Use menuconfig objects II - netdev/pcmcia
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cpuset.c
blobf57854b0892275d901e9e1b7b8f2e4784adcc37a
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 * 2003-10-10 Written by Simon Derr.
13 * 2003-10-22 Updates by Stephen Hemminger.
14 * 2004 May-July Rework by Paul Jackson.
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file COPYING in the main directory of the Linux
18 * distribution for more details.
21 #include <linux/cpu.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpuset.h>
24 #include <linux/err.h>
25 #include <linux/errno.h>
26 #include <linux/file.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel.h>
31 #include <linux/kmod.h>
32 #include <linux/list.h>
33 #include <linux/mempolicy.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/mount.h>
37 #include <linux/namei.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/security.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <linux/mutex.h>
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
59 * Tracks how many cpusets are currently defined in system.
60 * When there is only one cpuset (the root cpuset) we can
61 * short circuit some hooks.
63 int number_of_cpusets __read_mostly;
65 /* See "Frequency meter" comments, below. */
67 struct fmeter {
68 int cnt; /* unprocessed events count */
69 int val; /* most recent output value */
70 time_t time; /* clock (secs) when val computed */
71 spinlock_t lock; /* guards read or write of above */
74 struct cpuset {
75 unsigned long flags; /* "unsigned long" so bitops work */
76 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
77 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
80 * Count is atomic so can incr (fork) or decr (exit) without a lock.
82 atomic_t count; /* count tasks using this cpuset */
85 * We link our 'sibling' struct into our parents 'children'.
86 * Our children link their 'sibling' into our 'children'.
88 struct list_head sibling; /* my parents children */
89 struct list_head children; /* my children */
91 struct cpuset *parent; /* my parent */
92 struct dentry *dentry; /* cpuset fs entry */
95 * Copy of global cpuset_mems_generation as of the most
96 * recent time this cpuset changed its mems_allowed.
98 int mems_generation;
100 struct fmeter fmeter; /* memory_pressure filter */
103 /* bits in struct cpuset flags field */
104 typedef enum {
105 CS_CPU_EXCLUSIVE,
106 CS_MEM_EXCLUSIVE,
107 CS_MEMORY_MIGRATE,
108 CS_REMOVED,
109 CS_NOTIFY_ON_RELEASE,
110 CS_SPREAD_PAGE,
111 CS_SPREAD_SLAB,
112 } cpuset_flagbits_t;
114 /* convenient tests for these bits */
115 static inline int is_cpu_exclusive(const struct cpuset *cs)
117 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
120 static inline int is_mem_exclusive(const struct cpuset *cs)
122 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
125 static inline int is_removed(const struct cpuset *cs)
127 return test_bit(CS_REMOVED, &cs->flags);
130 static inline int notify_on_release(const struct cpuset *cs)
132 return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
135 static inline int is_memory_migrate(const struct cpuset *cs)
137 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
140 static inline int is_spread_page(const struct cpuset *cs)
142 return test_bit(CS_SPREAD_PAGE, &cs->flags);
145 static inline int is_spread_slab(const struct cpuset *cs)
147 return test_bit(CS_SPREAD_SLAB, &cs->flags);
151 * Increment this integer everytime any cpuset changes its
152 * mems_allowed value. Users of cpusets can track this generation
153 * number, and avoid having to lock and reload mems_allowed unless
154 * the cpuset they're using changes generation.
156 * A single, global generation is needed because attach_task() could
157 * reattach a task to a different cpuset, which must not have its
158 * generation numbers aliased with those of that tasks previous cpuset.
160 * Generations are needed for mems_allowed because one task cannot
161 * modify anothers memory placement. So we must enable every task,
162 * on every visit to __alloc_pages(), to efficiently check whether
163 * its current->cpuset->mems_allowed has changed, requiring an update
164 * of its current->mems_allowed.
166 * Since cpuset_mems_generation is guarded by manage_mutex,
167 * there is no need to mark it atomic.
169 static int cpuset_mems_generation;
171 static struct cpuset top_cpuset = {
172 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
173 .cpus_allowed = CPU_MASK_ALL,
174 .mems_allowed = NODE_MASK_ALL,
175 .count = ATOMIC_INIT(0),
176 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
177 .children = LIST_HEAD_INIT(top_cpuset.children),
180 static struct vfsmount *cpuset_mount;
181 static struct super_block *cpuset_sb;
184 * We have two global cpuset mutexes below. They can nest.
185 * It is ok to first take manage_mutex, then nest callback_mutex. We also
186 * require taking task_lock() when dereferencing a tasks cpuset pointer.
187 * See "The task_lock() exception", at the end of this comment.
189 * A task must hold both mutexes to modify cpusets. If a task
190 * holds manage_mutex, then it blocks others wanting that mutex,
191 * ensuring that it is the only task able to also acquire callback_mutex
192 * and be able to modify cpusets. It can perform various checks on
193 * the cpuset structure first, knowing nothing will change. It can
194 * also allocate memory while just holding manage_mutex. While it is
195 * performing these checks, various callback routines can briefly
196 * acquire callback_mutex to query cpusets. Once it is ready to make
197 * the changes, it takes callback_mutex, blocking everyone else.
199 * Calls to the kernel memory allocator can not be made while holding
200 * callback_mutex, as that would risk double tripping on callback_mutex
201 * from one of the callbacks into the cpuset code from within
202 * __alloc_pages().
204 * If a task is only holding callback_mutex, then it has read-only
205 * access to cpusets.
207 * The task_struct fields mems_allowed and mems_generation may only
208 * be accessed in the context of that task, so require no locks.
210 * Any task can increment and decrement the count field without lock.
211 * So in general, code holding manage_mutex or callback_mutex can't rely
212 * on the count field not changing. However, if the count goes to
213 * zero, then only attach_task(), which holds both mutexes, can
214 * increment it again. Because a count of zero means that no tasks
215 * are currently attached, therefore there is no way a task attached
216 * to that cpuset can fork (the other way to increment the count).
217 * So code holding manage_mutex or callback_mutex can safely assume that
218 * if the count is zero, it will stay zero. Similarly, if a task
219 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
220 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
221 * both of those mutexes.
223 * The cpuset_common_file_write handler for operations that modify
224 * the cpuset hierarchy holds manage_mutex across the entire operation,
225 * single threading all such cpuset modifications across the system.
227 * The cpuset_common_file_read() handlers only hold callback_mutex across
228 * small pieces of code, such as when reading out possibly multi-word
229 * cpumasks and nodemasks.
231 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
232 * (usually) take either mutex. These are the two most performance
233 * critical pieces of code here. The exception occurs on cpuset_exit(),
234 * when a task in a notify_on_release cpuset exits. Then manage_mutex
235 * is taken, and if the cpuset count is zero, a usermode call made
236 * to /sbin/cpuset_release_agent with the name of the cpuset (path
237 * relative to the root of cpuset file system) as the argument.
239 * A cpuset can only be deleted if both its 'count' of using tasks
240 * is zero, and its list of 'children' cpusets is empty. Since all
241 * tasks in the system use _some_ cpuset, and since there is always at
242 * least one task in the system (init), therefore, top_cpuset
243 * always has either children cpusets and/or using tasks. So we don't
244 * need a special hack to ensure that top_cpuset cannot be deleted.
246 * The above "Tale of Two Semaphores" would be complete, but for:
248 * The task_lock() exception
250 * The need for this exception arises from the action of attach_task(),
251 * which overwrites one tasks cpuset pointer with another. It does
252 * so using both mutexes, however there are several performance
253 * critical places that need to reference task->cpuset without the
254 * expense of grabbing a system global mutex. Therefore except as
255 * noted below, when dereferencing or, as in attach_task(), modifying
256 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
257 * (task->alloc_lock) already in the task_struct routinely used for
258 * such matters.
260 * P.S. One more locking exception. RCU is used to guard the
261 * update of a tasks cpuset pointer by attach_task() and the
262 * access of task->cpuset->mems_generation via that pointer in
263 * the routine cpuset_update_task_memory_state().
266 static DEFINE_MUTEX(manage_mutex);
267 static DEFINE_MUTEX(callback_mutex);
270 * A couple of forward declarations required, due to cyclic reference loop:
271 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
272 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
275 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
276 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
278 static struct backing_dev_info cpuset_backing_dev_info = {
279 .ra_pages = 0, /* No readahead */
280 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
283 static struct inode *cpuset_new_inode(mode_t mode)
285 struct inode *inode = new_inode(cpuset_sb);
287 if (inode) {
288 inode->i_mode = mode;
289 inode->i_uid = current->fsuid;
290 inode->i_gid = current->fsgid;
291 inode->i_blocks = 0;
292 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
293 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
295 return inode;
298 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
300 /* is dentry a directory ? if so, kfree() associated cpuset */
301 if (S_ISDIR(inode->i_mode)) {
302 struct cpuset *cs = dentry->d_fsdata;
303 BUG_ON(!(is_removed(cs)));
304 kfree(cs);
306 iput(inode);
309 static struct dentry_operations cpuset_dops = {
310 .d_iput = cpuset_diput,
313 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
315 struct dentry *d = lookup_one_len(name, parent, strlen(name));
316 if (!IS_ERR(d))
317 d->d_op = &cpuset_dops;
318 return d;
321 static void remove_dir(struct dentry *d)
323 struct dentry *parent = dget(d->d_parent);
325 d_delete(d);
326 simple_rmdir(parent->d_inode, d);
327 dput(parent);
331 * NOTE : the dentry must have been dget()'ed
333 static void cpuset_d_remove_dir(struct dentry *dentry)
335 struct list_head *node;
337 spin_lock(&dcache_lock);
338 node = dentry->d_subdirs.next;
339 while (node != &dentry->d_subdirs) {
340 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
341 list_del_init(node);
342 if (d->d_inode) {
343 d = dget_locked(d);
344 spin_unlock(&dcache_lock);
345 d_delete(d);
346 simple_unlink(dentry->d_inode, d);
347 dput(d);
348 spin_lock(&dcache_lock);
350 node = dentry->d_subdirs.next;
352 list_del_init(&dentry->d_u.d_child);
353 spin_unlock(&dcache_lock);
354 remove_dir(dentry);
357 static struct super_operations cpuset_ops = {
358 .statfs = simple_statfs,
359 .drop_inode = generic_delete_inode,
362 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
363 int unused_silent)
365 struct inode *inode;
366 struct dentry *root;
368 sb->s_blocksize = PAGE_CACHE_SIZE;
369 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
370 sb->s_magic = CPUSET_SUPER_MAGIC;
371 sb->s_op = &cpuset_ops;
372 cpuset_sb = sb;
374 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
375 if (inode) {
376 inode->i_op = &simple_dir_inode_operations;
377 inode->i_fop = &simple_dir_operations;
378 /* directories start off with i_nlink == 2 (for "." entry) */
379 inc_nlink(inode);
380 } else {
381 return -ENOMEM;
384 root = d_alloc_root(inode);
385 if (!root) {
386 iput(inode);
387 return -ENOMEM;
389 sb->s_root = root;
390 return 0;
393 static int cpuset_get_sb(struct file_system_type *fs_type,
394 int flags, const char *unused_dev_name,
395 void *data, struct vfsmount *mnt)
397 return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
400 static struct file_system_type cpuset_fs_type = {
401 .name = "cpuset",
402 .get_sb = cpuset_get_sb,
403 .kill_sb = kill_litter_super,
406 /* struct cftype:
408 * The files in the cpuset filesystem mostly have a very simple read/write
409 * handling, some common function will take care of it. Nevertheless some cases
410 * (read tasks) are special and therefore I define this structure for every
411 * kind of file.
414 * When reading/writing to a file:
415 * - the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
416 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
419 struct cftype {
420 char *name;
421 int private;
422 int (*open) (struct inode *inode, struct file *file);
423 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
424 loff_t *ppos);
425 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
426 loff_t *ppos);
427 int (*release) (struct inode *inode, struct file *file);
430 static inline struct cpuset *__d_cs(struct dentry *dentry)
432 return dentry->d_fsdata;
435 static inline struct cftype *__d_cft(struct dentry *dentry)
437 return dentry->d_fsdata;
441 * Call with manage_mutex held. Writes path of cpuset into buf.
442 * Returns 0 on success, -errno on error.
445 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
447 char *start;
449 start = buf + buflen;
451 *--start = '\0';
452 for (;;) {
453 int len = cs->dentry->d_name.len;
454 if ((start -= len) < buf)
455 return -ENAMETOOLONG;
456 memcpy(start, cs->dentry->d_name.name, len);
457 cs = cs->parent;
458 if (!cs)
459 break;
460 if (!cs->parent)
461 continue;
462 if (--start < buf)
463 return -ENAMETOOLONG;
464 *start = '/';
466 memmove(buf, start, buf + buflen - start);
467 return 0;
471 * Notify userspace when a cpuset is released, by running
472 * /sbin/cpuset_release_agent with the name of the cpuset (path
473 * relative to the root of cpuset file system) as the argument.
475 * Most likely, this user command will try to rmdir this cpuset.
477 * This races with the possibility that some other task will be
478 * attached to this cpuset before it is removed, or that some other
479 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
480 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
481 * unused, and this cpuset will be reprieved from its death sentence,
482 * to continue to serve a useful existence. Next time it's released,
483 * we will get notified again, if it still has 'notify_on_release' set.
485 * The final arg to call_usermodehelper() is 0, which means don't
486 * wait. The separate /sbin/cpuset_release_agent task is forked by
487 * call_usermodehelper(), then control in this thread returns here,
488 * without waiting for the release agent task. We don't bother to
489 * wait because the caller of this routine has no use for the exit
490 * status of the /sbin/cpuset_release_agent task, so no sense holding
491 * our caller up for that.
493 * When we had only one cpuset mutex, we had to call this
494 * without holding it, to avoid deadlock when call_usermodehelper()
495 * allocated memory. With two locks, we could now call this while
496 * holding manage_mutex, but we still don't, so as to minimize
497 * the time manage_mutex is held.
500 static void cpuset_release_agent(const char *pathbuf)
502 char *argv[3], *envp[3];
503 int i;
505 if (!pathbuf)
506 return;
508 i = 0;
509 argv[i++] = "/sbin/cpuset_release_agent";
510 argv[i++] = (char *)pathbuf;
511 argv[i] = NULL;
513 i = 0;
514 /* minimal command environment */
515 envp[i++] = "HOME=/";
516 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
517 envp[i] = NULL;
519 call_usermodehelper(argv[0], argv, envp, 0);
520 kfree(pathbuf);
524 * Either cs->count of using tasks transitioned to zero, or the
525 * cs->children list of child cpusets just became empty. If this
526 * cs is notify_on_release() and now both the user count is zero and
527 * the list of children is empty, prepare cpuset path in a kmalloc'd
528 * buffer, to be returned via ppathbuf, so that the caller can invoke
529 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
530 * Call here with manage_mutex held.
532 * This check_for_release() routine is responsible for kmalloc'ing
533 * pathbuf. The above cpuset_release_agent() is responsible for
534 * kfree'ing pathbuf. The caller of these routines is responsible
535 * for providing a pathbuf pointer, initialized to NULL, then
536 * calling check_for_release() with manage_mutex held and the address
537 * of the pathbuf pointer, then dropping manage_mutex, then calling
538 * cpuset_release_agent() with pathbuf, as set by check_for_release().
541 static void check_for_release(struct cpuset *cs, char **ppathbuf)
543 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
544 list_empty(&cs->children)) {
545 char *buf;
547 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
548 if (!buf)
549 return;
550 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
551 kfree(buf);
552 else
553 *ppathbuf = buf;
558 * Return in *pmask the portion of a cpusets's cpus_allowed that
559 * are online. If none are online, walk up the cpuset hierarchy
560 * until we find one that does have some online cpus. If we get
561 * all the way to the top and still haven't found any online cpus,
562 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
563 * task, return cpu_online_map.
565 * One way or another, we guarantee to return some non-empty subset
566 * of cpu_online_map.
568 * Call with callback_mutex held.
571 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
573 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
574 cs = cs->parent;
575 if (cs)
576 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
577 else
578 *pmask = cpu_online_map;
579 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
583 * Return in *pmask the portion of a cpusets's mems_allowed that
584 * are online. If none are online, walk up the cpuset hierarchy
585 * until we find one that does have some online mems. If we get
586 * all the way to the top and still haven't found any online mems,
587 * return node_online_map.
589 * One way or another, we guarantee to return some non-empty subset
590 * of node_online_map.
592 * Call with callback_mutex held.
595 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
597 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
598 cs = cs->parent;
599 if (cs)
600 nodes_and(*pmask, cs->mems_allowed, node_online_map);
601 else
602 *pmask = node_online_map;
603 BUG_ON(!nodes_intersects(*pmask, node_online_map));
607 * cpuset_update_task_memory_state - update task memory placement
609 * If the current tasks cpusets mems_allowed changed behind our
610 * backs, update current->mems_allowed, mems_generation and task NUMA
611 * mempolicy to the new value.
613 * Task mempolicy is updated by rebinding it relative to the
614 * current->cpuset if a task has its memory placement changed.
615 * Do not call this routine if in_interrupt().
617 * Call without callback_mutex or task_lock() held. May be
618 * called with or without manage_mutex held. Thanks in part to
619 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
620 * be NULL. This routine also might acquire callback_mutex and
621 * current->mm->mmap_sem during call.
623 * Reading current->cpuset->mems_generation doesn't need task_lock
624 * to guard the current->cpuset derefence, because it is guarded
625 * from concurrent freeing of current->cpuset by attach_task(),
626 * using RCU.
628 * The rcu_dereference() is technically probably not needed,
629 * as I don't actually mind if I see a new cpuset pointer but
630 * an old value of mems_generation. However this really only
631 * matters on alpha systems using cpusets heavily. If I dropped
632 * that rcu_dereference(), it would save them a memory barrier.
633 * For all other arch's, rcu_dereference is a no-op anyway, and for
634 * alpha systems not using cpusets, another planned optimization,
635 * avoiding the rcu critical section for tasks in the root cpuset
636 * which is statically allocated, so can't vanish, will make this
637 * irrelevant. Better to use RCU as intended, than to engage in
638 * some cute trick to save a memory barrier that is impossible to
639 * test, for alpha systems using cpusets heavily, which might not
640 * even exist.
642 * This routine is needed to update the per-task mems_allowed data,
643 * within the tasks context, when it is trying to allocate memory
644 * (in various mm/mempolicy.c routines) and notices that some other
645 * task has been modifying its cpuset.
648 void cpuset_update_task_memory_state(void)
650 int my_cpusets_mem_gen;
651 struct task_struct *tsk = current;
652 struct cpuset *cs;
654 if (tsk->cpuset == &top_cpuset) {
655 /* Don't need rcu for top_cpuset. It's never freed. */
656 my_cpusets_mem_gen = top_cpuset.mems_generation;
657 } else {
658 rcu_read_lock();
659 cs = rcu_dereference(tsk->cpuset);
660 my_cpusets_mem_gen = cs->mems_generation;
661 rcu_read_unlock();
664 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
665 mutex_lock(&callback_mutex);
666 task_lock(tsk);
667 cs = tsk->cpuset; /* Maybe changed when task not locked */
668 guarantee_online_mems(cs, &tsk->mems_allowed);
669 tsk->cpuset_mems_generation = cs->mems_generation;
670 if (is_spread_page(cs))
671 tsk->flags |= PF_SPREAD_PAGE;
672 else
673 tsk->flags &= ~PF_SPREAD_PAGE;
674 if (is_spread_slab(cs))
675 tsk->flags |= PF_SPREAD_SLAB;
676 else
677 tsk->flags &= ~PF_SPREAD_SLAB;
678 task_unlock(tsk);
679 mutex_unlock(&callback_mutex);
680 mpol_rebind_task(tsk, &tsk->mems_allowed);
685 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
687 * One cpuset is a subset of another if all its allowed CPUs and
688 * Memory Nodes are a subset of the other, and its exclusive flags
689 * are only set if the other's are set. Call holding manage_mutex.
692 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
694 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
695 nodes_subset(p->mems_allowed, q->mems_allowed) &&
696 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
697 is_mem_exclusive(p) <= is_mem_exclusive(q);
701 * validate_change() - Used to validate that any proposed cpuset change
702 * follows the structural rules for cpusets.
704 * If we replaced the flag and mask values of the current cpuset
705 * (cur) with those values in the trial cpuset (trial), would
706 * our various subset and exclusive rules still be valid? Presumes
707 * manage_mutex held.
709 * 'cur' is the address of an actual, in-use cpuset. Operations
710 * such as list traversal that depend on the actual address of the
711 * cpuset in the list must use cur below, not trial.
713 * 'trial' is the address of bulk structure copy of cur, with
714 * perhaps one or more of the fields cpus_allowed, mems_allowed,
715 * or flags changed to new, trial values.
717 * Return 0 if valid, -errno if not.
720 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
722 struct cpuset *c, *par;
724 /* Each of our child cpusets must be a subset of us */
725 list_for_each_entry(c, &cur->children, sibling) {
726 if (!is_cpuset_subset(c, trial))
727 return -EBUSY;
730 /* Remaining checks don't apply to root cpuset */
731 if (cur == &top_cpuset)
732 return 0;
734 par = cur->parent;
736 /* We must be a subset of our parent cpuset */
737 if (!is_cpuset_subset(trial, par))
738 return -EACCES;
740 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
741 list_for_each_entry(c, &par->children, sibling) {
742 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
743 c != cur &&
744 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
745 return -EINVAL;
746 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
747 c != cur &&
748 nodes_intersects(trial->mems_allowed, c->mems_allowed))
749 return -EINVAL;
752 return 0;
756 * For a given cpuset cur, partition the system as follows
757 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
758 * exclusive child cpusets
759 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
760 * exclusive child cpusets
761 * Build these two partitions by calling partition_sched_domains
763 * Call with manage_mutex held. May nest a call to the
764 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
765 * Must not be called holding callback_mutex, because we must
766 * not call lock_cpu_hotplug() while holding callback_mutex.
769 static void update_cpu_domains(struct cpuset *cur)
771 struct cpuset *c, *par = cur->parent;
772 cpumask_t pspan, cspan;
774 if (par == NULL || cpus_empty(cur->cpus_allowed))
775 return;
778 * Get all cpus from parent's cpus_allowed not part of exclusive
779 * children
781 pspan = par->cpus_allowed;
782 list_for_each_entry(c, &par->children, sibling) {
783 if (is_cpu_exclusive(c))
784 cpus_andnot(pspan, pspan, c->cpus_allowed);
786 if (!is_cpu_exclusive(cur)) {
787 cpus_or(pspan, pspan, cur->cpus_allowed);
788 if (cpus_equal(pspan, cur->cpus_allowed))
789 return;
790 cspan = CPU_MASK_NONE;
791 } else {
792 if (cpus_empty(pspan))
793 return;
794 cspan = cur->cpus_allowed;
796 * Get all cpus from current cpuset's cpus_allowed not part
797 * of exclusive children
799 list_for_each_entry(c, &cur->children, sibling) {
800 if (is_cpu_exclusive(c))
801 cpus_andnot(cspan, cspan, c->cpus_allowed);
805 lock_cpu_hotplug();
806 partition_sched_domains(&pspan, &cspan);
807 unlock_cpu_hotplug();
811 * Call with manage_mutex held. May take callback_mutex during call.
814 static int update_cpumask(struct cpuset *cs, char *buf)
816 struct cpuset trialcs;
817 int retval, cpus_unchanged;
819 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
820 if (cs == &top_cpuset)
821 return -EACCES;
823 trialcs = *cs;
826 * We allow a cpuset's cpus_allowed to be empty; if it has attached
827 * tasks, we'll catch it later when we validate the change and return
828 * -ENOSPC.
830 if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
831 cpus_clear(trialcs.cpus_allowed);
832 } else {
833 retval = cpulist_parse(buf, trialcs.cpus_allowed);
834 if (retval < 0)
835 return retval;
837 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
838 /* cpus_allowed cannot be empty for a cpuset with attached tasks. */
839 if (atomic_read(&cs->count) && cpus_empty(trialcs.cpus_allowed))
840 return -ENOSPC;
841 retval = validate_change(cs, &trialcs);
842 if (retval < 0)
843 return retval;
844 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
845 mutex_lock(&callback_mutex);
846 cs->cpus_allowed = trialcs.cpus_allowed;
847 mutex_unlock(&callback_mutex);
848 if (is_cpu_exclusive(cs) && !cpus_unchanged)
849 update_cpu_domains(cs);
850 return 0;
854 * cpuset_migrate_mm
856 * Migrate memory region from one set of nodes to another.
858 * Temporarilly set tasks mems_allowed to target nodes of migration,
859 * so that the migration code can allocate pages on these nodes.
861 * Call holding manage_mutex, so our current->cpuset won't change
862 * during this call, as manage_mutex holds off any attach_task()
863 * calls. Therefore we don't need to take task_lock around the
864 * call to guarantee_online_mems(), as we know no one is changing
865 * our tasks cpuset.
867 * Hold callback_mutex around the two modifications of our tasks
868 * mems_allowed to synchronize with cpuset_mems_allowed().
870 * While the mm_struct we are migrating is typically from some
871 * other task, the task_struct mems_allowed that we are hacking
872 * is for our current task, which must allocate new pages for that
873 * migrating memory region.
875 * We call cpuset_update_task_memory_state() before hacking
876 * our tasks mems_allowed, so that we are assured of being in
877 * sync with our tasks cpuset, and in particular, callbacks to
878 * cpuset_update_task_memory_state() from nested page allocations
879 * won't see any mismatch of our cpuset and task mems_generation
880 * values, so won't overwrite our hacked tasks mems_allowed
881 * nodemask.
884 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
885 const nodemask_t *to)
887 struct task_struct *tsk = current;
889 cpuset_update_task_memory_state();
891 mutex_lock(&callback_mutex);
892 tsk->mems_allowed = *to;
893 mutex_unlock(&callback_mutex);
895 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
897 mutex_lock(&callback_mutex);
898 guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
899 mutex_unlock(&callback_mutex);
903 * Handle user request to change the 'mems' memory placement
904 * of a cpuset. Needs to validate the request, update the
905 * cpusets mems_allowed and mems_generation, and for each
906 * task in the cpuset, rebind any vma mempolicies and if
907 * the cpuset is marked 'memory_migrate', migrate the tasks
908 * pages to the new memory.
910 * Call with manage_mutex held. May take callback_mutex during call.
911 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
912 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
913 * their mempolicies to the cpusets new mems_allowed.
916 static int update_nodemask(struct cpuset *cs, char *buf)
918 struct cpuset trialcs;
919 nodemask_t oldmem;
920 struct task_struct *g, *p;
921 struct mm_struct **mmarray;
922 int i, n, ntasks;
923 int migrate;
924 int fudge;
925 int retval;
927 /* top_cpuset.mems_allowed tracks node_online_map; it's read-only */
928 if (cs == &top_cpuset)
929 return -EACCES;
931 trialcs = *cs;
934 * We allow a cpuset's mems_allowed to be empty; if it has attached
935 * tasks, we'll catch it later when we validate the change and return
936 * -ENOSPC.
938 if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
939 nodes_clear(trialcs.mems_allowed);
940 } else {
941 retval = nodelist_parse(buf, trialcs.mems_allowed);
942 if (retval < 0)
943 goto done;
945 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
946 oldmem = cs->mems_allowed;
947 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
948 retval = 0; /* Too easy - nothing to do */
949 goto done;
951 /* mems_allowed cannot be empty for a cpuset with attached tasks. */
952 if (atomic_read(&cs->count) && nodes_empty(trialcs.mems_allowed)) {
953 retval = -ENOSPC;
954 goto done;
956 retval = validate_change(cs, &trialcs);
957 if (retval < 0)
958 goto done;
960 mutex_lock(&callback_mutex);
961 cs->mems_allowed = trialcs.mems_allowed;
962 cs->mems_generation = cpuset_mems_generation++;
963 mutex_unlock(&callback_mutex);
965 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
967 fudge = 10; /* spare mmarray[] slots */
968 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
969 retval = -ENOMEM;
972 * Allocate mmarray[] to hold mm reference for each task
973 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
974 * tasklist_lock. We could use GFP_ATOMIC, but with a
975 * few more lines of code, we can retry until we get a big
976 * enough mmarray[] w/o using GFP_ATOMIC.
978 while (1) {
979 ntasks = atomic_read(&cs->count); /* guess */
980 ntasks += fudge;
981 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
982 if (!mmarray)
983 goto done;
984 write_lock_irq(&tasklist_lock); /* block fork */
985 if (atomic_read(&cs->count) <= ntasks)
986 break; /* got enough */
987 write_unlock_irq(&tasklist_lock); /* try again */
988 kfree(mmarray);
991 n = 0;
993 /* Load up mmarray[] with mm reference for each task in cpuset. */
994 do_each_thread(g, p) {
995 struct mm_struct *mm;
997 if (n >= ntasks) {
998 printk(KERN_WARNING
999 "Cpuset mempolicy rebind incomplete.\n");
1000 continue;
1002 if (p->cpuset != cs)
1003 continue;
1004 mm = get_task_mm(p);
1005 if (!mm)
1006 continue;
1007 mmarray[n++] = mm;
1008 } while_each_thread(g, p);
1009 write_unlock_irq(&tasklist_lock);
1012 * Now that we've dropped the tasklist spinlock, we can
1013 * rebind the vma mempolicies of each mm in mmarray[] to their
1014 * new cpuset, and release that mm. The mpol_rebind_mm()
1015 * call takes mmap_sem, which we couldn't take while holding
1016 * tasklist_lock. Forks can happen again now - the mpol_copy()
1017 * cpuset_being_rebound check will catch such forks, and rebind
1018 * their vma mempolicies too. Because we still hold the global
1019 * cpuset manage_mutex, we know that no other rebind effort will
1020 * be contending for the global variable cpuset_being_rebound.
1021 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1022 * is idempotent. Also migrate pages in each mm to new nodes.
1024 migrate = is_memory_migrate(cs);
1025 for (i = 0; i < n; i++) {
1026 struct mm_struct *mm = mmarray[i];
1028 mpol_rebind_mm(mm, &cs->mems_allowed);
1029 if (migrate)
1030 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1031 mmput(mm);
1034 /* We're done rebinding vma's to this cpusets new mems_allowed. */
1035 kfree(mmarray);
1036 set_cpuset_being_rebound(NULL);
1037 retval = 0;
1038 done:
1039 return retval;
1043 * Call with manage_mutex held.
1046 static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
1048 if (simple_strtoul(buf, NULL, 10) != 0)
1049 cpuset_memory_pressure_enabled = 1;
1050 else
1051 cpuset_memory_pressure_enabled = 0;
1052 return 0;
1056 * update_flag - read a 0 or a 1 in a file and update associated flag
1057 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1058 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1059 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1060 * cs: the cpuset to update
1061 * buf: the buffer where we read the 0 or 1
1063 * Call with manage_mutex held.
1066 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
1068 int turning_on;
1069 struct cpuset trialcs;
1070 int err, cpu_exclusive_changed;
1072 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
1074 trialcs = *cs;
1075 if (turning_on)
1076 set_bit(bit, &trialcs.flags);
1077 else
1078 clear_bit(bit, &trialcs.flags);
1080 err = validate_change(cs, &trialcs);
1081 if (err < 0)
1082 return err;
1083 cpu_exclusive_changed =
1084 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
1085 mutex_lock(&callback_mutex);
1086 cs->flags = trialcs.flags;
1087 mutex_unlock(&callback_mutex);
1089 if (cpu_exclusive_changed)
1090 update_cpu_domains(cs);
1091 return 0;
1095 * Frequency meter - How fast is some event occurring?
1097 * These routines manage a digitally filtered, constant time based,
1098 * event frequency meter. There are four routines:
1099 * fmeter_init() - initialize a frequency meter.
1100 * fmeter_markevent() - called each time the event happens.
1101 * fmeter_getrate() - returns the recent rate of such events.
1102 * fmeter_update() - internal routine used to update fmeter.
1104 * A common data structure is passed to each of these routines,
1105 * which is used to keep track of the state required to manage the
1106 * frequency meter and its digital filter.
1108 * The filter works on the number of events marked per unit time.
1109 * The filter is single-pole low-pass recursive (IIR). The time unit
1110 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1111 * simulate 3 decimal digits of precision (multiplied by 1000).
1113 * With an FM_COEF of 933, and a time base of 1 second, the filter
1114 * has a half-life of 10 seconds, meaning that if the events quit
1115 * happening, then the rate returned from the fmeter_getrate()
1116 * will be cut in half each 10 seconds, until it converges to zero.
1118 * It is not worth doing a real infinitely recursive filter. If more
1119 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1120 * just compute FM_MAXTICKS ticks worth, by which point the level
1121 * will be stable.
1123 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1124 * arithmetic overflow in the fmeter_update() routine.
1126 * Given the simple 32 bit integer arithmetic used, this meter works
1127 * best for reporting rates between one per millisecond (msec) and
1128 * one per 32 (approx) seconds. At constant rates faster than one
1129 * per msec it maxes out at values just under 1,000,000. At constant
1130 * rates between one per msec, and one per second it will stabilize
1131 * to a value N*1000, where N is the rate of events per second.
1132 * At constant rates between one per second and one per 32 seconds,
1133 * it will be choppy, moving up on the seconds that have an event,
1134 * and then decaying until the next event. At rates slower than
1135 * about one in 32 seconds, it decays all the way back to zero between
1136 * each event.
1139 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1140 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1141 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1142 #define FM_SCALE 1000 /* faux fixed point scale */
1144 /* Initialize a frequency meter */
1145 static void fmeter_init(struct fmeter *fmp)
1147 fmp->cnt = 0;
1148 fmp->val = 0;
1149 fmp->time = 0;
1150 spin_lock_init(&fmp->lock);
1153 /* Internal meter update - process cnt events and update value */
1154 static void fmeter_update(struct fmeter *fmp)
1156 time_t now = get_seconds();
1157 time_t ticks = now - fmp->time;
1159 if (ticks == 0)
1160 return;
1162 ticks = min(FM_MAXTICKS, ticks);
1163 while (ticks-- > 0)
1164 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1165 fmp->time = now;
1167 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1168 fmp->cnt = 0;
1171 /* Process any previous ticks, then bump cnt by one (times scale). */
1172 static void fmeter_markevent(struct fmeter *fmp)
1174 spin_lock(&fmp->lock);
1175 fmeter_update(fmp);
1176 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1177 spin_unlock(&fmp->lock);
1180 /* Process any previous ticks, then return current value. */
1181 static int fmeter_getrate(struct fmeter *fmp)
1183 int val;
1185 spin_lock(&fmp->lock);
1186 fmeter_update(fmp);
1187 val = fmp->val;
1188 spin_unlock(&fmp->lock);
1189 return val;
1193 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
1194 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1195 * notified on release.
1197 * Call holding manage_mutex. May take callback_mutex and task_lock of
1198 * the task 'pid' during call.
1201 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1203 pid_t pid;
1204 struct task_struct *tsk;
1205 struct cpuset *oldcs;
1206 cpumask_t cpus;
1207 nodemask_t from, to;
1208 struct mm_struct *mm;
1209 int retval;
1211 if (sscanf(pidbuf, "%d", &pid) != 1)
1212 return -EIO;
1213 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1214 return -ENOSPC;
1216 if (pid) {
1217 read_lock(&tasklist_lock);
1219 tsk = find_task_by_pid(pid);
1220 if (!tsk || tsk->flags & PF_EXITING) {
1221 read_unlock(&tasklist_lock);
1222 return -ESRCH;
1225 get_task_struct(tsk);
1226 read_unlock(&tasklist_lock);
1228 if ((current->euid) && (current->euid != tsk->uid)
1229 && (current->euid != tsk->suid)) {
1230 put_task_struct(tsk);
1231 return -EACCES;
1233 } else {
1234 tsk = current;
1235 get_task_struct(tsk);
1238 retval = security_task_setscheduler(tsk, 0, NULL);
1239 if (retval) {
1240 put_task_struct(tsk);
1241 return retval;
1244 mutex_lock(&callback_mutex);
1246 task_lock(tsk);
1247 oldcs = tsk->cpuset;
1249 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
1250 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
1251 * then fail this attach_task(), to avoid breaking top_cpuset.count.
1253 if (tsk->flags & PF_EXITING) {
1254 task_unlock(tsk);
1255 mutex_unlock(&callback_mutex);
1256 put_task_struct(tsk);
1257 return -ESRCH;
1259 atomic_inc(&cs->count);
1260 rcu_assign_pointer(tsk->cpuset, cs);
1261 task_unlock(tsk);
1263 guarantee_online_cpus(cs, &cpus);
1264 set_cpus_allowed(tsk, cpus);
1266 from = oldcs->mems_allowed;
1267 to = cs->mems_allowed;
1269 mutex_unlock(&callback_mutex);
1271 mm = get_task_mm(tsk);
1272 if (mm) {
1273 mpol_rebind_mm(mm, &to);
1274 if (is_memory_migrate(cs))
1275 cpuset_migrate_mm(mm, &from, &to);
1276 mmput(mm);
1279 put_task_struct(tsk);
1280 synchronize_rcu();
1281 if (atomic_dec_and_test(&oldcs->count))
1282 check_for_release(oldcs, ppathbuf);
1283 return 0;
1286 /* The various types of files and directories in a cpuset file system */
1288 typedef enum {
1289 FILE_ROOT,
1290 FILE_DIR,
1291 FILE_MEMORY_MIGRATE,
1292 FILE_CPULIST,
1293 FILE_MEMLIST,
1294 FILE_CPU_EXCLUSIVE,
1295 FILE_MEM_EXCLUSIVE,
1296 FILE_NOTIFY_ON_RELEASE,
1297 FILE_MEMORY_PRESSURE_ENABLED,
1298 FILE_MEMORY_PRESSURE,
1299 FILE_SPREAD_PAGE,
1300 FILE_SPREAD_SLAB,
1301 FILE_TASKLIST,
1302 } cpuset_filetype_t;
1304 static ssize_t cpuset_common_file_write(struct file *file,
1305 const char __user *userbuf,
1306 size_t nbytes, loff_t *unused_ppos)
1308 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1309 struct cftype *cft = __d_cft(file->f_path.dentry);
1310 cpuset_filetype_t type = cft->private;
1311 char *buffer;
1312 char *pathbuf = NULL;
1313 int retval = 0;
1315 /* Crude upper limit on largest legitimate cpulist user might write. */
1316 if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
1317 return -E2BIG;
1319 /* +1 for nul-terminator */
1320 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1321 return -ENOMEM;
1323 if (copy_from_user(buffer, userbuf, nbytes)) {
1324 retval = -EFAULT;
1325 goto out1;
1327 buffer[nbytes] = 0; /* nul-terminate */
1329 mutex_lock(&manage_mutex);
1331 if (is_removed(cs)) {
1332 retval = -ENODEV;
1333 goto out2;
1336 switch (type) {
1337 case FILE_CPULIST:
1338 retval = update_cpumask(cs, buffer);
1339 break;
1340 case FILE_MEMLIST:
1341 retval = update_nodemask(cs, buffer);
1342 break;
1343 case FILE_CPU_EXCLUSIVE:
1344 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1345 break;
1346 case FILE_MEM_EXCLUSIVE:
1347 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1348 break;
1349 case FILE_NOTIFY_ON_RELEASE:
1350 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1351 break;
1352 case FILE_MEMORY_MIGRATE:
1353 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1354 break;
1355 case FILE_MEMORY_PRESSURE_ENABLED:
1356 retval = update_memory_pressure_enabled(cs, buffer);
1357 break;
1358 case FILE_MEMORY_PRESSURE:
1359 retval = -EACCES;
1360 break;
1361 case FILE_SPREAD_PAGE:
1362 retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1363 cs->mems_generation = cpuset_mems_generation++;
1364 break;
1365 case FILE_SPREAD_SLAB:
1366 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1367 cs->mems_generation = cpuset_mems_generation++;
1368 break;
1369 case FILE_TASKLIST:
1370 retval = attach_task(cs, buffer, &pathbuf);
1371 break;
1372 default:
1373 retval = -EINVAL;
1374 goto out2;
1377 if (retval == 0)
1378 retval = nbytes;
1379 out2:
1380 mutex_unlock(&manage_mutex);
1381 cpuset_release_agent(pathbuf);
1382 out1:
1383 kfree(buffer);
1384 return retval;
1387 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1388 size_t nbytes, loff_t *ppos)
1390 ssize_t retval = 0;
1391 struct cftype *cft = __d_cft(file->f_path.dentry);
1392 if (!cft)
1393 return -ENODEV;
1395 /* special function ? */
1396 if (cft->write)
1397 retval = cft->write(file, buf, nbytes, ppos);
1398 else
1399 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1401 return retval;
1405 * These ascii lists should be read in a single call, by using a user
1406 * buffer large enough to hold the entire map. If read in smaller
1407 * chunks, there is no guarantee of atomicity. Since the display format
1408 * used, list of ranges of sequential numbers, is variable length,
1409 * and since these maps can change value dynamically, one could read
1410 * gibberish by doing partial reads while a list was changing.
1411 * A single large read to a buffer that crosses a page boundary is
1412 * ok, because the result being copied to user land is not recomputed
1413 * across a page fault.
1416 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1418 cpumask_t mask;
1420 mutex_lock(&callback_mutex);
1421 mask = cs->cpus_allowed;
1422 mutex_unlock(&callback_mutex);
1424 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1427 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1429 nodemask_t mask;
1431 mutex_lock(&callback_mutex);
1432 mask = cs->mems_allowed;
1433 mutex_unlock(&callback_mutex);
1435 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1438 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1439 size_t nbytes, loff_t *ppos)
1441 struct cftype *cft = __d_cft(file->f_path.dentry);
1442 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1443 cpuset_filetype_t type = cft->private;
1444 char *page;
1445 ssize_t retval = 0;
1446 char *s;
1448 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1449 return -ENOMEM;
1451 s = page;
1453 switch (type) {
1454 case FILE_CPULIST:
1455 s += cpuset_sprintf_cpulist(s, cs);
1456 break;
1457 case FILE_MEMLIST:
1458 s += cpuset_sprintf_memlist(s, cs);
1459 break;
1460 case FILE_CPU_EXCLUSIVE:
1461 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1462 break;
1463 case FILE_MEM_EXCLUSIVE:
1464 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1465 break;
1466 case FILE_NOTIFY_ON_RELEASE:
1467 *s++ = notify_on_release(cs) ? '1' : '0';
1468 break;
1469 case FILE_MEMORY_MIGRATE:
1470 *s++ = is_memory_migrate(cs) ? '1' : '0';
1471 break;
1472 case FILE_MEMORY_PRESSURE_ENABLED:
1473 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1474 break;
1475 case FILE_MEMORY_PRESSURE:
1476 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1477 break;
1478 case FILE_SPREAD_PAGE:
1479 *s++ = is_spread_page(cs) ? '1' : '0';
1480 break;
1481 case FILE_SPREAD_SLAB:
1482 *s++ = is_spread_slab(cs) ? '1' : '0';
1483 break;
1484 default:
1485 retval = -EINVAL;
1486 goto out;
1488 *s++ = '\n';
1490 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1491 out:
1492 free_page((unsigned long)page);
1493 return retval;
1496 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1497 loff_t *ppos)
1499 ssize_t retval = 0;
1500 struct cftype *cft = __d_cft(file->f_path.dentry);
1501 if (!cft)
1502 return -ENODEV;
1504 /* special function ? */
1505 if (cft->read)
1506 retval = cft->read(file, buf, nbytes, ppos);
1507 else
1508 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1510 return retval;
1513 static int cpuset_file_open(struct inode *inode, struct file *file)
1515 int err;
1516 struct cftype *cft;
1518 err = generic_file_open(inode, file);
1519 if (err)
1520 return err;
1522 cft = __d_cft(file->f_path.dentry);
1523 if (!cft)
1524 return -ENODEV;
1525 if (cft->open)
1526 err = cft->open(inode, file);
1527 else
1528 err = 0;
1530 return err;
1533 static int cpuset_file_release(struct inode *inode, struct file *file)
1535 struct cftype *cft = __d_cft(file->f_path.dentry);
1536 if (cft->release)
1537 return cft->release(inode, file);
1538 return 0;
1542 * cpuset_rename - Only allow simple rename of directories in place.
1544 static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1545 struct inode *new_dir, struct dentry *new_dentry)
1547 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1548 return -ENOTDIR;
1549 if (new_dentry->d_inode)
1550 return -EEXIST;
1551 if (old_dir != new_dir)
1552 return -EIO;
1553 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1556 static const struct file_operations cpuset_file_operations = {
1557 .read = cpuset_file_read,
1558 .write = cpuset_file_write,
1559 .llseek = generic_file_llseek,
1560 .open = cpuset_file_open,
1561 .release = cpuset_file_release,
1564 static const struct inode_operations cpuset_dir_inode_operations = {
1565 .lookup = simple_lookup,
1566 .mkdir = cpuset_mkdir,
1567 .rmdir = cpuset_rmdir,
1568 .rename = cpuset_rename,
1571 static int cpuset_create_file(struct dentry *dentry, int mode)
1573 struct inode *inode;
1575 if (!dentry)
1576 return -ENOENT;
1577 if (dentry->d_inode)
1578 return -EEXIST;
1580 inode = cpuset_new_inode(mode);
1581 if (!inode)
1582 return -ENOMEM;
1584 if (S_ISDIR(mode)) {
1585 inode->i_op = &cpuset_dir_inode_operations;
1586 inode->i_fop = &simple_dir_operations;
1588 /* start off with i_nlink == 2 (for "." entry) */
1589 inc_nlink(inode);
1590 } else if (S_ISREG(mode)) {
1591 inode->i_size = 0;
1592 inode->i_fop = &cpuset_file_operations;
1595 d_instantiate(dentry, inode);
1596 dget(dentry); /* Extra count - pin the dentry in core */
1597 return 0;
1601 * cpuset_create_dir - create a directory for an object.
1602 * cs: the cpuset we create the directory for.
1603 * It must have a valid ->parent field
1604 * And we are going to fill its ->dentry field.
1605 * name: The name to give to the cpuset directory. Will be copied.
1606 * mode: mode to set on new directory.
1609 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1611 struct dentry *dentry = NULL;
1612 struct dentry *parent;
1613 int error = 0;
1615 parent = cs->parent->dentry;
1616 dentry = cpuset_get_dentry(parent, name);
1617 if (IS_ERR(dentry))
1618 return PTR_ERR(dentry);
1619 error = cpuset_create_file(dentry, S_IFDIR | mode);
1620 if (!error) {
1621 dentry->d_fsdata = cs;
1622 inc_nlink(parent->d_inode);
1623 cs->dentry = dentry;
1625 dput(dentry);
1627 return error;
1630 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1632 struct dentry *dentry;
1633 int error;
1635 mutex_lock(&dir->d_inode->i_mutex);
1636 dentry = cpuset_get_dentry(dir, cft->name);
1637 if (!IS_ERR(dentry)) {
1638 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1639 if (!error)
1640 dentry->d_fsdata = (void *)cft;
1641 dput(dentry);
1642 } else
1643 error = PTR_ERR(dentry);
1644 mutex_unlock(&dir->d_inode->i_mutex);
1645 return error;
1649 * Stuff for reading the 'tasks' file.
1651 * Reading this file can return large amounts of data if a cpuset has
1652 * *lots* of attached tasks. So it may need several calls to read(),
1653 * but we cannot guarantee that the information we produce is correct
1654 * unless we produce it entirely atomically.
1656 * Upon tasks file open(), a struct ctr_struct is allocated, that
1657 * will have a pointer to an array (also allocated here). The struct
1658 * ctr_struct * is stored in file->private_data. Its resources will
1659 * be freed by release() when the file is closed. The array is used
1660 * to sprintf the PIDs and then used by read().
1663 /* cpusets_tasks_read array */
1665 struct ctr_struct {
1666 char *buf;
1667 int bufsz;
1671 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1672 * Return actual number of pids loaded. No need to task_lock(p)
1673 * when reading out p->cpuset, as we don't really care if it changes
1674 * on the next cycle, and we are not going to try to dereference it.
1676 static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1678 int n = 0;
1679 struct task_struct *g, *p;
1681 read_lock(&tasklist_lock);
1683 do_each_thread(g, p) {
1684 if (p->cpuset == cs) {
1685 pidarray[n++] = p->pid;
1686 if (unlikely(n == npids))
1687 goto array_full;
1689 } while_each_thread(g, p);
1691 array_full:
1692 read_unlock(&tasklist_lock);
1693 return n;
1696 static int cmppid(const void *a, const void *b)
1698 return *(pid_t *)a - *(pid_t *)b;
1702 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1703 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1704 * count 'cnt' of how many chars would be written if buf were large enough.
1706 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1708 int cnt = 0;
1709 int i;
1711 for (i = 0; i < npids; i++)
1712 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1713 return cnt;
1717 * Handle an open on 'tasks' file. Prepare a buffer listing the
1718 * process id's of tasks currently attached to the cpuset being opened.
1720 * Does not require any specific cpuset mutexes, and does not take any.
1722 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1724 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1725 struct ctr_struct *ctr;
1726 pid_t *pidarray;
1727 int npids;
1728 char c;
1730 if (!(file->f_mode & FMODE_READ))
1731 return 0;
1733 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1734 if (!ctr)
1735 goto err0;
1738 * If cpuset gets more users after we read count, we won't have
1739 * enough space - tough. This race is indistinguishable to the
1740 * caller from the case that the additional cpuset users didn't
1741 * show up until sometime later on.
1743 npids = atomic_read(&cs->count);
1744 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1745 if (!pidarray)
1746 goto err1;
1748 npids = pid_array_load(pidarray, npids, cs);
1749 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1751 /* Call pid_array_to_buf() twice, first just to get bufsz */
1752 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1753 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1754 if (!ctr->buf)
1755 goto err2;
1756 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1758 kfree(pidarray);
1759 file->private_data = ctr;
1760 return 0;
1762 err2:
1763 kfree(pidarray);
1764 err1:
1765 kfree(ctr);
1766 err0:
1767 return -ENOMEM;
1770 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1771 size_t nbytes, loff_t *ppos)
1773 struct ctr_struct *ctr = file->private_data;
1775 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1778 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1780 struct ctr_struct *ctr;
1782 if (file->f_mode & FMODE_READ) {
1783 ctr = file->private_data;
1784 kfree(ctr->buf);
1785 kfree(ctr);
1787 return 0;
1791 * for the common functions, 'private' gives the type of file
1794 static struct cftype cft_tasks = {
1795 .name = "tasks",
1796 .open = cpuset_tasks_open,
1797 .read = cpuset_tasks_read,
1798 .release = cpuset_tasks_release,
1799 .private = FILE_TASKLIST,
1802 static struct cftype cft_cpus = {
1803 .name = "cpus",
1804 .private = FILE_CPULIST,
1807 static struct cftype cft_mems = {
1808 .name = "mems",
1809 .private = FILE_MEMLIST,
1812 static struct cftype cft_cpu_exclusive = {
1813 .name = "cpu_exclusive",
1814 .private = FILE_CPU_EXCLUSIVE,
1817 static struct cftype cft_mem_exclusive = {
1818 .name = "mem_exclusive",
1819 .private = FILE_MEM_EXCLUSIVE,
1822 static struct cftype cft_notify_on_release = {
1823 .name = "notify_on_release",
1824 .private = FILE_NOTIFY_ON_RELEASE,
1827 static struct cftype cft_memory_migrate = {
1828 .name = "memory_migrate",
1829 .private = FILE_MEMORY_MIGRATE,
1832 static struct cftype cft_memory_pressure_enabled = {
1833 .name = "memory_pressure_enabled",
1834 .private = FILE_MEMORY_PRESSURE_ENABLED,
1837 static struct cftype cft_memory_pressure = {
1838 .name = "memory_pressure",
1839 .private = FILE_MEMORY_PRESSURE,
1842 static struct cftype cft_spread_page = {
1843 .name = "memory_spread_page",
1844 .private = FILE_SPREAD_PAGE,
1847 static struct cftype cft_spread_slab = {
1848 .name = "memory_spread_slab",
1849 .private = FILE_SPREAD_SLAB,
1852 static int cpuset_populate_dir(struct dentry *cs_dentry)
1854 int err;
1856 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1857 return err;
1858 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1859 return err;
1860 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1861 return err;
1862 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1863 return err;
1864 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1865 return err;
1866 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1867 return err;
1868 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1869 return err;
1870 if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)
1871 return err;
1872 if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
1873 return err;
1874 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1875 return err;
1876 return 0;
1880 * cpuset_create - create a cpuset
1881 * parent: cpuset that will be parent of the new cpuset.
1882 * name: name of the new cpuset. Will be strcpy'ed.
1883 * mode: mode to set on new inode
1885 * Must be called with the mutex on the parent inode held
1888 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1890 struct cpuset *cs;
1891 int err;
1893 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1894 if (!cs)
1895 return -ENOMEM;
1897 mutex_lock(&manage_mutex);
1898 cpuset_update_task_memory_state();
1899 cs->flags = 0;
1900 if (notify_on_release(parent))
1901 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1902 if (is_spread_page(parent))
1903 set_bit(CS_SPREAD_PAGE, &cs->flags);
1904 if (is_spread_slab(parent))
1905 set_bit(CS_SPREAD_SLAB, &cs->flags);
1906 cs->cpus_allowed = CPU_MASK_NONE;
1907 cs->mems_allowed = NODE_MASK_NONE;
1908 atomic_set(&cs->count, 0);
1909 INIT_LIST_HEAD(&cs->sibling);
1910 INIT_LIST_HEAD(&cs->children);
1911 cs->mems_generation = cpuset_mems_generation++;
1912 fmeter_init(&cs->fmeter);
1914 cs->parent = parent;
1916 mutex_lock(&callback_mutex);
1917 list_add(&cs->sibling, &cs->parent->children);
1918 number_of_cpusets++;
1919 mutex_unlock(&callback_mutex);
1921 err = cpuset_create_dir(cs, name, mode);
1922 if (err < 0)
1923 goto err;
1926 * Release manage_mutex before cpuset_populate_dir() because it
1927 * will down() this new directory's i_mutex and if we race with
1928 * another mkdir, we might deadlock.
1930 mutex_unlock(&manage_mutex);
1932 err = cpuset_populate_dir(cs->dentry);
1933 /* If err < 0, we have a half-filled directory - oh well ;) */
1934 return 0;
1935 err:
1936 list_del(&cs->sibling);
1937 mutex_unlock(&manage_mutex);
1938 kfree(cs);
1939 return err;
1942 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1944 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1946 /* the vfs holds inode->i_mutex already */
1947 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1951 * Locking note on the strange update_flag() call below:
1953 * If the cpuset being removed is marked cpu_exclusive, then simulate
1954 * turning cpu_exclusive off, which will call update_cpu_domains().
1955 * The lock_cpu_hotplug() call in update_cpu_domains() must not be
1956 * made while holding callback_mutex. Elsewhere the kernel nests
1957 * callback_mutex inside lock_cpu_hotplug() calls. So the reverse
1958 * nesting would risk an ABBA deadlock.
1961 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1963 struct cpuset *cs = dentry->d_fsdata;
1964 struct dentry *d;
1965 struct cpuset *parent;
1966 char *pathbuf = NULL;
1968 /* the vfs holds both inode->i_mutex already */
1970 mutex_lock(&manage_mutex);
1971 cpuset_update_task_memory_state();
1972 if (atomic_read(&cs->count) > 0) {
1973 mutex_unlock(&manage_mutex);
1974 return -EBUSY;
1976 if (!list_empty(&cs->children)) {
1977 mutex_unlock(&manage_mutex);
1978 return -EBUSY;
1980 if (is_cpu_exclusive(cs)) {
1981 int retval = update_flag(CS_CPU_EXCLUSIVE, cs, "0");
1982 if (retval < 0) {
1983 mutex_unlock(&manage_mutex);
1984 return retval;
1987 parent = cs->parent;
1988 mutex_lock(&callback_mutex);
1989 set_bit(CS_REMOVED, &cs->flags);
1990 list_del(&cs->sibling); /* delete my sibling from parent->children */
1991 spin_lock(&cs->dentry->d_lock);
1992 d = dget(cs->dentry);
1993 cs->dentry = NULL;
1994 spin_unlock(&d->d_lock);
1995 cpuset_d_remove_dir(d);
1996 dput(d);
1997 number_of_cpusets--;
1998 mutex_unlock(&callback_mutex);
1999 if (list_empty(&parent->children))
2000 check_for_release(parent, &pathbuf);
2001 mutex_unlock(&manage_mutex);
2002 cpuset_release_agent(pathbuf);
2003 return 0;
2007 * cpuset_init_early - just enough so that the calls to
2008 * cpuset_update_task_memory_state() in early init code
2009 * are harmless.
2012 int __init cpuset_init_early(void)
2014 struct task_struct *tsk = current;
2016 tsk->cpuset = &top_cpuset;
2017 tsk->cpuset->mems_generation = cpuset_mems_generation++;
2018 return 0;
2022 * cpuset_init - initialize cpusets at system boot
2024 * Description: Initialize top_cpuset and the cpuset internal file system,
2027 int __init cpuset_init(void)
2029 struct dentry *root;
2030 int err;
2032 top_cpuset.cpus_allowed = CPU_MASK_ALL;
2033 top_cpuset.mems_allowed = NODE_MASK_ALL;
2035 fmeter_init(&top_cpuset.fmeter);
2036 top_cpuset.mems_generation = cpuset_mems_generation++;
2038 init_task.cpuset = &top_cpuset;
2040 err = register_filesystem(&cpuset_fs_type);
2041 if (err < 0)
2042 goto out;
2043 cpuset_mount = kern_mount(&cpuset_fs_type);
2044 if (IS_ERR(cpuset_mount)) {
2045 printk(KERN_ERR "cpuset: could not mount!\n");
2046 err = PTR_ERR(cpuset_mount);
2047 cpuset_mount = NULL;
2048 goto out;
2050 root = cpuset_mount->mnt_sb->s_root;
2051 root->d_fsdata = &top_cpuset;
2052 inc_nlink(root->d_inode);
2053 top_cpuset.dentry = root;
2054 root->d_inode->i_op = &cpuset_dir_inode_operations;
2055 number_of_cpusets = 1;
2056 err = cpuset_populate_dir(root);
2057 /* memory_pressure_enabled is in root cpuset only */
2058 if (err == 0)
2059 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
2060 out:
2061 return err;
2065 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
2066 * or memory nodes, we need to walk over the cpuset hierarchy,
2067 * removing that CPU or node from all cpusets. If this removes the
2068 * last CPU or node from a cpuset, then the guarantee_online_cpus()
2069 * or guarantee_online_mems() code will use that emptied cpusets
2070 * parent online CPUs or nodes. Cpusets that were already empty of
2071 * CPUs or nodes are left empty.
2073 * This routine is intentionally inefficient in a couple of regards.
2074 * It will check all cpusets in a subtree even if the top cpuset of
2075 * the subtree has no offline CPUs or nodes. It checks both CPUs and
2076 * nodes, even though the caller could have been coded to know that
2077 * only one of CPUs or nodes needed to be checked on a given call.
2078 * This was done to minimize text size rather than cpu cycles.
2080 * Call with both manage_mutex and callback_mutex held.
2082 * Recursive, on depth of cpuset subtree.
2085 static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
2087 struct cpuset *c;
2089 /* Each of our child cpusets mems must be online */
2090 list_for_each_entry(c, &cur->children, sibling) {
2091 guarantee_online_cpus_mems_in_subtree(c);
2092 if (!cpus_empty(c->cpus_allowed))
2093 guarantee_online_cpus(c, &c->cpus_allowed);
2094 if (!nodes_empty(c->mems_allowed))
2095 guarantee_online_mems(c, &c->mems_allowed);
2100 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
2101 * cpu_online_map and node_online_map. Force the top cpuset to track
2102 * whats online after any CPU or memory node hotplug or unplug event.
2104 * To ensure that we don't remove a CPU or node from the top cpuset
2105 * that is currently in use by a child cpuset (which would violate
2106 * the rule that cpusets must be subsets of their parent), we first
2107 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
2109 * Since there are two callers of this routine, one for CPU hotplug
2110 * events and one for memory node hotplug events, we could have coded
2111 * two separate routines here. We code it as a single common routine
2112 * in order to minimize text size.
2115 static void common_cpu_mem_hotplug_unplug(void)
2117 mutex_lock(&manage_mutex);
2118 mutex_lock(&callback_mutex);
2120 guarantee_online_cpus_mems_in_subtree(&top_cpuset);
2121 top_cpuset.cpus_allowed = cpu_online_map;
2122 top_cpuset.mems_allowed = node_online_map;
2124 mutex_unlock(&callback_mutex);
2125 mutex_unlock(&manage_mutex);
2129 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2130 * period. This is necessary in order to make cpusets transparent
2131 * (of no affect) on systems that are actively using CPU hotplug
2132 * but making no active use of cpusets.
2134 * This routine ensures that top_cpuset.cpus_allowed tracks
2135 * cpu_online_map on each CPU hotplug (cpuhp) event.
2138 static int cpuset_handle_cpuhp(struct notifier_block *nb,
2139 unsigned long phase, void *cpu)
2141 common_cpu_mem_hotplug_unplug();
2142 return 0;
2145 #ifdef CONFIG_MEMORY_HOTPLUG
2147 * Keep top_cpuset.mems_allowed tracking node_online_map.
2148 * Call this routine anytime after you change node_online_map.
2149 * See also the previous routine cpuset_handle_cpuhp().
2152 void cpuset_track_online_nodes(void)
2154 common_cpu_mem_hotplug_unplug();
2156 #endif
2159 * cpuset_init_smp - initialize cpus_allowed
2161 * Description: Finish top cpuset after cpu, node maps are initialized
2164 void __init cpuset_init_smp(void)
2166 top_cpuset.cpus_allowed = cpu_online_map;
2167 top_cpuset.mems_allowed = node_online_map;
2169 hotcpu_notifier(cpuset_handle_cpuhp, 0);
2173 * cpuset_fork - attach newly forked task to its parents cpuset.
2174 * @tsk: pointer to task_struct of forking parent process.
2176 * Description: A task inherits its parent's cpuset at fork().
2178 * A pointer to the shared cpuset was automatically copied in fork.c
2179 * by dup_task_struct(). However, we ignore that copy, since it was
2180 * not made under the protection of task_lock(), so might no longer be
2181 * a valid cpuset pointer. attach_task() might have already changed
2182 * current->cpuset, allowing the previously referenced cpuset to
2183 * be removed and freed. Instead, we task_lock(current) and copy
2184 * its present value of current->cpuset for our freshly forked child.
2186 * At the point that cpuset_fork() is called, 'current' is the parent
2187 * task, and the passed argument 'child' points to the child task.
2190 void cpuset_fork(struct task_struct *child)
2192 task_lock(current);
2193 child->cpuset = current->cpuset;
2194 atomic_inc(&child->cpuset->count);
2195 task_unlock(current);
2199 * cpuset_exit - detach cpuset from exiting task
2200 * @tsk: pointer to task_struct of exiting process
2202 * Description: Detach cpuset from @tsk and release it.
2204 * Note that cpusets marked notify_on_release force every task in
2205 * them to take the global manage_mutex mutex when exiting.
2206 * This could impact scaling on very large systems. Be reluctant to
2207 * use notify_on_release cpusets where very high task exit scaling
2208 * is required on large systems.
2210 * Don't even think about derefencing 'cs' after the cpuset use count
2211 * goes to zero, except inside a critical section guarded by manage_mutex
2212 * or callback_mutex. Otherwise a zero cpuset use count is a license to
2213 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
2215 * This routine has to take manage_mutex, not callback_mutex, because
2216 * it is holding that mutex while calling check_for_release(),
2217 * which calls kmalloc(), so can't be called holding callback_mutex().
2219 * the_top_cpuset_hack:
2221 * Set the exiting tasks cpuset to the root cpuset (top_cpuset).
2223 * Don't leave a task unable to allocate memory, as that is an
2224 * accident waiting to happen should someone add a callout in
2225 * do_exit() after the cpuset_exit() call that might allocate.
2226 * If a task tries to allocate memory with an invalid cpuset,
2227 * it will oops in cpuset_update_task_memory_state().
2229 * We call cpuset_exit() while the task is still competent to
2230 * handle notify_on_release(), then leave the task attached to
2231 * the root cpuset (top_cpuset) for the remainder of its exit.
2233 * To do this properly, we would increment the reference count on
2234 * top_cpuset, and near the very end of the kernel/exit.c do_exit()
2235 * code we would add a second cpuset function call, to drop that
2236 * reference. This would just create an unnecessary hot spot on
2237 * the top_cpuset reference count, to no avail.
2239 * Normally, holding a reference to a cpuset without bumping its
2240 * count is unsafe. The cpuset could go away, or someone could
2241 * attach us to a different cpuset, decrementing the count on
2242 * the first cpuset that we never incremented. But in this case,
2243 * top_cpuset isn't going away, and either task has PF_EXITING set,
2244 * which wards off any attach_task() attempts, or task is a failed
2245 * fork, never visible to attach_task.
2247 * Another way to do this would be to set the cpuset pointer
2248 * to NULL here, and check in cpuset_update_task_memory_state()
2249 * for a NULL pointer. This hack avoids that NULL check, for no
2250 * cost (other than this way too long comment ;).
2253 void cpuset_exit(struct task_struct *tsk)
2255 struct cpuset *cs;
2257 task_lock(current);
2258 cs = tsk->cpuset;
2259 tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */
2260 task_unlock(current);
2262 if (notify_on_release(cs)) {
2263 char *pathbuf = NULL;
2265 mutex_lock(&manage_mutex);
2266 if (atomic_dec_and_test(&cs->count))
2267 check_for_release(cs, &pathbuf);
2268 mutex_unlock(&manage_mutex);
2269 cpuset_release_agent(pathbuf);
2270 } else {
2271 atomic_dec(&cs->count);
2276 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2277 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2279 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2280 * attached to the specified @tsk. Guaranteed to return some non-empty
2281 * subset of cpu_online_map, even if this means going outside the
2282 * tasks cpuset.
2285 cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
2287 cpumask_t mask;
2289 mutex_lock(&callback_mutex);
2290 task_lock(tsk);
2291 guarantee_online_cpus(tsk->cpuset, &mask);
2292 task_unlock(tsk);
2293 mutex_unlock(&callback_mutex);
2295 return mask;
2298 void cpuset_init_current_mems_allowed(void)
2300 current->mems_allowed = NODE_MASK_ALL;
2304 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2305 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2307 * Description: Returns the nodemask_t mems_allowed of the cpuset
2308 * attached to the specified @tsk. Guaranteed to return some non-empty
2309 * subset of node_online_map, even if this means going outside the
2310 * tasks cpuset.
2313 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2315 nodemask_t mask;
2317 mutex_lock(&callback_mutex);
2318 task_lock(tsk);
2319 guarantee_online_mems(tsk->cpuset, &mask);
2320 task_unlock(tsk);
2321 mutex_unlock(&callback_mutex);
2323 return mask;
2327 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
2328 * @zl: the zonelist to be checked
2330 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
2332 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
2334 int i;
2336 for (i = 0; zl->zones[i]; i++) {
2337 int nid = zone_to_nid(zl->zones[i]);
2339 if (node_isset(nid, current->mems_allowed))
2340 return 1;
2342 return 0;
2346 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
2347 * ancestor to the specified cpuset. Call holding callback_mutex.
2348 * If no ancestor is mem_exclusive (an unusual configuration), then
2349 * returns the root cpuset.
2351 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
2353 while (!is_mem_exclusive(cs) && cs->parent)
2354 cs = cs->parent;
2355 return cs;
2359 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2360 * @z: is this zone on an allowed node?
2361 * @gfp_mask: memory allocation flags
2363 * If we're in interrupt, yes, we can always allocate. If
2364 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2365 * z's node is in our tasks mems_allowed, yes. If it's not a
2366 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2367 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2368 * If the task has been OOM killed and has access to memory reserves
2369 * as specified by the TIF_MEMDIE flag, yes.
2370 * Otherwise, no.
2372 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2373 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2374 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2375 * from an enclosing cpuset.
2377 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2378 * hardwall cpusets, and never sleeps.
2380 * The __GFP_THISNODE placement logic is really handled elsewhere,
2381 * by forcibly using a zonelist starting at a specified node, and by
2382 * (in get_page_from_freelist()) refusing to consider the zones for
2383 * any node on the zonelist except the first. By the time any such
2384 * calls get to this routine, we should just shut up and say 'yes'.
2386 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2387 * and do not allow allocations outside the current tasks cpuset
2388 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2389 * GFP_KERNEL allocations are not so marked, so can escape to the
2390 * nearest enclosing mem_exclusive ancestor cpuset.
2392 * Scanning up parent cpusets requires callback_mutex. The
2393 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2394 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2395 * current tasks mems_allowed came up empty on the first pass over
2396 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2397 * cpuset are short of memory, might require taking the callback_mutex
2398 * mutex.
2400 * The first call here from mm/page_alloc:get_page_from_freelist()
2401 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2402 * so no allocation on a node outside the cpuset is allowed (unless
2403 * in interrupt, of course).
2405 * The second pass through get_page_from_freelist() doesn't even call
2406 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2407 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2408 * in alloc_flags. That logic and the checks below have the combined
2409 * affect that:
2410 * in_interrupt - any node ok (current task context irrelevant)
2411 * GFP_ATOMIC - any node ok
2412 * TIF_MEMDIE - any node ok
2413 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2414 * GFP_USER - only nodes in current tasks mems allowed ok.
2416 * Rule:
2417 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2418 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2419 * the code that might scan up ancestor cpusets and sleep.
2422 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2424 int node; /* node that zone z is on */
2425 const struct cpuset *cs; /* current cpuset ancestors */
2426 int allowed; /* is allocation in zone z allowed? */
2428 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2429 return 1;
2430 node = zone_to_nid(z);
2431 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2432 if (node_isset(node, current->mems_allowed))
2433 return 1;
2435 * Allow tasks that have access to memory reserves because they have
2436 * been OOM killed to get memory anywhere.
2438 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2439 return 1;
2440 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2441 return 0;
2443 if (current->flags & PF_EXITING) /* Let dying task have memory */
2444 return 1;
2446 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2447 mutex_lock(&callback_mutex);
2449 task_lock(current);
2450 cs = nearest_exclusive_ancestor(current->cpuset);
2451 task_unlock(current);
2453 allowed = node_isset(node, cs->mems_allowed);
2454 mutex_unlock(&callback_mutex);
2455 return allowed;
2459 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2460 * @z: is this zone on an allowed node?
2461 * @gfp_mask: memory allocation flags
2463 * If we're in interrupt, yes, we can always allocate.
2464 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2465 * z's node is in our tasks mems_allowed, yes. If the task has been
2466 * OOM killed and has access to memory reserves as specified by the
2467 * TIF_MEMDIE flag, yes. Otherwise, no.
2469 * The __GFP_THISNODE placement logic is really handled elsewhere,
2470 * by forcibly using a zonelist starting at a specified node, and by
2471 * (in get_page_from_freelist()) refusing to consider the zones for
2472 * any node on the zonelist except the first. By the time any such
2473 * calls get to this routine, we should just shut up and say 'yes'.
2475 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2476 * this variant requires that the zone be in the current tasks
2477 * mems_allowed or that we're in interrupt. It does not scan up the
2478 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2479 * It never sleeps.
2482 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2484 int node; /* node that zone z is on */
2486 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2487 return 1;
2488 node = zone_to_nid(z);
2489 if (node_isset(node, current->mems_allowed))
2490 return 1;
2492 * Allow tasks that have access to memory reserves because they have
2493 * been OOM killed to get memory anywhere.
2495 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2496 return 1;
2497 return 0;
2501 * cpuset_lock - lock out any changes to cpuset structures
2503 * The out of memory (oom) code needs to mutex_lock cpusets
2504 * from being changed while it scans the tasklist looking for a
2505 * task in an overlapping cpuset. Expose callback_mutex via this
2506 * cpuset_lock() routine, so the oom code can lock it, before
2507 * locking the task list. The tasklist_lock is a spinlock, so
2508 * must be taken inside callback_mutex.
2511 void cpuset_lock(void)
2513 mutex_lock(&callback_mutex);
2517 * cpuset_unlock - release lock on cpuset changes
2519 * Undo the lock taken in a previous cpuset_lock() call.
2522 void cpuset_unlock(void)
2524 mutex_unlock(&callback_mutex);
2528 * cpuset_mem_spread_node() - On which node to begin search for a page
2530 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2531 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2532 * and if the memory allocation used cpuset_mem_spread_node()
2533 * to determine on which node to start looking, as it will for
2534 * certain page cache or slab cache pages such as used for file
2535 * system buffers and inode caches, then instead of starting on the
2536 * local node to look for a free page, rather spread the starting
2537 * node around the tasks mems_allowed nodes.
2539 * We don't have to worry about the returned node being offline
2540 * because "it can't happen", and even if it did, it would be ok.
2542 * The routines calling guarantee_online_mems() are careful to
2543 * only set nodes in task->mems_allowed that are online. So it
2544 * should not be possible for the following code to return an
2545 * offline node. But if it did, that would be ok, as this routine
2546 * is not returning the node where the allocation must be, only
2547 * the node where the search should start. The zonelist passed to
2548 * __alloc_pages() will include all nodes. If the slab allocator
2549 * is passed an offline node, it will fall back to the local node.
2550 * See kmem_cache_alloc_node().
2553 int cpuset_mem_spread_node(void)
2555 int node;
2557 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2558 if (node == MAX_NUMNODES)
2559 node = first_node(current->mems_allowed);
2560 current->cpuset_mem_spread_rotor = node;
2561 return node;
2563 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2566 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2567 * @p: pointer to task_struct of some other task.
2569 * Description: Return true if the nearest mem_exclusive ancestor
2570 * cpusets of tasks @p and current overlap. Used by oom killer to
2571 * determine if task @p's memory usage might impact the memory
2572 * available to the current task.
2574 * Call while holding callback_mutex.
2577 int cpuset_excl_nodes_overlap(const struct task_struct *p)
2579 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2580 int overlap = 1; /* do cpusets overlap? */
2582 task_lock(current);
2583 if (current->flags & PF_EXITING) {
2584 task_unlock(current);
2585 goto done;
2587 cs1 = nearest_exclusive_ancestor(current->cpuset);
2588 task_unlock(current);
2590 task_lock((struct task_struct *)p);
2591 if (p->flags & PF_EXITING) {
2592 task_unlock((struct task_struct *)p);
2593 goto done;
2595 cs2 = nearest_exclusive_ancestor(p->cpuset);
2596 task_unlock((struct task_struct *)p);
2598 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2599 done:
2600 return overlap;
2604 * Collection of memory_pressure is suppressed unless
2605 * this flag is enabled by writing "1" to the special
2606 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2609 int cpuset_memory_pressure_enabled __read_mostly;
2612 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2614 * Keep a running average of the rate of synchronous (direct)
2615 * page reclaim efforts initiated by tasks in each cpuset.
2617 * This represents the rate at which some task in the cpuset
2618 * ran low on memory on all nodes it was allowed to use, and
2619 * had to enter the kernels page reclaim code in an effort to
2620 * create more free memory by tossing clean pages or swapping
2621 * or writing dirty pages.
2623 * Display to user space in the per-cpuset read-only file
2624 * "memory_pressure". Value displayed is an integer
2625 * representing the recent rate of entry into the synchronous
2626 * (direct) page reclaim by any task attached to the cpuset.
2629 void __cpuset_memory_pressure_bump(void)
2631 struct cpuset *cs;
2633 task_lock(current);
2634 cs = current->cpuset;
2635 fmeter_markevent(&cs->fmeter);
2636 task_unlock(current);
2640 * proc_cpuset_show()
2641 * - Print tasks cpuset path into seq_file.
2642 * - Used for /proc/<pid>/cpuset.
2643 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2644 * doesn't really matter if tsk->cpuset changes after we read it,
2645 * and we take manage_mutex, keeping attach_task() from changing it
2646 * anyway. No need to check that tsk->cpuset != NULL, thanks to
2647 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2648 * cpuset to top_cpuset.
2650 static int proc_cpuset_show(struct seq_file *m, void *v)
2652 struct pid *pid;
2653 struct task_struct *tsk;
2654 char *buf;
2655 int retval;
2657 retval = -ENOMEM;
2658 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2659 if (!buf)
2660 goto out;
2662 retval = -ESRCH;
2663 pid = m->private;
2664 tsk = get_pid_task(pid, PIDTYPE_PID);
2665 if (!tsk)
2666 goto out_free;
2668 retval = -EINVAL;
2669 mutex_lock(&manage_mutex);
2671 retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE);
2672 if (retval < 0)
2673 goto out_unlock;
2674 seq_puts(m, buf);
2675 seq_putc(m, '\n');
2676 out_unlock:
2677 mutex_unlock(&manage_mutex);
2678 put_task_struct(tsk);
2679 out_free:
2680 kfree(buf);
2681 out:
2682 return retval;
2685 static int cpuset_open(struct inode *inode, struct file *file)
2687 struct pid *pid = PROC_I(inode)->pid;
2688 return single_open(file, proc_cpuset_show, pid);
2691 const struct file_operations proc_cpuset_operations = {
2692 .open = cpuset_open,
2693 .read = seq_read,
2694 .llseek = seq_lseek,
2695 .release = single_release,
2698 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2699 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2701 buffer += sprintf(buffer, "Cpus_allowed:\t");
2702 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2703 buffer += sprintf(buffer, "\n");
2704 buffer += sprintf(buffer, "Mems_allowed:\t");
2705 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2706 buffer += sprintf(buffer, "\n");
2707 return buffer;