Use menuconfig objects II - netdev/pcmcia
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob364fc95bf97cee2623597753708ff6cf293d2421
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 fastcall void recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 (freezing(t)) ||
103 PENDING(&t->pending, &t->blocked) ||
104 PENDING(&t->signal->shared_pending, &t->blocked))
105 set_tsk_thread_flag(t, TIF_SIGPENDING);
106 else
107 clear_tsk_thread_flag(t, TIF_SIGPENDING);
110 void recalc_sigpending(void)
112 recalc_sigpending_tsk(current);
115 /* Given the mask, find the first available signal that should be serviced. */
117 int next_signal(struct sigpending *pending, sigset_t *mask)
119 unsigned long i, *s, *m, x;
120 int sig = 0;
122 s = pending->signal.sig;
123 m = mask->sig;
124 switch (_NSIG_WORDS) {
125 default:
126 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
127 if ((x = *s &~ *m) != 0) {
128 sig = ffz(~x) + i*_NSIG_BPW + 1;
129 break;
131 break;
133 case 2: if ((x = s[0] &~ m[0]) != 0)
134 sig = 1;
135 else if ((x = s[1] &~ m[1]) != 0)
136 sig = _NSIG_BPW + 1;
137 else
138 break;
139 sig += ffz(~x);
140 break;
142 case 1: if ((x = *s &~ *m) != 0)
143 sig = ffz(~x) + 1;
144 break;
147 return sig;
150 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
151 int override_rlimit)
153 struct sigqueue *q = NULL;
154 struct user_struct *user;
157 * In order to avoid problems with "switch_user()", we want to make
158 * sure that the compiler doesn't re-load "t->user"
160 user = t->user;
161 barrier();
162 atomic_inc(&user->sigpending);
163 if (override_rlimit ||
164 atomic_read(&user->sigpending) <=
165 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
166 q = kmem_cache_alloc(sigqueue_cachep, flags);
167 if (unlikely(q == NULL)) {
168 atomic_dec(&user->sigpending);
169 } else {
170 INIT_LIST_HEAD(&q->list);
171 q->flags = 0;
172 q->user = get_uid(user);
174 return(q);
177 static void __sigqueue_free(struct sigqueue *q)
179 if (q->flags & SIGQUEUE_PREALLOC)
180 return;
181 atomic_dec(&q->user->sigpending);
182 free_uid(q->user);
183 kmem_cache_free(sigqueue_cachep, q);
186 void flush_sigqueue(struct sigpending *queue)
188 struct sigqueue *q;
190 sigemptyset(&queue->signal);
191 while (!list_empty(&queue->list)) {
192 q = list_entry(queue->list.next, struct sigqueue , list);
193 list_del_init(&q->list);
194 __sigqueue_free(q);
199 * Flush all pending signals for a task.
201 void flush_signals(struct task_struct *t)
203 unsigned long flags;
205 spin_lock_irqsave(&t->sighand->siglock, flags);
206 clear_tsk_thread_flag(t,TIF_SIGPENDING);
207 flush_sigqueue(&t->pending);
208 flush_sigqueue(&t->signal->shared_pending);
209 spin_unlock_irqrestore(&t->sighand->siglock, flags);
212 void ignore_signals(struct task_struct *t)
214 int i;
216 for (i = 0; i < _NSIG; ++i)
217 t->sighand->action[i].sa.sa_handler = SIG_IGN;
219 flush_signals(t);
223 * Flush all handlers for a task.
226 void
227 flush_signal_handlers(struct task_struct *t, int force_default)
229 int i;
230 struct k_sigaction *ka = &t->sighand->action[0];
231 for (i = _NSIG ; i != 0 ; i--) {
232 if (force_default || ka->sa.sa_handler != SIG_IGN)
233 ka->sa.sa_handler = SIG_DFL;
234 ka->sa.sa_flags = 0;
235 sigemptyset(&ka->sa.sa_mask);
236 ka++;
241 /* Notify the system that a driver wants to block all signals for this
242 * process, and wants to be notified if any signals at all were to be
243 * sent/acted upon. If the notifier routine returns non-zero, then the
244 * signal will be acted upon after all. If the notifier routine returns 0,
245 * then then signal will be blocked. Only one block per process is
246 * allowed. priv is a pointer to private data that the notifier routine
247 * can use to determine if the signal should be blocked or not. */
249 void
250 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
252 unsigned long flags;
254 spin_lock_irqsave(&current->sighand->siglock, flags);
255 current->notifier_mask = mask;
256 current->notifier_data = priv;
257 current->notifier = notifier;
258 spin_unlock_irqrestore(&current->sighand->siglock, flags);
261 /* Notify the system that blocking has ended. */
263 void
264 unblock_all_signals(void)
266 unsigned long flags;
268 spin_lock_irqsave(&current->sighand->siglock, flags);
269 current->notifier = NULL;
270 current->notifier_data = NULL;
271 recalc_sigpending();
272 spin_unlock_irqrestore(&current->sighand->siglock, flags);
275 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
277 struct sigqueue *q, *first = NULL;
278 int still_pending = 0;
280 if (unlikely(!sigismember(&list->signal, sig)))
281 return 0;
284 * Collect the siginfo appropriate to this signal. Check if
285 * there is another siginfo for the same signal.
287 list_for_each_entry(q, &list->list, list) {
288 if (q->info.si_signo == sig) {
289 if (first) {
290 still_pending = 1;
291 break;
293 first = q;
296 if (first) {
297 list_del_init(&first->list);
298 copy_siginfo(info, &first->info);
299 __sigqueue_free(first);
300 if (!still_pending)
301 sigdelset(&list->signal, sig);
302 } else {
304 /* Ok, it wasn't in the queue. This must be
305 a fast-pathed signal or we must have been
306 out of queue space. So zero out the info.
308 sigdelset(&list->signal, sig);
309 info->si_signo = sig;
310 info->si_errno = 0;
311 info->si_code = 0;
312 info->si_pid = 0;
313 info->si_uid = 0;
315 return 1;
318 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
319 siginfo_t *info)
321 int sig = next_signal(pending, mask);
323 if (sig) {
324 if (current->notifier) {
325 if (sigismember(current->notifier_mask, sig)) {
326 if (!(current->notifier)(current->notifier_data)) {
327 clear_thread_flag(TIF_SIGPENDING);
328 return 0;
333 if (!collect_signal(sig, pending, info))
334 sig = 0;
337 return sig;
341 * Dequeue a signal and return the element to the caller, which is
342 * expected to free it.
344 * All callers have to hold the siglock.
346 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
348 int signr = __dequeue_signal(&tsk->pending, mask, info);
349 if (!signr) {
350 signr = __dequeue_signal(&tsk->signal->shared_pending,
351 mask, info);
353 * itimer signal ?
355 * itimers are process shared and we restart periodic
356 * itimers in the signal delivery path to prevent DoS
357 * attacks in the high resolution timer case. This is
358 * compliant with the old way of self restarting
359 * itimers, as the SIGALRM is a legacy signal and only
360 * queued once. Changing the restart behaviour to
361 * restart the timer in the signal dequeue path is
362 * reducing the timer noise on heavy loaded !highres
363 * systems too.
365 if (unlikely(signr == SIGALRM)) {
366 struct hrtimer *tmr = &tsk->signal->real_timer;
368 if (!hrtimer_is_queued(tmr) &&
369 tsk->signal->it_real_incr.tv64 != 0) {
370 hrtimer_forward(tmr, tmr->base->get_time(),
371 tsk->signal->it_real_incr);
372 hrtimer_restart(tmr);
376 recalc_sigpending_tsk(tsk);
377 if (signr && unlikely(sig_kernel_stop(signr))) {
379 * Set a marker that we have dequeued a stop signal. Our
380 * caller might release the siglock and then the pending
381 * stop signal it is about to process is no longer in the
382 * pending bitmasks, but must still be cleared by a SIGCONT
383 * (and overruled by a SIGKILL). So those cases clear this
384 * shared flag after we've set it. Note that this flag may
385 * remain set after the signal we return is ignored or
386 * handled. That doesn't matter because its only purpose
387 * is to alert stop-signal processing code when another
388 * processor has come along and cleared the flag.
390 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
391 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
393 if ( signr &&
394 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
395 info->si_sys_private){
397 * Release the siglock to ensure proper locking order
398 * of timer locks outside of siglocks. Note, we leave
399 * irqs disabled here, since the posix-timers code is
400 * about to disable them again anyway.
402 spin_unlock(&tsk->sighand->siglock);
403 do_schedule_next_timer(info);
404 spin_lock(&tsk->sighand->siglock);
406 return signr;
410 * Tell a process that it has a new active signal..
412 * NOTE! we rely on the previous spin_lock to
413 * lock interrupts for us! We can only be called with
414 * "siglock" held, and the local interrupt must
415 * have been disabled when that got acquired!
417 * No need to set need_resched since signal event passing
418 * goes through ->blocked
420 void signal_wake_up(struct task_struct *t, int resume)
422 unsigned int mask;
424 set_tsk_thread_flag(t, TIF_SIGPENDING);
427 * For SIGKILL, we want to wake it up in the stopped/traced case.
428 * We don't check t->state here because there is a race with it
429 * executing another processor and just now entering stopped state.
430 * By using wake_up_state, we ensure the process will wake up and
431 * handle its death signal.
433 mask = TASK_INTERRUPTIBLE;
434 if (resume)
435 mask |= TASK_STOPPED | TASK_TRACED;
436 if (!wake_up_state(t, mask))
437 kick_process(t);
441 * Remove signals in mask from the pending set and queue.
442 * Returns 1 if any signals were found.
444 * All callers must be holding the siglock.
446 * This version takes a sigset mask and looks at all signals,
447 * not just those in the first mask word.
449 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
451 struct sigqueue *q, *n;
452 sigset_t m;
454 sigandsets(&m, mask, &s->signal);
455 if (sigisemptyset(&m))
456 return 0;
458 signandsets(&s->signal, &s->signal, mask);
459 list_for_each_entry_safe(q, n, &s->list, list) {
460 if (sigismember(mask, q->info.si_signo)) {
461 list_del_init(&q->list);
462 __sigqueue_free(q);
465 return 1;
468 * Remove signals in mask from the pending set and queue.
469 * Returns 1 if any signals were found.
471 * All callers must be holding the siglock.
473 static int rm_from_queue(unsigned long mask, struct sigpending *s)
475 struct sigqueue *q, *n;
477 if (!sigtestsetmask(&s->signal, mask))
478 return 0;
480 sigdelsetmask(&s->signal, mask);
481 list_for_each_entry_safe(q, n, &s->list, list) {
482 if (q->info.si_signo < SIGRTMIN &&
483 (mask & sigmask(q->info.si_signo))) {
484 list_del_init(&q->list);
485 __sigqueue_free(q);
488 return 1;
492 * Bad permissions for sending the signal
494 static int check_kill_permission(int sig, struct siginfo *info,
495 struct task_struct *t)
497 int error = -EINVAL;
498 if (!valid_signal(sig))
499 return error;
501 error = audit_signal_info(sig, t); /* Let audit system see the signal */
502 if (error)
503 return error;
505 error = -EPERM;
506 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
507 && ((sig != SIGCONT) ||
508 (process_session(current) != process_session(t)))
509 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
510 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
511 && !capable(CAP_KILL))
512 return error;
514 return security_task_kill(t, info, sig, 0);
517 /* forward decl */
518 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
521 * Handle magic process-wide effects of stop/continue signals.
522 * Unlike the signal actions, these happen immediately at signal-generation
523 * time regardless of blocking, ignoring, or handling. This does the
524 * actual continuing for SIGCONT, but not the actual stopping for stop
525 * signals. The process stop is done as a signal action for SIG_DFL.
527 static void handle_stop_signal(int sig, struct task_struct *p)
529 struct task_struct *t;
531 if (p->signal->flags & SIGNAL_GROUP_EXIT)
533 * The process is in the middle of dying already.
535 return;
537 if (sig_kernel_stop(sig)) {
539 * This is a stop signal. Remove SIGCONT from all queues.
541 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
542 t = p;
543 do {
544 rm_from_queue(sigmask(SIGCONT), &t->pending);
545 t = next_thread(t);
546 } while (t != p);
547 } else if (sig == SIGCONT) {
549 * Remove all stop signals from all queues,
550 * and wake all threads.
552 if (unlikely(p->signal->group_stop_count > 0)) {
554 * There was a group stop in progress. We'll
555 * pretend it finished before we got here. We are
556 * obliged to report it to the parent: if the
557 * SIGSTOP happened "after" this SIGCONT, then it
558 * would have cleared this pending SIGCONT. If it
559 * happened "before" this SIGCONT, then the parent
560 * got the SIGCHLD about the stop finishing before
561 * the continue happened. We do the notification
562 * now, and it's as if the stop had finished and
563 * the SIGCHLD was pending on entry to this kill.
565 p->signal->group_stop_count = 0;
566 p->signal->flags = SIGNAL_STOP_CONTINUED;
567 spin_unlock(&p->sighand->siglock);
568 do_notify_parent_cldstop(p, CLD_STOPPED);
569 spin_lock(&p->sighand->siglock);
571 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
572 t = p;
573 do {
574 unsigned int state;
575 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
578 * If there is a handler for SIGCONT, we must make
579 * sure that no thread returns to user mode before
580 * we post the signal, in case it was the only
581 * thread eligible to run the signal handler--then
582 * it must not do anything between resuming and
583 * running the handler. With the TIF_SIGPENDING
584 * flag set, the thread will pause and acquire the
585 * siglock that we hold now and until we've queued
586 * the pending signal.
588 * Wake up the stopped thread _after_ setting
589 * TIF_SIGPENDING
591 state = TASK_STOPPED;
592 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
593 set_tsk_thread_flag(t, TIF_SIGPENDING);
594 state |= TASK_INTERRUPTIBLE;
596 wake_up_state(t, state);
598 t = next_thread(t);
599 } while (t != p);
601 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
603 * We were in fact stopped, and are now continued.
604 * Notify the parent with CLD_CONTINUED.
606 p->signal->flags = SIGNAL_STOP_CONTINUED;
607 p->signal->group_exit_code = 0;
608 spin_unlock(&p->sighand->siglock);
609 do_notify_parent_cldstop(p, CLD_CONTINUED);
610 spin_lock(&p->sighand->siglock);
611 } else {
613 * We are not stopped, but there could be a stop
614 * signal in the middle of being processed after
615 * being removed from the queue. Clear that too.
617 p->signal->flags = 0;
619 } else if (sig == SIGKILL) {
621 * Make sure that any pending stop signal already dequeued
622 * is undone by the wakeup for SIGKILL.
624 p->signal->flags = 0;
628 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
629 struct sigpending *signals)
631 struct sigqueue * q = NULL;
632 int ret = 0;
635 * Deliver the signal to listening signalfds. This must be called
636 * with the sighand lock held.
638 signalfd_notify(t, sig);
641 * fast-pathed signals for kernel-internal things like SIGSTOP
642 * or SIGKILL.
644 if (info == SEND_SIG_FORCED)
645 goto out_set;
647 /* Real-time signals must be queued if sent by sigqueue, or
648 some other real-time mechanism. It is implementation
649 defined whether kill() does so. We attempt to do so, on
650 the principle of least surprise, but since kill is not
651 allowed to fail with EAGAIN when low on memory we just
652 make sure at least one signal gets delivered and don't
653 pass on the info struct. */
655 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
656 (is_si_special(info) ||
657 info->si_code >= 0)));
658 if (q) {
659 list_add_tail(&q->list, &signals->list);
660 switch ((unsigned long) info) {
661 case (unsigned long) SEND_SIG_NOINFO:
662 q->info.si_signo = sig;
663 q->info.si_errno = 0;
664 q->info.si_code = SI_USER;
665 q->info.si_pid = current->pid;
666 q->info.si_uid = current->uid;
667 break;
668 case (unsigned long) SEND_SIG_PRIV:
669 q->info.si_signo = sig;
670 q->info.si_errno = 0;
671 q->info.si_code = SI_KERNEL;
672 q->info.si_pid = 0;
673 q->info.si_uid = 0;
674 break;
675 default:
676 copy_siginfo(&q->info, info);
677 break;
679 } else if (!is_si_special(info)) {
680 if (sig >= SIGRTMIN && info->si_code != SI_USER)
682 * Queue overflow, abort. We may abort if the signal was rt
683 * and sent by user using something other than kill().
685 return -EAGAIN;
688 out_set:
689 sigaddset(&signals->signal, sig);
690 return ret;
693 #define LEGACY_QUEUE(sigptr, sig) \
694 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
697 static int
698 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
700 int ret = 0;
702 BUG_ON(!irqs_disabled());
703 assert_spin_locked(&t->sighand->siglock);
705 /* Short-circuit ignored signals. */
706 if (sig_ignored(t, sig))
707 goto out;
709 /* Support queueing exactly one non-rt signal, so that we
710 can get more detailed information about the cause of
711 the signal. */
712 if (LEGACY_QUEUE(&t->pending, sig))
713 goto out;
715 ret = send_signal(sig, info, t, &t->pending);
716 if (!ret && !sigismember(&t->blocked, sig))
717 signal_wake_up(t, sig == SIGKILL);
718 out:
719 return ret;
723 * Force a signal that the process can't ignore: if necessary
724 * we unblock the signal and change any SIG_IGN to SIG_DFL.
726 * Note: If we unblock the signal, we always reset it to SIG_DFL,
727 * since we do not want to have a signal handler that was blocked
728 * be invoked when user space had explicitly blocked it.
730 * We don't want to have recursive SIGSEGV's etc, for example.
733 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
735 unsigned long int flags;
736 int ret, blocked, ignored;
737 struct k_sigaction *action;
739 spin_lock_irqsave(&t->sighand->siglock, flags);
740 action = &t->sighand->action[sig-1];
741 ignored = action->sa.sa_handler == SIG_IGN;
742 blocked = sigismember(&t->blocked, sig);
743 if (blocked || ignored) {
744 action->sa.sa_handler = SIG_DFL;
745 if (blocked) {
746 sigdelset(&t->blocked, sig);
747 recalc_sigpending_tsk(t);
750 ret = specific_send_sig_info(sig, info, t);
751 spin_unlock_irqrestore(&t->sighand->siglock, flags);
753 return ret;
756 void
757 force_sig_specific(int sig, struct task_struct *t)
759 force_sig_info(sig, SEND_SIG_FORCED, t);
763 * Test if P wants to take SIG. After we've checked all threads with this,
764 * it's equivalent to finding no threads not blocking SIG. Any threads not
765 * blocking SIG were ruled out because they are not running and already
766 * have pending signals. Such threads will dequeue from the shared queue
767 * as soon as they're available, so putting the signal on the shared queue
768 * will be equivalent to sending it to one such thread.
770 static inline int wants_signal(int sig, struct task_struct *p)
772 if (sigismember(&p->blocked, sig))
773 return 0;
774 if (p->flags & PF_EXITING)
775 return 0;
776 if (sig == SIGKILL)
777 return 1;
778 if (p->state & (TASK_STOPPED | TASK_TRACED))
779 return 0;
780 return task_curr(p) || !signal_pending(p);
783 static void
784 __group_complete_signal(int sig, struct task_struct *p)
786 struct task_struct *t;
789 * Now find a thread we can wake up to take the signal off the queue.
791 * If the main thread wants the signal, it gets first crack.
792 * Probably the least surprising to the average bear.
794 if (wants_signal(sig, p))
795 t = p;
796 else if (thread_group_empty(p))
798 * There is just one thread and it does not need to be woken.
799 * It will dequeue unblocked signals before it runs again.
801 return;
802 else {
804 * Otherwise try to find a suitable thread.
806 t = p->signal->curr_target;
807 if (t == NULL)
808 /* restart balancing at this thread */
809 t = p->signal->curr_target = p;
811 while (!wants_signal(sig, t)) {
812 t = next_thread(t);
813 if (t == p->signal->curr_target)
815 * No thread needs to be woken.
816 * Any eligible threads will see
817 * the signal in the queue soon.
819 return;
821 p->signal->curr_target = t;
825 * Found a killable thread. If the signal will be fatal,
826 * then start taking the whole group down immediately.
828 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
829 !sigismember(&t->real_blocked, sig) &&
830 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
832 * This signal will be fatal to the whole group.
834 if (!sig_kernel_coredump(sig)) {
836 * Start a group exit and wake everybody up.
837 * This way we don't have other threads
838 * running and doing things after a slower
839 * thread has the fatal signal pending.
841 p->signal->flags = SIGNAL_GROUP_EXIT;
842 p->signal->group_exit_code = sig;
843 p->signal->group_stop_count = 0;
844 t = p;
845 do {
846 sigaddset(&t->pending.signal, SIGKILL);
847 signal_wake_up(t, 1);
848 t = next_thread(t);
849 } while (t != p);
850 return;
854 * There will be a core dump. We make all threads other
855 * than the chosen one go into a group stop so that nothing
856 * happens until it gets scheduled, takes the signal off
857 * the shared queue, and does the core dump. This is a
858 * little more complicated than strictly necessary, but it
859 * keeps the signal state that winds up in the core dump
860 * unchanged from the death state, e.g. which thread had
861 * the core-dump signal unblocked.
863 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
864 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
865 p->signal->group_stop_count = 0;
866 p->signal->group_exit_task = t;
867 t = p;
868 do {
869 p->signal->group_stop_count++;
870 signal_wake_up(t, 0);
871 t = next_thread(t);
872 } while (t != p);
873 wake_up_process(p->signal->group_exit_task);
874 return;
878 * The signal is already in the shared-pending queue.
879 * Tell the chosen thread to wake up and dequeue it.
881 signal_wake_up(t, sig == SIGKILL);
882 return;
886 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
888 int ret = 0;
890 assert_spin_locked(&p->sighand->siglock);
891 handle_stop_signal(sig, p);
893 /* Short-circuit ignored signals. */
894 if (sig_ignored(p, sig))
895 return ret;
897 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
898 /* This is a non-RT signal and we already have one queued. */
899 return ret;
902 * Put this signal on the shared-pending queue, or fail with EAGAIN.
903 * We always use the shared queue for process-wide signals,
904 * to avoid several races.
906 ret = send_signal(sig, info, p, &p->signal->shared_pending);
907 if (unlikely(ret))
908 return ret;
910 __group_complete_signal(sig, p);
911 return 0;
915 * Nuke all other threads in the group.
917 void zap_other_threads(struct task_struct *p)
919 struct task_struct *t;
921 p->signal->flags = SIGNAL_GROUP_EXIT;
922 p->signal->group_stop_count = 0;
924 if (thread_group_empty(p))
925 return;
927 for (t = next_thread(p); t != p; t = next_thread(t)) {
929 * Don't bother with already dead threads
931 if (t->exit_state)
932 continue;
934 /* SIGKILL will be handled before any pending SIGSTOP */
935 sigaddset(&t->pending.signal, SIGKILL);
936 signal_wake_up(t, 1);
941 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
943 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
945 struct sighand_struct *sighand;
947 for (;;) {
948 sighand = rcu_dereference(tsk->sighand);
949 if (unlikely(sighand == NULL))
950 break;
952 spin_lock_irqsave(&sighand->siglock, *flags);
953 if (likely(sighand == tsk->sighand))
954 break;
955 spin_unlock_irqrestore(&sighand->siglock, *flags);
958 return sighand;
961 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
963 unsigned long flags;
964 int ret;
966 ret = check_kill_permission(sig, info, p);
968 if (!ret && sig) {
969 ret = -ESRCH;
970 if (lock_task_sighand(p, &flags)) {
971 ret = __group_send_sig_info(sig, info, p);
972 unlock_task_sighand(p, &flags);
976 return ret;
980 * kill_pgrp_info() sends a signal to a process group: this is what the tty
981 * control characters do (^C, ^Z etc)
984 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
986 struct task_struct *p = NULL;
987 int retval, success;
989 success = 0;
990 retval = -ESRCH;
991 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
992 int err = group_send_sig_info(sig, info, p);
993 success |= !err;
994 retval = err;
995 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
996 return success ? 0 : retval;
999 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1001 int retval;
1003 read_lock(&tasklist_lock);
1004 retval = __kill_pgrp_info(sig, info, pgrp);
1005 read_unlock(&tasklist_lock);
1007 return retval;
1010 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1012 int error;
1013 struct task_struct *p;
1015 rcu_read_lock();
1016 if (unlikely(sig_needs_tasklist(sig)))
1017 read_lock(&tasklist_lock);
1019 p = pid_task(pid, PIDTYPE_PID);
1020 error = -ESRCH;
1021 if (p)
1022 error = group_send_sig_info(sig, info, p);
1024 if (unlikely(sig_needs_tasklist(sig)))
1025 read_unlock(&tasklist_lock);
1026 rcu_read_unlock();
1027 return error;
1031 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1033 int error;
1034 rcu_read_lock();
1035 error = kill_pid_info(sig, info, find_pid(pid));
1036 rcu_read_unlock();
1037 return error;
1040 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1041 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1042 uid_t uid, uid_t euid, u32 secid)
1044 int ret = -EINVAL;
1045 struct task_struct *p;
1047 if (!valid_signal(sig))
1048 return ret;
1050 read_lock(&tasklist_lock);
1051 p = pid_task(pid, PIDTYPE_PID);
1052 if (!p) {
1053 ret = -ESRCH;
1054 goto out_unlock;
1056 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1057 && (euid != p->suid) && (euid != p->uid)
1058 && (uid != p->suid) && (uid != p->uid)) {
1059 ret = -EPERM;
1060 goto out_unlock;
1062 ret = security_task_kill(p, info, sig, secid);
1063 if (ret)
1064 goto out_unlock;
1065 if (sig && p->sighand) {
1066 unsigned long flags;
1067 spin_lock_irqsave(&p->sighand->siglock, flags);
1068 ret = __group_send_sig_info(sig, info, p);
1069 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1071 out_unlock:
1072 read_unlock(&tasklist_lock);
1073 return ret;
1075 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1078 * kill_something_info() interprets pid in interesting ways just like kill(2).
1080 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1081 * is probably wrong. Should make it like BSD or SYSV.
1084 static int kill_something_info(int sig, struct siginfo *info, int pid)
1086 int ret;
1087 rcu_read_lock();
1088 if (!pid) {
1089 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1090 } else if (pid == -1) {
1091 int retval = 0, count = 0;
1092 struct task_struct * p;
1094 read_lock(&tasklist_lock);
1095 for_each_process(p) {
1096 if (p->pid > 1 && p->tgid != current->tgid) {
1097 int err = group_send_sig_info(sig, info, p);
1098 ++count;
1099 if (err != -EPERM)
1100 retval = err;
1103 read_unlock(&tasklist_lock);
1104 ret = count ? retval : -ESRCH;
1105 } else if (pid < 0) {
1106 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1107 } else {
1108 ret = kill_pid_info(sig, info, find_pid(pid));
1110 rcu_read_unlock();
1111 return ret;
1115 * These are for backward compatibility with the rest of the kernel source.
1119 * These two are the most common entry points. They send a signal
1120 * just to the specific thread.
1123 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1125 int ret;
1126 unsigned long flags;
1129 * Make sure legacy kernel users don't send in bad values
1130 * (normal paths check this in check_kill_permission).
1132 if (!valid_signal(sig))
1133 return -EINVAL;
1136 * We need the tasklist lock even for the specific
1137 * thread case (when we don't need to follow the group
1138 * lists) in order to avoid races with "p->sighand"
1139 * going away or changing from under us.
1141 read_lock(&tasklist_lock);
1142 spin_lock_irqsave(&p->sighand->siglock, flags);
1143 ret = specific_send_sig_info(sig, info, p);
1144 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1145 read_unlock(&tasklist_lock);
1146 return ret;
1149 #define __si_special(priv) \
1150 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1153 send_sig(int sig, struct task_struct *p, int priv)
1155 return send_sig_info(sig, __si_special(priv), p);
1159 * This is the entry point for "process-wide" signals.
1160 * They will go to an appropriate thread in the thread group.
1163 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1165 int ret;
1166 read_lock(&tasklist_lock);
1167 ret = group_send_sig_info(sig, info, p);
1168 read_unlock(&tasklist_lock);
1169 return ret;
1172 void
1173 force_sig(int sig, struct task_struct *p)
1175 force_sig_info(sig, SEND_SIG_PRIV, p);
1179 * When things go south during signal handling, we
1180 * will force a SIGSEGV. And if the signal that caused
1181 * the problem was already a SIGSEGV, we'll want to
1182 * make sure we don't even try to deliver the signal..
1185 force_sigsegv(int sig, struct task_struct *p)
1187 if (sig == SIGSEGV) {
1188 unsigned long flags;
1189 spin_lock_irqsave(&p->sighand->siglock, flags);
1190 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1191 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1193 force_sig(SIGSEGV, p);
1194 return 0;
1197 int kill_pgrp(struct pid *pid, int sig, int priv)
1199 return kill_pgrp_info(sig, __si_special(priv), pid);
1201 EXPORT_SYMBOL(kill_pgrp);
1203 int kill_pid(struct pid *pid, int sig, int priv)
1205 return kill_pid_info(sig, __si_special(priv), pid);
1207 EXPORT_SYMBOL(kill_pid);
1210 kill_proc(pid_t pid, int sig, int priv)
1212 return kill_proc_info(sig, __si_special(priv), pid);
1216 * These functions support sending signals using preallocated sigqueue
1217 * structures. This is needed "because realtime applications cannot
1218 * afford to lose notifications of asynchronous events, like timer
1219 * expirations or I/O completions". In the case of Posix Timers
1220 * we allocate the sigqueue structure from the timer_create. If this
1221 * allocation fails we are able to report the failure to the application
1222 * with an EAGAIN error.
1225 struct sigqueue *sigqueue_alloc(void)
1227 struct sigqueue *q;
1229 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1230 q->flags |= SIGQUEUE_PREALLOC;
1231 return(q);
1234 void sigqueue_free(struct sigqueue *q)
1236 unsigned long flags;
1237 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1239 * If the signal is still pending remove it from the
1240 * pending queue.
1242 if (unlikely(!list_empty(&q->list))) {
1243 spinlock_t *lock = &current->sighand->siglock;
1244 read_lock(&tasklist_lock);
1245 spin_lock_irqsave(lock, flags);
1246 if (!list_empty(&q->list))
1247 list_del_init(&q->list);
1248 spin_unlock_irqrestore(lock, flags);
1249 read_unlock(&tasklist_lock);
1251 q->flags &= ~SIGQUEUE_PREALLOC;
1252 __sigqueue_free(q);
1255 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1257 unsigned long flags;
1258 int ret = 0;
1260 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1263 * The rcu based delayed sighand destroy makes it possible to
1264 * run this without tasklist lock held. The task struct itself
1265 * cannot go away as create_timer did get_task_struct().
1267 * We return -1, when the task is marked exiting, so
1268 * posix_timer_event can redirect it to the group leader
1270 rcu_read_lock();
1272 if (!likely(lock_task_sighand(p, &flags))) {
1273 ret = -1;
1274 goto out_err;
1277 if (unlikely(!list_empty(&q->list))) {
1279 * If an SI_TIMER entry is already queue just increment
1280 * the overrun count.
1282 BUG_ON(q->info.si_code != SI_TIMER);
1283 q->info.si_overrun++;
1284 goto out;
1286 /* Short-circuit ignored signals. */
1287 if (sig_ignored(p, sig)) {
1288 ret = 1;
1289 goto out;
1292 * Deliver the signal to listening signalfds. This must be called
1293 * with the sighand lock held.
1295 signalfd_notify(p, sig);
1297 list_add_tail(&q->list, &p->pending.list);
1298 sigaddset(&p->pending.signal, sig);
1299 if (!sigismember(&p->blocked, sig))
1300 signal_wake_up(p, sig == SIGKILL);
1302 out:
1303 unlock_task_sighand(p, &flags);
1304 out_err:
1305 rcu_read_unlock();
1307 return ret;
1311 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1313 unsigned long flags;
1314 int ret = 0;
1316 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1318 read_lock(&tasklist_lock);
1319 /* Since it_lock is held, p->sighand cannot be NULL. */
1320 spin_lock_irqsave(&p->sighand->siglock, flags);
1321 handle_stop_signal(sig, p);
1323 /* Short-circuit ignored signals. */
1324 if (sig_ignored(p, sig)) {
1325 ret = 1;
1326 goto out;
1329 if (unlikely(!list_empty(&q->list))) {
1331 * If an SI_TIMER entry is already queue just increment
1332 * the overrun count. Other uses should not try to
1333 * send the signal multiple times.
1335 BUG_ON(q->info.si_code != SI_TIMER);
1336 q->info.si_overrun++;
1337 goto out;
1340 * Deliver the signal to listening signalfds. This must be called
1341 * with the sighand lock held.
1343 signalfd_notify(p, sig);
1346 * Put this signal on the shared-pending queue.
1347 * We always use the shared queue for process-wide signals,
1348 * to avoid several races.
1350 list_add_tail(&q->list, &p->signal->shared_pending.list);
1351 sigaddset(&p->signal->shared_pending.signal, sig);
1353 __group_complete_signal(sig, p);
1354 out:
1355 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1356 read_unlock(&tasklist_lock);
1357 return ret;
1361 * Wake up any threads in the parent blocked in wait* syscalls.
1363 static inline void __wake_up_parent(struct task_struct *p,
1364 struct task_struct *parent)
1366 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1370 * Let a parent know about the death of a child.
1371 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1374 void do_notify_parent(struct task_struct *tsk, int sig)
1376 struct siginfo info;
1377 unsigned long flags;
1378 struct sighand_struct *psig;
1380 BUG_ON(sig == -1);
1382 /* do_notify_parent_cldstop should have been called instead. */
1383 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1385 BUG_ON(!tsk->ptrace &&
1386 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1388 info.si_signo = sig;
1389 info.si_errno = 0;
1390 info.si_pid = tsk->pid;
1391 info.si_uid = tsk->uid;
1393 /* FIXME: find out whether or not this is supposed to be c*time. */
1394 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1395 tsk->signal->utime));
1396 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1397 tsk->signal->stime));
1399 info.si_status = tsk->exit_code & 0x7f;
1400 if (tsk->exit_code & 0x80)
1401 info.si_code = CLD_DUMPED;
1402 else if (tsk->exit_code & 0x7f)
1403 info.si_code = CLD_KILLED;
1404 else {
1405 info.si_code = CLD_EXITED;
1406 info.si_status = tsk->exit_code >> 8;
1409 psig = tsk->parent->sighand;
1410 spin_lock_irqsave(&psig->siglock, flags);
1411 if (!tsk->ptrace && sig == SIGCHLD &&
1412 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1413 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1415 * We are exiting and our parent doesn't care. POSIX.1
1416 * defines special semantics for setting SIGCHLD to SIG_IGN
1417 * or setting the SA_NOCLDWAIT flag: we should be reaped
1418 * automatically and not left for our parent's wait4 call.
1419 * Rather than having the parent do it as a magic kind of
1420 * signal handler, we just set this to tell do_exit that we
1421 * can be cleaned up without becoming a zombie. Note that
1422 * we still call __wake_up_parent in this case, because a
1423 * blocked sys_wait4 might now return -ECHILD.
1425 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1426 * is implementation-defined: we do (if you don't want
1427 * it, just use SIG_IGN instead).
1429 tsk->exit_signal = -1;
1430 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1431 sig = 0;
1433 if (valid_signal(sig) && sig > 0)
1434 __group_send_sig_info(sig, &info, tsk->parent);
1435 __wake_up_parent(tsk, tsk->parent);
1436 spin_unlock_irqrestore(&psig->siglock, flags);
1439 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1441 struct siginfo info;
1442 unsigned long flags;
1443 struct task_struct *parent;
1444 struct sighand_struct *sighand;
1446 if (tsk->ptrace & PT_PTRACED)
1447 parent = tsk->parent;
1448 else {
1449 tsk = tsk->group_leader;
1450 parent = tsk->real_parent;
1453 info.si_signo = SIGCHLD;
1454 info.si_errno = 0;
1455 info.si_pid = tsk->pid;
1456 info.si_uid = tsk->uid;
1458 /* FIXME: find out whether or not this is supposed to be c*time. */
1459 info.si_utime = cputime_to_jiffies(tsk->utime);
1460 info.si_stime = cputime_to_jiffies(tsk->stime);
1462 info.si_code = why;
1463 switch (why) {
1464 case CLD_CONTINUED:
1465 info.si_status = SIGCONT;
1466 break;
1467 case CLD_STOPPED:
1468 info.si_status = tsk->signal->group_exit_code & 0x7f;
1469 break;
1470 case CLD_TRAPPED:
1471 info.si_status = tsk->exit_code & 0x7f;
1472 break;
1473 default:
1474 BUG();
1477 sighand = parent->sighand;
1478 spin_lock_irqsave(&sighand->siglock, flags);
1479 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1480 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1481 __group_send_sig_info(SIGCHLD, &info, parent);
1483 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1485 __wake_up_parent(tsk, parent);
1486 spin_unlock_irqrestore(&sighand->siglock, flags);
1489 static inline int may_ptrace_stop(void)
1491 if (!likely(current->ptrace & PT_PTRACED))
1492 return 0;
1494 if (unlikely(current->parent == current->real_parent &&
1495 (current->ptrace & PT_ATTACHED)))
1496 return 0;
1498 if (unlikely(current->signal == current->parent->signal) &&
1499 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1500 return 0;
1503 * Are we in the middle of do_coredump?
1504 * If so and our tracer is also part of the coredump stopping
1505 * is a deadlock situation, and pointless because our tracer
1506 * is dead so don't allow us to stop.
1507 * If SIGKILL was already sent before the caller unlocked
1508 * ->siglock we must see ->core_waiters != 0. Otherwise it
1509 * is safe to enter schedule().
1511 if (unlikely(current->mm->core_waiters) &&
1512 unlikely(current->mm == current->parent->mm))
1513 return 0;
1515 return 1;
1519 * This must be called with current->sighand->siglock held.
1521 * This should be the path for all ptrace stops.
1522 * We always set current->last_siginfo while stopped here.
1523 * That makes it a way to test a stopped process for
1524 * being ptrace-stopped vs being job-control-stopped.
1526 * If we actually decide not to stop at all because the tracer is gone,
1527 * we leave nostop_code in current->exit_code.
1529 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1532 * If there is a group stop in progress,
1533 * we must participate in the bookkeeping.
1535 if (current->signal->group_stop_count > 0)
1536 --current->signal->group_stop_count;
1538 current->last_siginfo = info;
1539 current->exit_code = exit_code;
1541 /* Let the debugger run. */
1542 set_current_state(TASK_TRACED);
1543 spin_unlock_irq(&current->sighand->siglock);
1544 try_to_freeze();
1545 read_lock(&tasklist_lock);
1546 if (may_ptrace_stop()) {
1547 do_notify_parent_cldstop(current, CLD_TRAPPED);
1548 read_unlock(&tasklist_lock);
1549 schedule();
1550 } else {
1552 * By the time we got the lock, our tracer went away.
1553 * Don't stop here.
1555 read_unlock(&tasklist_lock);
1556 set_current_state(TASK_RUNNING);
1557 current->exit_code = nostop_code;
1561 * We are back. Now reacquire the siglock before touching
1562 * last_siginfo, so that we are sure to have synchronized with
1563 * any signal-sending on another CPU that wants to examine it.
1565 spin_lock_irq(&current->sighand->siglock);
1566 current->last_siginfo = NULL;
1569 * Queued signals ignored us while we were stopped for tracing.
1570 * So check for any that we should take before resuming user mode.
1572 recalc_sigpending();
1575 void ptrace_notify(int exit_code)
1577 siginfo_t info;
1579 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1581 memset(&info, 0, sizeof info);
1582 info.si_signo = SIGTRAP;
1583 info.si_code = exit_code;
1584 info.si_pid = current->pid;
1585 info.si_uid = current->uid;
1587 /* Let the debugger run. */
1588 spin_lock_irq(&current->sighand->siglock);
1589 ptrace_stop(exit_code, 0, &info);
1590 spin_unlock_irq(&current->sighand->siglock);
1593 static void
1594 finish_stop(int stop_count)
1597 * If there are no other threads in the group, or if there is
1598 * a group stop in progress and we are the last to stop,
1599 * report to the parent. When ptraced, every thread reports itself.
1601 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1602 read_lock(&tasklist_lock);
1603 do_notify_parent_cldstop(current, CLD_STOPPED);
1604 read_unlock(&tasklist_lock);
1607 do {
1608 schedule();
1609 } while (try_to_freeze());
1611 * Now we don't run again until continued.
1613 current->exit_code = 0;
1617 * This performs the stopping for SIGSTOP and other stop signals.
1618 * We have to stop all threads in the thread group.
1619 * Returns nonzero if we've actually stopped and released the siglock.
1620 * Returns zero if we didn't stop and still hold the siglock.
1622 static int do_signal_stop(int signr)
1624 struct signal_struct *sig = current->signal;
1625 int stop_count;
1627 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1628 return 0;
1630 if (sig->group_stop_count > 0) {
1632 * There is a group stop in progress. We don't need to
1633 * start another one.
1635 stop_count = --sig->group_stop_count;
1636 } else {
1638 * There is no group stop already in progress.
1639 * We must initiate one now.
1641 struct task_struct *t;
1643 sig->group_exit_code = signr;
1645 stop_count = 0;
1646 for (t = next_thread(current); t != current; t = next_thread(t))
1648 * Setting state to TASK_STOPPED for a group
1649 * stop is always done with the siglock held,
1650 * so this check has no races.
1652 if (!t->exit_state &&
1653 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1654 stop_count++;
1655 signal_wake_up(t, 0);
1657 sig->group_stop_count = stop_count;
1660 if (stop_count == 0)
1661 sig->flags = SIGNAL_STOP_STOPPED;
1662 current->exit_code = sig->group_exit_code;
1663 __set_current_state(TASK_STOPPED);
1665 spin_unlock_irq(&current->sighand->siglock);
1666 finish_stop(stop_count);
1667 return 1;
1671 * Do appropriate magic when group_stop_count > 0.
1672 * We return nonzero if we stopped, after releasing the siglock.
1673 * We return zero if we still hold the siglock and should look
1674 * for another signal without checking group_stop_count again.
1676 static int handle_group_stop(void)
1678 int stop_count;
1680 if (current->signal->group_exit_task == current) {
1682 * Group stop is so we can do a core dump,
1683 * We are the initiating thread, so get on with it.
1685 current->signal->group_exit_task = NULL;
1686 return 0;
1689 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1691 * Group stop is so another thread can do a core dump,
1692 * or else we are racing against a death signal.
1693 * Just punt the stop so we can get the next signal.
1695 return 0;
1698 * There is a group stop in progress. We stop
1699 * without any associated signal being in our queue.
1701 stop_count = --current->signal->group_stop_count;
1702 if (stop_count == 0)
1703 current->signal->flags = SIGNAL_STOP_STOPPED;
1704 current->exit_code = current->signal->group_exit_code;
1705 set_current_state(TASK_STOPPED);
1706 spin_unlock_irq(&current->sighand->siglock);
1707 finish_stop(stop_count);
1708 return 1;
1711 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1712 struct pt_regs *regs, void *cookie)
1714 sigset_t *mask = &current->blocked;
1715 int signr = 0;
1717 try_to_freeze();
1719 relock:
1720 spin_lock_irq(&current->sighand->siglock);
1721 for (;;) {
1722 struct k_sigaction *ka;
1724 if (unlikely(current->signal->group_stop_count > 0) &&
1725 handle_group_stop())
1726 goto relock;
1728 signr = dequeue_signal(current, mask, info);
1730 if (!signr)
1731 break; /* will return 0 */
1733 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1734 ptrace_signal_deliver(regs, cookie);
1736 /* Let the debugger run. */
1737 ptrace_stop(signr, signr, info);
1739 /* We're back. Did the debugger cancel the sig? */
1740 signr = current->exit_code;
1741 if (signr == 0)
1742 continue;
1744 current->exit_code = 0;
1746 /* Update the siginfo structure if the signal has
1747 changed. If the debugger wanted something
1748 specific in the siginfo structure then it should
1749 have updated *info via PTRACE_SETSIGINFO. */
1750 if (signr != info->si_signo) {
1751 info->si_signo = signr;
1752 info->si_errno = 0;
1753 info->si_code = SI_USER;
1754 info->si_pid = current->parent->pid;
1755 info->si_uid = current->parent->uid;
1758 /* If the (new) signal is now blocked, requeue it. */
1759 if (sigismember(&current->blocked, signr)) {
1760 specific_send_sig_info(signr, info, current);
1761 continue;
1765 ka = &current->sighand->action[signr-1];
1766 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1767 continue;
1768 if (ka->sa.sa_handler != SIG_DFL) {
1769 /* Run the handler. */
1770 *return_ka = *ka;
1772 if (ka->sa.sa_flags & SA_ONESHOT)
1773 ka->sa.sa_handler = SIG_DFL;
1775 break; /* will return non-zero "signr" value */
1779 * Now we are doing the default action for this signal.
1781 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1782 continue;
1785 * Init of a pid space gets no signals it doesn't want from
1786 * within that pid space. It can of course get signals from
1787 * its parent pid space.
1789 if (current == child_reaper(current))
1790 continue;
1792 if (sig_kernel_stop(signr)) {
1794 * The default action is to stop all threads in
1795 * the thread group. The job control signals
1796 * do nothing in an orphaned pgrp, but SIGSTOP
1797 * always works. Note that siglock needs to be
1798 * dropped during the call to is_orphaned_pgrp()
1799 * because of lock ordering with tasklist_lock.
1800 * This allows an intervening SIGCONT to be posted.
1801 * We need to check for that and bail out if necessary.
1803 if (signr != SIGSTOP) {
1804 spin_unlock_irq(&current->sighand->siglock);
1806 /* signals can be posted during this window */
1808 if (is_current_pgrp_orphaned())
1809 goto relock;
1811 spin_lock_irq(&current->sighand->siglock);
1814 if (likely(do_signal_stop(signr))) {
1815 /* It released the siglock. */
1816 goto relock;
1820 * We didn't actually stop, due to a race
1821 * with SIGCONT or something like that.
1823 continue;
1826 spin_unlock_irq(&current->sighand->siglock);
1829 * Anything else is fatal, maybe with a core dump.
1831 current->flags |= PF_SIGNALED;
1832 if (sig_kernel_coredump(signr)) {
1834 * If it was able to dump core, this kills all
1835 * other threads in the group and synchronizes with
1836 * their demise. If we lost the race with another
1837 * thread getting here, it set group_exit_code
1838 * first and our do_group_exit call below will use
1839 * that value and ignore the one we pass it.
1841 do_coredump((long)signr, signr, regs);
1845 * Death signals, no core dump.
1847 do_group_exit(signr);
1848 /* NOTREACHED */
1850 spin_unlock_irq(&current->sighand->siglock);
1851 return signr;
1854 EXPORT_SYMBOL(recalc_sigpending);
1855 EXPORT_SYMBOL_GPL(dequeue_signal);
1856 EXPORT_SYMBOL(flush_signals);
1857 EXPORT_SYMBOL(force_sig);
1858 EXPORT_SYMBOL(kill_proc);
1859 EXPORT_SYMBOL(ptrace_notify);
1860 EXPORT_SYMBOL(send_sig);
1861 EXPORT_SYMBOL(send_sig_info);
1862 EXPORT_SYMBOL(sigprocmask);
1863 EXPORT_SYMBOL(block_all_signals);
1864 EXPORT_SYMBOL(unblock_all_signals);
1868 * System call entry points.
1871 asmlinkage long sys_restart_syscall(void)
1873 struct restart_block *restart = &current_thread_info()->restart_block;
1874 return restart->fn(restart);
1877 long do_no_restart_syscall(struct restart_block *param)
1879 return -EINTR;
1883 * We don't need to get the kernel lock - this is all local to this
1884 * particular thread.. (and that's good, because this is _heavily_
1885 * used by various programs)
1889 * This is also useful for kernel threads that want to temporarily
1890 * (or permanently) block certain signals.
1892 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1893 * interface happily blocks "unblockable" signals like SIGKILL
1894 * and friends.
1896 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1898 int error;
1900 spin_lock_irq(&current->sighand->siglock);
1901 if (oldset)
1902 *oldset = current->blocked;
1904 error = 0;
1905 switch (how) {
1906 case SIG_BLOCK:
1907 sigorsets(&current->blocked, &current->blocked, set);
1908 break;
1909 case SIG_UNBLOCK:
1910 signandsets(&current->blocked, &current->blocked, set);
1911 break;
1912 case SIG_SETMASK:
1913 current->blocked = *set;
1914 break;
1915 default:
1916 error = -EINVAL;
1918 recalc_sigpending();
1919 spin_unlock_irq(&current->sighand->siglock);
1921 return error;
1924 asmlinkage long
1925 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1927 int error = -EINVAL;
1928 sigset_t old_set, new_set;
1930 /* XXX: Don't preclude handling different sized sigset_t's. */
1931 if (sigsetsize != sizeof(sigset_t))
1932 goto out;
1934 if (set) {
1935 error = -EFAULT;
1936 if (copy_from_user(&new_set, set, sizeof(*set)))
1937 goto out;
1938 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1940 error = sigprocmask(how, &new_set, &old_set);
1941 if (error)
1942 goto out;
1943 if (oset)
1944 goto set_old;
1945 } else if (oset) {
1946 spin_lock_irq(&current->sighand->siglock);
1947 old_set = current->blocked;
1948 spin_unlock_irq(&current->sighand->siglock);
1950 set_old:
1951 error = -EFAULT;
1952 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1953 goto out;
1955 error = 0;
1956 out:
1957 return error;
1960 long do_sigpending(void __user *set, unsigned long sigsetsize)
1962 long error = -EINVAL;
1963 sigset_t pending;
1965 if (sigsetsize > sizeof(sigset_t))
1966 goto out;
1968 spin_lock_irq(&current->sighand->siglock);
1969 sigorsets(&pending, &current->pending.signal,
1970 &current->signal->shared_pending.signal);
1971 spin_unlock_irq(&current->sighand->siglock);
1973 /* Outside the lock because only this thread touches it. */
1974 sigandsets(&pending, &current->blocked, &pending);
1976 error = -EFAULT;
1977 if (!copy_to_user(set, &pending, sigsetsize))
1978 error = 0;
1980 out:
1981 return error;
1984 asmlinkage long
1985 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
1987 return do_sigpending(set, sigsetsize);
1990 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
1992 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
1994 int err;
1996 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
1997 return -EFAULT;
1998 if (from->si_code < 0)
1999 return __copy_to_user(to, from, sizeof(siginfo_t))
2000 ? -EFAULT : 0;
2002 * If you change siginfo_t structure, please be sure
2003 * this code is fixed accordingly.
2004 * Please remember to update the signalfd_copyinfo() function
2005 * inside fs/signalfd.c too, in case siginfo_t changes.
2006 * It should never copy any pad contained in the structure
2007 * to avoid security leaks, but must copy the generic
2008 * 3 ints plus the relevant union member.
2010 err = __put_user(from->si_signo, &to->si_signo);
2011 err |= __put_user(from->si_errno, &to->si_errno);
2012 err |= __put_user((short)from->si_code, &to->si_code);
2013 switch (from->si_code & __SI_MASK) {
2014 case __SI_KILL:
2015 err |= __put_user(from->si_pid, &to->si_pid);
2016 err |= __put_user(from->si_uid, &to->si_uid);
2017 break;
2018 case __SI_TIMER:
2019 err |= __put_user(from->si_tid, &to->si_tid);
2020 err |= __put_user(from->si_overrun, &to->si_overrun);
2021 err |= __put_user(from->si_ptr, &to->si_ptr);
2022 break;
2023 case __SI_POLL:
2024 err |= __put_user(from->si_band, &to->si_band);
2025 err |= __put_user(from->si_fd, &to->si_fd);
2026 break;
2027 case __SI_FAULT:
2028 err |= __put_user(from->si_addr, &to->si_addr);
2029 #ifdef __ARCH_SI_TRAPNO
2030 err |= __put_user(from->si_trapno, &to->si_trapno);
2031 #endif
2032 break;
2033 case __SI_CHLD:
2034 err |= __put_user(from->si_pid, &to->si_pid);
2035 err |= __put_user(from->si_uid, &to->si_uid);
2036 err |= __put_user(from->si_status, &to->si_status);
2037 err |= __put_user(from->si_utime, &to->si_utime);
2038 err |= __put_user(from->si_stime, &to->si_stime);
2039 break;
2040 case __SI_RT: /* This is not generated by the kernel as of now. */
2041 case __SI_MESGQ: /* But this is */
2042 err |= __put_user(from->si_pid, &to->si_pid);
2043 err |= __put_user(from->si_uid, &to->si_uid);
2044 err |= __put_user(from->si_ptr, &to->si_ptr);
2045 break;
2046 default: /* this is just in case for now ... */
2047 err |= __put_user(from->si_pid, &to->si_pid);
2048 err |= __put_user(from->si_uid, &to->si_uid);
2049 break;
2051 return err;
2054 #endif
2056 asmlinkage long
2057 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2058 siginfo_t __user *uinfo,
2059 const struct timespec __user *uts,
2060 size_t sigsetsize)
2062 int ret, sig;
2063 sigset_t these;
2064 struct timespec ts;
2065 siginfo_t info;
2066 long timeout = 0;
2068 /* XXX: Don't preclude handling different sized sigset_t's. */
2069 if (sigsetsize != sizeof(sigset_t))
2070 return -EINVAL;
2072 if (copy_from_user(&these, uthese, sizeof(these)))
2073 return -EFAULT;
2076 * Invert the set of allowed signals to get those we
2077 * want to block.
2079 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2080 signotset(&these);
2082 if (uts) {
2083 if (copy_from_user(&ts, uts, sizeof(ts)))
2084 return -EFAULT;
2085 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2086 || ts.tv_sec < 0)
2087 return -EINVAL;
2090 spin_lock_irq(&current->sighand->siglock);
2091 sig = dequeue_signal(current, &these, &info);
2092 if (!sig) {
2093 timeout = MAX_SCHEDULE_TIMEOUT;
2094 if (uts)
2095 timeout = (timespec_to_jiffies(&ts)
2096 + (ts.tv_sec || ts.tv_nsec));
2098 if (timeout) {
2099 /* None ready -- temporarily unblock those we're
2100 * interested while we are sleeping in so that we'll
2101 * be awakened when they arrive. */
2102 current->real_blocked = current->blocked;
2103 sigandsets(&current->blocked, &current->blocked, &these);
2104 recalc_sigpending();
2105 spin_unlock_irq(&current->sighand->siglock);
2107 timeout = schedule_timeout_interruptible(timeout);
2109 spin_lock_irq(&current->sighand->siglock);
2110 sig = dequeue_signal(current, &these, &info);
2111 current->blocked = current->real_blocked;
2112 siginitset(&current->real_blocked, 0);
2113 recalc_sigpending();
2116 spin_unlock_irq(&current->sighand->siglock);
2118 if (sig) {
2119 ret = sig;
2120 if (uinfo) {
2121 if (copy_siginfo_to_user(uinfo, &info))
2122 ret = -EFAULT;
2124 } else {
2125 ret = -EAGAIN;
2126 if (timeout)
2127 ret = -EINTR;
2130 return ret;
2133 asmlinkage long
2134 sys_kill(int pid, int sig)
2136 struct siginfo info;
2138 info.si_signo = sig;
2139 info.si_errno = 0;
2140 info.si_code = SI_USER;
2141 info.si_pid = current->tgid;
2142 info.si_uid = current->uid;
2144 return kill_something_info(sig, &info, pid);
2147 static int do_tkill(int tgid, int pid, int sig)
2149 int error;
2150 struct siginfo info;
2151 struct task_struct *p;
2153 error = -ESRCH;
2154 info.si_signo = sig;
2155 info.si_errno = 0;
2156 info.si_code = SI_TKILL;
2157 info.si_pid = current->tgid;
2158 info.si_uid = current->uid;
2160 read_lock(&tasklist_lock);
2161 p = find_task_by_pid(pid);
2162 if (p && (tgid <= 0 || p->tgid == tgid)) {
2163 error = check_kill_permission(sig, &info, p);
2165 * The null signal is a permissions and process existence
2166 * probe. No signal is actually delivered.
2168 if (!error && sig && p->sighand) {
2169 spin_lock_irq(&p->sighand->siglock);
2170 handle_stop_signal(sig, p);
2171 error = specific_send_sig_info(sig, &info, p);
2172 spin_unlock_irq(&p->sighand->siglock);
2175 read_unlock(&tasklist_lock);
2177 return error;
2181 * sys_tgkill - send signal to one specific thread
2182 * @tgid: the thread group ID of the thread
2183 * @pid: the PID of the thread
2184 * @sig: signal to be sent
2186 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2187 * exists but it's not belonging to the target process anymore. This
2188 * method solves the problem of threads exiting and PIDs getting reused.
2190 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2192 /* This is only valid for single tasks */
2193 if (pid <= 0 || tgid <= 0)
2194 return -EINVAL;
2196 return do_tkill(tgid, pid, sig);
2200 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2202 asmlinkage long
2203 sys_tkill(int pid, int sig)
2205 /* This is only valid for single tasks */
2206 if (pid <= 0)
2207 return -EINVAL;
2209 return do_tkill(0, pid, sig);
2212 asmlinkage long
2213 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2215 siginfo_t info;
2217 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2218 return -EFAULT;
2220 /* Not even root can pretend to send signals from the kernel.
2221 Nor can they impersonate a kill(), which adds source info. */
2222 if (info.si_code >= 0)
2223 return -EPERM;
2224 info.si_signo = sig;
2226 /* POSIX.1b doesn't mention process groups. */
2227 return kill_proc_info(sig, &info, pid);
2230 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2232 struct k_sigaction *k;
2233 sigset_t mask;
2235 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2236 return -EINVAL;
2238 k = &current->sighand->action[sig-1];
2240 spin_lock_irq(&current->sighand->siglock);
2241 if (signal_pending(current)) {
2243 * If there might be a fatal signal pending on multiple
2244 * threads, make sure we take it before changing the action.
2246 spin_unlock_irq(&current->sighand->siglock);
2247 return -ERESTARTNOINTR;
2250 if (oact)
2251 *oact = *k;
2253 if (act) {
2254 sigdelsetmask(&act->sa.sa_mask,
2255 sigmask(SIGKILL) | sigmask(SIGSTOP));
2256 *k = *act;
2258 * POSIX 3.3.1.3:
2259 * "Setting a signal action to SIG_IGN for a signal that is
2260 * pending shall cause the pending signal to be discarded,
2261 * whether or not it is blocked."
2263 * "Setting a signal action to SIG_DFL for a signal that is
2264 * pending and whose default action is to ignore the signal
2265 * (for example, SIGCHLD), shall cause the pending signal to
2266 * be discarded, whether or not it is blocked"
2268 if (act->sa.sa_handler == SIG_IGN ||
2269 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2270 struct task_struct *t = current;
2271 sigemptyset(&mask);
2272 sigaddset(&mask, sig);
2273 rm_from_queue_full(&mask, &t->signal->shared_pending);
2274 do {
2275 rm_from_queue_full(&mask, &t->pending);
2276 recalc_sigpending_tsk(t);
2277 t = next_thread(t);
2278 } while (t != current);
2282 spin_unlock_irq(&current->sighand->siglock);
2283 return 0;
2286 int
2287 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2289 stack_t oss;
2290 int error;
2292 if (uoss) {
2293 oss.ss_sp = (void __user *) current->sas_ss_sp;
2294 oss.ss_size = current->sas_ss_size;
2295 oss.ss_flags = sas_ss_flags(sp);
2298 if (uss) {
2299 void __user *ss_sp;
2300 size_t ss_size;
2301 int ss_flags;
2303 error = -EFAULT;
2304 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2305 || __get_user(ss_sp, &uss->ss_sp)
2306 || __get_user(ss_flags, &uss->ss_flags)
2307 || __get_user(ss_size, &uss->ss_size))
2308 goto out;
2310 error = -EPERM;
2311 if (on_sig_stack(sp))
2312 goto out;
2314 error = -EINVAL;
2317 * Note - this code used to test ss_flags incorrectly
2318 * old code may have been written using ss_flags==0
2319 * to mean ss_flags==SS_ONSTACK (as this was the only
2320 * way that worked) - this fix preserves that older
2321 * mechanism
2323 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2324 goto out;
2326 if (ss_flags == SS_DISABLE) {
2327 ss_size = 0;
2328 ss_sp = NULL;
2329 } else {
2330 error = -ENOMEM;
2331 if (ss_size < MINSIGSTKSZ)
2332 goto out;
2335 current->sas_ss_sp = (unsigned long) ss_sp;
2336 current->sas_ss_size = ss_size;
2339 if (uoss) {
2340 error = -EFAULT;
2341 if (copy_to_user(uoss, &oss, sizeof(oss)))
2342 goto out;
2345 error = 0;
2346 out:
2347 return error;
2350 #ifdef __ARCH_WANT_SYS_SIGPENDING
2352 asmlinkage long
2353 sys_sigpending(old_sigset_t __user *set)
2355 return do_sigpending(set, sizeof(*set));
2358 #endif
2360 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2361 /* Some platforms have their own version with special arguments others
2362 support only sys_rt_sigprocmask. */
2364 asmlinkage long
2365 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2367 int error;
2368 old_sigset_t old_set, new_set;
2370 if (set) {
2371 error = -EFAULT;
2372 if (copy_from_user(&new_set, set, sizeof(*set)))
2373 goto out;
2374 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2376 spin_lock_irq(&current->sighand->siglock);
2377 old_set = current->blocked.sig[0];
2379 error = 0;
2380 switch (how) {
2381 default:
2382 error = -EINVAL;
2383 break;
2384 case SIG_BLOCK:
2385 sigaddsetmask(&current->blocked, new_set);
2386 break;
2387 case SIG_UNBLOCK:
2388 sigdelsetmask(&current->blocked, new_set);
2389 break;
2390 case SIG_SETMASK:
2391 current->blocked.sig[0] = new_set;
2392 break;
2395 recalc_sigpending();
2396 spin_unlock_irq(&current->sighand->siglock);
2397 if (error)
2398 goto out;
2399 if (oset)
2400 goto set_old;
2401 } else if (oset) {
2402 old_set = current->blocked.sig[0];
2403 set_old:
2404 error = -EFAULT;
2405 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2406 goto out;
2408 error = 0;
2409 out:
2410 return error;
2412 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2414 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2415 asmlinkage long
2416 sys_rt_sigaction(int sig,
2417 const struct sigaction __user *act,
2418 struct sigaction __user *oact,
2419 size_t sigsetsize)
2421 struct k_sigaction new_sa, old_sa;
2422 int ret = -EINVAL;
2424 /* XXX: Don't preclude handling different sized sigset_t's. */
2425 if (sigsetsize != sizeof(sigset_t))
2426 goto out;
2428 if (act) {
2429 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2430 return -EFAULT;
2433 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2435 if (!ret && oact) {
2436 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2437 return -EFAULT;
2439 out:
2440 return ret;
2442 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2444 #ifdef __ARCH_WANT_SYS_SGETMASK
2447 * For backwards compatibility. Functionality superseded by sigprocmask.
2449 asmlinkage long
2450 sys_sgetmask(void)
2452 /* SMP safe */
2453 return current->blocked.sig[0];
2456 asmlinkage long
2457 sys_ssetmask(int newmask)
2459 int old;
2461 spin_lock_irq(&current->sighand->siglock);
2462 old = current->blocked.sig[0];
2464 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2465 sigmask(SIGSTOP)));
2466 recalc_sigpending();
2467 spin_unlock_irq(&current->sighand->siglock);
2469 return old;
2471 #endif /* __ARCH_WANT_SGETMASK */
2473 #ifdef __ARCH_WANT_SYS_SIGNAL
2475 * For backwards compatibility. Functionality superseded by sigaction.
2477 asmlinkage unsigned long
2478 sys_signal(int sig, __sighandler_t handler)
2480 struct k_sigaction new_sa, old_sa;
2481 int ret;
2483 new_sa.sa.sa_handler = handler;
2484 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2485 sigemptyset(&new_sa.sa.sa_mask);
2487 ret = do_sigaction(sig, &new_sa, &old_sa);
2489 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2491 #endif /* __ARCH_WANT_SYS_SIGNAL */
2493 #ifdef __ARCH_WANT_SYS_PAUSE
2495 asmlinkage long
2496 sys_pause(void)
2498 current->state = TASK_INTERRUPTIBLE;
2499 schedule();
2500 return -ERESTARTNOHAND;
2503 #endif
2505 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2506 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2508 sigset_t newset;
2510 /* XXX: Don't preclude handling different sized sigset_t's. */
2511 if (sigsetsize != sizeof(sigset_t))
2512 return -EINVAL;
2514 if (copy_from_user(&newset, unewset, sizeof(newset)))
2515 return -EFAULT;
2516 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2518 spin_lock_irq(&current->sighand->siglock);
2519 current->saved_sigmask = current->blocked;
2520 current->blocked = newset;
2521 recalc_sigpending();
2522 spin_unlock_irq(&current->sighand->siglock);
2524 current->state = TASK_INTERRUPTIBLE;
2525 schedule();
2526 set_thread_flag(TIF_RESTORE_SIGMASK);
2527 return -ERESTARTNOHAND;
2529 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2531 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2533 return NULL;
2536 void __init signals_init(void)
2538 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);