_queue_cwr(tp);
2259 /* Abort F-RTO algorithm if one is in progress */
2260 tp->frto_counter = 0;
2263 /* If ACK arrived pointing to a remembered SACK, it means that our
2264 * remembered SACKs do not reflect real state of receiver i.e.
2265 * receiver _host_ is heavily congested (or buggy).
2267 * Do processing similar to RTO timeout.
2269 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2271 if (flag & FLAG_SACK_RENEGING) {
2272 struct inet_connection_sock *icsk = inet_csk(sk);
2273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2275 tcp_enter_loss(sk, 1);
2276 icsk->icsk_retransmits++;
2277 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2278 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2279 icsk->icsk_rto, TCP_RTO_MAX);
2280 return 1;
2282 return 0;
2285 static inline int tcp_fackets_out(struct tcp_sock *tp)
2287 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291 * counter when SACK is enabled (without SACK, sacked_out is used for
2292 * that purpose).
2294 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295 * segments up to the highest received SACK block so far and holes in
2296 * between them.
2298 * With reordering, holes may still be in flight, so RFC3517 recovery
2299 * uses pure sacked_out (total number of SACKed segments) even though
2300 * it violates the RFC that uses duplicate ACKs, often these are equal
2301 * but when e.g. out-of-window ACKs or packet duplication occurs,
2302 * they differ. Since neither occurs due to loss, TCP should really
2303 * ignore them.
2305 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2307 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2310 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2312 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2315 static inline int tcp_head_timedout(struct sock *sk)
2317 struct tcp_sock *tp = tcp_sk(sk);
2319 return tp->packets_out &&
2320 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2323 /* Linux NewReno/SACK/FACK/ECN state machine.
2324 * --------------------------------------
2326 * "Open" Normal state, no dubious events, fast path.
2327 * "Disorder" In all the respects it is "Open",
2328 * but requires a bit more attention. It is entered when
2329 * we see some SACKs or dupacks. It is split of "Open"
2330 * mainly to move some processing from fast path to slow one.
2331 * "CWR" CWND was reduced due to some Congestion Notification event.
2332 * It can be ECN, ICMP source quench, local device congestion.
2333 * "Recovery" CWND was reduced, we are fast-retransmitting.
2334 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2336 * tcp_fastretrans_alert() is entered:
2337 * - each incoming ACK, if state is not "Open"
2338 * - when arrived ACK is unusual, namely:
2339 * * SACK
2340 * * Duplicate ACK.
2341 * * ECN ECE.
2343 * Counting packets in flight is pretty simple.
2345 * in_flight = packets_out - left_out + retrans_out
2347 * packets_out is SND.NXT-SND.UNA counted in packets.
2349 * retrans_out is number of retransmitted segments.
2351 * left_out is number of segments left network, but not ACKed yet.
2353 * left_out = sacked_out + lost_out
2355 * sacked_out: Packets, which arrived to receiver out of order
2356 * and hence not ACKed. With SACKs this number is simply
2357 * amount of SACKed data. Even without SACKs
2358 * it is easy to give pretty reliable estimate of this number,
2359 * counting duplicate ACKs.
2361 * lost_out: Packets lost by network. TCP has no explicit
2362 * "loss notification" feedback from network (for now).
2363 * It means that this number can be only _guessed_.
2364 * Actually, it is the heuristics to predict lossage that
2365 * distinguishes different algorithms.
2367 * F.e. after RTO, when all the queue is considered as lost,
2368 * lost_out = packets_out and in_flight = retrans_out.
2370 * Essentially, we have now two algorithms counting
2371 * lost packets.
2373 * FACK: It is the simplest heuristics. As soon as we decided
2374 * that something is lost, we decide that _all_ not SACKed
2375 * packets until the most forward SACK are lost. I.e.
2376 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377 * It is absolutely correct estimate, if network does not reorder
2378 * packets. And it loses any connection to reality when reordering
2379 * takes place. We use FACK by default until reordering
2380 * is suspected on the path to this destination.
2382 * NewReno: when Recovery is entered, we assume that one segment
2383 * is lost (classic Reno). While we are in Recovery and
2384 * a partial ACK arrives, we assume that one more packet
2385 * is lost (NewReno). This heuristics are the same in NewReno
2386 * and SACK.
2388 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2389 * deflation etc. CWND is real congestion window, never inflated, changes
2390 * only according to classic VJ rules.
2392 * Really tricky (and requiring careful tuning) part of algorithm
2393 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394 * The first determines the moment _when_ we should reduce CWND and,
2395 * hence, slow down forward transmission. In fact, it determines the moment
2396 * when we decide that hole is caused by loss, rather than by a reorder.
2398 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399 * holes, caused by lost packets.
2401 * And the most logically complicated part of algorithm is undo
2402 * heuristics. We detect false retransmits due to both too early
2403 * fast retransmit (reordering) and underestimated RTO, analyzing
2404 * timestamps and D-SACKs. When we detect that some segments were
2405 * retransmitted by mistake and CWND reduction was wrong, we undo
2406 * window reduction and abort recovery phase. This logic is hidden
2407 * inside several functions named tcp_try_undo_<something>.
2410 /* This function decides, when we should leave Disordered state
2411 * and enter Recovery phase, reducing congestion window.
2413 * Main question: may we further continue forward transmission
2414 * with the same cwnd?
2416 static int tcp_time_to_recover(struct sock *sk)
2418 struct tcp_sock *tp = tcp_sk(sk);
2419 __u32 packets_out;
2421 /* Do not perform any recovery during F-RTO algorithm */
2422 if (tp->frto_counter)
2423 return 0;
2425 /* Trick#1: The loss is proven. */
2426 if (tp->lost_out)
2427 return 1;
2429 /* Not-A-Trick#2 : Classic rule... */
2430 if (tcp_dupack_heuristics(tp) > tp->reordering)
2431 return 1;
2433 /* Trick#3 : when we use RFC2988 timer restart, fast
2434 * retransmit can be triggered by timeout of queue head.
2436 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2437 return 1;
2439 /* Trick#4: It is still not OK... But will it be useful to delay
2440 * recovery more?
2442 packets_out = tp->packets_out;
2443 if (packets_out <= tp->reordering &&
2444 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2445 !tcp_may_send_now(sk)) {
2446 /* We have nothing to send. This connection is limited
2447 * either by receiver window or by application.
2449 return 1;
2452 /* If a thin stream is detected, retransmit after first
2453 * received dupack. Employ only if SACK is supported in order
2454 * to avoid possible corner-case series of spurious retransmissions
2455 * Use only if there are no unsent data.
2457 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2458 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2459 tcp_is_sack(tp) && !tcp_send_head(sk))
2460 return 1;
2462 return 0;
2465 /* New heuristics: it is possible only after we switched to restart timer
2466 * each time when something is ACKed. Hence, we can detect timed out packets
2467 * during fast retransmit without falling to slow start.
2469 * Usefulness of this as is very questionable, since we should know which of
2470 * the segments is the next to timeout which is relatively expensive to find
2471 * in general case unless we add some data structure just for that. The
2472 * current approach certainly won't find the right one too often and when it
2473 * finally does find _something_ it usually marks large part of the window
2474 * right away (because a retransmission with a larger timestamp blocks the
2475 * loop from advancing). -ij
2477 static void tcp_timeout_skbs(struct sock *sk)
2479 struct tcp_sock *tp = tcp_sk(sk);
2480 struct sk_buff *skb;
2482 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2483 return;
2485 skb = tp->scoreboard_skb_hint;
2486 if (tp->scoreboard_skb_hint == NULL)
2487 skb = tcp_write_queue_head(sk);
2489 tcp_for_write_queue_from(skb, sk) {
2490 if (skb == tcp_send_head(sk))
2491 break;
2492 if (!tcp_skb_timedout(sk, skb))
2493 break;
2495 tcp_skb_mark_lost(tp, skb);
2498 tp->scoreboard_skb_hint = skb;
2500 tcp_verify_left_out(tp);
2503 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2504 * is against sacked "cnt", otherwise it's against facked "cnt"
2506 static void tcp_mark_head_lost(struct sock *sk, int packets)
2508 struct tcp_sock *tp = tcp_sk(sk);
2509 struct sk_buff *skb;
2510 int cnt, oldcnt;
2511 int err;
2512 unsigned int mss;
2514 if (packets == 0)
2515 return;
2517 WARN_ON(packets > tp->packets_out);
2518 if (tp->lost_skb_hint) {
2519 skb = tp->lost_skb_hint;
2520 cnt = tp->lost_cnt_hint;
2521 } else {
2522 skb = tcp_write_queue_head(sk);
2523 cnt = 0;
2526 tcp_for_write_queue_from(skb, sk) {
2527 if (skb == tcp_send_head(sk))
2528 break;
2529 /* TODO: do this better */
2530 /* this is not the most efficient way to do this... */
2531 tp->lost_skb_hint = skb;
2532 tp->lost_cnt_hint = cnt;
2534 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2535 break;
2537 oldcnt = cnt;
2538 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2539 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2540 cnt += tcp_skb_pcount(skb);
2542 if (cnt > packets) {
2543 if (tcp_is_sack(tp) || (oldcnt >= packets))
2544 break;
2546 mss = skb_shinfo(skb)->gso_size;
2547 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2548 if (err < 0)
2549 break;
2550 cnt = packets;
2553 tcp_skb_mark_lost(tp, skb);
2555 tcp_verify_left_out(tp);
2558 /* Account newly detected lost packet(s) */
2560 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2562 struct tcp_sock *tp = tcp_sk(sk);
2564 if (tcp_is_reno(tp)) {
2565 tcp_mark_head_lost(sk, 1);
2566 } else if (tcp_is_fack(tp)) {
2567 int lost = tp->fackets_out - tp->reordering;
2568 if (lost <= 0)
2569 lost = 1;
2570 tcp_mark_head_lost(sk, lost);
2571 } else {
2572 int sacked_upto = tp->sacked_out - tp->reordering;
2573 if (sacked_upto < fast_rexmit)
2574 sacked_upto = fast_rexmit;
2575 tcp_mark_head_lost(sk, sacked_upto);
2578 tcp_timeout_skbs(sk);
2581 /* CWND moderation, preventing bursts due to too big ACKs
2582 * in dubious situations.
2584 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2586 tp->snd_cwnd = min(tp->snd_cwnd,
2587 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2588 tp->snd_cwnd_stamp = tcp_time_stamp;
2591 /* Lower bound on congestion window is slow start threshold
2592 * unless congestion avoidance choice decides to overide it.
2594 static inline u32 tcp_cwnd_min(const struct sock *sk)
2596 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2598 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2601 /* Decrease cwnd each second ack. */
2602 static void tcp_cwnd_down(struct sock *sk, int flag)
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 int decr = tp->snd_cwnd_cnt + 1;
2607 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2608 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2609 tp->snd_cwnd_cnt = decr & 1;
2610 decr >>= 1;
2612 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2613 tp->snd_cwnd -= decr;
2615 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2616 tp->snd_cwnd_stamp = tcp_time_stamp;
2620 /* Nothing was retransmitted or returned timestamp is less
2621 * than timestamp of the first retransmission.
2623 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2625 return !tp->retrans_stamp ||
2626 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2627 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2630 /* Undo procedures. */
2632 #if FASTRETRANS_DEBUG > 1
2633 static void DBGUNDO(struct sock *sk, const char *msg)
2635 struct tcp_sock *tp = tcp_sk(sk);
2636 struct inet_sock *inet = inet_sk(sk);
2638 if (sk->sk_family == AF_INET) {
2639 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2640 msg,
2641 &inet->daddr, ntohs(inet->dport),
2642 tp->snd_cwnd, tcp_left_out(tp),
2643 tp->snd_ssthresh, tp->prior_ssthresh,
2644 tp->packets_out);
2646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2647 else if (sk->sk_family == AF_INET6) {
2648 struct ipv6_pinfo *np = inet6_sk(sk);
2649 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2650 msg,
2651 &np->daddr, ntohs(inet->dport),
2652 tp->snd_cwnd, tcp_left_out(tp),
2653 tp->snd_ssthresh, tp->prior_ssthresh,
2654 tp->packets_out);
2656 #endif
2658 #else
2659 #define DBGUNDO(x...) do { } while (0)
2660 #endif
2662 static void tcp_undo_cwr(struct sock *sk, const int undo)
2664 struct tcp_sock *tp = tcp_sk(sk);
2666 if (tp->prior_ssthresh) {
2667 const struct inet_connection_sock *icsk = inet_csk(sk);
2669 if (icsk->icsk_ca_ops->undo_cwnd)
2670 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2671 else
2672 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2674 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2675 tp->snd_ssthresh = tp->prior_ssthresh;
2676 TCP_ECN_withdraw_cwr(tp);
2678 } else {
2679 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2681 tcp_moderate_cwnd(tp);
2682 tp->snd_cwnd_stamp = tcp_time_stamp;
2685 static inline int tcp_may_undo(struct tcp_sock *tp)
2687 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2690 /* People celebrate: "We love our President!" */
2691 static int tcp_try_undo_recovery(struct sock *sk)
2693 struct tcp_sock *tp = tcp_sk(sk);
2695 if (tcp_may_undo(tp)) {
2696 int mib_idx;
2698 /* Happy end! We did not retransmit anything
2699 * or our original transmission succeeded.
2701 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2702 tcp_undo_cwr(sk, 1);
2703 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2704 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2705 else
2706 mib_idx = LINUX_MIB_TCPFULLUNDO;
2708 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2709 tp->undo_marker = 0;
2711 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2712 /* Hold old state until something *above* high_seq
2713 * is ACKed. For Reno it is MUST to prevent false
2714 * fast retransmits (RFC2582). SACK TCP is safe. */
2715 tcp_moderate_cwnd(tp);
2716 return 1;
2718 tcp_set_ca_state(sk, TCP_CA_Open);
2719 return 0;
2722 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2723 static void tcp_try_undo_dsack(struct sock *sk)
2725 struct tcp_sock *tp = tcp_sk(sk);
2727 if (tp->undo_marker && !tp->undo_retrans) {
2728 DBGUNDO(sk, "D-SACK");
2729 tcp_undo_cwr(sk, 1);
2730 tp->undo_marker = 0;
2731 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2735 /* We can clear retrans_stamp when there are no retransmissions in the
2736 * window. It would seem that it is trivially available for us in
2737 * tp->retrans_out, however, that kind of assumptions doesn't consider
2738 * what will happen if errors occur when sending retransmission for the
2739 * second time. ...It could the that such segment has only
2740 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2741 * the head skb is enough except for some reneging corner cases that
2742 * are not worth the effort.
2744 * Main reason for all this complexity is the fact that connection dying
2745 * time now depends on the validity of the retrans_stamp, in particular,
2746 * that successive retransmissions of a segment must not advance
2747 * retrans_stamp under any conditions.
2749 static int tcp_any_retrans_done(struct sock *sk)
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 struct sk_buff *skb;
2754 if (tp->retrans_out)
2755 return 1;
2757 skb = tcp_write_queue_head(sk);
2758 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2759 return 1;
2761 return 0;
2764 /* Undo during fast recovery after partial ACK. */
2766 static int tcp_try_undo_partial(struct sock *sk, int acked)
2768 struct tcp_sock *tp = tcp_sk(sk);
2769 /* Partial ACK arrived. Force Hoe's retransmit. */
2770 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2772 if (tcp_may_undo(tp)) {
2773 /* Plain luck! Hole if filled with delayed
2774 * packet, rather than with a retransmit.
2776 if (!tcp_any_retrans_done(sk))
2777 tp->retrans_stamp = 0;
2779 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2781 DBGUNDO(sk, "Hoe");
2782 tcp_undo_cwr(sk, 0);
2783 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2785 /* So... Do not make Hoe's retransmit yet.
2786 * If the first packet was delayed, the rest
2787 * ones are most probably delayed as well.
2789 failed = 0;
2791 return failed;
2794 /* Undo during loss recovery after partial ACK. */
2795 static int tcp_try_undo_loss(struct sock *sk)
2797 struct tcp_sock *tp = tcp_sk(sk);
2799 if (tcp_may_undo(tp)) {
2800 struct sk_buff *skb;
2801 tcp_for_write_queue(skb, sk) {
2802 if (skb == tcp_send_head(sk))
2803 break;
2804 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2807 tcp_clear_all_retrans_hints(tp);
2809 DBGUNDO(sk, "partial loss");
2810 tp->lost_out = 0;
2811 tcp_undo_cwr(sk, 1);
2812 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2813 inet_csk(sk)->icsk_retransmits = 0;
2814 tp->undo_marker = 0;
2815 if (tcp_is_sack(tp))
2816 tcp_set_ca_state(sk, TCP_CA_Open);
2817 return 1;
2819 return 0;
2822 static inline void tcp_complete_cwr(struct sock *sk)
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2826 tp->snd_cwnd_stamp = tcp_time_stamp;
2827 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2830 static void tcp_try_keep_open(struct sock *sk)
2832 struct tcp_sock *tp = tcp_sk(sk);
2833 int state = TCP_CA_Open;
2835 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2836 state = TCP_CA_Disorder;
2838 if (inet_csk(sk)->icsk_ca_state != state) {
2839 tcp_set_ca_state(sk, state);
2840 tp->high_seq = tp->snd_nxt;
2844 static void tcp_try_to_open(struct sock *sk, int flag)
2846 struct tcp_sock *tp = tcp_sk(sk);
2848 tcp_verify_left_out(tp);
2850 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2851 tp->retrans_stamp = 0;
2853 if (flag & FLAG_ECE)
2854 tcp_enter_cwr(sk, 1);
2856 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2857 tcp_try_keep_open(sk);
2858 tcp_moderate_cwnd(tp);
2859 } else {
2860 tcp_cwnd_down(sk, flag);
2864 static void tcp_mtup_probe_failed(struct sock *sk)
2866 struct inet_connection_sock *icsk = inet_csk(sk);
2868 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2869 icsk->icsk_mtup.probe_size = 0;
2872 static void tcp_mtup_probe_success(struct sock *sk)
2874 struct tcp_sock *tp = tcp_sk(sk);
2875 struct inet_connection_sock *icsk = inet_csk(sk);
2877 /* FIXME: breaks with very large cwnd */
2878 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2879 tp->snd_cwnd = tp->snd_cwnd *
2880 tcp_mss_to_mtu(sk, tp->mss_cache) /
2881 icsk->icsk_mtup.probe_size;
2882 tp->snd_cwnd_cnt = 0;
2883 tp->snd_cwnd_stamp = tcp_time_stamp;
2884 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2886 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2887 icsk->icsk_mtup.probe_size = 0;
2888 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2891 /* Do a simple retransmit without using the backoff mechanisms in
2892 * tcp_timer. This is used for path mtu discovery.
2893 * The socket is already locked here.
2895 void tcp_simple_retransmit(struct sock *sk)
2897 const struct inet_connection_sock *icsk = inet_csk(sk);
2898 struct tcp_sock *tp = tcp_sk(sk);
2899 struct sk_buff *skb;
2900 unsigned int mss = tcp_current_mss(sk);
2901 u32 prior_lost = tp->lost_out;
2903 tcp_for_write_queue(skb, sk) {
2904 if (skb == tcp_send_head(sk))
2905 break;
2906 if (tcp_skb_seglen(skb) > mss &&
2907 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2908 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2909 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2910 tp->retrans_out -= tcp_skb_pcount(skb);
2912 tcp_skb_mark_lost_uncond_verify(tp, skb);
2916 tcp_clear_retrans_hints_partial(tp);
2918 if (prior_lost == tp->lost_out)
2919 return;
2921 if (tcp_is_reno(tp))
2922 tcp_limit_reno_sacked(tp);
2924 tcp_verify_left_out(tp);
2926 /* Don't muck with the congestion window here.
2927 * Reason is that we do not increase amount of _data_
2928 * in network, but units changed and effective
2929 * cwnd/ssthresh really reduced now.
2931 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2932 tp->high_seq = tp->snd_nxt;
2933 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2934 tp->prior_ssthresh = 0;
2935 tp->undo_marker = 0;
2936 tcp_set_ca_state(sk, TCP_CA_Loss);
2938 tcp_xmit_retransmit_queue(sk);
2941 /* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2946 * Besides that it does CWND reduction, when packet loss is detected
2947 * and changes state of machine.
2949 * It does _not_ decide what to send, it is made in function
2950 * tcp_xmit_retransmit_queue().
2952 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2954 struct inet_connection_sock *icsk = inet_csk(sk);
2955 struct tcp_sock *tp = tcp_sk(sk);
2956 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2957 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2958 (tcp_fackets_out(tp) > tp->reordering));
2959 int fast_rexmit = 0, mib_idx;
2961 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2962 tp->sacked_out = 0;
2963 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2964 tp->fackets_out = 0;
2966 /* Now state machine starts.
2967 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968 if (flag & FLAG_ECE)
2969 tp->prior_ssthresh = 0;
2971 /* B. In all the states check for reneging SACKs. */
2972 if (tcp_check_sack_reneging(sk, flag))
2973 return;
2975 /* C. Process data loss notification, provided it is valid. */
2976 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2977 before(tp->snd_una, tp->high_seq) &&
2978 icsk->icsk_ca_state != TCP_CA_Open &&
2979 tp->fackets_out > tp->reordering) {
2980 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2981 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2984 /* D. Check consistency of the current state. */
2985 tcp_verify_left_out(tp);
2987 /* E. Check state exit conditions. State can be terminated
2988 * when high_seq is ACKed. */
2989 if (icsk->icsk_ca_state == TCP_CA_Open) {
2990 WARN_ON(tp->retrans_out != 0);
2991 tp->retrans_stamp = 0;
2992 } else if (!before(tp->snd_una, tp->high_seq)) {
2993 switch (icsk->icsk_ca_state) {
2994 case TCP_CA_Loss:
2995 icsk->icsk_retransmits = 0;
2996 if (tcp_try_undo_recovery(sk))
2997 return;
2998 break;
3000 case TCP_CA_CWR:
3001 /* CWR is to be held something *above* high_seq
3002 * is ACKed for CWR bit to reach receiver. */
3003 if (tp->snd_una != tp->high_seq) {
3004 tcp_complete_cwr(sk);
3005 tcp_set_ca_state(sk, TCP_CA_Open);
3007 break;
3009 case TCP_CA_Disorder:
3010 tcp_try_undo_dsack(sk);
3011 if (!tp->undo_marker ||
3012 /* For SACK case do not Open to allow to undo
3013 * catching for all duplicate ACKs. */
3014 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3015 tp->undo_marker = 0;
3016 tcp_set_ca_state(sk, TCP_CA_Open);
3018 break;
3020 case TCP_CA_Recovery:
3021 if (tcp_is_reno(tp))
3022 tcp_reset_reno_sack(tp);
3023 if (tcp_try_undo_recovery(sk))
3024 return;
3025 tcp_complete_cwr(sk);
3026 break;
3030 /* F. Process state. */
3031 switch (icsk->icsk_ca_state) {
3032 case TCP_CA_Recovery:
3033 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3034 if (tcp_is_reno(tp) && is_dupack)
3035 tcp_add_reno_sack(sk);
3036 } else
3037 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038 break;
3039 case TCP_CA_Loss:
3040 if (flag & FLAG_DATA_ACKED)
3041 icsk->icsk_retransmits = 0;
3042 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3043 tcp_reset_reno_sack(tp);
3044 if (!tcp_try_undo_loss(sk)) {
3045 tcp_moderate_cwnd(tp);
3046 tcp_xmit_retransmit_queue(sk);
3047 return;
3049 if (icsk->icsk_ca_state != TCP_CA_Open)
3050 return;
3051 /* Loss is undone; fall through to processing in Open state. */
3052 default:
3053 if (tcp_is_reno(tp)) {
3054 if (flag & FLAG_SND_UNA_ADVANCED)
3055 tcp_reset_reno_sack(tp);
3056 if (is_dupack)
3057 tcp_add_reno_sack(sk);
3060 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3061 tcp_try_undo_dsack(sk);
3063 if (!tcp_time_to_recover(sk)) {
3064 tcp_try_to_open(sk, flag);
3065 return;
3068 /* MTU probe failure: don't reduce cwnd */
3069 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3070 icsk->icsk_mtup.probe_size &&
3071 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3072 tcp_mtup_probe_failed(sk);
3073 /* Restores the reduction we did in tcp_mtup_probe() */
3074 tp->snd_cwnd++;
3075 tcp_simple_retransmit(sk);
3076 return;
3079 /* Otherwise enter Recovery state */
3081 if (tcp_is_reno(tp))
3082 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3083 else
3084 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3086 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3088 tp->high_seq = tp->snd_nxt;
3089 tp->prior_ssthresh = 0;
3090 tp->undo_marker = tp->snd_una;
3091 tp->undo_retrans = tp->retrans_out;
3093 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3094 if (!(flag & FLAG_ECE))
3095 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3096 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3097 TCP_ECN_queue_cwr(tp);
3100 tp->bytes_acked = 0;
3101 tp->snd_cwnd_cnt = 0;
3102 tcp_set_ca_state(sk, TCP_CA_Recovery);
3103 fast_rexmit = 1;
3106 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3107 tcp_update_scoreboard(sk, fast_rexmit);
3108 tcp_cwnd_down(sk, flag);
3109 tcp_xmit_retransmit_queue(sk);
3112 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3114 tcp_rtt_estimator(sk, seq_rtt);
3115 tcp_set_rto(sk);
3116 inet_csk(sk)->icsk_backoff = 0;
3119 /* Read draft-ietf-tcplw-high-performance before mucking
3120 * with this code. (Supersedes RFC1323)
3122 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3124 /* RTTM Rule: A TSecr value received in a segment is used to
3125 * update the averaged RTT measurement only if the segment
3126 * acknowledges some new data, i.e., only if it advances the
3127 * left edge of the send window.
3129 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132 * Changed: reset backoff as soon as we see the first valid sample.
3133 * If we do not, we get strongly overestimated rto. With timestamps
3134 * samples are accepted even from very old segments: f.e., when rtt=1
3135 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136 * answer arrives rto becomes 120 seconds! If at least one of segments
3137 * in window is lost... Voila. --ANK (010210)
3139 struct tcp_sock *tp = tcp_sk(sk);
3141 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3144 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3146 /* We don't have a timestamp. Can only use
3147 * packets that are not retransmitted to determine
3148 * rtt estimates. Also, we must not reset the
3149 * backoff for rto until we get a non-retransmitted
3150 * packet. This allows us to deal with a situation
3151 * where the network delay has increased suddenly.
3152 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3155 if (flag & FLAG_RETRANS_DATA_ACKED)
3156 return;
3158 tcp_valid_rtt_meas(sk, seq_rtt);
3161 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3162 const s32 seq_rtt)
3164 const struct tcp_sock *tp = tcp_sk(sk);
3165 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3167 tcp_ack_saw_tstamp(sk, flag);
3168 else if (seq_rtt >= 0)
3169 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3172 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3174 const struct inet_connection_sock *icsk = inet_csk(sk);
3175 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3176 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3179 /* Restart timer after forward progress on connection.
3180 * RFC2988 recommends to restart timer to now+rto.
3182 static void tcp_rearm_rto(struct sock *sk)
3184 struct tcp_sock *tp = tcp_sk(sk);
3186 if (!tp->packets_out) {
3187 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3188 } else {
3189 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3190 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3194 /* If we get here, the whole TSO packet has not been acked. */
3195 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197 struct tcp_sock *tp = tcp_sk(sk);
3198 u32 packets_acked;
3200 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202 packets_acked = tcp_skb_pcount(skb);
3203 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3204 return 0;
3205 packets_acked -= tcp_skb_pcount(skb);
3207 if (packets_acked) {
3208 BUG_ON(tcp_skb_pcount(skb) == 0);
3209 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3212 return packets_acked;
3215 /* Remove acknowledged frames from the retransmission queue. If our packet
3216 * is before the ack sequence we can discard it as it's confirmed to have
3217 * arrived at the other end.
3219 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3220 u32 prior_snd_una)
3222 struct tcp_sock *tp = tcp_sk(sk);
3223 const struct inet_connection_sock *icsk = inet_csk(sk);
3224 struct sk_buff *skb;
3225 u32 now = tcp_time_stamp;
3226 int fully_acked = 1;
3227 int flag = 0;
3228 u32 pkts_acked = 0;
3229 u32 reord = tp->packets_out;
3230 u32 prior_sacked = tp->sacked_out;
3231 s32 seq_rtt = -1;
3232 s32 ca_seq_rtt = -1;
3233 ktime_t last_ackt = net_invalid_timestamp();
3235 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3236 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3237 u32 acked_pcount;
3238 u8 sacked = scb->sacked;
3240 /* Determine how many packets and what bytes were acked, tso and else */
3241 if (after(scb->end_seq, tp->snd_una)) {
3242 if (tcp_skb_pcount(skb) == 1 ||
3243 !after(tp->snd_una, scb->seq))
3244 break;
3246 acked_pcount = tcp_tso_acked(sk, skb);
3247 if (!acked_pcount)
3248 break;
3250 fully_acked = 0;
3251 } else {
3252 acked_pcount = tcp_skb_pcount(skb);
3255 if (sacked & TCPCB_RETRANS) {
3256 if (sacked & TCPCB_SACKED_RETRANS)
3257 tp->retrans_out -= acked_pcount;
3258 flag |= FLAG_RETRANS_DATA_ACKED;
3259 ca_seq_rtt = -1;
3260 seq_rtt = -1;
3261 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3262 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3263 } else {
3264 ca_seq_rtt = now - scb->when;
3265 last_ackt = skb->tstamp;
3266 if (seq_rtt < 0) {
3267 seq_rtt = ca_seq_rtt;
3269 if (!(sacked & TCPCB_SACKED_ACKED))
3270 reord = min(pkts_acked, reord);
3273 if (sacked & TCPCB_SACKED_ACKED)
3274 tp->sacked_out -= acked_pcount;
3275 if (sacked & TCPCB_LOST)
3276 tp->lost_out -= acked_pcount;
3278 tp->packets_out -= acked_pcount;
3279 pkts_acked += acked_pcount;
3281 /* Initial outgoing SYN's get put onto the write_queue
3282 * just like anything else we transmit. It is not
3283 * true data, and if we misinform our callers that
3284 * this ACK acks real data, we will erroneously exit
3285 * connection startup slow start one packet too
3286 * quickly. This is severely frowned upon behavior.
3288 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3289 flag |= FLAG_DATA_ACKED;
3290 } else {
3291 flag |= FLAG_SYN_ACKED;
3292 tp->retrans_stamp = 0;
3295 if (!fully_acked)
3296 break;
3298 tcp_unlink_write_queue(skb, sk);
3299 sk_wmem_free_skb(sk, skb);
3300 tp->scoreboard_skb_hint = NULL;
3301 if (skb == tp->retransmit_skb_hint)
3302 tp->retransmit_skb_hint = NULL;
3303 if (skb == tp->lost_skb_hint)
3304 tp->lost_skb_hint = NULL;
3307 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3308 tp->snd_up = tp->snd_una;
3310 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3311 flag |= FLAG_SACK_RENEGING;
3313 if (flag & FLAG_ACKED) {
3314 const struct tcp_congestion_ops *ca_ops
3315 = inet_csk(sk)->icsk_ca_ops;
3317 if (unlikely(icsk->icsk_mtup.probe_size &&
3318 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3319 tcp_mtup_probe_success(sk);
3322 tcp_ack_update_rtt(sk, flag, seq_rtt);
3323 tcp_rearm_rto(sk);
3325 if (tcp_is_reno(tp)) {
3326 tcp_remove_reno_sacks(sk, pkts_acked);
3327 } else {
3328 int delta;
3330 /* Non-retransmitted hole got filled? That's reordering */
3331 if (reord < prior_fackets)
3332 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3334 delta = tcp_is_fack(tp) ? pkts_acked :
3335 prior_sacked - tp->sacked_out;
3336 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3339 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3341 if (ca_ops->pkts_acked) {
3342 s32 rtt_us = -1;
3344 /* Is the ACK triggering packet unambiguous? */
3345 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3346 /* High resolution needed and available? */
3347 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3348 !ktime_equal(last_ackt,
3349 net_invalid_timestamp()))
3350 rtt_us = ktime_us_delta(ktime_get_real(),
3351 last_ackt);
3352 else if (ca_seq_rtt > 0)
3353 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3356 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3360 #if FASTRETRANS_DEBUG > 0
3361 WARN_ON((int)tp->sacked_out < 0);
3362 WARN_ON((int)tp->lost_out < 0);
3363 WARN_ON((int)tp->retrans_out < 0);
3364 if (!tp->packets_out && tcp_is_sack(tp)) {
3365 icsk = inet_csk(sk);
3366 if (tp->lost_out) {
3367 printk(KERN_DEBUG "Leak l=%u %d\n",
3368 tp->lost_out, icsk->icsk_ca_state);
3369 tp->lost_out = 0;
3371 if (tp->sacked_out) {
3372 printk(KERN_DEBUG "Leak s=%u %d\n",
3373 tp->sacked_out, icsk->icsk_ca_state);
3374 tp->sacked_out = 0;
3376 if (tp->retrans_out) {
3377 printk(KERN_DEBUG "Leak r=%u %d\n",
3378 tp->retrans_out, icsk->icsk_ca_state);
3379 tp->retrans_out = 0;
3382 #endif
3383 return flag;
3386 static void tcp_ack_probe(struct sock *sk)
3388 const struct tcp_sock *tp = tcp_sk(sk);
3389 struct inet_connection_sock *icsk = inet_csk(sk);
3391 /* Was it a usable window open? */
3393 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3394 icsk->icsk_backoff = 0;
3395 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3396 /* Socket must be waked up by subsequent tcp_data_snd_check().
3397 * This function is not for random using!
3399 } else {
3400 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3401 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3402 TCP_RTO_MAX);
3406 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3408 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3409 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3412 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3414 const struct tcp_sock *tp = tcp_sk(sk);
3415 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3416 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3419 /* Check that window update is acceptable.
3420 * The function assumes that snd_una<=ack<=snd_next.
3422 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3423 const u32 ack, const u32 ack_seq,
3424 const u32 nwin)
3426 return (after(ack, tp->snd_una) ||
3427 after(ack_seq, tp->snd_wl1) ||
3428 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3431 /* Update our send window.
3433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3437 u32 ack_seq)
3439 struct tcp_sock *tp = tcp_sk(sk);
3440 int flag = 0;
3441 u32 nwin = ntohs(tcp_hdr(skb)->window);
3443 if (likely(!tcp_hdr(skb)->syn))
3444 nwin <<= tp->rx_opt.snd_wscale;
3446 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3447 flag |= FLAG_WIN_UPDATE;
3448 tcp_update_wl(tp, ack_seq);
3450 if (tp->snd_wnd != nwin) {
3451 tp->snd_wnd = nwin;
3453 /* Note, it is the only place, where
3454 * fast path is recovered for sending TCP.
3456 tp->pred_flags = 0;
3457 tcp_fast_path_check(sk);
3459 if (nwin > tp->max_window) {
3460 tp->max_window = nwin;
3461 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3466 tp->snd_una = ack;
3468 return flag;
3471 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3472 * continue in congestion avoidance.
3474 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3476 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3477 tp->snd_cwnd_cnt = 0;
3478 tp->bytes_acked = 0;
3479 TCP_ECN_queue_cwr(tp);
3480 tcp_moderate_cwnd(tp);
3483 /* A conservative spurious RTO response algorithm: reduce cwnd using
3484 * rate halving and continue in congestion avoidance.
3486 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3488 tcp_enter_cwr(sk, 0);
3491 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3493 if (flag & FLAG_ECE)
3494 tcp_ratehalving_spur_to_response(sk);
3495 else
3496 tcp_undo_cwr(sk, 1);
3499 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503 * window (but not to or beyond highest sequence sent before RTO):
3504 * On First ACK, send two new segments out.
3505 * On Second ACK, RTO was likely spurious. Do spurious response (response
3506 * algorithm is not part of the F-RTO detection algorithm
3507 * given in RFC4138 but can be selected separately).
3508 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514 * original window even after we transmit two new data segments.
3516 * SACK version:
3517 * on first step, wait until first cumulative ACK arrives, then move to
3518 * the second step. In second step, the next ACK decides.
3520 * F-RTO is implemented (mainly) in four functions:
3521 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523 * called when tcp_use_frto() showed green light
3524 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525 * - tcp_enter_frto_loss() is called if there is not enough evidence
3526 * to prove that the RTO is indeed spurious. It transfers the control
3527 * from F-RTO to the conventional RTO recovery
3529 static int tcp_process_frto(struct sock *sk, int flag)
3531 struct tcp_sock *tp = tcp_sk(sk);
3533 tcp_verify_left_out(tp);
3535 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3536 if (flag & FLAG_DATA_ACKED)
3537 inet_csk(sk)->icsk_retransmits = 0;
3539 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3540 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3541 tp->undo_marker = 0;
3543 if (!before(tp->snd_una, tp->frto_highmark)) {
3544 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3545 return 1;
3548 if (!tcp_is_sackfrto(tp)) {
3549 /* RFC4138 shortcoming in step 2; should also have case c):
3550 * ACK isn't duplicate nor advances window, e.g., opposite dir
3551 * data, winupdate
3553 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3554 return 1;
3556 if (!(flag & FLAG_DATA_ACKED)) {
3557 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3558 flag);
3559 return 1;
3561 } else {
3562 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3563 /* Prevent sending of new data. */
3564 tp->snd_cwnd = min(tp->snd_cwnd,
3565 tcp_packets_in_flight(tp));
3566 return 1;
3569 if ((tp->frto_counter >= 2) &&
3570 (!(flag & FLAG_FORWARD_PROGRESS) ||
3571 ((flag & FLAG_DATA_SACKED) &&
3572 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3573 /* RFC4138 shortcoming (see comment above) */
3574 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3575 (flag & FLAG_NOT_DUP))
3576 return 1;
3578 tcp_enter_frto_loss(sk, 3, flag);
3579 return 1;
3583 if (tp->frto_counter == 1) {
3584 /* tcp_may_send_now needs to see updated state */
3585 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3586 tp->frto_counter = 2;
3588 if (!tcp_may_send_now(sk))
3589 tcp_enter_frto_loss(sk, 2, flag);
3591 return 1;
3592 } else {
3593 switch (sysctl_tcp_frto_response) {
3594 case 2:
3595 tcp_undo_spur_to_response(sk, flag);
3596 break;
3597 case 1:
3598 tcp_conservative_spur_to_response(tp);
3599 break;
3600 default:
3601 tcp_ratehalving_spur_to_response(sk);
3602 break;
3604 tp->frto_counter = 0;
3605 tp->undo_marker = 0;
3606 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3608 return 0;
3611 /* This routine deals with incoming acks, but not outgoing ones. */
3612 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3614 struct inet_connection_sock *icsk = inet_csk(sk);
3615 struct tcp_sock *tp = tcp_sk(sk);
3616 u32 prior_snd_una = tp->snd_una;
3617 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3618 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3619 u32 prior_in_flight;
3620 u32 prior_fackets;
3621 int prior_packets;
3622 int frto_cwnd = 0;
3624 /* If the ack is older than previous acks
3625 * then we can probably ignore it.
3627 if (before(ack, prior_snd_una))
3628 goto old_ack;
3630 /* If the ack includes data we haven't sent yet, discard
3631 * this segment (RFC793 Section 3.9).
3633 if (after(ack, tp->snd_nxt))
3634 goto invalid_ack;
3636 if (after(ack, prior_snd_una))
3637 flag |= FLAG_SND_UNA_ADVANCED;
3639 if (sysctl_tcp_abc) {
3640 if (icsk->icsk_ca_state < TCP_CA_CWR)
3641 tp->bytes_acked += ack - prior_snd_una;
3642 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3643 /* we assume just one segment left network */
3644 tp->bytes_acked += min(ack - prior_snd_una,
3645 tp->mss_cache);
3648 prior_fackets = tp->fackets_out;
3649 prior_in_flight = tcp_packets_in_flight(tp);
3651 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3652 /* Window is constant, pure forward advance.
3653 * No more checks are required.
3654 * Note, we use the fact that SND.UNA>=SND.WL2.
3656 tcp_update_wl(tp, ack_seq);
3657 tp->snd_una = ack;
3658 flag |= FLAG_WIN_UPDATE;
3660 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3662 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3663 } else {
3664 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665 flag |= FLAG_DATA;
3666 else
3667 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3669 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3671 if (TCP_SKB_CB(skb)->sacked)
3672 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3674 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3675 flag |= FLAG_ECE;
3677 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3680 /* We passed data and got it acked, remove any soft error
3681 * log. Something worked...
3683 sk->sk_err_soft = 0;
3684 icsk->icsk_probes_out = 0;
3685 tp->rcv_tstamp = tcp_time_stamp;
3686 prior_packets = tp->packets_out;
3687 if (!prior_packets)
3688 goto no_queue;
3690 /* See if we can take anything off of the retransmit queue. */
3691 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3693 if (tp->frto_counter)
3694 frto_cwnd = tcp_process_frto(sk, flag);
3695 /* Guarantee sacktag reordering detection against wrap-arounds */
3696 if (before(tp->frto_highmark, tp->snd_una))
3697 tp->frto_highmark = 0;
3699 if (tcp_ack_is_dubious(sk, flag)) {
3700 /* Advance CWND, if state allows this. */
3701 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3702 tcp_may_raise_cwnd(sk, flag))
3703 tcp_cong_avoid(sk, ack, prior_in_flight);
3704 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3705 flag);
3706 } else {
3707 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3708 tcp_cong_avoid(sk, ack, prior_in_flight);
3711 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712 dst_confirm(sk->sk_dst_cache);
3714 return 1;
3716 no_queue:
3717 /* If this ack opens up a zero window, clear backoff. It was
3718 * being used to time the probes, and is probably far higher than
3719 * it needs to be for normal retransmission.
3721 if (tcp_send_head(sk))
3722 tcp_ack_probe(sk);
3723 return 1;
3725 invalid_ack:
3726 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727 return -1;
3729 old_ack:
3730 if (TCP_SKB_CB(skb)->sacked) {
3731 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3732 if (icsk->icsk_ca_state == TCP_CA_Open)
3733 tcp_try_keep_open(sk);
3736 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3737 return 0;
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3744 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3745 u8 **hvpp, int estab)
3747 unsigned char *ptr;
3748 struct tcphdr *th = tcp_hdr(skb);
3749 int length = (th->doff * 4) - sizeof(struct tcphdr);
3751 ptr = (unsigned char *)(th + 1);
3752 opt_rx->saw_tstamp = 0;
3754 while (length > 0) {
3755 int opcode = *ptr++;
3756 int opsize;
3758 switch (opcode) {
3759 case TCPOPT_EOL:
3760 return;
3761 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3762 length--;
3763 continue;
3764 default:
3765 opsize = *ptr++;
3766 if (opsize < 2) /* "silly options" */
3767 return;
3768 if (opsize > length)
3769 return; /* don't parse partial options */
3770 switch (opcode) {
3771 case TCPOPT_MSS:
3772 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 u16 in_mss = get_unaligned_be16(ptr);
3774 if (in_mss) {
3775 if (opt_rx->user_mss &&
3776 opt_rx->user_mss < in_mss)
3777 in_mss = opt_rx->user_mss;
3778 opt_rx->mss_clamp = in_mss;
3781 break;
3782 case TCPOPT_WINDOW:
3783 if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 !estab && sysctl_tcp_window_scaling) {
3785 __u8 snd_wscale = *(__u8 *)ptr;
3786 opt_rx->wscale_ok = 1;
3787 if (snd_wscale > 14) {
3788 if (net_ratelimit())
3789 printk(KERN_INFO "tcp_parse_options: Illegal window "
3790 "scaling value %d >14 received.\n",
3791 snd_wscale);
3792 snd_wscale = 14;
3794 opt_rx->snd_wscale = snd_wscale;
3796 break;
3797 case TCPOPT_TIMESTAMP:
3798 if ((opsize == TCPOLEN_TIMESTAMP) &&
3799 ((estab && opt_rx->tstamp_ok) ||
3800 (!estab && sysctl_tcp_timestamps))) {
3801 opt_rx->saw_tstamp = 1;
3802 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3803 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805 break;
3806 case TCPOPT_SACK_PERM:
3807 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3808 !estab && sysctl_tcp_sack) {
3809 opt_rx->sack_ok = 1;
3810 tcp_sack_reset(opt_rx);
3812 break;
3814 case TCPOPT_SACK:
3815 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3816 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3817 opt_rx->sack_ok) {
3818 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820 break;
3821 #ifdef CONFIG_TCP_MD5SIG
3822 case TCPOPT_MD5SIG:
3824 * The MD5 Hash has already been
3825 * checked (see tcp_v{4,6}_do_rcv()).
3827 break;
3828 #endif
3829 case TCPOPT_COOKIE:
3830 /* This option is variable length.
3832 switch (opsize) {
3833 case TCPOLEN_COOKIE_BASE:
3834 /* not yet implemented */
3835 break;
3836 case TCPOLEN_COOKIE_PAIR:
3837 /* not yet implemented */
3838 break;
3839 case TCPOLEN_COOKIE_MIN+0:
3840 case TCPOLEN_COOKIE_MIN+2:
3841 case TCPOLEN_COOKIE_MIN+4:
3842 case TCPOLEN_COOKIE_MIN+6:
3843 case TCPOLEN_COOKIE_MAX:
3844 /* 16-bit multiple */
3845 opt_rx->cookie_plus = opsize;
3846 *hvpp = ptr;
3847 default:
3848 /* ignore option */
3849 break;
3851 break;
3854 ptr += opsize-2;
3855 length -= opsize;
3860 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3862 __be32 *ptr = (__be32 *)(th + 1);
3864 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3865 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3866 tp->rx_opt.saw_tstamp = 1;
3867 ++ptr;
3868 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3869 ++ptr;
3870 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3871 return 1;
3873 return 0;
3876 /* Fast parse options. This hopes to only see timestamps.
3877 * If it is wrong it falls back on tcp_parse_options().
3879 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3880 struct tcp_sock *tp, u8 **hvpp)
3882 /* In the spirit of fast parsing, compare doff directly to constant
3883 * values. Because equality is used, short doff can be ignored here.
3885 if (th->doff == (sizeof(*th) / 4)) {
3886 tp->rx_opt.saw_tstamp = 0;
3887 return 0;
3888 } else if (tp->rx_opt.tstamp_ok &&
3889 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3890 if (tcp_parse_aligned_timestamp(tp, th))
3891 return 1;
3893 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3894 return 1;
3897 #ifdef CONFIG_TCP_MD5SIG
3899 * Parse MD5 Signature option
3901 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3903 int length = (th->doff << 2) - sizeof (*th);
3904 u8 *ptr = (u8*)(th + 1);
3906 /* If the TCP option is too short, we can short cut */
3907 if (length < TCPOLEN_MD5SIG)
3908 return NULL;
3910 while (length > 0) {
3911 int opcode = *ptr++;
3912 int opsize;
3914 switch(opcode) {
3915 case TCPOPT_EOL:
3916 return NULL;
3917 case TCPOPT_NOP:
3918 length--;
3919 continue;
3920 default:
3921 opsize = *ptr++;
3922 if (opsize < 2 || opsize > length)
3923 return NULL;
3924 if (opcode == TCPOPT_MD5SIG)
3925 return ptr;
3927 ptr += opsize - 2;
3928 length -= opsize;
3930 return NULL;
3932 #endif
3934 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3936 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3937 tp->rx_opt.ts_recent_stamp = get_seconds();
3940 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3942 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3943 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3944 * extra check below makes sure this can only happen
3945 * for pure ACK frames. -DaveM
3947 * Not only, also it occurs for expired timestamps.
3950 if (tcp_paws_check(&tp->rx_opt, 0))
3951 tcp_store_ts_recent(tp);
3955 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3957 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3958 * it can pass through stack. So, the following predicate verifies that
3959 * this segment is not used for anything but congestion avoidance or
3960 * fast retransmit. Moreover, we even are able to eliminate most of such
3961 * second order effects, if we apply some small "replay" window (~RTO)
3962 * to timestamp space.
3964 * All these measures still do not guarantee that we reject wrapped ACKs
3965 * on networks with high bandwidth, when sequence space is recycled fastly,
3966 * but it guarantees that such events will be very rare and do not affect
3967 * connection seriously. This doesn't look nice, but alas, PAWS is really
3968 * buggy extension.
3970 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3971 * states that events when retransmit arrives after original data are rare.
3972 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3973 * the biggest problem on large power networks even with minor reordering.
3974 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3975 * up to bandwidth of 18Gigabit/sec. 8) ]
3978 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3980 struct tcp_sock *tp = tcp_sk(sk);
3981 struct tcphdr *th = tcp_hdr(skb);
3982 u32 seq = TCP_SKB_CB(skb)->seq;
3983 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3985 return (/* 1. Pure ACK with correct sequence number. */
3986 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3988 /* 2. ... and duplicate ACK. */
3989 ack == tp->snd_una &&
3991 /* 3. ... and does not update window. */
3992 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3994 /* 4. ... and sits in replay window. */
3995 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3998 static inline int tcp_paws_discard(const struct sock *sk,
3999 const struct sk_buff *skb)
4001 const struct tcp_sock *tp = tcp_sk(sk);
4003 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4004 !tcp_disordered_ack(sk, skb);
4007 /* Check segment sequence number for validity.
4009 * Segment controls are considered valid, if the segment
4010 * fits to the window after truncation to the window. Acceptability
4011 * of data (and SYN, FIN, of course) is checked separately.
4012 * See tcp_data_queue(), for example.
4014 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4015 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4016 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4017 * (borrowed from freebsd)
4020 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4022 return !before(end_seq, tp->rcv_wup) &&
4023 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4026 /* When we get a reset we do this. */
4027 static void tcp_reset(struct sock *sk)
4029 /* We want the right error as BSD sees it (and indeed as we do). */
4030 switch (sk->sk_state) {
4031 case TCP_SYN_SENT:
4032 sk->sk_err = ECONNREFUSED;
4033 break;
4034 case TCP_CLOSE_WAIT:
4035 sk->sk_err = EPIPE;
4036 break;
4037 case TCP_CLOSE:
4038 return;
4039 default:
4040 sk->sk_err = ECONNRESET;
4043 if (!sock_flag(sk, SOCK_DEAD))
4044 sk->sk_error_report(sk);
4046 tcp_done(sk);
4050 * Process the FIN bit. This now behaves as it is supposed to work
4051 * and the FIN takes effect when it is validly part of sequence
4052 * space. Not before when we get holes.
4054 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4055 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4056 * TIME-WAIT)
4058 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4059 * close and we go into CLOSING (and later onto TIME-WAIT)
4061 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4063 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4065 struct tcp_sock *tp = tcp_sk(sk);
4067 inet_csk_schedule_ack(sk);
4069 sk->sk_shutdown |= RCV_SHUTDOWN;
4070 sock_set_flag(sk, SOCK_DONE);
4072 switch (sk->sk_state) {
4073 case TCP_SYN_RECV:
4074 case TCP_ESTABLISHED:
4075 /* Move to CLOSE_WAIT */
4076 tcp_set_state(sk, TCP_CLOSE_WAIT);
4077 inet_csk(sk)->icsk_ack.pingpong = 1;
4078 break;
4080 case TCP_CLOSE_WAIT:
4081 case TCP_CLOSING:
4082 /* Received a retransmission of the FIN, do
4083 * nothing.
4085 break;
4086 case TCP_LAST_ACK:
4087 /* RFC793: Remain in the LAST-ACK state. */
4088 break;
4090 case TCP_FIN_WAIT1:
4091 /* This case occurs when a simultaneous close
4092 * happens, we must ack the received FIN and
4093 * enter the CLOSING state.
4095 tcp_send_ack(sk);
4096 tcp_set_state(sk, TCP_CLOSING);
4097 break;
4098 case TCP_FIN_WAIT2:
4099 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4100 tcp_send_ack(sk);
4101 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4102 break;
4103 default:
4104 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4105 * cases we should never reach this piece of code.
4107 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4108 __func__, sk->sk_state);
4109 break;
4112 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4113 * Probably, we should reset in this case. For now drop them.
4115 __skb_queue_purge(&tp->out_of_order_queue);
4116 if (tcp_is_sack(tp))
4117 tcp_sack_reset(&tp->rx_opt);
4118 sk_mem_reclaim(sk);
4120 if (!sock_flag(sk, SOCK_DEAD)) {
4121 sk->sk_state_change(sk);
4123 /* Do not send POLL_HUP for half duplex close. */
4124 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4125 sk->sk_state == TCP_CLOSE)
4126 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4127 else
4128 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4132 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4133 u32 end_seq)
4135 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4136 if (before(seq, sp->start_seq))
4137 sp->start_seq = seq;
4138 if (after(end_seq, sp->end_seq))
4139 sp->end_seq = end_seq;
4140 return 1;
4142 return 0;
4145 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4147 struct tcp_sock *tp = tcp_sk(sk);
4149 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4150 int mib_idx;
4152 if (before(seq, tp->rcv_nxt))
4153 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4154 else
4155 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4157 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4159 tp->rx_opt.dsack = 1;
4160 tp->duplicate_sack[0].start_seq = seq;
4161 tp->duplicate_sack[0].end_seq = end_seq;
4165 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4167 struct tcp_sock *tp = tcp_sk(sk);
4169 if (!tp->rx_opt.dsack)
4170 tcp_dsack_set(sk, seq, end_seq);
4171 else
4172 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4175 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4177 struct tcp_sock *tp = tcp_sk(sk);
4179 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4180 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4181 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4182 tcp_enter_quickack_mode(sk);
4184 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4185 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4187 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4188 end_seq = tp->rcv_nxt;
4189 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4193 tcp_send_ack(sk);
4196 /* These routines update the SACK block as out-of-order packets arrive or
4197 * in-order packets close up the sequence space.
4199 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4201 int this_sack;
4202 struct tcp_sack_block *sp = &tp->selective_acks[0];
4203 struct tcp_sack_block *swalk = sp + 1;
4205 /* See if the recent change to the first SACK eats into
4206 * or hits the sequence space of other SACK blocks, if so coalesce.
4208 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4209 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4210 int i;
4212 /* Zap SWALK, by moving every further SACK up by one slot.
4213 * Decrease num_sacks.
4215 tp->rx_opt.num_sacks--;
4216 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4217 sp[i] = sp[i + 1];
4218 continue;
4220 this_sack++, swalk++;
4224 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4226 struct tcp_sock *tp = tcp_sk(sk);
4227 struct tcp_sack_block *sp = &tp->selective_acks[0];
4228 int cur_sacks = tp->rx_opt.num_sacks;
4229 int this_sack;
4231 if (!cur_sacks)
4232 goto new_sack;
4234 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4235 if (tcp_sack_extend(sp, seq, end_seq)) {
4236 /* Rotate this_sack to the first one. */
4237 for (; this_sack > 0; this_sack--, sp--)
4238 swap(*sp, *(sp - 1));
4239 if (cur_sacks > 1)
4240 tcp_sack_maybe_coalesce(tp);
4241 return;
4245 /* Could not find an adjacent existing SACK, build a new one,
4246 * put it at the front, and shift everyone else down. We
4247 * always know there is at least one SACK present already here.
4249 * If the sack array is full, forget about the last one.
4251 if (this_sack >= TCP_NUM_SACKS) {
4252 this_sack--;
4253 tp->rx_opt.num_sacks--;
4254 sp--;
4256 for (; this_sack > 0; this_sack--, sp--)
4257 *sp = *(sp - 1);
4259 new_sack:
4260 /* Build the new head SACK, and we're done. */
4261 sp->start_seq = seq;
4262 sp->end_seq = end_seq;
4263 tp->rx_opt.num_sacks++;
4266 /* RCV.NXT advances, some SACKs should be eaten. */
4268 static void tcp_sack_remove(struct tcp_sock *tp)
4270 struct tcp_sack_block *sp = &tp->selective_acks[0];
4271 int num_sacks = tp->rx_opt.num_sacks;
4272 int this_sack;
4274 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4275 if (skb_queue_empty(&tp->out_of_order_queue)) {
4276 tp->rx_opt.num_sacks = 0;
4277 return;
4280 for (this_sack = 0; this_sack < num_sacks;) {
4281 /* Check if the start of the sack is covered by RCV.NXT. */
4282 if (!before(tp->rcv_nxt, sp->start_seq)) {
4283 int i;
4285 /* RCV.NXT must cover all the block! */
4286 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4288 /* Zap this SACK, by moving forward any other SACKS. */
4289 for (i=this_sack+1; i < num_sacks; i++)
4290 tp->selective_acks[i-1] = tp->selective_acks[i];
4291 num_sacks--;
4292 continue;
4294 this_sack++;
4295 sp++;
4297 tp->rx_opt.num_sacks = num_sacks;
4300 /* This one checks to see if we can put data from the
4301 * out_of_order queue into the receive_queue.
4303 static void tcp_ofo_queue(struct sock *sk)
4305 struct tcp_sock *tp = tcp_sk(sk);
4306 __u32 dsack_high = tp->rcv_nxt;
4307 struct sk_buff *skb;
4309 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4310 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4311 break;
4313 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4314 __u32 dsack = dsack_high;
4315 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4316 dsack_high = TCP_SKB_CB(skb)->end_seq;
4317 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4320 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4321 SOCK_DEBUG(sk, "ofo packet was already received \n");
4322 __skb_unlink(skb, &tp->out_of_order_queue);
4323 __kfree_skb(skb);
4324 continue;
4326 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4327 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4328 TCP_SKB_CB(skb)->end_seq);
4330 __skb_unlink(skb, &tp->out_of_order_queue);
4331 __skb_queue_tail(&sk->sk_receive_queue, skb);
4332 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4333 if (tcp_hdr(skb)->fin)
4334 tcp_fin(skb, sk, tcp_hdr(skb));
4338 static int tcp_prune_ofo_queue(struct sock *sk);
4339 static int tcp_prune_queue(struct sock *sk);
4341 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4343 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4344 !sk_rmem_schedule(sk, size)) {
4346 if (tcp_prune_queue(sk) < 0)
4347 return -1;
4349 if (!sk_rmem_schedule(sk, size)) {
4350 if (!tcp_prune_ofo_queue(sk))
4351 return -1;
4353 if (!sk_rmem_schedule(sk, size))
4354 return -1;
4357 return 0;
4360 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4362 struct tcphdr *th = tcp_hdr(skb);
4363 struct tcp_sock *tp = tcp_sk(sk);
4364 int eaten = -1;
4366 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4367 goto drop;
4369 __skb_pull(skb, th->doff * 4);
4371 TCP_ECN_accept_cwr(tp, skb);
4373 tp->rx_opt.dsack = 0;
4375 /* Queue data for delivery to the user.
4376 * Packets in sequence go to the receive queue.
4377 * Out of sequence packets to the out_of_order_queue.
4379 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4380 if (tcp_receive_window(tp) == 0)
4381 goto out_of_window;
4383 /* Ok. In sequence. In window. */
4384 if (tp->ucopy.task == current &&
4385 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4386 sock_owned_by_user(sk) && !tp->urg_data) {
4387 int chunk = min_t(unsigned int, skb->len,
4388 tp->ucopy.len);
4390 __set_current_state(TASK_RUNNING);
4392 local_bh_enable();
4393 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4394 tp->ucopy.len -= chunk;
4395 tp->copied_seq += chunk;
4396 eaten = (chunk == skb->len && !th->fin);
4397 tcp_rcv_space_adjust(sk);
4399 local_bh_disable();
4402 if (eaten <= 0) {
4403 queue_and_out:
4404 if (eaten < 0 &&
4405 tcp_try_rmem_schedule(sk, skb->truesize))
4406 goto drop;
4408 skb_set_owner_r(skb, sk);
4409 __skb_queue_tail(&sk->sk_receive_queue, skb);
4411 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4412 if (skb->len)
4413 tcp_event_data_recv(sk, skb);
4414 if (th->fin)
4415 tcp_fin(skb, sk, th);
4417 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4418 tcp_ofo_queue(sk);
4420 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4421 * gap in queue is filled.
4423 if (skb_queue_empty(&tp->out_of_order_queue))
4424 inet_csk(sk)->icsk_ack.pingpong = 0;
4427 if (tp->rx_opt.num_sacks)
4428 tcp_sack_remove(tp);
4430 tcp_fast_path_check(sk);
4432 if (eaten > 0)
4433 __kfree_skb(skb);
4434 else if (!sock_flag(sk, SOCK_DEAD))
4435 sk->sk_data_ready(sk, 0);
4436 return;
4439 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4440 /* A retransmit, 2nd most common case. Force an immediate ack. */
4441 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4442 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4444 out_of_window:
4445 tcp_enter_quickack_mode(sk);
4446 inet_csk_schedule_ack(sk);
4447 drop:
4448 __kfree_skb(skb);
4449 return;
4452 /* Out of window. F.e. zero window probe. */
4453 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4454 goto out_of_window;
4456 tcp_enter_quickack_mode(sk);
4458 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4459 /* Partial packet, seq < rcv_next < end_seq */
4460 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4461 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4462 TCP_SKB_CB(skb)->end_seq);
4464 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4466 /* If window is closed, drop tail of packet. But after
4467 * remembering D-SACK for its head made in previous line.
4469 if (!tcp_receive_window(tp))
4470 goto out_of_window;
4471 goto queue_and_out;
4474 TCP_ECN_check_ce(tp, skb);
4476 if (tcp_try_rmem_schedule(sk, skb->truesize))
4477 goto drop;
4479 /* Disable header prediction. */
4480 tp->pred_flags = 0;
4481 inet_csk_schedule_ack(sk);
4483 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4484 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4486 skb_set_owner_r(skb, sk);
4488 if (!skb_peek(&tp->out_of_order_queue)) {
4489 /* Initial out of order segment, build 1 SACK. */
4490 if (tcp_is_sack(tp)) {
4491 tp->rx_opt.num_sacks = 1;
4492 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4493 tp->selective_acks[0].end_seq =
4494 TCP_SKB_CB(skb)->end_seq;
4496 __skb_queue_head(&tp->out_of_order_queue, skb);
4497 } else {
4498 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4499 u32 seq = TCP_SKB_CB(skb)->seq;
4500 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4502 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4503 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4505 if (!tp->rx_opt.num_sacks ||
4506 tp->selective_acks[0].end_seq != seq)
4507 goto add_sack;
4509 /* Common case: data arrive in order after hole. */
4510 tp->selective_acks[0].end_seq = end_seq;
4511 return;
4514 /* Find place to insert this segment. */
4515 while (1) {
4516 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4517 break;
4518 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4519 skb1 = NULL;
4520 break;
4522 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4525 /* Do skb overlap to previous one? */
4526 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4527 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4528 /* All the bits are present. Drop. */
4529 __kfree_skb(skb);
4530 tcp_dsack_set(sk, seq, end_seq);
4531 goto add_sack;
4533 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4534 /* Partial overlap. */
4535 tcp_dsack_set(sk, seq,
4536 TCP_SKB_CB(skb1)->end_seq);
4537 } else {
4538 if (skb_queue_is_first(&tp->out_of_order_queue,
4539 skb1))
4540 skb1 = NULL;
4541 else
4542 skb1 = skb_queue_prev(
4543 &tp->out_of_order_queue,
4544 skb1);
4547 if (!skb1)
4548 __skb_queue_head(&tp->out_of_order_queue, skb);
4549 else
4550 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4552 /* And clean segments covered by new one as whole. */
4553 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4554 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4556 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4557 break;
4558 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4559 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4560 end_seq);
4561 break;
4563 __skb_unlink(skb1, &tp->out_of_order_queue);
4564 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4565 TCP_SKB_CB(skb1)->end_seq);
4566 __kfree_skb(skb1);
4569 add_sack:
4570 if (tcp_is_sack(tp))
4571 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4575 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4576 struct sk_buff_head *list)
4578 struct sk_buff *next = NULL;
4580 if (!skb_queue_is_last(list, skb))
4581 next = skb_queue_next(list, skb);
4583 __skb_unlink(skb, list);
4584 __kfree_skb(skb);
4585 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4587 return next;
4590 /* Collapse contiguous sequence of skbs head..tail with
4591 * sequence numbers start..end.
4593 * If tail is NULL, this means until the end of the list.
4595 * Segments with FIN/SYN are not collapsed (only because this
4596 * simplifies code)
4598 static void
4599 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4600 struct sk_buff *head, struct sk_buff *tail,
4601 u32 start, u32 end)
4603 struct sk_buff *skb, *n;
4604 bool end_of_skbs;
4606 /* First, check that queue is collapsible and find
4607 * the point where collapsing can be useful. */
4608 skb = head;
4609 restart:
4610 end_of_skbs = true;
4611 skb_queue_walk_from_safe(list, skb, n) {
4612 if (skb == tail)
4613 break;
4614 /* No new bits? It is possible on ofo queue. */
4615 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4616 skb = tcp_collapse_one(sk, skb, list);
4617 if (!skb)
4618 break;
4619 goto restart;
4622 /* The first skb to collapse is:
4623 * - not SYN/FIN and
4624 * - bloated or contains data before "start" or
4625 * overlaps to the next one.
4627 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4628 (tcp_win_from_space(skb->truesize) > skb->len ||
4629 before(TCP_SKB_CB(skb)->seq, start))) {
4630 end_of_skbs = false;
4631 break;
4634 if (!skb_queue_is_last(list, skb)) {
4635 struct sk_buff *next = skb_queue_next(list, skb);
4636 if (next != tail &&
4637 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4638 end_of_skbs = false;
4639 break;
4643 /* Decided to skip this, advance start seq. */
4644 start = TCP_SKB_CB(skb)->end_seq;
4646 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4647 return;
4649 while (before(start, end)) {
4650 struct sk_buff *nskb;
4651 unsigned int header = skb_headroom(skb);
4652 int copy = SKB_MAX_ORDER(header, 0);
4654 /* Too big header? This can happen with IPv6. */
4655 if (copy < 0)
4656 return;
4657 if (end - start < copy)
4658 copy = end - start;
4659 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4660 if (!nskb)
4661 return;
4663 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4664 skb_set_network_header(nskb, (skb_network_header(skb) -
4665 skb->head));
4666 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4667 skb->head));
4668 skb_reserve(nskb, header);
4669 memcpy(nskb->head, skb->head, header);
4670 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4671 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4672 __skb_queue_before(list, skb, nskb);
4673 skb_set_owner_r(nskb, sk);
4675 /* Copy data, releasing collapsed skbs. */
4676 while (copy > 0) {
4677 int offset = start - TCP_SKB_CB(skb)->seq;
4678 int size = TCP_SKB_CB(skb)->end_seq - start;
4680 BUG_ON(offset < 0);
4681 if (size > 0) {
4682 size = min(copy, size);
4683 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4684 BUG();
4685 TCP_SKB_CB(nskb)->end_seq += size;
4686 copy -= size;
4687 start += size;
4689 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4690 skb = tcp_collapse_one(sk, skb, list);
4691 if (!skb ||
4692 skb == tail ||
4693 tcp_hdr(skb)->syn ||
4694 tcp_hdr(skb)->fin)
4695 return;
4701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4702 * and tcp_collapse() them until all the queue is collapsed.
4704 static void tcp_collapse_ofo_queue(struct sock *sk)
4706 struct tcp_sock *tp = tcp_sk(sk);
4707 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4708 struct sk_buff *head;
4709 u32 start, end;
4711 if (skb == NULL)
4712 return;
4714 start = TCP_SKB_CB(skb)->seq;
4715 end = TCP_SKB_CB(skb)->end_seq;
4716 head = skb;
4718 for (;;) {
4719 struct sk_buff *next = NULL;
4721 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4722 next = skb_queue_next(&tp->out_of_order_queue, skb);
4723 skb = next;
4725 /* Segment is terminated when we see gap or when
4726 * we are at the end of all the queue. */
4727 if (!skb ||
4728 after(TCP_SKB_CB(skb)->seq, end) ||
4729 before(TCP_SKB_CB(skb)->end_seq, start)) {
4730 tcp_collapse(sk, &tp->out_of_order_queue,
4731 head, skb, start, end);
4732 head = skb;
4733 if (!skb)
4734 break;
4735 /* Start new segment */
4736 start = TCP_SKB_CB(skb)->seq;
4737 end = TCP_SKB_CB(skb)->end_seq;
4738 } else {
4739 if (before(TCP_SKB_CB(skb)->seq, start))
4740 start = TCP_SKB_CB(skb)->seq;
4741 if (after(TCP_SKB_CB(skb)->end_seq, end))
4742 end = TCP_SKB_CB(skb)->end_seq;
4748 * Purge the out-of-order queue.
4749 * Return true if queue was pruned.
4751 static int tcp_prune_ofo_queue(struct sock *sk)
4753 struct tcp_sock *tp = tcp_sk(sk);
4754 int res = 0;
4756 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4757 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4758 __skb_queue_purge(&tp->out_of_order_queue);
4760 /* Reset SACK state. A conforming SACK implementation will
4761 * do the same at a timeout based retransmit. When a connection
4762 * is in a sad state like this, we care only about integrity
4763 * of the connection not performance.
4765 if (tp->rx_opt.sack_ok)
4766 tcp_sack_reset(&tp->rx_opt);
4767 sk_mem_reclaim(sk);
4768 res = 1;
4770 return res;
4773 /* Reduce allocated memory if we can, trying to get
4774 * the socket within its memory limits again.
4776 * Return less than zero if we should start dropping frames
4777 * until the socket owning process reads some of the data
4778 * to stabilize the situation.
4780 static int tcp_prune_queue(struct sock *sk)
4782 struct tcp_sock *tp = tcp_sk(sk);
4784 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4786 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4788 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4789 tcp_clamp_window(sk);
4790 else if (tcp_memory_pressure)
4791 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4793 tcp_collapse_ofo_queue(sk);
4794 if (!skb_queue_empty(&sk->sk_receive_queue))
4795 tcp_collapse(sk, &sk->sk_receive_queue,
4796 skb_peek(&sk->sk_receive_queue),
4797 NULL,
4798 tp->copied_seq, tp->rcv_nxt);
4799 sk_mem_reclaim(sk);
4801 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4802 return 0;
4804 /* Collapsing did not help, destructive actions follow.
4805 * This must not ever occur. */
4807 tcp_prune_ofo_queue(sk);
4809 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4810 return 0;
4812 /* If we are really being abused, tell the caller to silently
4813 * drop receive data on the floor. It will get retransmitted
4814 * and hopefully then we'll have sufficient space.
4816 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4818 /* Massive buffer overcommit. */
4819 tp->pred_flags = 0;
4820 return -1;
4823 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4824 * As additional protections, we do not touch cwnd in retransmission phases,
4825 * and if application hit its sndbuf limit recently.
4827 void tcp_cwnd_application_limited(struct sock *sk)
4829 struct tcp_sock *tp = tcp_sk(sk);
4831 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4832 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4833 /* Limited by application or receiver window. */
4834 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4835 u32 win_used = max(tp->snd_cwnd_used, init_win);
4836 if (win_used < tp->snd_cwnd) {
4837 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4838 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4840 tp->snd_cwnd_used = 0;
4842 tp->snd_cwnd_stamp = tcp_time_stamp;
4845 static int tcp_should_expand_sndbuf(struct sock *sk)
4847 struct tcp_sock *tp = tcp_sk(sk);
4849 /* If the user specified a specific send buffer setting, do
4850 * not modify it.
4852 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4853 return 0;
4855 /* If we are under global TCP memory pressure, do not expand. */
4856 if (tcp_memory_pressure)
4857 return 0;
4859 /* If we are under soft global TCP memory pressure, do not expand. */
4860 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4861 return 0;
4863 /* If we filled the congestion window, do not expand. */
4864 if (tp->packets_out >= tp->snd_cwnd)
4865 return 0;
4867 return 1;
4870 /* When incoming ACK allowed to free some skb from write_queue,
4871 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4872 * on the exit from tcp input handler.
4874 * PROBLEM: sndbuf expansion does not work well with largesend.
4876 static void tcp_new_space(struct sock *sk)
4878 struct tcp_sock *tp = tcp_sk(sk);
4880 if (tcp_should_expand_sndbuf(sk)) {
4881 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4882 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4883 int demanded = max_t(unsigned int, tp->snd_cwnd,
4884 tp->reordering + 1);
4885 sndmem *= 2 * demanded;
4886 if (sndmem > sk->sk_sndbuf)
4887 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4888 tp->snd_cwnd_stamp = tcp_time_stamp;
4891 sk->sk_write_space(sk);
4894 static void tcp_check_space(struct sock *sk)
4896 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4897 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4898 if (sk->sk_socket &&
4899 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4900 tcp_new_space(sk);
4904 static inline void tcp_data_snd_check(struct sock *sk)
4906 tcp_push_pending_frames(sk);
4907 tcp_check_space(sk);
4911 * Check if sending an ack is needed.
4913 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4915 struct tcp_sock *tp = tcp_sk(sk);
4917 /* More than one full frame received... */
4918 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4919 /* ... and right edge of window advances far enough.
4920 * (tcp_recvmsg() will send ACK otherwise). Or...
4922 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4923 /* We ACK each frame or... */
4924 tcp_in_quickack_mode(sk) ||
4925 /* We have out of order data. */
4926 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4927 /* Then ack it now */
4928 tcp_send_ack(sk);
4929 } else {
4930 /* Else, send delayed ack. */
4931 tcp_send_delayed_ack(sk);
4935 static inline void tcp_ack_snd_check(struct sock *sk)
4937 if (!inet_csk_ack_scheduled(sk)) {
4938 /* We sent a data segment already. */
4939 return;
4941 __tcp_ack_snd_check(sk, 1);
4945 * This routine is only called when we have urgent data
4946 * signaled. Its the 'slow' part of tcp_urg. It could be
4947 * moved inline now as tcp_urg is only called from one
4948 * place. We handle URGent data wrong. We have to - as
4949 * BSD still doesn't use the correction from RFC961.
4950 * For 1003.1g we should support a new option TCP_STDURG to permit
4951 * either form (or just set the sysctl tcp_stdurg).
4954 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4956 struct tcp_sock *tp = tcp_sk(sk);
4957 u32 ptr = ntohs(th->urg_ptr);
4959 if (ptr && !sysctl_tcp_stdurg)
4960 ptr--;
4961 ptr += ntohl(th->seq);
4963 /* Ignore urgent data that we've already seen and read. */
4964 if (after(tp->copied_seq, ptr))
4965 return;
4967 /* Do not replay urg ptr.
4969 * NOTE: interesting situation not covered by specs.
4970 * Misbehaving sender may send urg ptr, pointing to segment,
4971 * which we already have in ofo queue. We are not able to fetch
4972 * such data and will stay in TCP_URG_NOTYET until will be eaten
4973 * by recvmsg(). Seems, we are not obliged to handle such wicked
4974 * situations. But it is worth to think about possibility of some
4975 * DoSes using some hypothetical application level deadlock.
4977 if (before(ptr, tp->rcv_nxt))
4978 return;
4980 /* Do we already have a newer (or duplicate) urgent pointer? */
4981 if (tp->urg_data && !after(ptr, tp->urg_seq))
4982 return;
4984 /* Tell the world about our new urgent pointer. */
4985 sk_send_sigurg(sk);
4987 /* We may be adding urgent data when the last byte read was
4988 * urgent. To do this requires some care. We cannot just ignore
4989 * tp->copied_seq since we would read the last urgent byte again
4990 * as data, nor can we alter copied_seq until this data arrives
4991 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4993 * NOTE. Double Dutch. Rendering to plain English: author of comment
4994 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4995 * and expect that both A and B disappear from stream. This is _wrong_.
4996 * Though this happens in BSD with high probability, this is occasional.
4997 * Any application relying on this is buggy. Note also, that fix "works"
4998 * only in this artificial test. Insert some normal data between A and B and we will
4999 * decline of BSD again. Verdict: it is better to remove to trap
5000 * buggy users.
5002 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5003 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5004 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5005 tp->copied_seq++;
5006 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5007 __skb_unlink(skb, &sk->sk_receive_queue);
5008 __kfree_skb(skb);
5012 tp->urg_data = TCP_URG_NOTYET;
5013 tp->urg_seq = ptr;
5015 /* Disable header prediction. */
5016 tp->pred_flags = 0;
5019 /* This is the 'fast' part of urgent handling. */
5020 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5022 struct tcp_sock *tp = tcp_sk(sk);
5024 /* Check if we get a new urgent pointer - normally not. */
5025 if (th->urg)
5026 tcp_check_urg(sk, th);
5028 /* Do we wait for any urgent data? - normally not... */
5029 if (tp->urg_data == TCP_URG_NOTYET) {
5030 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5031 th->syn;
5033 /* Is the urgent pointer pointing into this packet? */
5034 if (ptr < skb->len) {
5035 u8 tmp;
5036 if (skb_copy_bits(skb, ptr, &tmp, 1))
5037 BUG();
5038 tp->urg_data = TCP_URG_VALID | tmp;
5039 if (!sock_flag(sk, SOCK_DEAD))
5040 sk->sk_data_ready(sk, 0);
5045 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5047 struct tcp_sock *tp = tcp_sk(sk);
5048 int chunk = skb->len - hlen;
5049 int err;
5051 local_bh_enable();
5052 if (skb_csum_unnecessary(skb))
5053 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5054 else
5055 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5056 tp->ucopy.iov);
5058 if (!err) {
5059 tp->ucopy.len -= chunk;
5060 tp->copied_seq += chunk;
5061 tcp_rcv_space_adjust(sk);
5064 local_bh_disable();
5065 return err;
5068 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5069 struct sk_buff *skb)
5071 __sum16 result;
5073 if (sock_owned_by_user(sk)) {
5074 local_bh_enable();
5075 result = __tcp_checksum_complete(skb);
5076 local_bh_disable();
5077 } else {
5078 result = __tcp_checksum_complete(skb);
5080 return result;
5083 static inline int tcp_checksum_complete_user(struct sock *sk,
5084 struct sk_buff *skb)
5086 return !skb_csum_unnecessary(skb) &&
5087 __tcp_checksum_complete_user(sk, skb);
5090 #ifdef CONFIG_NET_DMA
5091 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5092 int hlen)
5094 struct tcp_sock *tp = tcp_sk(sk);
5095 int chunk = skb->len - hlen;
5096 int dma_cookie;
5097 int copied_early = 0;
5099 if (tp->ucopy.wakeup)
5100 return 0;
5102 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5103 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5105 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5107 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5108 skb, hlen,
5109 tp->ucopy.iov, chunk,
5110 tp->ucopy.pinned_list);
5112 if (dma_cookie < 0)
5113 goto out;
5115 tp->ucopy.dma_cookie = dma_cookie;
5116 copied_early = 1;
5118 tp->ucopy.len -= chunk;
5119 tp->copied_seq += chunk;
5120 tcp_rcv_space_adjust(sk);
5122 if ((tp->ucopy.len == 0) ||
5123 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5124 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5125 tp->ucopy.wakeup = 1;
5126 sk->sk_data_ready(sk, 0);
5128 } else if (chunk > 0) {
5129 tp->ucopy.wakeup = 1;
5130 sk->sk_data_ready(sk, 0);
5132 out:
5133 return copied_early;
5135 #endif /* CONFIG_NET_DMA */
5137 /* Does PAWS and seqno based validation of an incoming segment, flags will
5138 * play significant role here.
5140 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5141 struct tcphdr *th, int syn_inerr)
5143 u8 *hash_location;
5144 struct tcp_sock *tp = tcp_sk(sk);
5146 /* RFC1323: H1. Apply PAWS check first. */
5147 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5148 tp->rx_opt.saw_tstamp &&
5149 tcp_paws_discard(sk, skb)) {
5150 if (!th->rst) {
5151 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5152 tcp_send_dupack(sk, skb);
5153 goto discard;
5155 /* Reset is accepted even if it did not pass PAWS. */
5158 /* Step 1: check sequence number */
5159 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5160 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5161 * (RST) segments are validated by checking their SEQ-fields."
5162 * And page 69: "If an incoming segment is not acceptable,
5163 * an acknowledgment should be sent in reply (unless the RST
5164 * bit is set, if so drop the segment and return)".
5166 if (!th->rst)
5167 tcp_send_dupack(sk, skb);
5168 goto discard;
5171 /* Step 2: check RST bit */
5172 if (th->rst) {
5173 tcp_reset(sk);
5174 goto discard;
5177 /* ts_recent update must be made after we are sure that the packet
5178 * is in window.
5180 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5182 /* step 3: check security and precedence [ignored] */
5184 /* step 4: Check for a SYN in window. */
5185 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5186 if (syn_inerr)
5187 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5188 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5189 tcp_reset(sk);
5190 return -1;
5193 return 1;
5195 discard:
5196 __kfree_skb(skb);
5197 return 0;
5201 * TCP receive function for the ESTABLISHED state.
5203 * It is split into a fast path and a slow path. The fast path is
5204 * disabled when:
5205 * - A zero window was announced from us - zero window probing
5206 * is only handled properly in the slow path.
5207 * - Out of order segments arrived.
5208 * - Urgent data is expected.
5209 * - There is no buffer space left
5210 * - Unexpected TCP flags/window values/header lengths are received
5211 * (detected by checking the TCP header against pred_flags)
5212 * - Data is sent in both directions. Fast path only supports pure senders
5213 * or pure receivers (this means either the sequence number or the ack
5214 * value must stay constant)
5215 * - Unexpected TCP option.
5217 * When these conditions are not satisfied it drops into a standard
5218 * receive procedure patterned after RFC793 to handle all cases.
5219 * The first three cases are guaranteed by proper pred_flags setting,
5220 * the rest is checked inline. Fast processing is turned on in
5221 * tcp_data_queue when everything is OK.
5223 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5224 struct tcphdr *th, unsigned len)
5226 struct tcp_sock *tp = tcp_sk(sk);
5227 int res;
5230 * Header prediction.
5231 * The code loosely follows the one in the famous
5232 * "30 instruction TCP receive" Van Jacobson mail.
5234 * Van's trick is to deposit buffers into socket queue
5235 * on a device interrupt, to call tcp_recv function
5236 * on the receive process context and checksum and copy
5237 * the buffer to user space. smart...
5239 * Our current scheme is not silly either but we take the
5240 * extra cost of the net_bh soft interrupt processing...
5241 * We do checksum and copy also but from device to kernel.
5244 tp->rx_opt.saw_tstamp = 0;
5246 /* pred_flags is 0xS?10 << 16 + snd_wnd
5247 * if header_prediction is to be made
5248 * 'S' will always be tp->tcp_header_len >> 2
5249 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5250 * turn it off (when there are holes in the receive
5251 * space for instance)
5252 * PSH flag is ignored.
5255 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5256 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5257 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5258 int tcp_header_len = tp->tcp_header_len;
5260 /* Timestamp header prediction: tcp_header_len
5261 * is automatically equal to th->doff*4 due to pred_flags
5262 * match.
5265 /* Check timestamp */
5266 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5267 /* No? Slow path! */
5268 if (!tcp_parse_aligned_timestamp(tp, th))
5269 goto slow_path;
5271 /* If PAWS failed, check it more carefully in slow path */
5272 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5273 goto slow_path;
5275 /* DO NOT update ts_recent here, if checksum fails
5276 * and timestamp was corrupted part, it will result
5277 * in a hung connection since we will drop all
5278 * future packets due to the PAWS test.
5282 if (len <= tcp_header_len) {
5283 /* Bulk data transfer: sender */
5284 if (len == tcp_header_len) {
5285 /* Predicted packet is in window by definition.
5286 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5287 * Hence, check seq<=rcv_wup reduces to:
5289 if (tcp_header_len ==
5290 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5291 tp->rcv_nxt == tp->rcv_wup)
5292 tcp_store_ts_recent(tp);
5294 /* We know that such packets are checksummed
5295 * on entry.
5297 tcp_ack(sk, skb, 0);
5298 __kfree_skb(skb);
5299 tcp_data_snd_check(sk);
5300 return 0;
5301 } else { /* Header too small */
5302 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5303 goto discard;
5305 } else {
5306 int eaten = 0;
5307 int copied_early = 0;
5309 if (tp->copied_seq == tp->rcv_nxt &&
5310 len - tcp_header_len <= tp->ucopy.len) {
5311 #ifdef CONFIG_NET_DMA
5312 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5313 copied_early = 1;
5314 eaten = 1;
5316 #endif
5317 if (tp->ucopy.task == current &&
5318 sock_owned_by_user(sk) && !copied_early) {
5319 __set_current_state(TASK_RUNNING);
5321 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5322 eaten = 1;
5324 if (eaten) {
5325 /* Predicted packet is in window by definition.
5326 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5327 * Hence, check seq<=rcv_wup reduces to:
5329 if (tcp_header_len ==
5330 (sizeof(struct tcphdr) +
5331 TCPOLEN_TSTAMP_ALIGNED) &&
5332 tp->rcv_nxt == tp->rcv_wup)
5333 tcp_store_ts_recent(tp);
5335 tcp_rcv_rtt_measure_ts(sk, skb);
5337 __skb_pull(skb, tcp_header_len);
5338 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5339 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5341 if (copied_early)
5342 tcp_cleanup_rbuf(sk, skb->len);
5344 if (!eaten) {
5345 if (tcp_checksum_complete_user(sk, skb))
5346 goto csum_error;
5348 /* Predicted packet is in window by definition.
5349 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5350 * Hence, check seq<=rcv_wup reduces to:
5352 if (tcp_header_len ==
5353 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5354 tp->rcv_nxt == tp->rcv_wup)
5355 tcp_store_ts_recent(tp);
5357 tcp_rcv_rtt_measure_ts(sk, skb);
5359 if ((int)skb->truesize > sk->sk_forward_alloc)
5360 goto step5;
5362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5364 /* Bulk data transfer: receiver */
5365 __skb_pull(skb, tcp_header_len);
5366 __skb_queue_tail(&sk->sk_receive_queue, skb);
5367 skb_set_owner_r(skb, sk);
5368 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5371 tcp_event_data_recv(sk, skb);
5373 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5374 /* Well, only one small jumplet in fast path... */
5375 tcp_ack(sk, skb, FLAG_DATA);
5376 tcp_data_snd_check(sk);
5377 if (!inet_csk_ack_scheduled(sk))
5378 goto no_ack;
5381 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5382 __tcp_ack_snd_check(sk, 0);
5383 no_ack:
5384 #ifdef CONFIG_NET_DMA
5385 if (copied_early)
5386 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5387 else
5388 #endif
5389 if (eaten)
5390 __kfree_skb(skb);
5391 else
5392 sk->sk_data_ready(sk, 0);
5393 return 0;
5397 slow_path:
5398 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5399 goto csum_error;
5402 * Standard slow path.
5405 res = tcp_validate_incoming(sk, skb, th, 1);
5406 if (res <= 0)
5407 return -res;
5409 step5:
5410 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5411 goto discard;
5413 tcp_rcv_rtt_measure_ts(sk, skb);
5415 /* Process urgent data. */
5416 tcp_urg(sk, skb, th);
5418 /* step 7: process the segment text */
5419 tcp_data_queue(sk, skb);
5421 tcp_data_snd_check(sk);
5422 tcp_ack_snd_check(sk);
5423 return 0;
5425 csum_error:
5426 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5428 discard:
5429 __kfree_skb(skb);
5430 return 0;
5433 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5434 struct tcphdr *th, unsigned len)
5436 u8 *hash_location;
5437 struct inet_connection_sock *icsk = inet_csk(sk);
5438 struct tcp_sock *tp = tcp_sk(sk);
5439 struct tcp_cookie_values *cvp = tp->cookie_values;
5440 int saved_clamp = tp->rx_opt.mss_clamp;
5442 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5444 if (th->ack) {
5445 /* rfc793:
5446 * "If the state is SYN-SENT then
5447 * first check the ACK bit
5448 * If the ACK bit is set
5449 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5450 * a reset (unless the RST bit is set, if so drop
5451 * the segment and return)"
5453 * We do not send data with SYN, so that RFC-correct
5454 * test reduces to:
5456 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5457 goto reset_and_undo;
5459 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5460 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5461 tcp_time_stamp)) {
5462 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5463 goto reset_and_undo;
5466 /* Now ACK is acceptable.
5468 * "If the RST bit is set
5469 * If the ACK was acceptable then signal the user "error:
5470 * connection reset", drop the segment, enter CLOSED state,
5471 * delete TCB, and return."
5474 if (th->rst) {
5475 tcp_reset(sk);
5476 goto discard;
5479 /* rfc793:
5480 * "fifth, if neither of the SYN or RST bits is set then
5481 * drop the segment and return."
5483 * See note below!
5484 * --ANK(990513)
5486 if (!th->syn)
5487 goto discard_and_undo;
5489 /* rfc793:
5490 * "If the SYN bit is on ...
5491 * are acceptable then ...
5492 * (our SYN has been ACKed), change the connection
5493 * state to ESTABLISHED..."
5496 TCP_ECN_rcv_synack(tp, th);
5498 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5499 tcp_ack(sk, skb, FLAG_SLOWPATH);
5501 /* Ok.. it's good. Set up sequence numbers and
5502 * move to established.
5504 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5505 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5507 /* RFC1323: The window in SYN & SYN/ACK segments is
5508 * never scaled.
5510 tp->snd_wnd = ntohs(th->window);
5511 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5513 if (!tp->rx_opt.wscale_ok) {
5514 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5515 tp->window_clamp = min(tp->window_clamp, 65535U);
5518 if (tp->rx_opt.saw_tstamp) {
5519 tp->rx_opt.tstamp_ok = 1;
5520 tp->tcp_header_len =
5521 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5522 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5523 tcp_store_ts_recent(tp);
5524 } else {
5525 tp->tcp_header_len = sizeof(struct tcphdr);
5528 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5529 tcp_enable_fack(tp);
5531 tcp_mtup_init(sk);
5532 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5533 tcp_initialize_rcv_mss(sk);
5535 /* Remember, tcp_poll() does not lock socket!
5536 * Change state from SYN-SENT only after copied_seq
5537 * is initialized. */
5538 tp->copied_seq = tp->rcv_nxt;
5540 if (cvp != NULL &&
5541 cvp->cookie_pair_size > 0 &&
5542 tp->rx_opt.cookie_plus > 0) {
5543 int cookie_size = tp->rx_opt.cookie_plus
5544 - TCPOLEN_COOKIE_BASE;
5545 int cookie_pair_size = cookie_size
5546 + cvp->cookie_desired;
5548 /* A cookie extension option was sent and returned.
5549 * Note that each incoming SYNACK replaces the
5550 * Responder cookie. The initial exchange is most
5551 * fragile, as protection against spoofing relies
5552 * entirely upon the sequence and timestamp (above).
5553 * This replacement strategy allows the correct pair to
5554 * pass through, while any others will be filtered via
5555 * Responder verification later.
5557 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5558 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5559 hash_location, cookie_size);
5560 cvp->cookie_pair_size = cookie_pair_size;
5564 smp_mb();
5565 tcp_set_state(sk, TCP_ESTABLISHED);
5567 security_inet_conn_established(sk, skb);
5569 /* Make sure socket is routed, for correct metrics. */
5570 icsk->icsk_af_ops->rebuild_header(sk);
5572 tcp_init_metrics(sk);
5574 tcp_init_congestion_control(sk);
5576 /* Prevent spurious tcp_cwnd_restart() on first data
5577 * packet.
5579 tp->lsndtime = tcp_time_stamp;
5581 tcp_init_buffer_space(sk);
5583 if (sock_flag(sk, SOCK_KEEPOPEN))
5584 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5586 if (!tp->rx_opt.snd_wscale)
5587 __tcp_fast_path_on(tp, tp->snd_wnd);
5588 else
5589 tp->pred_flags = 0;
5591 if (!sock_flag(sk, SOCK_DEAD)) {
5592 sk->sk_state_change(sk);
5593 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5596 if (sk->sk_write_pending ||
5597 icsk->icsk_accept_queue.rskq_defer_accept ||
5598 icsk->icsk_ack.pingpong) {
5599 /* Save one ACK. Data will be ready after
5600 * several ticks, if write_pending is set.
5602 * It may be deleted, but with this feature tcpdumps
5603 * look so _wonderfully_ clever, that I was not able
5604 * to stand against the temptation 8) --ANK
5606 inet_csk_schedule_ack(sk);
5607 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5608 icsk->icsk_ack.ato = TCP_ATO_MIN;
5609 tcp_incr_quickack(sk);
5610 tcp_enter_quickack_mode(sk);
5611 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5612 TCP_DELACK_MAX, TCP_RTO_MAX);
5614 discard:
5615 __kfree_skb(skb);
5616 return 0;
5617 } else {
5618 tcp_send_ack(sk);
5620 return -1;
5623 /* No ACK in the segment */
5625 if (th->rst) {
5626 /* rfc793:
5627 * "If the RST bit is set
5629 * Otherwise (no ACK) drop the segment and return."
5632 goto discard_and_undo;
5635 /* PAWS check. */
5636 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5637 tcp_paws_reject(&tp->rx_opt, 0))
5638 goto discard_and_undo;
5640 if (th->syn) {
5641 /* We see SYN without ACK. It is attempt of
5642 * simultaneous connect with crossed SYNs.
5643 * Particularly, it can be connect to self.
5645 tcp_set_state(sk, TCP_SYN_RECV);
5647 if (tp->rx_opt.saw_tstamp) {
5648 tp->rx_opt.tstamp_ok = 1;
5649 tcp_store_ts_recent(tp);
5650 tp->tcp_header_len =
5651 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5652 } else {
5653 tp->tcp_header_len = sizeof(struct tcphdr);
5656 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5657 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5659 /* RFC1323: The window in SYN & SYN/ACK segments is
5660 * never scaled.
5662 tp->snd_wnd = ntohs(th->window);
5663 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5664 tp->max_window = tp->snd_wnd;
5666 TCP_ECN_rcv_syn(tp, th);
5668 tcp_mtup_init(sk);
5669 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5670 tcp_initialize_rcv_mss(sk);
5672 tcp_send_synack(sk);
5673 #if 0
5674 /* Note, we could accept data and URG from this segment.
5675 * There are no obstacles to make this.
5677 * However, if we ignore data in ACKless segments sometimes,
5678 * we have no reasons to accept it sometimes.
5679 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5680 * is not flawless. So, discard packet for sanity.
5681 * Uncomment this return to process the data.
5683 return -1;
5684 #else
5685 goto discard;
5686 #endif
5688 /* "fifth, if neither of the SYN or RST bits is set then
5689 * drop the segment and return."
5692 discard_and_undo:
5693 tcp_clear_options(&tp->rx_opt);
5694 tp->rx_opt.mss_clamp = saved_clamp;
5695 goto discard;
5697 reset_and_undo:
5698 tcp_clear_options(&tp->rx_opt);
5699 tp->rx_opt.mss_clamp = saved_clamp;
5700 return 1;
5704 * This function implements the receiving procedure of RFC 793 for
5705 * all states except ESTABLISHED and TIME_WAIT.
5706 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5707 * address independent.
5710 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5711 struct tcphdr *th, unsigned len)
5713 struct tcp_sock *tp = tcp_sk(sk);
5714 struct inet_connection_sock *icsk = inet_csk(sk);
5715 int queued = 0;
5716 int res;
5718 tp->rx_opt.saw_tstamp = 0;
5720 switch (sk->sk_state) {
5721 case TCP_CLOSE:
5722 goto discard;
5724 case TCP_LISTEN:
5725 if (th->ack)
5726 return 1;
5728 if (th->rst)
5729 goto discard;
5731 if (th->syn) {
5732 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5733 return 1;
5735 /* Now we have several options: In theory there is
5736 * nothing else in the frame. KA9Q has an option to
5737 * send data with the syn, BSD accepts data with the
5738 * syn up to the [to be] advertised window and
5739 * Solaris 2.1 gives you a protocol error. For now
5740 * we just ignore it, that fits the spec precisely
5741 * and avoids incompatibilities. It would be nice in
5742 * future to drop through and process the data.
5744 * Now that TTCP is starting to be used we ought to
5745 * queue this data.
5746 * But, this leaves one open to an easy denial of
5747 * service attack, and SYN cookies can't defend
5748 * against this problem. So, we drop the data
5749 * in the interest of security over speed unless
5750 * it's still in use.
5752 kfree_skb(skb);
5753 return 0;
5755 goto discard;
5757 case TCP_SYN_SENT:
5758 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5759 if (queued >= 0)
5760 return queued;
5762 /* Do step6 onward by hand. */
5763 tcp_urg(sk, skb, th);
5764 __kfree_skb(skb);
5765 tcp_data_snd_check(sk);
5766 return 0;
5769 res = tcp_validate_incoming(sk, skb, th, 0);
5770 if (res <= 0)
5771 return -res;
5773 /* step 5: check the ACK field */
5774 if (th->ack) {
5775 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5777 switch (sk->sk_state) {
5778 case TCP_SYN_RECV:
5779 if (acceptable) {
5780 tp->copied_seq = tp->rcv_nxt;
5781 smp_mb();
5782 tcp_set_state(sk, TCP_ESTABLISHED);
5783 sk->sk_state_change(sk);
5785 /* Note, that this wakeup is only for marginal
5786 * crossed SYN case. Passively open sockets
5787 * are not waked up, because sk->sk_sleep ==
5788 * NULL and sk->sk_socket == NULL.
5790 if (sk->sk_socket)
5791 sk_wake_async(sk,
5792 SOCK_WAKE_IO, POLL_OUT);
5794 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5795 tp->snd_wnd = ntohs(th->window) <<
5796 tp->rx_opt.snd_wscale;
5797 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5799 /* tcp_ack considers this ACK as duplicate
5800 * and does not calculate rtt.
5801 * Force it here.
5803 tcp_ack_update_rtt(sk, 0, 0);
5805 if (tp->rx_opt.tstamp_ok)
5806 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5808 /* Make sure socket is routed, for
5809 * correct metrics.
5811 icsk->icsk_af_ops->rebuild_header(sk);
5813 tcp_init_metrics(sk);
5815 tcp_init_congestion_control(sk);
5817 /* Prevent spurious tcp_cwnd_restart() on
5818 * first data packet.
5820 tp->lsndtime = tcp_time_stamp;
5822 tcp_mtup_init(sk);
5823 tcp_initialize_rcv_mss(sk);
5824 tcp_init_buffer_space(sk);
5825 tcp_fast_path_on(tp);
5826 } else {
5827 return 1;
5829 break;
5831 case TCP_FIN_WAIT1:
5832 if (tp->snd_una == tp->write_seq) {
5833 tcp_set_state(sk, TCP_FIN_WAIT2);
5834 sk->sk_shutdown |= SEND_SHUTDOWN;
5835 dst_confirm(sk->sk_dst_cache);
5837 if (!sock_flag(sk, SOCK_DEAD))
5838 /* Wake up lingering close() */
5839 sk->sk_state_change(sk);
5840 else {
5841 int tmo;
5843 if (tp->linger2 < 0 ||
5844 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5845 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5846 tcp_done(sk);
5847 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5848 return 1;
5851 tmo = tcp_fin_time(sk);
5852 if (tmo > TCP_TIMEWAIT_LEN) {
5853 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5854 } else if (th->fin || sock_owned_by_user(sk)) {
5855 /* Bad case. We could lose such FIN otherwise.
5856 * It is not a big problem, but it looks confusing
5857 * and not so rare event. We still can lose it now,
5858 * if it spins in bh_lock_sock(), but it is really
5859 * marginal case.
5861 inet_csk_reset_keepalive_timer(sk, tmo);
5862 } else {
5863 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5864 goto discard;
5868 break;
5870 case TCP_CLOSING:
5871 if (tp->snd_una == tp->write_seq) {
5872 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5873 goto discard;
5875 break;
5877 case TCP_LAST_ACK:
5878 if (tp->snd_una == tp->write_seq) {
5879 tcp_update_metrics(sk);
5880 tcp_done(sk);
5881 goto discard;
5883 break;
5885 } else
5886 goto discard;
5888 /* step 6: check the URG bit */
5889 tcp_urg(sk, skb, th);
5891 /* step 7: process the segment text */
5892 switch (sk->sk_state) {
5893 case TCP_CLOSE_WAIT:
5894 case TCP_CLOSING:
5895 case TCP_LAST_ACK:
5896 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5897 break;
5898 case TCP_FIN_WAIT1:
5899 case TCP_FIN_WAIT2:
5900 /* RFC 793 says to queue data in these states,
5901 * RFC 1122 says we MUST send a reset.
5902 * BSD 4.4 also does reset.
5904 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5905 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5906 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5907 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5908 tcp_reset(sk);
5909 return 1;
5912 /* Fall through */
5913 case TCP_ESTABLISHED:
5914 tcp_data_queue(sk, skb);
5915 queued = 1;
5916 break;
5919 /* tcp_data could move socket to TIME-WAIT */
5920 if (sk->sk_state != TCP_CLOSE) {
5921 tcp_data_snd_check(sk);
5922 tcp_ack_snd_check(sk);
5925 if (!queued) {
5926 discard:
5927 __kfree_skb(skb);
5929 return 0;
5932 EXPORT_SYMBOL(sysctl_tcp_ecn);
5933 EXPORT_SYMBOL(sysctl_tcp_reordering);
5934 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5935 EXPORT_SYMBOL(tcp_parse_options);
5936 #ifdef CONFIG_TCP_MD5SIG
5937 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5938 #endif
5939 EXPORT_SYMBOL(tcp_rcv_established);
5940 EXPORT_SYMBOL(tcp_rcv_state_process);
5941 EXPORT_SYMBOL(tcp_initialize_rcv_mss);