2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly
= 1;
76 int sysctl_tcp_window_scaling __read_mostly
= 1;
77 int sysctl_tcp_sack __read_mostly
= 1;
78 int sysctl_tcp_fack __read_mostly
= 1;
79 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
80 int sysctl_tcp_ecn __read_mostly
= 2;
81 int sysctl_tcp_dsack __read_mostly
= 1;
82 int sysctl_tcp_app_win __read_mostly
= 31;
83 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
85 int sysctl_tcp_stdurg __read_mostly
;
86 int sysctl_tcp_rfc1337 __read_mostly
;
87 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
88 int sysctl_tcp_frto __read_mostly
= 2;
89 int sysctl_tcp_frto_response __read_mostly
;
90 int sysctl_tcp_nometrics_save __read_mostly
;
92 int sysctl_tcp_thin_dupack __read_mostly
;
94 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
95 int sysctl_tcp_abc __read_mostly
;
97 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
98 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
99 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
100 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
101 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
102 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
103 #define FLAG_ECE 0x40 /* ECE in this ACK */
104 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
105 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
106 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
107 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
108 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
109 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
110 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
112 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
113 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
114 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
115 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
116 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121 /* Adapt the MSS value used to make delayed ack decision to the
124 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
126 struct inet_connection_sock
*icsk
= inet_csk(sk
);
127 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
130 icsk
->icsk_ack
.last_seg_size
= 0;
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
135 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
136 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
137 icsk
->icsk_ack
.rcv_mss
= len
;
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
142 * "len" is invariant segment length, including TCP header.
144 len
+= skb
->data
- skb_transport_header(skb
);
145 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
151 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
152 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
157 len
-= tcp_sk(sk
)->tcp_header_len
;
158 icsk
->icsk_ack
.last_seg_size
= len
;
160 icsk
->icsk_ack
.rcv_mss
= len
;
164 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
165 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
166 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
170 static void tcp_incr_quickack(struct sock
*sk
)
172 struct inet_connection_sock
*icsk
= inet_csk(sk
);
173 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
177 if (quickacks
> icsk
->icsk_ack
.quick
)
178 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
181 void tcp_enter_quickack_mode(struct sock
*sk
)
183 struct inet_connection_sock
*icsk
= inet_csk(sk
);
184 tcp_incr_quickack(sk
);
185 icsk
->icsk_ack
.pingpong
= 0;
186 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
193 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
195 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
196 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
201 if (tp
->ecn_flags
& TCP_ECN_OK
)
202 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, struct sk_buff
*skb
)
207 if (tcp_hdr(skb
)->cwr
)
208 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
213 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
216 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, struct sk_buff
*skb
)
218 if (tp
->ecn_flags
& TCP_ECN_OK
) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb
)->flags
))
220 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb
)->flags
)))
225 tcp_enter_quickack_mode((struct sock
*)tp
);
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, struct tcphdr
*th
)
231 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
232 tp
->ecn_flags
&= ~TCP_ECN_OK
;
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, struct tcphdr
*th
)
237 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
238 tp
->ecn_flags
&= ~TCP_ECN_OK
;
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock
*tp
, struct tcphdr
*th
)
243 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
248 /* Buffer size and advertised window tuning.
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
253 static void tcp_fixup_sndbuf(struct sock
*sk
)
255 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
256 sizeof(struct sk_buff
);
258 if (sk
->sk_sndbuf
< 3 * sndmem
)
259 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
290 struct tcp_sock
*tp
= tcp_sk(sk
);
292 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
293 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
295 while (tp
->rcv_ssthresh
<= window
) {
296 if (truesize
<= skb
->len
)
297 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
305 static void tcp_grow_window(struct sock
*sk
, struct sk_buff
*skb
)
307 struct tcp_sock
*tp
= tcp_sk(sk
);
310 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
311 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
312 !tcp_memory_pressure
) {
315 /* Check #2. Increase window, if skb with such overhead
316 * will fit to rcvbuf in future.
318 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
319 incr
= 2 * tp
->advmss
;
321 incr
= __tcp_grow_window(sk
, skb
);
324 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
326 inet_csk(sk
)->icsk_ack
.quick
|= 1;
331 /* 3. Tuning rcvbuf, when connection enters established state. */
333 static void tcp_fixup_rcvbuf(struct sock
*sk
)
335 struct tcp_sock
*tp
= tcp_sk(sk
);
336 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
344 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
345 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
348 /* 4. Try to fixup all. It is made immediately after connection enters
351 static void tcp_init_buffer_space(struct sock
*sk
)
353 struct tcp_sock
*tp
= tcp_sk(sk
);
356 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
357 tcp_fixup_rcvbuf(sk
);
358 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
359 tcp_fixup_sndbuf(sk
);
361 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
363 maxwin
= tcp_full_space(sk
);
365 if (tp
->window_clamp
>= maxwin
) {
366 tp
->window_clamp
= maxwin
;
368 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
369 tp
->window_clamp
= max(maxwin
-
370 (maxwin
>> sysctl_tcp_app_win
),
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win
&&
376 tp
->window_clamp
> 2 * tp
->advmss
&&
377 tp
->window_clamp
+ tp
->advmss
> maxwin
)
378 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
380 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
381 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock
*sk
)
387 struct tcp_sock
*tp
= tcp_sk(sk
);
388 struct inet_connection_sock
*icsk
= inet_csk(sk
);
390 icsk
->icsk_ack
.quick
= 0;
392 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
393 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
394 !tcp_memory_pressure
&&
395 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0]) {
396 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
399 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
400 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
403 /* Initialize RCV_MSS value.
404 * RCV_MSS is an our guess about MSS used by the peer.
405 * We haven't any direct information about the MSS.
406 * It's better to underestimate the RCV_MSS rather than overestimate.
407 * Overestimations make us ACKing less frequently than needed.
408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 void tcp_initialize_rcv_mss(struct sock
*sk
)
412 struct tcp_sock
*tp
= tcp_sk(sk
);
413 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
415 hint
= min(hint
, tp
->rcv_wnd
/ 2);
416 hint
= min(hint
, TCP_MSS_DEFAULT
);
417 hint
= max(hint
, TCP_MIN_MSS
);
419 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
422 /* Receiver "autotuning" code.
424 * The algorithm for RTT estimation w/o timestamps is based on
425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 * More detail on this code can be found at
429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430 * though this reference is out of date. A new paper
433 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
435 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
441 if (new_sample
!= 0) {
442 /* If we sample in larger samples in the non-timestamp
443 * case, we could grossly overestimate the RTT especially
444 * with chatty applications or bulk transfer apps which
445 * are stalled on filesystem I/O.
447 * Also, since we are only going for a minimum in the
448 * non-timestamp case, we do not smooth things out
449 * else with timestamps disabled convergence takes too
453 m
-= (new_sample
>> 3);
455 } else if (m
< new_sample
)
458 /* No previous measure. */
462 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
463 tp
->rcv_rtt_est
.rtt
= new_sample
;
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
468 if (tp
->rcv_rtt_est
.time
== 0)
470 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
472 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
475 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
476 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
479 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
480 const struct sk_buff
*skb
)
482 struct tcp_sock
*tp
= tcp_sk(sk
);
483 if (tp
->rx_opt
.rcv_tsecr
&&
484 (TCP_SKB_CB(skb
)->end_seq
-
485 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
486 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
490 * This function should be called every time data is copied to user space.
491 * It calculates the appropriate TCP receive buffer space.
493 void tcp_rcv_space_adjust(struct sock
*sk
)
495 struct tcp_sock
*tp
= tcp_sk(sk
);
499 if (tp
->rcvq_space
.time
== 0)
502 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
503 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
506 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
508 space
= max(tp
->rcvq_space
.space
, space
);
510 if (tp
->rcvq_space
.space
!= space
) {
513 tp
->rcvq_space
.space
= space
;
515 if (sysctl_tcp_moderate_rcvbuf
&&
516 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
517 int new_clamp
= space
;
519 /* Receive space grows, normalize in order to
520 * take into account packet headers and sk_buff
521 * structure overhead.
526 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
527 16 + sizeof(struct sk_buff
));
528 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
531 space
= min(space
, sysctl_tcp_rmem
[2]);
532 if (space
> sk
->sk_rcvbuf
) {
533 sk
->sk_rcvbuf
= space
;
535 /* Make the window clamp follow along. */
536 tp
->window_clamp
= new_clamp
;
542 tp
->rcvq_space
.seq
= tp
->copied_seq
;
543 tp
->rcvq_space
.time
= tcp_time_stamp
;
546 /* There is something which you must keep in mind when you analyze the
547 * behavior of the tp->ato delayed ack timeout interval. When a
548 * connection starts up, we want to ack as quickly as possible. The
549 * problem is that "good" TCP's do slow start at the beginning of data
550 * transmission. The means that until we send the first few ACK's the
551 * sender will sit on his end and only queue most of his data, because
552 * he can only send snd_cwnd unacked packets at any given time. For
553 * each ACK we send, he increments snd_cwnd and transmits more of his
556 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
558 struct tcp_sock
*tp
= tcp_sk(sk
);
559 struct inet_connection_sock
*icsk
= inet_csk(sk
);
562 inet_csk_schedule_ack(sk
);
564 tcp_measure_rcv_mss(sk
, skb
);
566 tcp_rcv_rtt_measure(tp
);
568 now
= tcp_time_stamp
;
570 if (!icsk
->icsk_ack
.ato
) {
571 /* The _first_ data packet received, initialize
572 * delayed ACK engine.
574 tcp_incr_quickack(sk
);
575 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
577 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
579 if (m
<= TCP_ATO_MIN
/ 2) {
580 /* The fastest case is the first. */
581 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
582 } else if (m
< icsk
->icsk_ack
.ato
) {
583 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
584 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
585 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
586 } else if (m
> icsk
->icsk_rto
) {
587 /* Too long gap. Apparently sender failed to
588 * restart window, so that we send ACKs quickly.
590 tcp_incr_quickack(sk
);
594 icsk
->icsk_ack
.lrcvtime
= now
;
596 TCP_ECN_check_ce(tp
, skb
);
599 tcp_grow_window(sk
, skb
);
602 /* Called to compute a smoothed rtt estimate. The data fed to this
603 * routine either comes from timestamps, or from segments that were
604 * known _not_ to have been retransmitted [see Karn/Partridge
605 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
606 * piece by Van Jacobson.
607 * NOTE: the next three routines used to be one big routine.
608 * To save cycles in the RFC 1323 implementation it was better to break
609 * it up into three procedures. -- erics
611 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
613 struct tcp_sock
*tp
= tcp_sk(sk
);
614 long m
= mrtt
; /* RTT */
616 /* The following amusing code comes from Jacobson's
617 * article in SIGCOMM '88. Note that rtt and mdev
618 * are scaled versions of rtt and mean deviation.
619 * This is designed to be as fast as possible
620 * m stands for "measurement".
622 * On a 1990 paper the rto value is changed to:
623 * RTO = rtt + 4 * mdev
625 * Funny. This algorithm seems to be very broken.
626 * These formulae increase RTO, when it should be decreased, increase
627 * too slowly, when it should be increased quickly, decrease too quickly
628 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629 * does not matter how to _calculate_ it. Seems, it was trap
630 * that VJ failed to avoid. 8)
635 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
636 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
638 m
= -m
; /* m is now abs(error) */
639 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
640 /* This is similar to one of Eifel findings.
641 * Eifel blocks mdev updates when rtt decreases.
642 * This solution is a bit different: we use finer gain
643 * for mdev in this case (alpha*beta).
644 * Like Eifel it also prevents growth of rto,
645 * but also it limits too fast rto decreases,
646 * happening in pure Eifel.
651 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
653 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
654 if (tp
->mdev
> tp
->mdev_max
) {
655 tp
->mdev_max
= tp
->mdev
;
656 if (tp
->mdev_max
> tp
->rttvar
)
657 tp
->rttvar
= tp
->mdev_max
;
659 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
660 if (tp
->mdev_max
< tp
->rttvar
)
661 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
662 tp
->rtt_seq
= tp
->snd_nxt
;
663 tp
->mdev_max
= tcp_rto_min(sk
);
666 /* no previous measure. */
667 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
668 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
669 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
670 tp
->rtt_seq
= tp
->snd_nxt
;
674 /* Calculate rto without backoff. This is the second half of Van Jacobson's
675 * routine referred to above.
677 static inline void tcp_set_rto(struct sock
*sk
)
679 const struct tcp_sock
*tp
= tcp_sk(sk
);
680 /* Old crap is replaced with new one. 8)
683 * 1. If rtt variance happened to be less 50msec, it is hallucination.
684 * It cannot be less due to utterly erratic ACK generation made
685 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
686 * to do with delayed acks, because at cwnd>2 true delack timeout
687 * is invisible. Actually, Linux-2.4 also generates erratic
688 * ACKs in some circumstances.
690 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
692 /* 2. Fixups made earlier cannot be right.
693 * If we do not estimate RTO correctly without them,
694 * all the algo is pure shit and should be replaced
695 * with correct one. It is exactly, which we pretend to do.
698 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
699 * guarantees that rto is higher.
704 /* Save metrics learned by this TCP session.
705 This function is called only, when TCP finishes successfully
706 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
708 void tcp_update_metrics(struct sock
*sk
)
710 struct tcp_sock
*tp
= tcp_sk(sk
);
711 struct dst_entry
*dst
= __sk_dst_get(sk
);
713 if (sysctl_tcp_nometrics_save
)
718 if (dst
&& (dst
->flags
& DST_HOST
)) {
719 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
723 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
724 /* This session failed to estimate rtt. Why?
725 * Probably, no packets returned in time.
728 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
729 dst
->metrics
[RTAX_RTT
- 1] = 0;
733 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
736 /* If newly calculated rtt larger than stored one,
737 * store new one. Otherwise, use EWMA. Remember,
738 * rtt overestimation is always better than underestimation.
740 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
742 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
744 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
747 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
752 /* Scale deviation to rttvar fixed point */
757 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
761 var
-= (var
- m
) >> 2;
763 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
766 if (tcp_in_initial_slowstart(tp
)) {
767 /* Slow start still did not finish. */
768 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
769 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
770 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
771 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
772 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
773 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
774 dst
->metrics
[RTAX_CWND
- 1] = tp
->snd_cwnd
;
775 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
776 icsk
->icsk_ca_state
== TCP_CA_Open
) {
777 /* Cong. avoidance phase, cwnd is reliable. */
778 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
779 dst
->metrics
[RTAX_SSTHRESH
-1] =
780 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
781 if (!dst_metric_locked(dst
, RTAX_CWND
))
782 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_cwnd
) >> 1;
784 /* Else slow start did not finish, cwnd is non-sense,
785 ssthresh may be also invalid.
787 if (!dst_metric_locked(dst
, RTAX_CWND
))
788 dst
->metrics
[RTAX_CWND
-1] = (dst_metric(dst
, RTAX_CWND
) + tp
->snd_ssthresh
) >> 1;
789 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
790 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
791 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
792 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
795 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
796 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
797 tp
->reordering
!= sysctl_tcp_reordering
)
798 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
803 /* Numbers are taken from RFC3390.
805 * John Heffner states:
807 * The RFC specifies a window of no more than 4380 bytes
808 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
809 * is a bit misleading because they use a clamp at 4380 bytes
810 * rather than use a multiplier in the relevant range.
812 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
814 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
817 if (tp
->mss_cache
> 1460)
820 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
822 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
825 /* Set slow start threshold and cwnd not falling to slow start */
826 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
828 struct tcp_sock
*tp
= tcp_sk(sk
);
829 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
831 tp
->prior_ssthresh
= 0;
833 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
836 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
837 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
838 tcp_packets_in_flight(tp
) + 1U);
839 tp
->snd_cwnd_cnt
= 0;
840 tp
->high_seq
= tp
->snd_nxt
;
841 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
842 TCP_ECN_queue_cwr(tp
);
844 tcp_set_ca_state(sk
, TCP_CA_CWR
);
849 * Packet counting of FACK is based on in-order assumptions, therefore TCP
850 * disables it when reordering is detected
852 static void tcp_disable_fack(struct tcp_sock
*tp
)
854 /* RFC3517 uses different metric in lost marker => reset on change */
856 tp
->lost_skb_hint
= NULL
;
857 tp
->rx_opt
.sack_ok
&= ~2;
860 /* Take a notice that peer is sending D-SACKs */
861 static void tcp_dsack_seen(struct tcp_sock
*tp
)
863 tp
->rx_opt
.sack_ok
|= 4;
866 /* Initialize metrics on socket. */
868 static void tcp_init_metrics(struct sock
*sk
)
870 struct tcp_sock
*tp
= tcp_sk(sk
);
871 struct dst_entry
*dst
= __sk_dst_get(sk
);
878 if (dst_metric_locked(dst
, RTAX_CWND
))
879 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
880 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
881 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
882 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
883 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
885 if (dst_metric(dst
, RTAX_REORDERING
) &&
886 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
887 tcp_disable_fack(tp
);
888 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
891 if (dst_metric(dst
, RTAX_RTT
) == 0)
894 if (!tp
->srtt
&& dst_metric_rtt(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
897 /* Initial rtt is determined from SYN,SYN-ACK.
898 * The segment is small and rtt may appear much
899 * less than real one. Use per-dst memory
900 * to make it more realistic.
902 * A bit of theory. RTT is time passed after "normal" sized packet
903 * is sent until it is ACKed. In normal circumstances sending small
904 * packets force peer to delay ACKs and calculation is correct too.
905 * The algorithm is adaptive and, provided we follow specs, it
906 * NEVER underestimate RTT. BUT! If peer tries to make some clever
907 * tricks sort of "quick acks" for time long enough to decrease RTT
908 * to low value, and then abruptly stops to do it and starts to delay
909 * ACKs, wait for troubles.
911 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
912 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
913 tp
->rtt_seq
= tp
->snd_nxt
;
915 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
916 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
917 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
920 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
924 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
925 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
929 /* Play conservative. If timestamps are not
930 * supported, TCP will fail to recalculate correct
931 * rtt, if initial rto is too small. FORGET ALL AND RESET!
933 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
935 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
936 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
941 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
944 struct tcp_sock
*tp
= tcp_sk(sk
);
945 if (metric
> tp
->reordering
) {
948 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
950 /* This exciting event is worth to be remembered. 8) */
952 mib_idx
= LINUX_MIB_TCPTSREORDER
;
953 else if (tcp_is_reno(tp
))
954 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
955 else if (tcp_is_fack(tp
))
956 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
958 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
960 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
961 #if FASTRETRANS_DEBUG > 1
962 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
963 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
967 tp
->undo_marker
? tp
->undo_retrans
: 0);
969 tcp_disable_fack(tp
);
973 /* This must be called before lost_out is incremented */
974 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
976 if ((tp
->retransmit_skb_hint
== NULL
) ||
977 before(TCP_SKB_CB(skb
)->seq
,
978 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
979 tp
->retransmit_skb_hint
= skb
;
982 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
983 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
986 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
988 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
989 tcp_verify_retransmit_hint(tp
, skb
);
991 tp
->lost_out
+= tcp_skb_pcount(skb
);
992 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
996 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
999 tcp_verify_retransmit_hint(tp
, skb
);
1001 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1002 tp
->lost_out
+= tcp_skb_pcount(skb
);
1003 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1007 /* This procedure tags the retransmission queue when SACKs arrive.
1009 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1010 * Packets in queue with these bits set are counted in variables
1011 * sacked_out, retrans_out and lost_out, correspondingly.
1013 * Valid combinations are:
1014 * Tag InFlight Description
1015 * 0 1 - orig segment is in flight.
1016 * S 0 - nothing flies, orig reached receiver.
1017 * L 0 - nothing flies, orig lost by net.
1018 * R 2 - both orig and retransmit are in flight.
1019 * L|R 1 - orig is lost, retransmit is in flight.
1020 * S|R 1 - orig reached receiver, retrans is still in flight.
1021 * (L|S|R is logically valid, it could occur when L|R is sacked,
1022 * but it is equivalent to plain S and code short-curcuits it to S.
1023 * L|S is logically invalid, it would mean -1 packet in flight 8))
1025 * These 6 states form finite state machine, controlled by the following events:
1026 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1027 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1028 * 3. Loss detection event of one of three flavors:
1029 * A. Scoreboard estimator decided the packet is lost.
1030 * A'. Reno "three dupacks" marks head of queue lost.
1031 * A''. Its FACK modfication, head until snd.fack is lost.
1032 * B. SACK arrives sacking data transmitted after never retransmitted
1033 * hole was sent out.
1034 * C. SACK arrives sacking SND.NXT at the moment, when the
1035 * segment was retransmitted.
1036 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1038 * It is pleasant to note, that state diagram turns out to be commutative,
1039 * so that we are allowed not to be bothered by order of our actions,
1040 * when multiple events arrive simultaneously. (see the function below).
1042 * Reordering detection.
1043 * --------------------
1044 * Reordering metric is maximal distance, which a packet can be displaced
1045 * in packet stream. With SACKs we can estimate it:
1047 * 1. SACK fills old hole and the corresponding segment was not
1048 * ever retransmitted -> reordering. Alas, we cannot use it
1049 * when segment was retransmitted.
1050 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1051 * for retransmitted and already SACKed segment -> reordering..
1052 * Both of these heuristics are not used in Loss state, when we cannot
1053 * account for retransmits accurately.
1055 * SACK block validation.
1056 * ----------------------
1058 * SACK block range validation checks that the received SACK block fits to
1059 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1060 * Note that SND.UNA is not included to the range though being valid because
1061 * it means that the receiver is rather inconsistent with itself reporting
1062 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1063 * perfectly valid, however, in light of RFC2018 which explicitly states
1064 * that "SACK block MUST reflect the newest segment. Even if the newest
1065 * segment is going to be discarded ...", not that it looks very clever
1066 * in case of head skb. Due to potentional receiver driven attacks, we
1067 * choose to avoid immediate execution of a walk in write queue due to
1068 * reneging and defer head skb's loss recovery to standard loss recovery
1069 * procedure that will eventually trigger (nothing forbids us doing this).
1071 * Implements also blockage to start_seq wrap-around. Problem lies in the
1072 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1073 * there's no guarantee that it will be before snd_nxt (n). The problem
1074 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1077 * <- outs wnd -> <- wrapzone ->
1078 * u e n u_w e_w s n_w
1080 * |<------------+------+----- TCP seqno space --------------+---------->|
1081 * ...-- <2^31 ->| |<--------...
1082 * ...---- >2^31 ------>| |<--------...
1084 * Current code wouldn't be vulnerable but it's better still to discard such
1085 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1086 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1087 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1088 * equal to the ideal case (infinite seqno space without wrap caused issues).
1090 * With D-SACK the lower bound is extended to cover sequence space below
1091 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1092 * again, D-SACK block must not to go across snd_una (for the same reason as
1093 * for the normal SACK blocks, explained above). But there all simplicity
1094 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1095 * fully below undo_marker they do not affect behavior in anyway and can
1096 * therefore be safely ignored. In rare cases (which are more or less
1097 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1098 * fragmentation and packet reordering past skb's retransmission. To consider
1099 * them correctly, the acceptable range must be extended even more though
1100 * the exact amount is rather hard to quantify. However, tp->max_window can
1101 * be used as an exaggerated estimate.
1103 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1104 u32 start_seq
, u32 end_seq
)
1106 /* Too far in future, or reversed (interpretation is ambiguous) */
1107 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1110 /* Nasty start_seq wrap-around check (see comments above) */
1111 if (!before(start_seq
, tp
->snd_nxt
))
1114 /* In outstanding window? ...This is valid exit for D-SACKs too.
1115 * start_seq == snd_una is non-sensical (see comments above)
1117 if (after(start_seq
, tp
->snd_una
))
1120 if (!is_dsack
|| !tp
->undo_marker
)
1123 /* ...Then it's D-SACK, and must reside below snd_una completely */
1124 if (!after(end_seq
, tp
->snd_una
))
1127 if (!before(start_seq
, tp
->undo_marker
))
1131 if (!after(end_seq
, tp
->undo_marker
))
1134 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1135 * start_seq < undo_marker and end_seq >= undo_marker.
1137 return !before(start_seq
, end_seq
- tp
->max_window
);
1140 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1141 * Event "C". Later note: FACK people cheated me again 8), we have to account
1142 * for reordering! Ugly, but should help.
1144 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1145 * less than what is now known to be received by the other end (derived from
1146 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1147 * retransmitted skbs to avoid some costly processing per ACKs.
1149 static void tcp_mark_lost_retrans(struct sock
*sk
)
1151 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1152 struct tcp_sock
*tp
= tcp_sk(sk
);
1153 struct sk_buff
*skb
;
1155 u32 new_low_seq
= tp
->snd_nxt
;
1156 u32 received_upto
= tcp_highest_sack_seq(tp
);
1158 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1159 !after(received_upto
, tp
->lost_retrans_low
) ||
1160 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1163 tcp_for_write_queue(skb
, sk
) {
1164 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1166 if (skb
== tcp_send_head(sk
))
1168 if (cnt
== tp
->retrans_out
)
1170 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1173 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1176 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1177 * constraint here (see above) but figuring out that at
1178 * least tp->reordering SACK blocks reside between ack_seq
1179 * and received_upto is not easy task to do cheaply with
1180 * the available datastructures.
1182 * Whether FACK should check here for tp->reordering segs
1183 * in-between one could argue for either way (it would be
1184 * rather simple to implement as we could count fack_count
1185 * during the walk and do tp->fackets_out - fack_count).
1187 if (after(received_upto
, ack_seq
)) {
1188 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1189 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1191 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1192 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1194 if (before(ack_seq
, new_low_seq
))
1195 new_low_seq
= ack_seq
;
1196 cnt
+= tcp_skb_pcount(skb
);
1200 if (tp
->retrans_out
)
1201 tp
->lost_retrans_low
= new_low_seq
;
1204 static int tcp_check_dsack(struct sock
*sk
, struct sk_buff
*ack_skb
,
1205 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1208 struct tcp_sock
*tp
= tcp_sk(sk
);
1209 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1210 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1213 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1216 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1217 } else if (num_sacks
> 1) {
1218 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1219 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1221 if (!after(end_seq_0
, end_seq_1
) &&
1222 !before(start_seq_0
, start_seq_1
)) {
1225 NET_INC_STATS_BH(sock_net(sk
),
1226 LINUX_MIB_TCPDSACKOFORECV
);
1230 /* D-SACK for already forgotten data... Do dumb counting. */
1232 !after(end_seq_0
, prior_snd_una
) &&
1233 after(end_seq_0
, tp
->undo_marker
))
1239 struct tcp_sacktag_state
{
1245 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1246 * the incoming SACK may not exactly match but we can find smaller MSS
1247 * aligned portion of it that matches. Therefore we might need to fragment
1248 * which may fail and creates some hassle (caller must handle error case
1251 * FIXME: this could be merged to shift decision code
1253 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1254 u32 start_seq
, u32 end_seq
)
1257 unsigned int pkt_len
;
1260 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1261 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1263 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1264 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1265 mss
= tcp_skb_mss(skb
);
1266 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1269 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1273 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1278 /* Round if necessary so that SACKs cover only full MSSes
1279 * and/or the remaining small portion (if present)
1281 if (pkt_len
> mss
) {
1282 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1283 if (!in_sack
&& new_len
< pkt_len
) {
1285 if (new_len
> skb
->len
)
1290 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1298 static u8
tcp_sacktag_one(struct sk_buff
*skb
, struct sock
*sk
,
1299 struct tcp_sacktag_state
*state
,
1300 int dup_sack
, int pcount
)
1302 struct tcp_sock
*tp
= tcp_sk(sk
);
1303 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1304 int fack_count
= state
->fack_count
;
1306 /* Account D-SACK for retransmitted packet. */
1307 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1308 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
1310 if (sacked
& TCPCB_SACKED_ACKED
)
1311 state
->reord
= min(fack_count
, state
->reord
);
1314 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1318 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1319 if (sacked
& TCPCB_SACKED_RETRANS
) {
1320 /* If the segment is not tagged as lost,
1321 * we do not clear RETRANS, believing
1322 * that retransmission is still in flight.
1324 if (sacked
& TCPCB_LOST
) {
1325 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1326 tp
->lost_out
-= pcount
;
1327 tp
->retrans_out
-= pcount
;
1330 if (!(sacked
& TCPCB_RETRANS
)) {
1331 /* New sack for not retransmitted frame,
1332 * which was in hole. It is reordering.
1334 if (before(TCP_SKB_CB(skb
)->seq
,
1335 tcp_highest_sack_seq(tp
)))
1336 state
->reord
= min(fack_count
,
1339 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->frto_highmark
))
1341 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1344 if (sacked
& TCPCB_LOST
) {
1345 sacked
&= ~TCPCB_LOST
;
1346 tp
->lost_out
-= pcount
;
1350 sacked
|= TCPCB_SACKED_ACKED
;
1351 state
->flag
|= FLAG_DATA_SACKED
;
1352 tp
->sacked_out
+= pcount
;
1354 fack_count
+= pcount
;
1356 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1358 before(TCP_SKB_CB(skb
)->seq
,
1359 TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1360 tp
->lost_cnt_hint
+= pcount
;
1362 if (fack_count
> tp
->fackets_out
)
1363 tp
->fackets_out
= fack_count
;
1366 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1367 * frames and clear it. undo_retrans is decreased above, L|R frames
1368 * are accounted above as well.
1370 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1371 sacked
&= ~TCPCB_SACKED_RETRANS
;
1372 tp
->retrans_out
-= pcount
;
1378 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1379 struct tcp_sacktag_state
*state
,
1380 unsigned int pcount
, int shifted
, int mss
,
1383 struct tcp_sock
*tp
= tcp_sk(sk
);
1384 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1388 /* Tweak before seqno plays */
1389 if (!tcp_is_fack(tp
) && tcp_is_sack(tp
) && tp
->lost_skb_hint
&&
1390 !before(TCP_SKB_CB(tp
->lost_skb_hint
)->seq
, TCP_SKB_CB(skb
)->seq
))
1391 tp
->lost_cnt_hint
+= pcount
;
1393 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1394 TCP_SKB_CB(skb
)->seq
+= shifted
;
1396 skb_shinfo(prev
)->gso_segs
+= pcount
;
1397 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1398 skb_shinfo(skb
)->gso_segs
-= pcount
;
1400 /* When we're adding to gso_segs == 1, gso_size will be zero,
1401 * in theory this shouldn't be necessary but as long as DSACK
1402 * code can come after this skb later on it's better to keep
1403 * setting gso_size to something.
1405 if (!skb_shinfo(prev
)->gso_size
) {
1406 skb_shinfo(prev
)->gso_size
= mss
;
1407 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1410 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1411 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1412 skb_shinfo(skb
)->gso_size
= 0;
1413 skb_shinfo(skb
)->gso_type
= 0;
1416 /* We discard results */
1417 tcp_sacktag_one(skb
, sk
, state
, dup_sack
, pcount
);
1419 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1420 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1423 BUG_ON(!tcp_skb_pcount(skb
));
1424 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1428 /* Whole SKB was eaten :-) */
1430 if (skb
== tp
->retransmit_skb_hint
)
1431 tp
->retransmit_skb_hint
= prev
;
1432 if (skb
== tp
->scoreboard_skb_hint
)
1433 tp
->scoreboard_skb_hint
= prev
;
1434 if (skb
== tp
->lost_skb_hint
) {
1435 tp
->lost_skb_hint
= prev
;
1436 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1439 TCP_SKB_CB(skb
)->flags
|= TCP_SKB_CB(prev
)->flags
;
1440 if (skb
== tcp_highest_sack(sk
))
1441 tcp_advance_highest_sack(sk
, skb
);
1443 tcp_unlink_write_queue(skb
, sk
);
1444 sk_wmem_free_skb(sk
, skb
);
1446 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1451 /* I wish gso_size would have a bit more sane initialization than
1452 * something-or-zero which complicates things
1454 static int tcp_skb_seglen(struct sk_buff
*skb
)
1456 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1459 /* Shifting pages past head area doesn't work */
1460 static int skb_can_shift(struct sk_buff
*skb
)
1462 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1465 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1468 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1469 struct tcp_sacktag_state
*state
,
1470 u32 start_seq
, u32 end_seq
,
1473 struct tcp_sock
*tp
= tcp_sk(sk
);
1474 struct sk_buff
*prev
;
1480 if (!sk_can_gso(sk
))
1483 /* Normally R but no L won't result in plain S */
1485 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1487 if (!skb_can_shift(skb
))
1489 /* This frame is about to be dropped (was ACKed). */
1490 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1493 /* Can only happen with delayed DSACK + discard craziness */
1494 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1496 prev
= tcp_write_queue_prev(sk
, skb
);
1498 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1501 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1502 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1506 pcount
= tcp_skb_pcount(skb
);
1507 mss
= tcp_skb_seglen(skb
);
1509 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1510 * drop this restriction as unnecessary
1512 if (mss
!= tcp_skb_seglen(prev
))
1515 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1517 /* CHECKME: This is non-MSS split case only?, this will
1518 * cause skipped skbs due to advancing loop btw, original
1519 * has that feature too
1521 if (tcp_skb_pcount(skb
) <= 1)
1524 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1526 /* TODO: head merge to next could be attempted here
1527 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1528 * though it might not be worth of the additional hassle
1530 * ...we can probably just fallback to what was done
1531 * previously. We could try merging non-SACKed ones
1532 * as well but it probably isn't going to buy off
1533 * because later SACKs might again split them, and
1534 * it would make skb timestamp tracking considerably
1540 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1542 BUG_ON(len
> skb
->len
);
1544 /* MSS boundaries should be honoured or else pcount will
1545 * severely break even though it makes things bit trickier.
1546 * Optimize common case to avoid most of the divides
1548 mss
= tcp_skb_mss(skb
);
1550 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1551 * drop this restriction as unnecessary
1553 if (mss
!= tcp_skb_seglen(prev
))
1558 } else if (len
< mss
) {
1566 if (!skb_shift(prev
, skb
, len
))
1568 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1571 /* Hole filled allows collapsing with the next as well, this is very
1572 * useful when hole on every nth skb pattern happens
1574 if (prev
== tcp_write_queue_tail(sk
))
1576 skb
= tcp_write_queue_next(sk
, prev
);
1578 if (!skb_can_shift(skb
) ||
1579 (skb
== tcp_send_head(sk
)) ||
1580 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1581 (mss
!= tcp_skb_seglen(skb
)))
1585 if (skb_shift(prev
, skb
, len
)) {
1586 pcount
+= tcp_skb_pcount(skb
);
1587 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1591 state
->fack_count
+= pcount
;
1598 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1602 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1603 struct tcp_sack_block
*next_dup
,
1604 struct tcp_sacktag_state
*state
,
1605 u32 start_seq
, u32 end_seq
,
1608 struct tcp_sock
*tp
= tcp_sk(sk
);
1609 struct sk_buff
*tmp
;
1611 tcp_for_write_queue_from(skb
, sk
) {
1613 int dup_sack
= dup_sack_in
;
1615 if (skb
== tcp_send_head(sk
))
1618 /* queue is in-order => we can short-circuit the walk early */
1619 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1622 if ((next_dup
!= NULL
) &&
1623 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1624 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1625 next_dup
->start_seq
,
1631 /* skb reference here is a bit tricky to get right, since
1632 * shifting can eat and free both this skb and the next,
1633 * so not even _safe variant of the loop is enough.
1636 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1637 start_seq
, end_seq
, dup_sack
);
1646 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1652 if (unlikely(in_sack
< 0))
1656 TCP_SKB_CB(skb
)->sacked
= tcp_sacktag_one(skb
, sk
,
1659 tcp_skb_pcount(skb
));
1661 if (!before(TCP_SKB_CB(skb
)->seq
,
1662 tcp_highest_sack_seq(tp
)))
1663 tcp_advance_highest_sack(sk
, skb
);
1666 state
->fack_count
+= tcp_skb_pcount(skb
);
1671 /* Avoid all extra work that is being done by sacktag while walking in
1674 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1675 struct tcp_sacktag_state
*state
,
1678 tcp_for_write_queue_from(skb
, sk
) {
1679 if (skb
== tcp_send_head(sk
))
1682 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1685 state
->fack_count
+= tcp_skb_pcount(skb
);
1690 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1692 struct tcp_sack_block
*next_dup
,
1693 struct tcp_sacktag_state
*state
,
1696 if (next_dup
== NULL
)
1699 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1700 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1701 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1702 next_dup
->start_seq
, next_dup
->end_seq
,
1709 static int tcp_sack_cache_ok(struct tcp_sock
*tp
, struct tcp_sack_block
*cache
)
1711 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1715 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
,
1718 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1719 struct tcp_sock
*tp
= tcp_sk(sk
);
1720 unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1721 TCP_SKB_CB(ack_skb
)->sacked
);
1722 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1723 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1724 struct tcp_sack_block
*cache
;
1725 struct tcp_sacktag_state state
;
1726 struct sk_buff
*skb
;
1727 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1729 int found_dup_sack
= 0;
1731 int first_sack_index
;
1734 state
.reord
= tp
->packets_out
;
1736 if (!tp
->sacked_out
) {
1737 if (WARN_ON(tp
->fackets_out
))
1738 tp
->fackets_out
= 0;
1739 tcp_highest_sack_reset(sk
);
1742 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1743 num_sacks
, prior_snd_una
);
1745 state
.flag
|= FLAG_DSACKING_ACK
;
1747 /* Eliminate too old ACKs, but take into
1748 * account more or less fresh ones, they can
1749 * contain valid SACK info.
1751 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1754 if (!tp
->packets_out
)
1758 first_sack_index
= 0;
1759 for (i
= 0; i
< num_sacks
; i
++) {
1760 int dup_sack
= !i
&& found_dup_sack
;
1762 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1763 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1765 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1766 sp
[used_sacks
].start_seq
,
1767 sp
[used_sacks
].end_seq
)) {
1771 if (!tp
->undo_marker
)
1772 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1774 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1776 /* Don't count olds caused by ACK reordering */
1777 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1778 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1780 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1783 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1785 first_sack_index
= -1;
1789 /* Ignore very old stuff early */
1790 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1796 /* order SACK blocks to allow in order walk of the retrans queue */
1797 for (i
= used_sacks
- 1; i
> 0; i
--) {
1798 for (j
= 0; j
< i
; j
++) {
1799 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1800 swap(sp
[j
], sp
[j
+ 1]);
1802 /* Track where the first SACK block goes to */
1803 if (j
== first_sack_index
)
1804 first_sack_index
= j
+ 1;
1809 skb
= tcp_write_queue_head(sk
);
1810 state
.fack_count
= 0;
1813 if (!tp
->sacked_out
) {
1814 /* It's already past, so skip checking against it */
1815 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1817 cache
= tp
->recv_sack_cache
;
1818 /* Skip empty blocks in at head of the cache */
1819 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1824 while (i
< used_sacks
) {
1825 u32 start_seq
= sp
[i
].start_seq
;
1826 u32 end_seq
= sp
[i
].end_seq
;
1827 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1828 struct tcp_sack_block
*next_dup
= NULL
;
1830 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1831 next_dup
= &sp
[i
+ 1];
1833 /* Event "B" in the comment above. */
1834 if (after(end_seq
, tp
->high_seq
))
1835 state
.flag
|= FLAG_DATA_LOST
;
1837 /* Skip too early cached blocks */
1838 while (tcp_sack_cache_ok(tp
, cache
) &&
1839 !before(start_seq
, cache
->end_seq
))
1842 /* Can skip some work by looking recv_sack_cache? */
1843 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1844 after(end_seq
, cache
->start_seq
)) {
1847 if (before(start_seq
, cache
->start_seq
)) {
1848 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1850 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1857 /* Rest of the block already fully processed? */
1858 if (!after(end_seq
, cache
->end_seq
))
1861 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1865 /* ...tail remains todo... */
1866 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1867 /* ...but better entrypoint exists! */
1868 skb
= tcp_highest_sack(sk
);
1871 state
.fack_count
= tp
->fackets_out
;
1876 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1877 /* Check overlap against next cached too (past this one already) */
1882 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1883 skb
= tcp_highest_sack(sk
);
1886 state
.fack_count
= tp
->fackets_out
;
1888 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1891 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1892 start_seq
, end_seq
, dup_sack
);
1895 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1896 * due to in-order walk
1898 if (after(end_seq
, tp
->frto_highmark
))
1899 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1904 /* Clear the head of the cache sack blocks so we can skip it next time */
1905 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1906 tp
->recv_sack_cache
[i
].start_seq
= 0;
1907 tp
->recv_sack_cache
[i
].end_seq
= 0;
1909 for (j
= 0; j
< used_sacks
; j
++)
1910 tp
->recv_sack_cache
[i
++] = sp
[j
];
1912 tcp_mark_lost_retrans(sk
);
1914 tcp_verify_left_out(tp
);
1916 if ((state
.reord
< tp
->fackets_out
) &&
1917 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1918 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1919 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1923 #if FASTRETRANS_DEBUG > 0
1924 WARN_ON((int)tp
->sacked_out
< 0);
1925 WARN_ON((int)tp
->lost_out
< 0);
1926 WARN_ON((int)tp
->retrans_out
< 0);
1927 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1932 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1933 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1939 holes
= max(tp
->lost_out
, 1U);
1940 holes
= min(holes
, tp
->packets_out
);
1942 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1943 tp
->sacked_out
= tp
->packets_out
- holes
;
1949 /* If we receive more dupacks than we expected counting segments
1950 * in assumption of absent reordering, interpret this as reordering.
1951 * The only another reason could be bug in receiver TCP.
1953 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1955 struct tcp_sock
*tp
= tcp_sk(sk
);
1956 if (tcp_limit_reno_sacked(tp
))
1957 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1960 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1962 static void tcp_add_reno_sack(struct sock
*sk
)
1964 struct tcp_sock
*tp
= tcp_sk(sk
);
1966 tcp_check_reno_reordering(sk
, 0);
1967 tcp_verify_left_out(tp
);
1970 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1972 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1974 struct tcp_sock
*tp
= tcp_sk(sk
);
1977 /* One ACK acked hole. The rest eat duplicate ACKs. */
1978 if (acked
- 1 >= tp
->sacked_out
)
1981 tp
->sacked_out
-= acked
- 1;
1983 tcp_check_reno_reordering(sk
, acked
);
1984 tcp_verify_left_out(tp
);
1987 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1992 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1994 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1997 /* F-RTO can only be used if TCP has never retransmitted anything other than
1998 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000 int tcp_use_frto(struct sock
*sk
)
2002 const struct tcp_sock
*tp
= tcp_sk(sk
);
2003 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2004 struct sk_buff
*skb
;
2006 if (!sysctl_tcp_frto
)
2009 /* MTU probe and F-RTO won't really play nicely along currently */
2010 if (icsk
->icsk_mtup
.probe_size
)
2013 if (tcp_is_sackfrto(tp
))
2016 /* Avoid expensive walking of rexmit queue if possible */
2017 if (tp
->retrans_out
> 1)
2020 skb
= tcp_write_queue_head(sk
);
2021 if (tcp_skb_is_last(sk
, skb
))
2023 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2024 tcp_for_write_queue_from(skb
, sk
) {
2025 if (skb
== tcp_send_head(sk
))
2027 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2029 /* Short-circuit when first non-SACKed skb has been checked */
2030 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2036 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2037 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2038 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2039 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2040 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2041 * bits are handled if the Loss state is really to be entered (in
2042 * tcp_enter_frto_loss).
2044 * Do like tcp_enter_loss() would; when RTO expires the second time it
2046 * "Reduce ssthresh if it has not yet been made inside this window."
2048 void tcp_enter_frto(struct sock
*sk
)
2050 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2051 struct tcp_sock
*tp
= tcp_sk(sk
);
2052 struct sk_buff
*skb
;
2054 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2055 tp
->snd_una
== tp
->high_seq
||
2056 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2057 !icsk
->icsk_retransmits
)) {
2058 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2059 /* Our state is too optimistic in ssthresh() call because cwnd
2060 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2061 * recovery has not yet completed. Pattern would be this: RTO,
2062 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2064 * RFC4138 should be more specific on what to do, even though
2065 * RTO is quite unlikely to occur after the first Cumulative ACK
2066 * due to back-off and complexity of triggering events ...
2068 if (tp
->frto_counter
) {
2070 stored_cwnd
= tp
->snd_cwnd
;
2072 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2073 tp
->snd_cwnd
= stored_cwnd
;
2075 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2077 /* ... in theory, cong.control module could do "any tricks" in
2078 * ssthresh(), which means that ca_state, lost bits and lost_out
2079 * counter would have to be faked before the call occurs. We
2080 * consider that too expensive, unlikely and hacky, so modules
2081 * using these in ssthresh() must deal these incompatibility
2082 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2087 tp
->undo_marker
= tp
->snd_una
;
2088 tp
->undo_retrans
= 0;
2090 skb
= tcp_write_queue_head(sk
);
2091 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2092 tp
->undo_marker
= 0;
2093 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2094 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2095 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2097 tcp_verify_left_out(tp
);
2099 /* Too bad if TCP was application limited */
2100 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2102 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2103 * The last condition is necessary at least in tp->frto_counter case.
2105 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2106 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2107 after(tp
->high_seq
, tp
->snd_una
)) {
2108 tp
->frto_highmark
= tp
->high_seq
;
2110 tp
->frto_highmark
= tp
->snd_nxt
;
2112 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2113 tp
->high_seq
= tp
->snd_nxt
;
2114 tp
->frto_counter
= 1;
2117 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2118 * which indicates that we should follow the traditional RTO recovery,
2119 * i.e. mark everything lost and do go-back-N retransmission.
2121 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2123 struct tcp_sock
*tp
= tcp_sk(sk
);
2124 struct sk_buff
*skb
;
2127 tp
->retrans_out
= 0;
2128 if (tcp_is_reno(tp
))
2129 tcp_reset_reno_sack(tp
);
2131 tcp_for_write_queue(skb
, sk
) {
2132 if (skb
== tcp_send_head(sk
))
2135 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2137 * Count the retransmission made on RTO correctly (only when
2138 * waiting for the first ACK and did not get it)...
2140 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2141 /* For some reason this R-bit might get cleared? */
2142 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2143 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2144 /* ...enter this if branch just for the first segment */
2145 flag
|= FLAG_DATA_ACKED
;
2147 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2148 tp
->undo_marker
= 0;
2149 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2152 /* Marking forward transmissions that were made after RTO lost
2153 * can cause unnecessary retransmissions in some scenarios,
2154 * SACK blocks will mitigate that in some but not in all cases.
2155 * We used to not mark them but it was causing break-ups with
2156 * receivers that do only in-order receival.
2158 * TODO: we could detect presence of such receiver and select
2159 * different behavior per flow.
2161 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2162 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2163 tp
->lost_out
+= tcp_skb_pcount(skb
);
2164 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2167 tcp_verify_left_out(tp
);
2169 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2170 tp
->snd_cwnd_cnt
= 0;
2171 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2172 tp
->frto_counter
= 0;
2173 tp
->bytes_acked
= 0;
2175 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2176 sysctl_tcp_reordering
);
2177 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2178 tp
->high_seq
= tp
->snd_nxt
;
2179 TCP_ECN_queue_cwr(tp
);
2181 tcp_clear_all_retrans_hints(tp
);
2184 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2186 tp
->retrans_out
= 0;
2189 tp
->undo_marker
= 0;
2190 tp
->undo_retrans
= 0;
2193 void tcp_clear_retrans(struct tcp_sock
*tp
)
2195 tcp_clear_retrans_partial(tp
);
2197 tp
->fackets_out
= 0;
2201 /* Enter Loss state. If "how" is not zero, forget all SACK information
2202 * and reset tags completely, otherwise preserve SACKs. If receiver
2203 * dropped its ofo queue, we will know this due to reneging detection.
2205 void tcp_enter_loss(struct sock
*sk
, int how
)
2207 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2208 struct tcp_sock
*tp
= tcp_sk(sk
);
2209 struct sk_buff
*skb
;
2211 /* Reduce ssthresh if it has not yet been made inside this window. */
2212 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2213 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2214 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2215 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2216 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2219 tp
->snd_cwnd_cnt
= 0;
2220 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2222 tp
->bytes_acked
= 0;
2223 tcp_clear_retrans_partial(tp
);
2225 if (tcp_is_reno(tp
))
2226 tcp_reset_reno_sack(tp
);
2229 /* Push undo marker, if it was plain RTO and nothing
2230 * was retransmitted. */
2231 tp
->undo_marker
= tp
->snd_una
;
2234 tp
->fackets_out
= 0;
2236 tcp_clear_all_retrans_hints(tp
);
2238 tcp_for_write_queue(skb
, sk
) {
2239 if (skb
== tcp_send_head(sk
))
2242 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2243 tp
->undo_marker
= 0;
2244 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2245 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2246 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2247 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2248 tp
->lost_out
+= tcp_skb_pcount(skb
);
2249 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2252 tcp_verify_left_out(tp
);
2254 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2255 sysctl_tcp_reordering
);
2256 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2257 tp
->high_seq
= tp
->snd_nxt
;
2258 TCP_ECN_queue_cwr(tp
);
2259 /* Abort F-RTO algorithm if one is in progress */
2260 tp
->frto_counter
= 0;
2263 /* If ACK arrived pointing to a remembered SACK, it means that our
2264 * remembered SACKs do not reflect real state of receiver i.e.
2265 * receiver _host_ is heavily congested (or buggy).
2267 * Do processing similar to RTO timeout.
2269 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2271 if (flag
& FLAG_SACK_RENEGING
) {
2272 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2273 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2275 tcp_enter_loss(sk
, 1);
2276 icsk
->icsk_retransmits
++;
2277 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2278 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2279 icsk
->icsk_rto
, TCP_RTO_MAX
);
2285 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
2287 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2290 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2291 * counter when SACK is enabled (without SACK, sacked_out is used for
2294 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2295 * segments up to the highest received SACK block so far and holes in
2298 * With reordering, holes may still be in flight, so RFC3517 recovery
2299 * uses pure sacked_out (total number of SACKed segments) even though
2300 * it violates the RFC that uses duplicate ACKs, often these are equal
2301 * but when e.g. out-of-window ACKs or packet duplication occurs,
2302 * they differ. Since neither occurs due to loss, TCP should really
2305 static inline int tcp_dupack_heuristics(struct tcp_sock
*tp
)
2307 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2310 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
2312 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
2315 static inline int tcp_head_timedout(struct sock
*sk
)
2317 struct tcp_sock
*tp
= tcp_sk(sk
);
2319 return tp
->packets_out
&&
2320 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2323 /* Linux NewReno/SACK/FACK/ECN state machine.
2324 * --------------------------------------
2326 * "Open" Normal state, no dubious events, fast path.
2327 * "Disorder" In all the respects it is "Open",
2328 * but requires a bit more attention. It is entered when
2329 * we see some SACKs or dupacks. It is split of "Open"
2330 * mainly to move some processing from fast path to slow one.
2331 * "CWR" CWND was reduced due to some Congestion Notification event.
2332 * It can be ECN, ICMP source quench, local device congestion.
2333 * "Recovery" CWND was reduced, we are fast-retransmitting.
2334 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2336 * tcp_fastretrans_alert() is entered:
2337 * - each incoming ACK, if state is not "Open"
2338 * - when arrived ACK is unusual, namely:
2343 * Counting packets in flight is pretty simple.
2345 * in_flight = packets_out - left_out + retrans_out
2347 * packets_out is SND.NXT-SND.UNA counted in packets.
2349 * retrans_out is number of retransmitted segments.
2351 * left_out is number of segments left network, but not ACKed yet.
2353 * left_out = sacked_out + lost_out
2355 * sacked_out: Packets, which arrived to receiver out of order
2356 * and hence not ACKed. With SACKs this number is simply
2357 * amount of SACKed data. Even without SACKs
2358 * it is easy to give pretty reliable estimate of this number,
2359 * counting duplicate ACKs.
2361 * lost_out: Packets lost by network. TCP has no explicit
2362 * "loss notification" feedback from network (for now).
2363 * It means that this number can be only _guessed_.
2364 * Actually, it is the heuristics to predict lossage that
2365 * distinguishes different algorithms.
2367 * F.e. after RTO, when all the queue is considered as lost,
2368 * lost_out = packets_out and in_flight = retrans_out.
2370 * Essentially, we have now two algorithms counting
2373 * FACK: It is the simplest heuristics. As soon as we decided
2374 * that something is lost, we decide that _all_ not SACKed
2375 * packets until the most forward SACK are lost. I.e.
2376 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2377 * It is absolutely correct estimate, if network does not reorder
2378 * packets. And it loses any connection to reality when reordering
2379 * takes place. We use FACK by default until reordering
2380 * is suspected on the path to this destination.
2382 * NewReno: when Recovery is entered, we assume that one segment
2383 * is lost (classic Reno). While we are in Recovery and
2384 * a partial ACK arrives, we assume that one more packet
2385 * is lost (NewReno). This heuristics are the same in NewReno
2388 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2389 * deflation etc. CWND is real congestion window, never inflated, changes
2390 * only according to classic VJ rules.
2392 * Really tricky (and requiring careful tuning) part of algorithm
2393 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2394 * The first determines the moment _when_ we should reduce CWND and,
2395 * hence, slow down forward transmission. In fact, it determines the moment
2396 * when we decide that hole is caused by loss, rather than by a reorder.
2398 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2399 * holes, caused by lost packets.
2401 * And the most logically complicated part of algorithm is undo
2402 * heuristics. We detect false retransmits due to both too early
2403 * fast retransmit (reordering) and underestimated RTO, analyzing
2404 * timestamps and D-SACKs. When we detect that some segments were
2405 * retransmitted by mistake and CWND reduction was wrong, we undo
2406 * window reduction and abort recovery phase. This logic is hidden
2407 * inside several functions named tcp_try_undo_<something>.
2410 /* This function decides, when we should leave Disordered state
2411 * and enter Recovery phase, reducing congestion window.
2413 * Main question: may we further continue forward transmission
2414 * with the same cwnd?
2416 static int tcp_time_to_recover(struct sock
*sk
)
2418 struct tcp_sock
*tp
= tcp_sk(sk
);
2421 /* Do not perform any recovery during F-RTO algorithm */
2422 if (tp
->frto_counter
)
2425 /* Trick#1: The loss is proven. */
2429 /* Not-A-Trick#2 : Classic rule... */
2430 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2433 /* Trick#3 : when we use RFC2988 timer restart, fast
2434 * retransmit can be triggered by timeout of queue head.
2436 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2439 /* Trick#4: It is still not OK... But will it be useful to delay
2442 packets_out
= tp
->packets_out
;
2443 if (packets_out
<= tp
->reordering
&&
2444 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2445 !tcp_may_send_now(sk
)) {
2446 /* We have nothing to send. This connection is limited
2447 * either by receiver window or by application.
2452 /* If a thin stream is detected, retransmit after first
2453 * received dupack. Employ only if SACK is supported in order
2454 * to avoid possible corner-case series of spurious retransmissions
2455 * Use only if there are no unsent data.
2457 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2458 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2459 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2465 /* New heuristics: it is possible only after we switched to restart timer
2466 * each time when something is ACKed. Hence, we can detect timed out packets
2467 * during fast retransmit without falling to slow start.
2469 * Usefulness of this as is very questionable, since we should know which of
2470 * the segments is the next to timeout which is relatively expensive to find
2471 * in general case unless we add some data structure just for that. The
2472 * current approach certainly won't find the right one too often and when it
2473 * finally does find _something_ it usually marks large part of the window
2474 * right away (because a retransmission with a larger timestamp blocks the
2475 * loop from advancing). -ij
2477 static void tcp_timeout_skbs(struct sock
*sk
)
2479 struct tcp_sock
*tp
= tcp_sk(sk
);
2480 struct sk_buff
*skb
;
2482 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2485 skb
= tp
->scoreboard_skb_hint
;
2486 if (tp
->scoreboard_skb_hint
== NULL
)
2487 skb
= tcp_write_queue_head(sk
);
2489 tcp_for_write_queue_from(skb
, sk
) {
2490 if (skb
== tcp_send_head(sk
))
2492 if (!tcp_skb_timedout(sk
, skb
))
2495 tcp_skb_mark_lost(tp
, skb
);
2498 tp
->scoreboard_skb_hint
= skb
;
2500 tcp_verify_left_out(tp
);
2503 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2504 * is against sacked "cnt", otherwise it's against facked "cnt"
2506 static void tcp_mark_head_lost(struct sock
*sk
, int packets
)
2508 struct tcp_sock
*tp
= tcp_sk(sk
);
2509 struct sk_buff
*skb
;
2517 WARN_ON(packets
> tp
->packets_out
);
2518 if (tp
->lost_skb_hint
) {
2519 skb
= tp
->lost_skb_hint
;
2520 cnt
= tp
->lost_cnt_hint
;
2522 skb
= tcp_write_queue_head(sk
);
2526 tcp_for_write_queue_from(skb
, sk
) {
2527 if (skb
== tcp_send_head(sk
))
2529 /* TODO: do this better */
2530 /* this is not the most efficient way to do this... */
2531 tp
->lost_skb_hint
= skb
;
2532 tp
->lost_cnt_hint
= cnt
;
2534 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->high_seq
))
2538 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2539 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2540 cnt
+= tcp_skb_pcount(skb
);
2542 if (cnt
> packets
) {
2543 if (tcp_is_sack(tp
) || (oldcnt
>= packets
))
2546 mss
= skb_shinfo(skb
)->gso_size
;
2547 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2553 tcp_skb_mark_lost(tp
, skb
);
2555 tcp_verify_left_out(tp
);
2558 /* Account newly detected lost packet(s) */
2560 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2562 struct tcp_sock
*tp
= tcp_sk(sk
);
2564 if (tcp_is_reno(tp
)) {
2565 tcp_mark_head_lost(sk
, 1);
2566 } else if (tcp_is_fack(tp
)) {
2567 int lost
= tp
->fackets_out
- tp
->reordering
;
2570 tcp_mark_head_lost(sk
, lost
);
2572 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2573 if (sacked_upto
< fast_rexmit
)
2574 sacked_upto
= fast_rexmit
;
2575 tcp_mark_head_lost(sk
, sacked_upto
);
2578 tcp_timeout_skbs(sk
);
2581 /* CWND moderation, preventing bursts due to too big ACKs
2582 * in dubious situations.
2584 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2586 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2587 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2588 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2591 /* Lower bound on congestion window is slow start threshold
2592 * unless congestion avoidance choice decides to overide it.
2594 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2596 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2598 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2601 /* Decrease cwnd each second ack. */
2602 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2604 struct tcp_sock
*tp
= tcp_sk(sk
);
2605 int decr
= tp
->snd_cwnd_cnt
+ 1;
2607 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2608 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2609 tp
->snd_cwnd_cnt
= decr
& 1;
2612 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2613 tp
->snd_cwnd
-= decr
;
2615 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2616 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2620 /* Nothing was retransmitted or returned timestamp is less
2621 * than timestamp of the first retransmission.
2623 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
2625 return !tp
->retrans_stamp
||
2626 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2627 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2630 /* Undo procedures. */
2632 #if FASTRETRANS_DEBUG > 1
2633 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2635 struct tcp_sock
*tp
= tcp_sk(sk
);
2636 struct inet_sock
*inet
= inet_sk(sk
);
2638 if (sk
->sk_family
== AF_INET
) {
2639 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2641 &inet
->daddr
, ntohs(inet
->dport
),
2642 tp
->snd_cwnd
, tcp_left_out(tp
),
2643 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2647 else if (sk
->sk_family
== AF_INET6
) {
2648 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2649 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2651 &np
->daddr
, ntohs(inet
->dport
),
2652 tp
->snd_cwnd
, tcp_left_out(tp
),
2653 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2659 #define DBGUNDO(x...) do { } while (0)
2662 static void tcp_undo_cwr(struct sock
*sk
, const int undo
)
2664 struct tcp_sock
*tp
= tcp_sk(sk
);
2666 if (tp
->prior_ssthresh
) {
2667 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2669 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2670 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2672 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2674 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2675 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2676 TCP_ECN_withdraw_cwr(tp
);
2679 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2681 tcp_moderate_cwnd(tp
);
2682 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2685 static inline int tcp_may_undo(struct tcp_sock
*tp
)
2687 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2690 /* People celebrate: "We love our President!" */
2691 static int tcp_try_undo_recovery(struct sock
*sk
)
2693 struct tcp_sock
*tp
= tcp_sk(sk
);
2695 if (tcp_may_undo(tp
)) {
2698 /* Happy end! We did not retransmit anything
2699 * or our original transmission succeeded.
2701 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2702 tcp_undo_cwr(sk
, 1);
2703 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2704 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2706 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2708 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2709 tp
->undo_marker
= 0;
2711 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2712 /* Hold old state until something *above* high_seq
2713 * is ACKed. For Reno it is MUST to prevent false
2714 * fast retransmits (RFC2582). SACK TCP is safe. */
2715 tcp_moderate_cwnd(tp
);
2718 tcp_set_ca_state(sk
, TCP_CA_Open
);
2722 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2723 static void tcp_try_undo_dsack(struct sock
*sk
)
2725 struct tcp_sock
*tp
= tcp_sk(sk
);
2727 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2728 DBGUNDO(sk
, "D-SACK");
2729 tcp_undo_cwr(sk
, 1);
2730 tp
->undo_marker
= 0;
2731 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2735 /* We can clear retrans_stamp when there are no retransmissions in the
2736 * window. It would seem that it is trivially available for us in
2737 * tp->retrans_out, however, that kind of assumptions doesn't consider
2738 * what will happen if errors occur when sending retransmission for the
2739 * second time. ...It could the that such segment has only
2740 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2741 * the head skb is enough except for some reneging corner cases that
2742 * are not worth the effort.
2744 * Main reason for all this complexity is the fact that connection dying
2745 * time now depends on the validity of the retrans_stamp, in particular,
2746 * that successive retransmissions of a segment must not advance
2747 * retrans_stamp under any conditions.
2749 static int tcp_any_retrans_done(struct sock
*sk
)
2751 struct tcp_sock
*tp
= tcp_sk(sk
);
2752 struct sk_buff
*skb
;
2754 if (tp
->retrans_out
)
2757 skb
= tcp_write_queue_head(sk
);
2758 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2764 /* Undo during fast recovery after partial ACK. */
2766 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2768 struct tcp_sock
*tp
= tcp_sk(sk
);
2769 /* Partial ACK arrived. Force Hoe's retransmit. */
2770 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2772 if (tcp_may_undo(tp
)) {
2773 /* Plain luck! Hole if filled with delayed
2774 * packet, rather than with a retransmit.
2776 if (!tcp_any_retrans_done(sk
))
2777 tp
->retrans_stamp
= 0;
2779 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2782 tcp_undo_cwr(sk
, 0);
2783 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2785 /* So... Do not make Hoe's retransmit yet.
2786 * If the first packet was delayed, the rest
2787 * ones are most probably delayed as well.
2794 /* Undo during loss recovery after partial ACK. */
2795 static int tcp_try_undo_loss(struct sock
*sk
)
2797 struct tcp_sock
*tp
= tcp_sk(sk
);
2799 if (tcp_may_undo(tp
)) {
2800 struct sk_buff
*skb
;
2801 tcp_for_write_queue(skb
, sk
) {
2802 if (skb
== tcp_send_head(sk
))
2804 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2807 tcp_clear_all_retrans_hints(tp
);
2809 DBGUNDO(sk
, "partial loss");
2811 tcp_undo_cwr(sk
, 1);
2812 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2813 inet_csk(sk
)->icsk_retransmits
= 0;
2814 tp
->undo_marker
= 0;
2815 if (tcp_is_sack(tp
))
2816 tcp_set_ca_state(sk
, TCP_CA_Open
);
2822 static inline void tcp_complete_cwr(struct sock
*sk
)
2824 struct tcp_sock
*tp
= tcp_sk(sk
);
2825 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2826 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2827 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2830 static void tcp_try_keep_open(struct sock
*sk
)
2832 struct tcp_sock
*tp
= tcp_sk(sk
);
2833 int state
= TCP_CA_Open
;
2835 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
) || tp
->undo_marker
)
2836 state
= TCP_CA_Disorder
;
2838 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2839 tcp_set_ca_state(sk
, state
);
2840 tp
->high_seq
= tp
->snd_nxt
;
2844 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2846 struct tcp_sock
*tp
= tcp_sk(sk
);
2848 tcp_verify_left_out(tp
);
2850 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2851 tp
->retrans_stamp
= 0;
2853 if (flag
& FLAG_ECE
)
2854 tcp_enter_cwr(sk
, 1);
2856 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2857 tcp_try_keep_open(sk
);
2858 tcp_moderate_cwnd(tp
);
2860 tcp_cwnd_down(sk
, flag
);
2864 static void tcp_mtup_probe_failed(struct sock
*sk
)
2866 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2868 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2869 icsk
->icsk_mtup
.probe_size
= 0;
2872 static void tcp_mtup_probe_success(struct sock
*sk
)
2874 struct tcp_sock
*tp
= tcp_sk(sk
);
2875 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2877 /* FIXME: breaks with very large cwnd */
2878 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2879 tp
->snd_cwnd
= tp
->snd_cwnd
*
2880 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2881 icsk
->icsk_mtup
.probe_size
;
2882 tp
->snd_cwnd_cnt
= 0;
2883 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2884 tp
->rcv_ssthresh
= tcp_current_ssthresh(sk
);
2886 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2887 icsk
->icsk_mtup
.probe_size
= 0;
2888 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2891 /* Do a simple retransmit without using the backoff mechanisms in
2892 * tcp_timer. This is used for path mtu discovery.
2893 * The socket is already locked here.
2895 void tcp_simple_retransmit(struct sock
*sk
)
2897 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2898 struct tcp_sock
*tp
= tcp_sk(sk
);
2899 struct sk_buff
*skb
;
2900 unsigned int mss
= tcp_current_mss(sk
);
2901 u32 prior_lost
= tp
->lost_out
;
2903 tcp_for_write_queue(skb
, sk
) {
2904 if (skb
== tcp_send_head(sk
))
2906 if (tcp_skb_seglen(skb
) > mss
&&
2907 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2908 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2909 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2910 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2912 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2916 tcp_clear_retrans_hints_partial(tp
);
2918 if (prior_lost
== tp
->lost_out
)
2921 if (tcp_is_reno(tp
))
2922 tcp_limit_reno_sacked(tp
);
2924 tcp_verify_left_out(tp
);
2926 /* Don't muck with the congestion window here.
2927 * Reason is that we do not increase amount of _data_
2928 * in network, but units changed and effective
2929 * cwnd/ssthresh really reduced now.
2931 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2932 tp
->high_seq
= tp
->snd_nxt
;
2933 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2934 tp
->prior_ssthresh
= 0;
2935 tp
->undo_marker
= 0;
2936 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2938 tcp_xmit_retransmit_queue(sk
);
2941 /* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2946 * Besides that it does CWND reduction, when packet loss is detected
2947 * and changes state of machine.
2949 * It does _not_ decide what to send, it is made in function
2950 * tcp_xmit_retransmit_queue().
2952 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
, int flag
)
2954 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2955 struct tcp_sock
*tp
= tcp_sk(sk
);
2956 int is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
2957 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2958 (tcp_fackets_out(tp
) > tp
->reordering
));
2959 int fast_rexmit
= 0, mib_idx
;
2961 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2963 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2964 tp
->fackets_out
= 0;
2966 /* Now state machine starts.
2967 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968 if (flag
& FLAG_ECE
)
2969 tp
->prior_ssthresh
= 0;
2971 /* B. In all the states check for reneging SACKs. */
2972 if (tcp_check_sack_reneging(sk
, flag
))
2975 /* C. Process data loss notification, provided it is valid. */
2976 if (tcp_is_fack(tp
) && (flag
& FLAG_DATA_LOST
) &&
2977 before(tp
->snd_una
, tp
->high_seq
) &&
2978 icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2979 tp
->fackets_out
> tp
->reordering
) {
2980 tcp_mark_head_lost(sk
, tp
->fackets_out
- tp
->reordering
);
2981 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSS
);
2984 /* D. Check consistency of the current state. */
2985 tcp_verify_left_out(tp
);
2987 /* E. Check state exit conditions. State can be terminated
2988 * when high_seq is ACKed. */
2989 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2990 WARN_ON(tp
->retrans_out
!= 0);
2991 tp
->retrans_stamp
= 0;
2992 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2993 switch (icsk
->icsk_ca_state
) {
2995 icsk
->icsk_retransmits
= 0;
2996 if (tcp_try_undo_recovery(sk
))
3001 /* CWR is to be held something *above* high_seq
3002 * is ACKed for CWR bit to reach receiver. */
3003 if (tp
->snd_una
!= tp
->high_seq
) {
3004 tcp_complete_cwr(sk
);
3005 tcp_set_ca_state(sk
, TCP_CA_Open
);
3009 case TCP_CA_Disorder
:
3010 tcp_try_undo_dsack(sk
);
3011 if (!tp
->undo_marker
||
3012 /* For SACK case do not Open to allow to undo
3013 * catching for all duplicate ACKs. */
3014 tcp_is_reno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
3015 tp
->undo_marker
= 0;
3016 tcp_set_ca_state(sk
, TCP_CA_Open
);
3020 case TCP_CA_Recovery
:
3021 if (tcp_is_reno(tp
))
3022 tcp_reset_reno_sack(tp
);
3023 if (tcp_try_undo_recovery(sk
))
3025 tcp_complete_cwr(sk
);
3030 /* F. Process state. */
3031 switch (icsk
->icsk_ca_state
) {
3032 case TCP_CA_Recovery
:
3033 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3034 if (tcp_is_reno(tp
) && is_dupack
)
3035 tcp_add_reno_sack(sk
);
3037 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3040 if (flag
& FLAG_DATA_ACKED
)
3041 icsk
->icsk_retransmits
= 0;
3042 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3043 tcp_reset_reno_sack(tp
);
3044 if (!tcp_try_undo_loss(sk
)) {
3045 tcp_moderate_cwnd(tp
);
3046 tcp_xmit_retransmit_queue(sk
);
3049 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3051 /* Loss is undone; fall through to processing in Open state. */
3053 if (tcp_is_reno(tp
)) {
3054 if (flag
& FLAG_SND_UNA_ADVANCED
)
3055 tcp_reset_reno_sack(tp
);
3057 tcp_add_reno_sack(sk
);
3060 if (icsk
->icsk_ca_state
== TCP_CA_Disorder
)
3061 tcp_try_undo_dsack(sk
);
3063 if (!tcp_time_to_recover(sk
)) {
3064 tcp_try_to_open(sk
, flag
);
3068 /* MTU probe failure: don't reduce cwnd */
3069 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3070 icsk
->icsk_mtup
.probe_size
&&
3071 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3072 tcp_mtup_probe_failed(sk
);
3073 /* Restores the reduction we did in tcp_mtup_probe() */
3075 tcp_simple_retransmit(sk
);
3079 /* Otherwise enter Recovery state */
3081 if (tcp_is_reno(tp
))
3082 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3084 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3086 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3088 tp
->high_seq
= tp
->snd_nxt
;
3089 tp
->prior_ssthresh
= 0;
3090 tp
->undo_marker
= tp
->snd_una
;
3091 tp
->undo_retrans
= tp
->retrans_out
;
3093 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3094 if (!(flag
& FLAG_ECE
))
3095 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3096 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3097 TCP_ECN_queue_cwr(tp
);
3100 tp
->bytes_acked
= 0;
3101 tp
->snd_cwnd_cnt
= 0;
3102 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3106 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3107 tcp_update_scoreboard(sk
, fast_rexmit
);
3108 tcp_cwnd_down(sk
, flag
);
3109 tcp_xmit_retransmit_queue(sk
);
3112 static void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3114 tcp_rtt_estimator(sk
, seq_rtt
);
3116 inet_csk(sk
)->icsk_backoff
= 0;
3119 /* Read draft-ietf-tcplw-high-performance before mucking
3120 * with this code. (Supersedes RFC1323)
3122 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3124 /* RTTM Rule: A TSecr value received in a segment is used to
3125 * update the averaged RTT measurement only if the segment
3126 * acknowledges some new data, i.e., only if it advances the
3127 * left edge of the send window.
3129 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132 * Changed: reset backoff as soon as we see the first valid sample.
3133 * If we do not, we get strongly overestimated rto. With timestamps
3134 * samples are accepted even from very old segments: f.e., when rtt=1
3135 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136 * answer arrives rto becomes 120 seconds! If at least one of segments
3137 * in window is lost... Voila. --ANK (010210)
3139 struct tcp_sock
*tp
= tcp_sk(sk
);
3141 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3144 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3146 /* We don't have a timestamp. Can only use
3147 * packets that are not retransmitted to determine
3148 * rtt estimates. Also, we must not reset the
3149 * backoff for rto until we get a non-retransmitted
3150 * packet. This allows us to deal with a situation
3151 * where the network delay has increased suddenly.
3152 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3155 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3158 tcp_valid_rtt_meas(sk
, seq_rtt
);
3161 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3164 const struct tcp_sock
*tp
= tcp_sk(sk
);
3165 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3167 tcp_ack_saw_tstamp(sk
, flag
);
3168 else if (seq_rtt
>= 0)
3169 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3172 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3174 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3175 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3176 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3179 /* Restart timer after forward progress on connection.
3180 * RFC2988 recommends to restart timer to now+rto.
3182 static void tcp_rearm_rto(struct sock
*sk
)
3184 struct tcp_sock
*tp
= tcp_sk(sk
);
3186 if (!tp
->packets_out
) {
3187 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3189 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3190 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3194 /* If we get here, the whole TSO packet has not been acked. */
3195 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3197 struct tcp_sock
*tp
= tcp_sk(sk
);
3200 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3202 packets_acked
= tcp_skb_pcount(skb
);
3203 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3205 packets_acked
-= tcp_skb_pcount(skb
);
3207 if (packets_acked
) {
3208 BUG_ON(tcp_skb_pcount(skb
) == 0);
3209 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3212 return packets_acked
;
3215 /* Remove acknowledged frames from the retransmission queue. If our packet
3216 * is before the ack sequence we can discard it as it's confirmed to have
3217 * arrived at the other end.
3219 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3222 struct tcp_sock
*tp
= tcp_sk(sk
);
3223 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3224 struct sk_buff
*skb
;
3225 u32 now
= tcp_time_stamp
;
3226 int fully_acked
= 1;
3229 u32 reord
= tp
->packets_out
;
3230 u32 prior_sacked
= tp
->sacked_out
;
3232 s32 ca_seq_rtt
= -1;
3233 ktime_t last_ackt
= net_invalid_timestamp();
3235 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3236 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3238 u8 sacked
= scb
->sacked
;
3240 /* Determine how many packets and what bytes were acked, tso and else */
3241 if (after(scb
->end_seq
, tp
->snd_una
)) {
3242 if (tcp_skb_pcount(skb
) == 1 ||
3243 !after(tp
->snd_una
, scb
->seq
))
3246 acked_pcount
= tcp_tso_acked(sk
, skb
);
3252 acked_pcount
= tcp_skb_pcount(skb
);
3255 if (sacked
& TCPCB_RETRANS
) {
3256 if (sacked
& TCPCB_SACKED_RETRANS
)
3257 tp
->retrans_out
-= acked_pcount
;
3258 flag
|= FLAG_RETRANS_DATA_ACKED
;
3261 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3262 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3264 ca_seq_rtt
= now
- scb
->when
;
3265 last_ackt
= skb
->tstamp
;
3267 seq_rtt
= ca_seq_rtt
;
3269 if (!(sacked
& TCPCB_SACKED_ACKED
))
3270 reord
= min(pkts_acked
, reord
);
3273 if (sacked
& TCPCB_SACKED_ACKED
)
3274 tp
->sacked_out
-= acked_pcount
;
3275 if (sacked
& TCPCB_LOST
)
3276 tp
->lost_out
-= acked_pcount
;
3278 tp
->packets_out
-= acked_pcount
;
3279 pkts_acked
+= acked_pcount
;
3281 /* Initial outgoing SYN's get put onto the write_queue
3282 * just like anything else we transmit. It is not
3283 * true data, and if we misinform our callers that
3284 * this ACK acks real data, we will erroneously exit
3285 * connection startup slow start one packet too
3286 * quickly. This is severely frowned upon behavior.
3288 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
3289 flag
|= FLAG_DATA_ACKED
;
3291 flag
|= FLAG_SYN_ACKED
;
3292 tp
->retrans_stamp
= 0;
3298 tcp_unlink_write_queue(skb
, sk
);
3299 sk_wmem_free_skb(sk
, skb
);
3300 tp
->scoreboard_skb_hint
= NULL
;
3301 if (skb
== tp
->retransmit_skb_hint
)
3302 tp
->retransmit_skb_hint
= NULL
;
3303 if (skb
== tp
->lost_skb_hint
)
3304 tp
->lost_skb_hint
= NULL
;
3307 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3308 tp
->snd_up
= tp
->snd_una
;
3310 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3311 flag
|= FLAG_SACK_RENEGING
;
3313 if (flag
& FLAG_ACKED
) {
3314 const struct tcp_congestion_ops
*ca_ops
3315 = inet_csk(sk
)->icsk_ca_ops
;
3317 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3318 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3319 tcp_mtup_probe_success(sk
);
3322 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3325 if (tcp_is_reno(tp
)) {
3326 tcp_remove_reno_sacks(sk
, pkts_acked
);
3330 /* Non-retransmitted hole got filled? That's reordering */
3331 if (reord
< prior_fackets
)
3332 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3334 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3335 prior_sacked
- tp
->sacked_out
;
3336 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3339 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3341 if (ca_ops
->pkts_acked
) {
3344 /* Is the ACK triggering packet unambiguous? */
3345 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3346 /* High resolution needed and available? */
3347 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3348 !ktime_equal(last_ackt
,
3349 net_invalid_timestamp()))
3350 rtt_us
= ktime_us_delta(ktime_get_real(),
3352 else if (ca_seq_rtt
> 0)
3353 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3356 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3360 #if FASTRETRANS_DEBUG > 0
3361 WARN_ON((int)tp
->sacked_out
< 0);
3362 WARN_ON((int)tp
->lost_out
< 0);
3363 WARN_ON((int)tp
->retrans_out
< 0);
3364 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3365 icsk
= inet_csk(sk
);
3367 printk(KERN_DEBUG
"Leak l=%u %d\n",
3368 tp
->lost_out
, icsk
->icsk_ca_state
);
3371 if (tp
->sacked_out
) {
3372 printk(KERN_DEBUG
"Leak s=%u %d\n",
3373 tp
->sacked_out
, icsk
->icsk_ca_state
);
3376 if (tp
->retrans_out
) {
3377 printk(KERN_DEBUG
"Leak r=%u %d\n",
3378 tp
->retrans_out
, icsk
->icsk_ca_state
);
3379 tp
->retrans_out
= 0;
3386 static void tcp_ack_probe(struct sock
*sk
)
3388 const struct tcp_sock
*tp
= tcp_sk(sk
);
3389 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3391 /* Was it a usable window open? */
3393 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3394 icsk
->icsk_backoff
= 0;
3395 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3396 /* Socket must be waked up by subsequent tcp_data_snd_check().
3397 * This function is not for random using!
3400 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3401 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3406 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3408 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3409 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
);
3412 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3414 const struct tcp_sock
*tp
= tcp_sk(sk
);
3415 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3416 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3419 /* Check that window update is acceptable.
3420 * The function assumes that snd_una<=ack<=snd_next.
3422 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3423 const u32 ack
, const u32 ack_seq
,
3426 return (after(ack
, tp
->snd_una
) ||
3427 after(ack_seq
, tp
->snd_wl1
) ||
3428 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
3431 /* Update our send window.
3433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436 static int tcp_ack_update_window(struct sock
*sk
, struct sk_buff
*skb
, u32 ack
,
3439 struct tcp_sock
*tp
= tcp_sk(sk
);
3441 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3443 if (likely(!tcp_hdr(skb
)->syn
))
3444 nwin
<<= tp
->rx_opt
.snd_wscale
;
3446 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3447 flag
|= FLAG_WIN_UPDATE
;
3448 tcp_update_wl(tp
, ack_seq
);
3450 if (tp
->snd_wnd
!= nwin
) {
3453 /* Note, it is the only place, where
3454 * fast path is recovered for sending TCP.
3457 tcp_fast_path_check(sk
);
3459 if (nwin
> tp
->max_window
) {
3460 tp
->max_window
= nwin
;
3461 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3471 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3472 * continue in congestion avoidance.
3474 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3476 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3477 tp
->snd_cwnd_cnt
= 0;
3478 tp
->bytes_acked
= 0;
3479 TCP_ECN_queue_cwr(tp
);
3480 tcp_moderate_cwnd(tp
);
3483 /* A conservative spurious RTO response algorithm: reduce cwnd using
3484 * rate halving and continue in congestion avoidance.
3486 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3488 tcp_enter_cwr(sk
, 0);
3491 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3493 if (flag
& FLAG_ECE
)
3494 tcp_ratehalving_spur_to_response(sk
);
3496 tcp_undo_cwr(sk
, 1);
3499 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503 * window (but not to or beyond highest sequence sent before RTO):
3504 * On First ACK, send two new segments out.
3505 * On Second ACK, RTO was likely spurious. Do spurious response (response
3506 * algorithm is not part of the F-RTO detection algorithm
3507 * given in RFC4138 but can be selected separately).
3508 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514 * original window even after we transmit two new data segments.
3517 * on first step, wait until first cumulative ACK arrives, then move to
3518 * the second step. In second step, the next ACK decides.
3520 * F-RTO is implemented (mainly) in four functions:
3521 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523 * called when tcp_use_frto() showed green light
3524 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525 * - tcp_enter_frto_loss() is called if there is not enough evidence
3526 * to prove that the RTO is indeed spurious. It transfers the control
3527 * from F-RTO to the conventional RTO recovery
3529 static int tcp_process_frto(struct sock
*sk
, int flag
)
3531 struct tcp_sock
*tp
= tcp_sk(sk
);
3533 tcp_verify_left_out(tp
);
3535 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3536 if (flag
& FLAG_DATA_ACKED
)
3537 inet_csk(sk
)->icsk_retransmits
= 0;
3539 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3540 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3541 tp
->undo_marker
= 0;
3543 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3544 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3548 if (!tcp_is_sackfrto(tp
)) {
3549 /* RFC4138 shortcoming in step 2; should also have case c):
3550 * ACK isn't duplicate nor advances window, e.g., opposite dir
3553 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3556 if (!(flag
& FLAG_DATA_ACKED
)) {
3557 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3562 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3563 /* Prevent sending of new data. */
3564 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3565 tcp_packets_in_flight(tp
));
3569 if ((tp
->frto_counter
>= 2) &&
3570 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3571 ((flag
& FLAG_DATA_SACKED
) &&
3572 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3573 /* RFC4138 shortcoming (see comment above) */
3574 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3575 (flag
& FLAG_NOT_DUP
))
3578 tcp_enter_frto_loss(sk
, 3, flag
);
3583 if (tp
->frto_counter
== 1) {
3584 /* tcp_may_send_now needs to see updated state */
3585 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3586 tp
->frto_counter
= 2;
3588 if (!tcp_may_send_now(sk
))
3589 tcp_enter_frto_loss(sk
, 2, flag
);
3593 switch (sysctl_tcp_frto_response
) {
3595 tcp_undo_spur_to_response(sk
, flag
);
3598 tcp_conservative_spur_to_response(tp
);
3601 tcp_ratehalving_spur_to_response(sk
);
3604 tp
->frto_counter
= 0;
3605 tp
->undo_marker
= 0;
3606 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3611 /* This routine deals with incoming acks, but not outgoing ones. */
3612 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
3614 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3615 struct tcp_sock
*tp
= tcp_sk(sk
);
3616 u32 prior_snd_una
= tp
->snd_una
;
3617 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3618 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3619 u32 prior_in_flight
;
3624 /* If the ack is older than previous acks
3625 * then we can probably ignore it.
3627 if (before(ack
, prior_snd_una
))
3630 /* If the ack includes data we haven't sent yet, discard
3631 * this segment (RFC793 Section 3.9).
3633 if (after(ack
, tp
->snd_nxt
))
3636 if (after(ack
, prior_snd_una
))
3637 flag
|= FLAG_SND_UNA_ADVANCED
;
3639 if (sysctl_tcp_abc
) {
3640 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3641 tp
->bytes_acked
+= ack
- prior_snd_una
;
3642 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3643 /* we assume just one segment left network */
3644 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3648 prior_fackets
= tp
->fackets_out
;
3649 prior_in_flight
= tcp_packets_in_flight(tp
);
3651 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3652 /* Window is constant, pure forward advance.
3653 * No more checks are required.
3654 * Note, we use the fact that SND.UNA>=SND.WL2.
3656 tcp_update_wl(tp
, ack_seq
);
3658 flag
|= FLAG_WIN_UPDATE
;
3660 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3662 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3664 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3667 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3669 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3671 if (TCP_SKB_CB(skb
)->sacked
)
3672 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3674 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3677 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3680 /* We passed data and got it acked, remove any soft error
3681 * log. Something worked...
3683 sk
->sk_err_soft
= 0;
3684 icsk
->icsk_probes_out
= 0;
3685 tp
->rcv_tstamp
= tcp_time_stamp
;
3686 prior_packets
= tp
->packets_out
;
3690 /* See if we can take anything off of the retransmit queue. */
3691 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3693 if (tp
->frto_counter
)
3694 frto_cwnd
= tcp_process_frto(sk
, flag
);
3695 /* Guarantee sacktag reordering detection against wrap-arounds */
3696 if (before(tp
->frto_highmark
, tp
->snd_una
))
3697 tp
->frto_highmark
= 0;
3699 if (tcp_ack_is_dubious(sk
, flag
)) {
3700 /* Advance CWND, if state allows this. */
3701 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3702 tcp_may_raise_cwnd(sk
, flag
))
3703 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3704 tcp_fastretrans_alert(sk
, prior_packets
- tp
->packets_out
,
3707 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3708 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3711 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3712 dst_confirm(sk
->sk_dst_cache
);
3717 /* If this ack opens up a zero window, clear backoff. It was
3718 * being used to time the probes, and is probably far higher than
3719 * it needs to be for normal retransmission.
3721 if (tcp_send_head(sk
))
3726 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3730 if (TCP_SKB_CB(skb
)->sacked
) {
3731 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3732 if (icsk
->icsk_ca_state
== TCP_CA_Open
)
3733 tcp_try_keep_open(sk
);
3736 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3744 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3745 u8
**hvpp
, int estab
)
3748 struct tcphdr
*th
= tcp_hdr(skb
);
3749 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3751 ptr
= (unsigned char *)(th
+ 1);
3752 opt_rx
->saw_tstamp
= 0;
3754 while (length
> 0) {
3755 int opcode
= *ptr
++;
3761 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3766 if (opsize
< 2) /* "silly options" */
3768 if (opsize
> length
)
3769 return; /* don't parse partial options */
3772 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3773 u16 in_mss
= get_unaligned_be16(ptr
);
3775 if (opt_rx
->user_mss
&&
3776 opt_rx
->user_mss
< in_mss
)
3777 in_mss
= opt_rx
->user_mss
;
3778 opt_rx
->mss_clamp
= in_mss
;
3783 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3784 !estab
&& sysctl_tcp_window_scaling
) {
3785 __u8 snd_wscale
= *(__u8
*)ptr
;
3786 opt_rx
->wscale_ok
= 1;
3787 if (snd_wscale
> 14) {
3788 if (net_ratelimit())
3789 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3790 "scaling value %d >14 received.\n",
3794 opt_rx
->snd_wscale
= snd_wscale
;
3797 case TCPOPT_TIMESTAMP
:
3798 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3799 ((estab
&& opt_rx
->tstamp_ok
) ||
3800 (!estab
&& sysctl_tcp_timestamps
))) {
3801 opt_rx
->saw_tstamp
= 1;
3802 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3803 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3806 case TCPOPT_SACK_PERM
:
3807 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3808 !estab
&& sysctl_tcp_sack
) {
3809 opt_rx
->sack_ok
= 1;
3810 tcp_sack_reset(opt_rx
);
3815 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3816 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3818 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3821 #ifdef CONFIG_TCP_MD5SIG
3824 * The MD5 Hash has already been
3825 * checked (see tcp_v{4,6}_do_rcv()).
3830 /* This option is variable length.
3833 case TCPOLEN_COOKIE_BASE
:
3834 /* not yet implemented */
3836 case TCPOLEN_COOKIE_PAIR
:
3837 /* not yet implemented */
3839 case TCPOLEN_COOKIE_MIN
+0:
3840 case TCPOLEN_COOKIE_MIN
+2:
3841 case TCPOLEN_COOKIE_MIN
+4:
3842 case TCPOLEN_COOKIE_MIN
+6:
3843 case TCPOLEN_COOKIE_MAX
:
3844 /* 16-bit multiple */
3845 opt_rx
->cookie_plus
= opsize
;
3860 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, struct tcphdr
*th
)
3862 __be32
*ptr
= (__be32
*)(th
+ 1);
3864 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3865 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3866 tp
->rx_opt
.saw_tstamp
= 1;
3868 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3870 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3876 /* Fast parse options. This hopes to only see timestamps.
3877 * If it is wrong it falls back on tcp_parse_options().
3879 static int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
3880 struct tcp_sock
*tp
, u8
**hvpp
)
3882 /* In the spirit of fast parsing, compare doff directly to constant
3883 * values. Because equality is used, short doff can be ignored here.
3885 if (th
->doff
== (sizeof(*th
) / 4)) {
3886 tp
->rx_opt
.saw_tstamp
= 0;
3888 } else if (tp
->rx_opt
.tstamp_ok
&&
3889 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3890 if (tcp_parse_aligned_timestamp(tp
, th
))
3893 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3897 #ifdef CONFIG_TCP_MD5SIG
3899 * Parse MD5 Signature option
3901 u8
*tcp_parse_md5sig_option(struct tcphdr
*th
)
3903 int length
= (th
->doff
<< 2) - sizeof (*th
);
3904 u8
*ptr
= (u8
*)(th
+ 1);
3906 /* If the TCP option is too short, we can short cut */
3907 if (length
< TCPOLEN_MD5SIG
)
3910 while (length
> 0) {
3911 int opcode
= *ptr
++;
3922 if (opsize
< 2 || opsize
> length
)
3924 if (opcode
== TCPOPT_MD5SIG
)
3934 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3936 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3937 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3940 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3942 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3943 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3944 * extra check below makes sure this can only happen
3945 * for pure ACK frames. -DaveM
3947 * Not only, also it occurs for expired timestamps.
3950 if (tcp_paws_check(&tp
->rx_opt
, 0))
3951 tcp_store_ts_recent(tp
);
3955 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3957 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3958 * it can pass through stack. So, the following predicate verifies that
3959 * this segment is not used for anything but congestion avoidance or
3960 * fast retransmit. Moreover, we even are able to eliminate most of such
3961 * second order effects, if we apply some small "replay" window (~RTO)
3962 * to timestamp space.
3964 * All these measures still do not guarantee that we reject wrapped ACKs
3965 * on networks with high bandwidth, when sequence space is recycled fastly,
3966 * but it guarantees that such events will be very rare and do not affect
3967 * connection seriously. This doesn't look nice, but alas, PAWS is really
3970 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3971 * states that events when retransmit arrives after original data are rare.
3972 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3973 * the biggest problem on large power networks even with minor reordering.
3974 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3975 * up to bandwidth of 18Gigabit/sec. 8) ]
3978 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3980 struct tcp_sock
*tp
= tcp_sk(sk
);
3981 struct tcphdr
*th
= tcp_hdr(skb
);
3982 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3983 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3985 return (/* 1. Pure ACK with correct sequence number. */
3986 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3988 /* 2. ... and duplicate ACK. */
3989 ack
== tp
->snd_una
&&
3991 /* 3. ... and does not update window. */
3992 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3994 /* 4. ... and sits in replay window. */
3995 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3998 static inline int tcp_paws_discard(const struct sock
*sk
,
3999 const struct sk_buff
*skb
)
4001 const struct tcp_sock
*tp
= tcp_sk(sk
);
4003 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4004 !tcp_disordered_ack(sk
, skb
);
4007 /* Check segment sequence number for validity.
4009 * Segment controls are considered valid, if the segment
4010 * fits to the window after truncation to the window. Acceptability
4011 * of data (and SYN, FIN, of course) is checked separately.
4012 * See tcp_data_queue(), for example.
4014 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4015 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4016 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4017 * (borrowed from freebsd)
4020 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4022 return !before(end_seq
, tp
->rcv_wup
) &&
4023 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4026 /* When we get a reset we do this. */
4027 static void tcp_reset(struct sock
*sk
)
4029 /* We want the right error as BSD sees it (and indeed as we do). */
4030 switch (sk
->sk_state
) {
4032 sk
->sk_err
= ECONNREFUSED
;
4034 case TCP_CLOSE_WAIT
:
4040 sk
->sk_err
= ECONNRESET
;
4043 if (!sock_flag(sk
, SOCK_DEAD
))
4044 sk
->sk_error_report(sk
);
4050 * Process the FIN bit. This now behaves as it is supposed to work
4051 * and the FIN takes effect when it is validly part of sequence
4052 * space. Not before when we get holes.
4054 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4055 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4058 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4059 * close and we go into CLOSING (and later onto TIME-WAIT)
4061 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4063 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
4065 struct tcp_sock
*tp
= tcp_sk(sk
);
4067 inet_csk_schedule_ack(sk
);
4069 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4070 sock_set_flag(sk
, SOCK_DONE
);
4072 switch (sk
->sk_state
) {
4074 case TCP_ESTABLISHED
:
4075 /* Move to CLOSE_WAIT */
4076 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4077 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4080 case TCP_CLOSE_WAIT
:
4082 /* Received a retransmission of the FIN, do
4087 /* RFC793: Remain in the LAST-ACK state. */
4091 /* This case occurs when a simultaneous close
4092 * happens, we must ack the received FIN and
4093 * enter the CLOSING state.
4096 tcp_set_state(sk
, TCP_CLOSING
);
4099 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4101 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4104 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4105 * cases we should never reach this piece of code.
4107 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4108 __func__
, sk
->sk_state
);
4112 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4113 * Probably, we should reset in this case. For now drop them.
4115 __skb_queue_purge(&tp
->out_of_order_queue
);
4116 if (tcp_is_sack(tp
))
4117 tcp_sack_reset(&tp
->rx_opt
);
4120 if (!sock_flag(sk
, SOCK_DEAD
)) {
4121 sk
->sk_state_change(sk
);
4123 /* Do not send POLL_HUP for half duplex close. */
4124 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4125 sk
->sk_state
== TCP_CLOSE
)
4126 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4128 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4132 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4135 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4136 if (before(seq
, sp
->start_seq
))
4137 sp
->start_seq
= seq
;
4138 if (after(end_seq
, sp
->end_seq
))
4139 sp
->end_seq
= end_seq
;
4145 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4147 struct tcp_sock
*tp
= tcp_sk(sk
);
4149 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4152 if (before(seq
, tp
->rcv_nxt
))
4153 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4155 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4157 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4159 tp
->rx_opt
.dsack
= 1;
4160 tp
->duplicate_sack
[0].start_seq
= seq
;
4161 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4165 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4167 struct tcp_sock
*tp
= tcp_sk(sk
);
4169 if (!tp
->rx_opt
.dsack
)
4170 tcp_dsack_set(sk
, seq
, end_seq
);
4172 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4175 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
4177 struct tcp_sock
*tp
= tcp_sk(sk
);
4179 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4180 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4181 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4182 tcp_enter_quickack_mode(sk
);
4184 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4185 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4187 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4188 end_seq
= tp
->rcv_nxt
;
4189 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4196 /* These routines update the SACK block as out-of-order packets arrive or
4197 * in-order packets close up the sequence space.
4199 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4202 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4203 struct tcp_sack_block
*swalk
= sp
+ 1;
4205 /* See if the recent change to the first SACK eats into
4206 * or hits the sequence space of other SACK blocks, if so coalesce.
4208 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4209 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4212 /* Zap SWALK, by moving every further SACK up by one slot.
4213 * Decrease num_sacks.
4215 tp
->rx_opt
.num_sacks
--;
4216 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4220 this_sack
++, swalk
++;
4224 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4226 struct tcp_sock
*tp
= tcp_sk(sk
);
4227 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4228 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4234 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4235 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4236 /* Rotate this_sack to the first one. */
4237 for (; this_sack
> 0; this_sack
--, sp
--)
4238 swap(*sp
, *(sp
- 1));
4240 tcp_sack_maybe_coalesce(tp
);
4245 /* Could not find an adjacent existing SACK, build a new one,
4246 * put it at the front, and shift everyone else down. We
4247 * always know there is at least one SACK present already here.
4249 * If the sack array is full, forget about the last one.
4251 if (this_sack
>= TCP_NUM_SACKS
) {
4253 tp
->rx_opt
.num_sacks
--;
4256 for (; this_sack
> 0; this_sack
--, sp
--)
4260 /* Build the new head SACK, and we're done. */
4261 sp
->start_seq
= seq
;
4262 sp
->end_seq
= end_seq
;
4263 tp
->rx_opt
.num_sacks
++;
4266 /* RCV.NXT advances, some SACKs should be eaten. */
4268 static void tcp_sack_remove(struct tcp_sock
*tp
)
4270 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4271 int num_sacks
= tp
->rx_opt
.num_sacks
;
4274 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4275 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4276 tp
->rx_opt
.num_sacks
= 0;
4280 for (this_sack
= 0; this_sack
< num_sacks
;) {
4281 /* Check if the start of the sack is covered by RCV.NXT. */
4282 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4285 /* RCV.NXT must cover all the block! */
4286 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4288 /* Zap this SACK, by moving forward any other SACKS. */
4289 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4290 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4297 tp
->rx_opt
.num_sacks
= num_sacks
;
4300 /* This one checks to see if we can put data from the
4301 * out_of_order queue into the receive_queue.
4303 static void tcp_ofo_queue(struct sock
*sk
)
4305 struct tcp_sock
*tp
= tcp_sk(sk
);
4306 __u32 dsack_high
= tp
->rcv_nxt
;
4307 struct sk_buff
*skb
;
4309 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4310 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4313 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4314 __u32 dsack
= dsack_high
;
4315 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4316 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4317 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4320 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4321 SOCK_DEBUG(sk
, "ofo packet was already received \n");
4322 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4326 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4327 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4328 TCP_SKB_CB(skb
)->end_seq
);
4330 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4331 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4332 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4333 if (tcp_hdr(skb
)->fin
)
4334 tcp_fin(skb
, sk
, tcp_hdr(skb
));
4338 static int tcp_prune_ofo_queue(struct sock
*sk
);
4339 static int tcp_prune_queue(struct sock
*sk
);
4341 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4343 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4344 !sk_rmem_schedule(sk
, size
)) {
4346 if (tcp_prune_queue(sk
) < 0)
4349 if (!sk_rmem_schedule(sk
, size
)) {
4350 if (!tcp_prune_ofo_queue(sk
))
4353 if (!sk_rmem_schedule(sk
, size
))
4360 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4362 struct tcphdr
*th
= tcp_hdr(skb
);
4363 struct tcp_sock
*tp
= tcp_sk(sk
);
4366 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4369 __skb_pull(skb
, th
->doff
* 4);
4371 TCP_ECN_accept_cwr(tp
, skb
);
4373 tp
->rx_opt
.dsack
= 0;
4375 /* Queue data for delivery to the user.
4376 * Packets in sequence go to the receive queue.
4377 * Out of sequence packets to the out_of_order_queue.
4379 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4380 if (tcp_receive_window(tp
) == 0)
4383 /* Ok. In sequence. In window. */
4384 if (tp
->ucopy
.task
== current
&&
4385 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4386 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4387 int chunk
= min_t(unsigned int, skb
->len
,
4390 __set_current_state(TASK_RUNNING
);
4393 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4394 tp
->ucopy
.len
-= chunk
;
4395 tp
->copied_seq
+= chunk
;
4396 eaten
= (chunk
== skb
->len
&& !th
->fin
);
4397 tcp_rcv_space_adjust(sk
);
4405 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4408 skb_set_owner_r(skb
, sk
);
4409 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4411 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4413 tcp_event_data_recv(sk
, skb
);
4415 tcp_fin(skb
, sk
, th
);
4417 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4420 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4421 * gap in queue is filled.
4423 if (skb_queue_empty(&tp
->out_of_order_queue
))
4424 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4427 if (tp
->rx_opt
.num_sacks
)
4428 tcp_sack_remove(tp
);
4430 tcp_fast_path_check(sk
);
4434 else if (!sock_flag(sk
, SOCK_DEAD
))
4435 sk
->sk_data_ready(sk
, 0);
4439 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4440 /* A retransmit, 2nd most common case. Force an immediate ack. */
4441 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4442 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4445 tcp_enter_quickack_mode(sk
);
4446 inet_csk_schedule_ack(sk
);
4452 /* Out of window. F.e. zero window probe. */
4453 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4456 tcp_enter_quickack_mode(sk
);
4458 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4459 /* Partial packet, seq < rcv_next < end_seq */
4460 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4461 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4462 TCP_SKB_CB(skb
)->end_seq
);
4464 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4466 /* If window is closed, drop tail of packet. But after
4467 * remembering D-SACK for its head made in previous line.
4469 if (!tcp_receive_window(tp
))
4474 TCP_ECN_check_ce(tp
, skb
);
4476 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4479 /* Disable header prediction. */
4481 inet_csk_schedule_ack(sk
);
4483 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4484 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4486 skb_set_owner_r(skb
, sk
);
4488 if (!skb_peek(&tp
->out_of_order_queue
)) {
4489 /* Initial out of order segment, build 1 SACK. */
4490 if (tcp_is_sack(tp
)) {
4491 tp
->rx_opt
.num_sacks
= 1;
4492 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4493 tp
->selective_acks
[0].end_seq
=
4494 TCP_SKB_CB(skb
)->end_seq
;
4496 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4498 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4499 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4500 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4502 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4503 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4505 if (!tp
->rx_opt
.num_sacks
||
4506 tp
->selective_acks
[0].end_seq
!= seq
)
4509 /* Common case: data arrive in order after hole. */
4510 tp
->selective_acks
[0].end_seq
= end_seq
;
4514 /* Find place to insert this segment. */
4516 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4518 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4522 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4525 /* Do skb overlap to previous one? */
4526 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4527 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4528 /* All the bits are present. Drop. */
4530 tcp_dsack_set(sk
, seq
, end_seq
);
4533 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4534 /* Partial overlap. */
4535 tcp_dsack_set(sk
, seq
,
4536 TCP_SKB_CB(skb1
)->end_seq
);
4538 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4542 skb1
= skb_queue_prev(
4543 &tp
->out_of_order_queue
,
4548 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4550 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4552 /* And clean segments covered by new one as whole. */
4553 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4554 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4556 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4558 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4559 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4563 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4564 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4565 TCP_SKB_CB(skb1
)->end_seq
);
4570 if (tcp_is_sack(tp
))
4571 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4575 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4576 struct sk_buff_head
*list
)
4578 struct sk_buff
*next
= NULL
;
4580 if (!skb_queue_is_last(list
, skb
))
4581 next
= skb_queue_next(list
, skb
);
4583 __skb_unlink(skb
, list
);
4585 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4590 /* Collapse contiguous sequence of skbs head..tail with
4591 * sequence numbers start..end.
4593 * If tail is NULL, this means until the end of the list.
4595 * Segments with FIN/SYN are not collapsed (only because this
4599 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4600 struct sk_buff
*head
, struct sk_buff
*tail
,
4603 struct sk_buff
*skb
, *n
;
4606 /* First, check that queue is collapsible and find
4607 * the point where collapsing can be useful. */
4611 skb_queue_walk_from_safe(list
, skb
, n
) {
4614 /* No new bits? It is possible on ofo queue. */
4615 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4616 skb
= tcp_collapse_one(sk
, skb
, list
);
4622 /* The first skb to collapse is:
4624 * - bloated or contains data before "start" or
4625 * overlaps to the next one.
4627 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4628 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4629 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4630 end_of_skbs
= false;
4634 if (!skb_queue_is_last(list
, skb
)) {
4635 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4637 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4638 end_of_skbs
= false;
4643 /* Decided to skip this, advance start seq. */
4644 start
= TCP_SKB_CB(skb
)->end_seq
;
4646 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4649 while (before(start
, end
)) {
4650 struct sk_buff
*nskb
;
4651 unsigned int header
= skb_headroom(skb
);
4652 int copy
= SKB_MAX_ORDER(header
, 0);
4654 /* Too big header? This can happen with IPv6. */
4657 if (end
- start
< copy
)
4659 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4663 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4664 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4666 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4668 skb_reserve(nskb
, header
);
4669 memcpy(nskb
->head
, skb
->head
, header
);
4670 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4671 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4672 __skb_queue_before(list
, skb
, nskb
);
4673 skb_set_owner_r(nskb
, sk
);
4675 /* Copy data, releasing collapsed skbs. */
4677 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4678 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4682 size
= min(copy
, size
);
4683 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4685 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4689 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4690 skb
= tcp_collapse_one(sk
, skb
, list
);
4693 tcp_hdr(skb
)->syn
||
4701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4702 * and tcp_collapse() them until all the queue is collapsed.
4704 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4706 struct tcp_sock
*tp
= tcp_sk(sk
);
4707 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4708 struct sk_buff
*head
;
4714 start
= TCP_SKB_CB(skb
)->seq
;
4715 end
= TCP_SKB_CB(skb
)->end_seq
;
4719 struct sk_buff
*next
= NULL
;
4721 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4722 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4725 /* Segment is terminated when we see gap or when
4726 * we are at the end of all the queue. */
4728 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4729 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4730 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4731 head
, skb
, start
, end
);
4735 /* Start new segment */
4736 start
= TCP_SKB_CB(skb
)->seq
;
4737 end
= TCP_SKB_CB(skb
)->end_seq
;
4739 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4740 start
= TCP_SKB_CB(skb
)->seq
;
4741 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4742 end
= TCP_SKB_CB(skb
)->end_seq
;
4748 * Purge the out-of-order queue.
4749 * Return true if queue was pruned.
4751 static int tcp_prune_ofo_queue(struct sock
*sk
)
4753 struct tcp_sock
*tp
= tcp_sk(sk
);
4756 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4757 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4758 __skb_queue_purge(&tp
->out_of_order_queue
);
4760 /* Reset SACK state. A conforming SACK implementation will
4761 * do the same at a timeout based retransmit. When a connection
4762 * is in a sad state like this, we care only about integrity
4763 * of the connection not performance.
4765 if (tp
->rx_opt
.sack_ok
)
4766 tcp_sack_reset(&tp
->rx_opt
);
4773 /* Reduce allocated memory if we can, trying to get
4774 * the socket within its memory limits again.
4776 * Return less than zero if we should start dropping frames
4777 * until the socket owning process reads some of the data
4778 * to stabilize the situation.
4780 static int tcp_prune_queue(struct sock
*sk
)
4782 struct tcp_sock
*tp
= tcp_sk(sk
);
4784 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4786 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4788 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4789 tcp_clamp_window(sk
);
4790 else if (tcp_memory_pressure
)
4791 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4793 tcp_collapse_ofo_queue(sk
);
4794 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4795 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4796 skb_peek(&sk
->sk_receive_queue
),
4798 tp
->copied_seq
, tp
->rcv_nxt
);
4801 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4804 /* Collapsing did not help, destructive actions follow.
4805 * This must not ever occur. */
4807 tcp_prune_ofo_queue(sk
);
4809 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4812 /* If we are really being abused, tell the caller to silently
4813 * drop receive data on the floor. It will get retransmitted
4814 * and hopefully then we'll have sufficient space.
4816 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4818 /* Massive buffer overcommit. */
4823 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4824 * As additional protections, we do not touch cwnd in retransmission phases,
4825 * and if application hit its sndbuf limit recently.
4827 void tcp_cwnd_application_limited(struct sock
*sk
)
4829 struct tcp_sock
*tp
= tcp_sk(sk
);
4831 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4832 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4833 /* Limited by application or receiver window. */
4834 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4835 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4836 if (win_used
< tp
->snd_cwnd
) {
4837 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4838 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4840 tp
->snd_cwnd_used
= 0;
4842 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4845 static int tcp_should_expand_sndbuf(struct sock
*sk
)
4847 struct tcp_sock
*tp
= tcp_sk(sk
);
4849 /* If the user specified a specific send buffer setting, do
4852 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4855 /* If we are under global TCP memory pressure, do not expand. */
4856 if (tcp_memory_pressure
)
4859 /* If we are under soft global TCP memory pressure, do not expand. */
4860 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
4863 /* If we filled the congestion window, do not expand. */
4864 if (tp
->packets_out
>= tp
->snd_cwnd
)
4870 /* When incoming ACK allowed to free some skb from write_queue,
4871 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4872 * on the exit from tcp input handler.
4874 * PROBLEM: sndbuf expansion does not work well with largesend.
4876 static void tcp_new_space(struct sock
*sk
)
4878 struct tcp_sock
*tp
= tcp_sk(sk
);
4880 if (tcp_should_expand_sndbuf(sk
)) {
4881 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
4882 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
4883 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4884 tp
->reordering
+ 1);
4885 sndmem
*= 2 * demanded
;
4886 if (sndmem
> sk
->sk_sndbuf
)
4887 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4888 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4891 sk
->sk_write_space(sk
);
4894 static void tcp_check_space(struct sock
*sk
)
4896 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4897 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4898 if (sk
->sk_socket
&&
4899 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4904 static inline void tcp_data_snd_check(struct sock
*sk
)
4906 tcp_push_pending_frames(sk
);
4907 tcp_check_space(sk
);
4911 * Check if sending an ack is needed.
4913 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4915 struct tcp_sock
*tp
= tcp_sk(sk
);
4917 /* More than one full frame received... */
4918 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4919 /* ... and right edge of window advances far enough.
4920 * (tcp_recvmsg() will send ACK otherwise). Or...
4922 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4923 /* We ACK each frame or... */
4924 tcp_in_quickack_mode(sk
) ||
4925 /* We have out of order data. */
4926 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4927 /* Then ack it now */
4930 /* Else, send delayed ack. */
4931 tcp_send_delayed_ack(sk
);
4935 static inline void tcp_ack_snd_check(struct sock
*sk
)
4937 if (!inet_csk_ack_scheduled(sk
)) {
4938 /* We sent a data segment already. */
4941 __tcp_ack_snd_check(sk
, 1);
4945 * This routine is only called when we have urgent data
4946 * signaled. Its the 'slow' part of tcp_urg. It could be
4947 * moved inline now as tcp_urg is only called from one
4948 * place. We handle URGent data wrong. We have to - as
4949 * BSD still doesn't use the correction from RFC961.
4950 * For 1003.1g we should support a new option TCP_STDURG to permit
4951 * either form (or just set the sysctl tcp_stdurg).
4954 static void tcp_check_urg(struct sock
*sk
, struct tcphdr
*th
)
4956 struct tcp_sock
*tp
= tcp_sk(sk
);
4957 u32 ptr
= ntohs(th
->urg_ptr
);
4959 if (ptr
&& !sysctl_tcp_stdurg
)
4961 ptr
+= ntohl(th
->seq
);
4963 /* Ignore urgent data that we've already seen and read. */
4964 if (after(tp
->copied_seq
, ptr
))
4967 /* Do not replay urg ptr.
4969 * NOTE: interesting situation not covered by specs.
4970 * Misbehaving sender may send urg ptr, pointing to segment,
4971 * which we already have in ofo queue. We are not able to fetch
4972 * such data and will stay in TCP_URG_NOTYET until will be eaten
4973 * by recvmsg(). Seems, we are not obliged to handle such wicked
4974 * situations. But it is worth to think about possibility of some
4975 * DoSes using some hypothetical application level deadlock.
4977 if (before(ptr
, tp
->rcv_nxt
))
4980 /* Do we already have a newer (or duplicate) urgent pointer? */
4981 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4984 /* Tell the world about our new urgent pointer. */
4987 /* We may be adding urgent data when the last byte read was
4988 * urgent. To do this requires some care. We cannot just ignore
4989 * tp->copied_seq since we would read the last urgent byte again
4990 * as data, nor can we alter copied_seq until this data arrives
4991 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4993 * NOTE. Double Dutch. Rendering to plain English: author of comment
4994 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4995 * and expect that both A and B disappear from stream. This is _wrong_.
4996 * Though this happens in BSD with high probability, this is occasional.
4997 * Any application relying on this is buggy. Note also, that fix "works"
4998 * only in this artificial test. Insert some normal data between A and B and we will
4999 * decline of BSD again. Verdict: it is better to remove to trap
5002 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5003 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5004 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5006 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5007 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5012 tp
->urg_data
= TCP_URG_NOTYET
;
5015 /* Disable header prediction. */
5019 /* This is the 'fast' part of urgent handling. */
5020 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
5022 struct tcp_sock
*tp
= tcp_sk(sk
);
5024 /* Check if we get a new urgent pointer - normally not. */
5026 tcp_check_urg(sk
, th
);
5028 /* Do we wait for any urgent data? - normally not... */
5029 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5030 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5033 /* Is the urgent pointer pointing into this packet? */
5034 if (ptr
< skb
->len
) {
5036 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5038 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5039 if (!sock_flag(sk
, SOCK_DEAD
))
5040 sk
->sk_data_ready(sk
, 0);
5045 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5047 struct tcp_sock
*tp
= tcp_sk(sk
);
5048 int chunk
= skb
->len
- hlen
;
5052 if (skb_csum_unnecessary(skb
))
5053 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5055 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5059 tp
->ucopy
.len
-= chunk
;
5060 tp
->copied_seq
+= chunk
;
5061 tcp_rcv_space_adjust(sk
);
5068 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5069 struct sk_buff
*skb
)
5073 if (sock_owned_by_user(sk
)) {
5075 result
= __tcp_checksum_complete(skb
);
5078 result
= __tcp_checksum_complete(skb
);
5083 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5084 struct sk_buff
*skb
)
5086 return !skb_csum_unnecessary(skb
) &&
5087 __tcp_checksum_complete_user(sk
, skb
);
5090 #ifdef CONFIG_NET_DMA
5091 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5094 struct tcp_sock
*tp
= tcp_sk(sk
);
5095 int chunk
= skb
->len
- hlen
;
5097 int copied_early
= 0;
5099 if (tp
->ucopy
.wakeup
)
5102 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5103 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5105 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5107 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5109 tp
->ucopy
.iov
, chunk
,
5110 tp
->ucopy
.pinned_list
);
5115 tp
->ucopy
.dma_cookie
= dma_cookie
;
5118 tp
->ucopy
.len
-= chunk
;
5119 tp
->copied_seq
+= chunk
;
5120 tcp_rcv_space_adjust(sk
);
5122 if ((tp
->ucopy
.len
== 0) ||
5123 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5124 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5125 tp
->ucopy
.wakeup
= 1;
5126 sk
->sk_data_ready(sk
, 0);
5128 } else if (chunk
> 0) {
5129 tp
->ucopy
.wakeup
= 1;
5130 sk
->sk_data_ready(sk
, 0);
5133 return copied_early
;
5135 #endif /* CONFIG_NET_DMA */
5137 /* Does PAWS and seqno based validation of an incoming segment, flags will
5138 * play significant role here.
5140 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5141 struct tcphdr
*th
, int syn_inerr
)
5144 struct tcp_sock
*tp
= tcp_sk(sk
);
5146 /* RFC1323: H1. Apply PAWS check first. */
5147 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5148 tp
->rx_opt
.saw_tstamp
&&
5149 tcp_paws_discard(sk
, skb
)) {
5151 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5152 tcp_send_dupack(sk
, skb
);
5155 /* Reset is accepted even if it did not pass PAWS. */
5158 /* Step 1: check sequence number */
5159 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5160 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5161 * (RST) segments are validated by checking their SEQ-fields."
5162 * And page 69: "If an incoming segment is not acceptable,
5163 * an acknowledgment should be sent in reply (unless the RST
5164 * bit is set, if so drop the segment and return)".
5167 tcp_send_dupack(sk
, skb
);
5171 /* Step 2: check RST bit */
5177 /* ts_recent update must be made after we are sure that the packet
5180 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5182 /* step 3: check security and precedence [ignored] */
5184 /* step 4: Check for a SYN in window. */
5185 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5187 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5188 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5201 * TCP receive function for the ESTABLISHED state.
5203 * It is split into a fast path and a slow path. The fast path is
5205 * - A zero window was announced from us - zero window probing
5206 * is only handled properly in the slow path.
5207 * - Out of order segments arrived.
5208 * - Urgent data is expected.
5209 * - There is no buffer space left
5210 * - Unexpected TCP flags/window values/header lengths are received
5211 * (detected by checking the TCP header against pred_flags)
5212 * - Data is sent in both directions. Fast path only supports pure senders
5213 * or pure receivers (this means either the sequence number or the ack
5214 * value must stay constant)
5215 * - Unexpected TCP option.
5217 * When these conditions are not satisfied it drops into a standard
5218 * receive procedure patterned after RFC793 to handle all cases.
5219 * The first three cases are guaranteed by proper pred_flags setting,
5220 * the rest is checked inline. Fast processing is turned on in
5221 * tcp_data_queue when everything is OK.
5223 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5224 struct tcphdr
*th
, unsigned len
)
5226 struct tcp_sock
*tp
= tcp_sk(sk
);
5230 * Header prediction.
5231 * The code loosely follows the one in the famous
5232 * "30 instruction TCP receive" Van Jacobson mail.
5234 * Van's trick is to deposit buffers into socket queue
5235 * on a device interrupt, to call tcp_recv function
5236 * on the receive process context and checksum and copy
5237 * the buffer to user space. smart...
5239 * Our current scheme is not silly either but we take the
5240 * extra cost of the net_bh soft interrupt processing...
5241 * We do checksum and copy also but from device to kernel.
5244 tp
->rx_opt
.saw_tstamp
= 0;
5246 /* pred_flags is 0xS?10 << 16 + snd_wnd
5247 * if header_prediction is to be made
5248 * 'S' will always be tp->tcp_header_len >> 2
5249 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5250 * turn it off (when there are holes in the receive
5251 * space for instance)
5252 * PSH flag is ignored.
5255 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5256 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5257 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5258 int tcp_header_len
= tp
->tcp_header_len
;
5260 /* Timestamp header prediction: tcp_header_len
5261 * is automatically equal to th->doff*4 due to pred_flags
5265 /* Check timestamp */
5266 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5267 /* No? Slow path! */
5268 if (!tcp_parse_aligned_timestamp(tp
, th
))
5271 /* If PAWS failed, check it more carefully in slow path */
5272 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5275 /* DO NOT update ts_recent here, if checksum fails
5276 * and timestamp was corrupted part, it will result
5277 * in a hung connection since we will drop all
5278 * future packets due to the PAWS test.
5282 if (len
<= tcp_header_len
) {
5283 /* Bulk data transfer: sender */
5284 if (len
== tcp_header_len
) {
5285 /* Predicted packet is in window by definition.
5286 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5287 * Hence, check seq<=rcv_wup reduces to:
5289 if (tcp_header_len
==
5290 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5291 tp
->rcv_nxt
== tp
->rcv_wup
)
5292 tcp_store_ts_recent(tp
);
5294 /* We know that such packets are checksummed
5297 tcp_ack(sk
, skb
, 0);
5299 tcp_data_snd_check(sk
);
5301 } else { /* Header too small */
5302 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5307 int copied_early
= 0;
5309 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5310 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5311 #ifdef CONFIG_NET_DMA
5312 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5317 if (tp
->ucopy
.task
== current
&&
5318 sock_owned_by_user(sk
) && !copied_early
) {
5319 __set_current_state(TASK_RUNNING
);
5321 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5325 /* Predicted packet is in window by definition.
5326 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5327 * Hence, check seq<=rcv_wup reduces to:
5329 if (tcp_header_len
==
5330 (sizeof(struct tcphdr
) +
5331 TCPOLEN_TSTAMP_ALIGNED
) &&
5332 tp
->rcv_nxt
== tp
->rcv_wup
)
5333 tcp_store_ts_recent(tp
);
5335 tcp_rcv_rtt_measure_ts(sk
, skb
);
5337 __skb_pull(skb
, tcp_header_len
);
5338 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5339 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5342 tcp_cleanup_rbuf(sk
, skb
->len
);
5345 if (tcp_checksum_complete_user(sk
, skb
))
5348 /* Predicted packet is in window by definition.
5349 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5350 * Hence, check seq<=rcv_wup reduces to:
5352 if (tcp_header_len
==
5353 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5354 tp
->rcv_nxt
== tp
->rcv_wup
)
5355 tcp_store_ts_recent(tp
);
5357 tcp_rcv_rtt_measure_ts(sk
, skb
);
5359 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5362 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5364 /* Bulk data transfer: receiver */
5365 __skb_pull(skb
, tcp_header_len
);
5366 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5367 skb_set_owner_r(skb
, sk
);
5368 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5371 tcp_event_data_recv(sk
, skb
);
5373 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5374 /* Well, only one small jumplet in fast path... */
5375 tcp_ack(sk
, skb
, FLAG_DATA
);
5376 tcp_data_snd_check(sk
);
5377 if (!inet_csk_ack_scheduled(sk
))
5381 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5382 __tcp_ack_snd_check(sk
, 0);
5384 #ifdef CONFIG_NET_DMA
5386 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5392 sk
->sk_data_ready(sk
, 0);
5398 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5402 * Standard slow path.
5405 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5410 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5413 tcp_rcv_rtt_measure_ts(sk
, skb
);
5415 /* Process urgent data. */
5416 tcp_urg(sk
, skb
, th
);
5418 /* step 7: process the segment text */
5419 tcp_data_queue(sk
, skb
);
5421 tcp_data_snd_check(sk
);
5422 tcp_ack_snd_check(sk
);
5426 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5433 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5434 struct tcphdr
*th
, unsigned len
)
5437 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5438 struct tcp_sock
*tp
= tcp_sk(sk
);
5439 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5440 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5442 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5446 * "If the state is SYN-SENT then
5447 * first check the ACK bit
5448 * If the ACK bit is set
5449 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5450 * a reset (unless the RST bit is set, if so drop
5451 * the segment and return)"
5453 * We do not send data with SYN, so that RFC-correct
5456 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5457 goto reset_and_undo
;
5459 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5460 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5462 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5463 goto reset_and_undo
;
5466 /* Now ACK is acceptable.
5468 * "If the RST bit is set
5469 * If the ACK was acceptable then signal the user "error:
5470 * connection reset", drop the segment, enter CLOSED state,
5471 * delete TCB, and return."
5480 * "fifth, if neither of the SYN or RST bits is set then
5481 * drop the segment and return."
5487 goto discard_and_undo
;
5490 * "If the SYN bit is on ...
5491 * are acceptable then ...
5492 * (our SYN has been ACKed), change the connection
5493 * state to ESTABLISHED..."
5496 TCP_ECN_rcv_synack(tp
, th
);
5498 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5499 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5501 /* Ok.. it's good. Set up sequence numbers and
5502 * move to established.
5504 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5505 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5507 /* RFC1323: The window in SYN & SYN/ACK segments is
5510 tp
->snd_wnd
= ntohs(th
->window
);
5511 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5513 if (!tp
->rx_opt
.wscale_ok
) {
5514 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5515 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5518 if (tp
->rx_opt
.saw_tstamp
) {
5519 tp
->rx_opt
.tstamp_ok
= 1;
5520 tp
->tcp_header_len
=
5521 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5522 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5523 tcp_store_ts_recent(tp
);
5525 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5528 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5529 tcp_enable_fack(tp
);
5532 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5533 tcp_initialize_rcv_mss(sk
);
5535 /* Remember, tcp_poll() does not lock socket!
5536 * Change state from SYN-SENT only after copied_seq
5537 * is initialized. */
5538 tp
->copied_seq
= tp
->rcv_nxt
;
5541 cvp
->cookie_pair_size
> 0 &&
5542 tp
->rx_opt
.cookie_plus
> 0) {
5543 int cookie_size
= tp
->rx_opt
.cookie_plus
5544 - TCPOLEN_COOKIE_BASE
;
5545 int cookie_pair_size
= cookie_size
5546 + cvp
->cookie_desired
;
5548 /* A cookie extension option was sent and returned.
5549 * Note that each incoming SYNACK replaces the
5550 * Responder cookie. The initial exchange is most
5551 * fragile, as protection against spoofing relies
5552 * entirely upon the sequence and timestamp (above).
5553 * This replacement strategy allows the correct pair to
5554 * pass through, while any others will be filtered via
5555 * Responder verification later.
5557 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5558 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5559 hash_location
, cookie_size
);
5560 cvp
->cookie_pair_size
= cookie_pair_size
;
5565 tcp_set_state(sk
, TCP_ESTABLISHED
);
5567 security_inet_conn_established(sk
, skb
);
5569 /* Make sure socket is routed, for correct metrics. */
5570 icsk
->icsk_af_ops
->rebuild_header(sk
);
5572 tcp_init_metrics(sk
);
5574 tcp_init_congestion_control(sk
);
5576 /* Prevent spurious tcp_cwnd_restart() on first data
5579 tp
->lsndtime
= tcp_time_stamp
;
5581 tcp_init_buffer_space(sk
);
5583 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5584 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5586 if (!tp
->rx_opt
.snd_wscale
)
5587 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5591 if (!sock_flag(sk
, SOCK_DEAD
)) {
5592 sk
->sk_state_change(sk
);
5593 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5596 if (sk
->sk_write_pending
||
5597 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5598 icsk
->icsk_ack
.pingpong
) {
5599 /* Save one ACK. Data will be ready after
5600 * several ticks, if write_pending is set.
5602 * It may be deleted, but with this feature tcpdumps
5603 * look so _wonderfully_ clever, that I was not able
5604 * to stand against the temptation 8) --ANK
5606 inet_csk_schedule_ack(sk
);
5607 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5608 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5609 tcp_incr_quickack(sk
);
5610 tcp_enter_quickack_mode(sk
);
5611 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5612 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5623 /* No ACK in the segment */
5627 * "If the RST bit is set
5629 * Otherwise (no ACK) drop the segment and return."
5632 goto discard_and_undo
;
5636 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5637 tcp_paws_reject(&tp
->rx_opt
, 0))
5638 goto discard_and_undo
;
5641 /* We see SYN without ACK. It is attempt of
5642 * simultaneous connect with crossed SYNs.
5643 * Particularly, it can be connect to self.
5645 tcp_set_state(sk
, TCP_SYN_RECV
);
5647 if (tp
->rx_opt
.saw_tstamp
) {
5648 tp
->rx_opt
.tstamp_ok
= 1;
5649 tcp_store_ts_recent(tp
);
5650 tp
->tcp_header_len
=
5651 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5653 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5656 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5657 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5659 /* RFC1323: The window in SYN & SYN/ACK segments is
5662 tp
->snd_wnd
= ntohs(th
->window
);
5663 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5664 tp
->max_window
= tp
->snd_wnd
;
5666 TCP_ECN_rcv_syn(tp
, th
);
5669 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5670 tcp_initialize_rcv_mss(sk
);
5672 tcp_send_synack(sk
);
5674 /* Note, we could accept data and URG from this segment.
5675 * There are no obstacles to make this.
5677 * However, if we ignore data in ACKless segments sometimes,
5678 * we have no reasons to accept it sometimes.
5679 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5680 * is not flawless. So, discard packet for sanity.
5681 * Uncomment this return to process the data.
5688 /* "fifth, if neither of the SYN or RST bits is set then
5689 * drop the segment and return."
5693 tcp_clear_options(&tp
->rx_opt
);
5694 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5698 tcp_clear_options(&tp
->rx_opt
);
5699 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5704 * This function implements the receiving procedure of RFC 793 for
5705 * all states except ESTABLISHED and TIME_WAIT.
5706 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5707 * address independent.
5710 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5711 struct tcphdr
*th
, unsigned len
)
5713 struct tcp_sock
*tp
= tcp_sk(sk
);
5714 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5718 tp
->rx_opt
.saw_tstamp
= 0;
5720 switch (sk
->sk_state
) {
5732 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5735 /* Now we have several options: In theory there is
5736 * nothing else in the frame. KA9Q has an option to
5737 * send data with the syn, BSD accepts data with the
5738 * syn up to the [to be] advertised window and
5739 * Solaris 2.1 gives you a protocol error. For now
5740 * we just ignore it, that fits the spec precisely
5741 * and avoids incompatibilities. It would be nice in
5742 * future to drop through and process the data.
5744 * Now that TTCP is starting to be used we ought to
5746 * But, this leaves one open to an easy denial of
5747 * service attack, and SYN cookies can't defend
5748 * against this problem. So, we drop the data
5749 * in the interest of security over speed unless
5750 * it's still in use.
5758 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5762 /* Do step6 onward by hand. */
5763 tcp_urg(sk
, skb
, th
);
5765 tcp_data_snd_check(sk
);
5769 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5773 /* step 5: check the ACK field */
5775 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5777 switch (sk
->sk_state
) {
5780 tp
->copied_seq
= tp
->rcv_nxt
;
5782 tcp_set_state(sk
, TCP_ESTABLISHED
);
5783 sk
->sk_state_change(sk
);
5785 /* Note, that this wakeup is only for marginal
5786 * crossed SYN case. Passively open sockets
5787 * are not waked up, because sk->sk_sleep ==
5788 * NULL and sk->sk_socket == NULL.
5792 SOCK_WAKE_IO
, POLL_OUT
);
5794 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5795 tp
->snd_wnd
= ntohs(th
->window
) <<
5796 tp
->rx_opt
.snd_wscale
;
5797 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5799 /* tcp_ack considers this ACK as duplicate
5800 * and does not calculate rtt.
5803 tcp_ack_update_rtt(sk
, 0, 0);
5805 if (tp
->rx_opt
.tstamp_ok
)
5806 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5808 /* Make sure socket is routed, for
5811 icsk
->icsk_af_ops
->rebuild_header(sk
);
5813 tcp_init_metrics(sk
);
5815 tcp_init_congestion_control(sk
);
5817 /* Prevent spurious tcp_cwnd_restart() on
5818 * first data packet.
5820 tp
->lsndtime
= tcp_time_stamp
;
5823 tcp_initialize_rcv_mss(sk
);
5824 tcp_init_buffer_space(sk
);
5825 tcp_fast_path_on(tp
);
5832 if (tp
->snd_una
== tp
->write_seq
) {
5833 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5834 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5835 dst_confirm(sk
->sk_dst_cache
);
5837 if (!sock_flag(sk
, SOCK_DEAD
))
5838 /* Wake up lingering close() */
5839 sk
->sk_state_change(sk
);
5843 if (tp
->linger2
< 0 ||
5844 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5845 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5847 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5851 tmo
= tcp_fin_time(sk
);
5852 if (tmo
> TCP_TIMEWAIT_LEN
) {
5853 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5854 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5855 /* Bad case. We could lose such FIN otherwise.
5856 * It is not a big problem, but it looks confusing
5857 * and not so rare event. We still can lose it now,
5858 * if it spins in bh_lock_sock(), but it is really
5861 inet_csk_reset_keepalive_timer(sk
, tmo
);
5863 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5871 if (tp
->snd_una
== tp
->write_seq
) {
5872 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5878 if (tp
->snd_una
== tp
->write_seq
) {
5879 tcp_update_metrics(sk
);
5888 /* step 6: check the URG bit */
5889 tcp_urg(sk
, skb
, th
);
5891 /* step 7: process the segment text */
5892 switch (sk
->sk_state
) {
5893 case TCP_CLOSE_WAIT
:
5896 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5900 /* RFC 793 says to queue data in these states,
5901 * RFC 1122 says we MUST send a reset.
5902 * BSD 4.4 also does reset.
5904 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5905 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5906 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5907 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5913 case TCP_ESTABLISHED
:
5914 tcp_data_queue(sk
, skb
);
5919 /* tcp_data could move socket to TIME-WAIT */
5920 if (sk
->sk_state
!= TCP_CLOSE
) {
5921 tcp_data_snd_check(sk
);
5922 tcp_ack_snd_check(sk
);
5932 EXPORT_SYMBOL(sysctl_tcp_ecn
);
5933 EXPORT_SYMBOL(sysctl_tcp_reordering
);
5934 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
5935 EXPORT_SYMBOL(tcp_parse_options
);
5936 #ifdef CONFIG_TCP_MD5SIG
5937 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
5939 EXPORT_SYMBOL(tcp_rcv_established
);
5940 EXPORT_SYMBOL(tcp_rcv_state_process
);
5941 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);