2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
47 * To use this allocator, arch code should do the followings.
49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 * regular address to percpu pointer and back if they need to be
53 * different from the default
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 * setup the first chunk containing the kernel static percpu area
59 #include <linux/bitmap.h>
60 #include <linux/bootmem.h>
61 #include <linux/err.h>
62 #include <linux/list.h>
63 #include <linux/log2.h>
65 #include <linux/module.h>
66 #include <linux/mutex.h>
67 #include <linux/percpu.h>
68 #include <linux/pfn.h>
69 #include <linux/slab.h>
70 #include <linux/spinlock.h>
71 #include <linux/vmalloc.h>
72 #include <linux/workqueue.h>
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
78 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
79 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \
84 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
85 + (unsigned long)__per_cpu_start)
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
90 - (unsigned long)__per_cpu_start)
94 struct list_head list
; /* linked to pcpu_slot lists */
95 int free_size
; /* free bytes in the chunk */
96 int contig_hint
; /* max contiguous size hint */
97 void *base_addr
; /* base address of this chunk */
98 int map_used
; /* # of map entries used */
99 int map_alloc
; /* # of map entries allocated */
100 int *map
; /* allocation map */
101 struct vm_struct
**vms
; /* mapped vmalloc regions */
102 bool immutable
; /* no [de]population allowed */
103 unsigned long populated
[]; /* populated bitmap */
106 static int pcpu_unit_pages __read_mostly
;
107 static int pcpu_unit_size __read_mostly
;
108 static int pcpu_nr_units __read_mostly
;
109 static int pcpu_atom_size __read_mostly
;
110 static int pcpu_nr_slots __read_mostly
;
111 static size_t pcpu_chunk_struct_size __read_mostly
;
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly
;
115 static unsigned int pcpu_last_unit_cpu __read_mostly
;
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly
;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
121 static const int *pcpu_unit_map __read_mostly
; /* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly
; /* cpu -> unit offset */
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly
;
126 static const unsigned long *pcpu_group_offsets __read_mostly
;
127 static const size_t *pcpu_group_sizes __read_mostly
;
130 * The first chunk which always exists. Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
134 static struct pcpu_chunk
*pcpu_first_chunk
;
137 * Optional reserved chunk. This chunk reserves part of the first
138 * chunk and serves it for reserved allocations. The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
140 * area doesn't exist, the following variables contain NULL and 0
143 static struct pcpu_chunk
*pcpu_reserved_chunk
;
144 static int pcpu_reserved_chunk_limit
;
147 * Synchronization rules.
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping. The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary. All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released. In
157 * general, percpu memory can't be allocated with irq off but
158 * irqsave/restore are still used in alloc path so that it can be used
159 * from early init path - sched_init() specifically.
161 * Free path accesses and alters only the index data structures, so it
162 * can be safely called from atomic context. When memory needs to be
163 * returned to the system, free path schedules reclaim_work which
164 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
165 * reclaimed, release both locks and frees the chunks. Note that it's
166 * necessary to grab both locks to remove a chunk from circulation as
167 * allocation path might be referencing the chunk with only
168 * pcpu_alloc_mutex locked.
170 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* protects whole alloc and reclaim */
171 static DEFINE_SPINLOCK(pcpu_lock
); /* protects index data structures */
173 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
175 /* reclaim work to release fully free chunks, scheduled from free path */
176 static void pcpu_reclaim(struct work_struct
*work
);
177 static DECLARE_WORK(pcpu_reclaim_work
, pcpu_reclaim
);
179 static int __pcpu_size_to_slot(int size
)
181 int highbit
= fls(size
); /* size is in bytes */
182 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
185 static int pcpu_size_to_slot(int size
)
187 if (size
== pcpu_unit_size
)
188 return pcpu_nr_slots
- 1;
189 return __pcpu_size_to_slot(size
);
192 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
194 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
197 return pcpu_size_to_slot(chunk
->free_size
);
200 static int pcpu_page_idx(unsigned int cpu
, int page_idx
)
202 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
205 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
206 unsigned int cpu
, int page_idx
)
208 return (unsigned long)chunk
->base_addr
+ pcpu_unit_offsets
[cpu
] +
209 (page_idx
<< PAGE_SHIFT
);
212 static struct page
*pcpu_chunk_page(struct pcpu_chunk
*chunk
,
213 unsigned int cpu
, int page_idx
)
215 /* must not be used on pre-mapped chunk */
216 WARN_ON(chunk
->immutable
);
218 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk
, cpu
, page_idx
));
221 /* set the pointer to a chunk in a page struct */
222 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
224 page
->index
= (unsigned long)pcpu
;
227 /* obtain pointer to a chunk from a page struct */
228 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
230 return (struct pcpu_chunk
*)page
->index
;
233 static void pcpu_next_unpop(struct pcpu_chunk
*chunk
, int *rs
, int *re
, int end
)
235 *rs
= find_next_zero_bit(chunk
->populated
, end
, *rs
);
236 *re
= find_next_bit(chunk
->populated
, end
, *rs
+ 1);
239 static void pcpu_next_pop(struct pcpu_chunk
*chunk
, int *rs
, int *re
, int end
)
241 *rs
= find_next_bit(chunk
->populated
, end
, *rs
);
242 *re
= find_next_zero_bit(chunk
->populated
, end
, *rs
+ 1);
246 * (Un)populated page region iterators. Iterate over (un)populated
247 * page regions betwen @start and @end in @chunk. @rs and @re should
248 * be integer variables and will be set to start and end page index of
249 * the current region.
251 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
252 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
254 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
256 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
257 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
259 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
262 * pcpu_mem_alloc - allocate memory
263 * @size: bytes to allocate
265 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
266 * kzalloc() is used; otherwise, vmalloc() is used. The returned
267 * memory is always zeroed.
270 * Does GFP_KERNEL allocation.
273 * Pointer to the allocated area on success, NULL on failure.
275 static void *pcpu_mem_alloc(size_t size
)
277 if (size
<= PAGE_SIZE
)
278 return kzalloc(size
, GFP_KERNEL
);
280 void *ptr
= vmalloc(size
);
282 memset(ptr
, 0, size
);
288 * pcpu_mem_free - free memory
289 * @ptr: memory to free
290 * @size: size of the area
292 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
294 static void pcpu_mem_free(void *ptr
, size_t size
)
296 if (size
<= PAGE_SIZE
)
303 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
304 * @chunk: chunk of interest
305 * @oslot: the previous slot it was on
307 * This function is called after an allocation or free changed @chunk.
308 * New slot according to the changed state is determined and @chunk is
309 * moved to the slot. Note that the reserved chunk is never put on
315 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
317 int nslot
= pcpu_chunk_slot(chunk
);
319 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
321 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
323 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
328 * pcpu_chunk_addr_search - determine chunk containing specified address
329 * @addr: address for which the chunk needs to be determined.
332 * The address of the found chunk.
334 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
336 void *first_start
= pcpu_first_chunk
->base_addr
;
338 /* is it in the first chunk? */
339 if (addr
>= first_start
&& addr
< first_start
+ pcpu_unit_size
) {
340 /* is it in the reserved area? */
341 if (addr
< first_start
+ pcpu_reserved_chunk_limit
)
342 return pcpu_reserved_chunk
;
343 return pcpu_first_chunk
;
347 * The address is relative to unit0 which might be unused and
348 * thus unmapped. Offset the address to the unit space of the
349 * current processor before looking it up in the vmalloc
350 * space. Note that any possible cpu id can be used here, so
351 * there's no need to worry about preemption or cpu hotplug.
353 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
354 return pcpu_get_page_chunk(vmalloc_to_page(addr
));
358 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
359 * @chunk: chunk of interest
361 * Determine whether area map of @chunk needs to be extended to
362 * accomodate a new allocation.
368 * New target map allocation length if extension is necessary, 0
371 static int pcpu_need_to_extend(struct pcpu_chunk
*chunk
)
375 if (chunk
->map_alloc
>= chunk
->map_used
+ 2)
378 new_alloc
= PCPU_DFL_MAP_ALLOC
;
379 while (new_alloc
< chunk
->map_used
+ 2)
386 * pcpu_extend_area_map - extend area map of a chunk
387 * @chunk: chunk of interest
388 * @new_alloc: new target allocation length of the area map
390 * Extend area map of @chunk to have @new_alloc entries.
393 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
396 * 0 on success, -errno on failure.
398 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
, int new_alloc
)
400 int *old
= NULL
, *new = NULL
;
401 size_t old_size
= 0, new_size
= new_alloc
* sizeof(new[0]);
404 new = pcpu_mem_alloc(new_size
);
408 /* acquire pcpu_lock and switch to new area map */
409 spin_lock_irqsave(&pcpu_lock
, flags
);
411 if (new_alloc
<= chunk
->map_alloc
)
414 old_size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
415 memcpy(new, chunk
->map
, old_size
);
418 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
419 * one of the first chunks and still using static map.
421 if (chunk
->map_alloc
>= PCPU_DFL_MAP_ALLOC
)
424 chunk
->map_alloc
= new_alloc
;
429 spin_unlock_irqrestore(&pcpu_lock
, flags
);
432 * pcpu_mem_free() might end up calling vfree() which uses
433 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
435 pcpu_mem_free(old
, old_size
);
436 pcpu_mem_free(new, new_size
);
442 * pcpu_split_block - split a map block
443 * @chunk: chunk of interest
444 * @i: index of map block to split
445 * @head: head size in bytes (can be 0)
446 * @tail: tail size in bytes (can be 0)
448 * Split the @i'th map block into two or three blocks. If @head is
449 * non-zero, @head bytes block is inserted before block @i moving it
450 * to @i+1 and reducing its size by @head bytes.
452 * If @tail is non-zero, the target block, which can be @i or @i+1
453 * depending on @head, is reduced by @tail bytes and @tail byte block
454 * is inserted after the target block.
456 * @chunk->map must have enough free slots to accomodate the split.
461 static void pcpu_split_block(struct pcpu_chunk
*chunk
, int i
,
464 int nr_extra
= !!head
+ !!tail
;
466 BUG_ON(chunk
->map_alloc
< chunk
->map_used
+ nr_extra
);
468 /* insert new subblocks */
469 memmove(&chunk
->map
[i
+ nr_extra
], &chunk
->map
[i
],
470 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
471 chunk
->map_used
+= nr_extra
;
474 chunk
->map
[i
+ 1] = chunk
->map
[i
] - head
;
475 chunk
->map
[i
++] = head
;
478 chunk
->map
[i
++] -= tail
;
479 chunk
->map
[i
] = tail
;
484 * pcpu_alloc_area - allocate area from a pcpu_chunk
485 * @chunk: chunk of interest
486 * @size: wanted size in bytes
487 * @align: wanted align
489 * Try to allocate @size bytes area aligned at @align from @chunk.
490 * Note that this function only allocates the offset. It doesn't
491 * populate or map the area.
493 * @chunk->map must have at least two free slots.
499 * Allocated offset in @chunk on success, -1 if no matching area is
502 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
)
504 int oslot
= pcpu_chunk_slot(chunk
);
508 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++])) {
509 bool is_last
= i
+ 1 == chunk
->map_used
;
512 /* extra for alignment requirement */
513 head
= ALIGN(off
, align
) - off
;
514 BUG_ON(i
== 0 && head
!= 0);
516 if (chunk
->map
[i
] < 0)
518 if (chunk
->map
[i
] < head
+ size
) {
519 max_contig
= max(chunk
->map
[i
], max_contig
);
524 * If head is small or the previous block is free,
525 * merge'em. Note that 'small' is defined as smaller
526 * than sizeof(int), which is very small but isn't too
527 * uncommon for percpu allocations.
529 if (head
&& (head
< sizeof(int) || chunk
->map
[i
- 1] > 0)) {
530 if (chunk
->map
[i
- 1] > 0)
531 chunk
->map
[i
- 1] += head
;
533 chunk
->map
[i
- 1] -= head
;
534 chunk
->free_size
-= head
;
536 chunk
->map
[i
] -= head
;
541 /* if tail is small, just keep it around */
542 tail
= chunk
->map
[i
] - head
- size
;
543 if (tail
< sizeof(int))
546 /* split if warranted */
548 pcpu_split_block(chunk
, i
, head
, tail
);
552 max_contig
= max(chunk
->map
[i
- 1], max_contig
);
555 max_contig
= max(chunk
->map
[i
+ 1], max_contig
);
558 /* update hint and mark allocated */
560 chunk
->contig_hint
= max_contig
; /* fully scanned */
562 chunk
->contig_hint
= max(chunk
->contig_hint
,
565 chunk
->free_size
-= chunk
->map
[i
];
566 chunk
->map
[i
] = -chunk
->map
[i
];
568 pcpu_chunk_relocate(chunk
, oslot
);
572 chunk
->contig_hint
= max_contig
; /* fully scanned */
573 pcpu_chunk_relocate(chunk
, oslot
);
575 /* tell the upper layer that this chunk has no matching area */
580 * pcpu_free_area - free area to a pcpu_chunk
581 * @chunk: chunk of interest
582 * @freeme: offset of area to free
584 * Free area starting from @freeme to @chunk. Note that this function
585 * only modifies the allocation map. It doesn't depopulate or unmap
591 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
)
593 int oslot
= pcpu_chunk_slot(chunk
);
596 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++]))
599 BUG_ON(off
!= freeme
);
600 BUG_ON(chunk
->map
[i
] > 0);
602 chunk
->map
[i
] = -chunk
->map
[i
];
603 chunk
->free_size
+= chunk
->map
[i
];
605 /* merge with previous? */
606 if (i
> 0 && chunk
->map
[i
- 1] >= 0) {
607 chunk
->map
[i
- 1] += chunk
->map
[i
];
609 memmove(&chunk
->map
[i
], &chunk
->map
[i
+ 1],
610 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
613 /* merge with next? */
614 if (i
+ 1 < chunk
->map_used
&& chunk
->map
[i
+ 1] >= 0) {
615 chunk
->map
[i
] += chunk
->map
[i
+ 1];
617 memmove(&chunk
->map
[i
+ 1], &chunk
->map
[i
+ 2],
618 (chunk
->map_used
- (i
+ 1)) * sizeof(chunk
->map
[0]));
621 chunk
->contig_hint
= max(chunk
->map
[i
], chunk
->contig_hint
);
622 pcpu_chunk_relocate(chunk
, oslot
);
626 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
627 * @chunk: chunk of interest
628 * @bitmapp: output parameter for bitmap
629 * @may_alloc: may allocate the array
631 * Returns pointer to array of pointers to struct page and bitmap,
632 * both of which can be indexed with pcpu_page_idx(). The returned
633 * array is cleared to zero and *@bitmapp is copied from
634 * @chunk->populated. Note that there is only one array and bitmap
635 * and access exclusion is the caller's responsibility.
638 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
639 * Otherwise, don't care.
642 * Pointer to temp pages array on success, NULL on failure.
644 static struct page
**pcpu_get_pages_and_bitmap(struct pcpu_chunk
*chunk
,
645 unsigned long **bitmapp
,
648 static struct page
**pages
;
649 static unsigned long *bitmap
;
650 size_t pages_size
= pcpu_nr_units
* pcpu_unit_pages
* sizeof(pages
[0]);
651 size_t bitmap_size
= BITS_TO_LONGS(pcpu_unit_pages
) *
652 sizeof(unsigned long);
654 if (!pages
|| !bitmap
) {
655 if (may_alloc
&& !pages
)
656 pages
= pcpu_mem_alloc(pages_size
);
657 if (may_alloc
&& !bitmap
)
658 bitmap
= pcpu_mem_alloc(bitmap_size
);
659 if (!pages
|| !bitmap
)
663 memset(pages
, 0, pages_size
);
664 bitmap_copy(bitmap
, chunk
->populated
, pcpu_unit_pages
);
671 * pcpu_free_pages - free pages which were allocated for @chunk
672 * @chunk: chunk pages were allocated for
673 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
674 * @populated: populated bitmap
675 * @page_start: page index of the first page to be freed
676 * @page_end: page index of the last page to be freed + 1
678 * Free pages [@page_start and @page_end) in @pages for all units.
679 * The pages were allocated for @chunk.
681 static void pcpu_free_pages(struct pcpu_chunk
*chunk
,
682 struct page
**pages
, unsigned long *populated
,
683 int page_start
, int page_end
)
688 for_each_possible_cpu(cpu
) {
689 for (i
= page_start
; i
< page_end
; i
++) {
690 struct page
*page
= pages
[pcpu_page_idx(cpu
, i
)];
699 * pcpu_alloc_pages - allocates pages for @chunk
700 * @chunk: target chunk
701 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
702 * @populated: populated bitmap
703 * @page_start: page index of the first page to be allocated
704 * @page_end: page index of the last page to be allocated + 1
706 * Allocate pages [@page_start,@page_end) into @pages for all units.
707 * The allocation is for @chunk. Percpu core doesn't care about the
708 * content of @pages and will pass it verbatim to pcpu_map_pages().
710 static int pcpu_alloc_pages(struct pcpu_chunk
*chunk
,
711 struct page
**pages
, unsigned long *populated
,
712 int page_start
, int page_end
)
714 const gfp_t gfp
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
718 for_each_possible_cpu(cpu
) {
719 for (i
= page_start
; i
< page_end
; i
++) {
720 struct page
**pagep
= &pages
[pcpu_page_idx(cpu
, i
)];
722 *pagep
= alloc_pages_node(cpu_to_node(cpu
), gfp
, 0);
724 pcpu_free_pages(chunk
, pages
, populated
,
725 page_start
, page_end
);
734 * pcpu_pre_unmap_flush - flush cache prior to unmapping
735 * @chunk: chunk the regions to be flushed belongs to
736 * @page_start: page index of the first page to be flushed
737 * @page_end: page index of the last page to be flushed + 1
739 * Pages in [@page_start,@page_end) of @chunk are about to be
740 * unmapped. Flush cache. As each flushing trial can be very
741 * expensive, issue flush on the whole region at once rather than
742 * doing it for each cpu. This could be an overkill but is more
745 static void pcpu_pre_unmap_flush(struct pcpu_chunk
*chunk
,
746 int page_start
, int page_end
)
749 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
750 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
753 static void __pcpu_unmap_pages(unsigned long addr
, int nr_pages
)
755 unmap_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
);
759 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
760 * @chunk: chunk of interest
761 * @pages: pages array which can be used to pass information to free
762 * @populated: populated bitmap
763 * @page_start: page index of the first page to unmap
764 * @page_end: page index of the last page to unmap + 1
766 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
767 * Corresponding elements in @pages were cleared by the caller and can
768 * be used to carry information to pcpu_free_pages() which will be
769 * called after all unmaps are finished. The caller should call
770 * proper pre/post flush functions.
772 static void pcpu_unmap_pages(struct pcpu_chunk
*chunk
,
773 struct page
**pages
, unsigned long *populated
,
774 int page_start
, int page_end
)
779 for_each_possible_cpu(cpu
) {
780 for (i
= page_start
; i
< page_end
; i
++) {
783 page
= pcpu_chunk_page(chunk
, cpu
, i
);
785 pages
[pcpu_page_idx(cpu
, i
)] = page
;
787 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
788 page_end
- page_start
);
791 for (i
= page_start
; i
< page_end
; i
++)
792 __clear_bit(i
, populated
);
796 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
797 * @chunk: pcpu_chunk the regions to be flushed belong to
798 * @page_start: page index of the first page to be flushed
799 * @page_end: page index of the last page to be flushed + 1
801 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
802 * TLB for the regions. This can be skipped if the area is to be
803 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
805 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
806 * for the whole region.
808 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
809 int page_start
, int page_end
)
811 flush_tlb_kernel_range(
812 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
813 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
816 static int __pcpu_map_pages(unsigned long addr
, struct page
**pages
,
819 return map_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
,
824 * pcpu_map_pages - map pages into a pcpu_chunk
825 * @chunk: chunk of interest
826 * @pages: pages array containing pages to be mapped
827 * @populated: populated bitmap
828 * @page_start: page index of the first page to map
829 * @page_end: page index of the last page to map + 1
831 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
832 * caller is responsible for calling pcpu_post_map_flush() after all
833 * mappings are complete.
835 * This function is responsible for setting corresponding bits in
836 * @chunk->populated bitmap and whatever is necessary for reverse
837 * lookup (addr -> chunk).
839 static int pcpu_map_pages(struct pcpu_chunk
*chunk
,
840 struct page
**pages
, unsigned long *populated
,
841 int page_start
, int page_end
)
843 unsigned int cpu
, tcpu
;
846 for_each_possible_cpu(cpu
) {
847 err
= __pcpu_map_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
848 &pages
[pcpu_page_idx(cpu
, page_start
)],
849 page_end
- page_start
);
854 /* mapping successful, link chunk and mark populated */
855 for (i
= page_start
; i
< page_end
; i
++) {
856 for_each_possible_cpu(cpu
)
857 pcpu_set_page_chunk(pages
[pcpu_page_idx(cpu
, i
)],
859 __set_bit(i
, populated
);
865 for_each_possible_cpu(tcpu
) {
868 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, tcpu
, page_start
),
869 page_end
- page_start
);
875 * pcpu_post_map_flush - flush cache after mapping
876 * @chunk: pcpu_chunk the regions to be flushed belong to
877 * @page_start: page index of the first page to be flushed
878 * @page_end: page index of the last page to be flushed + 1
880 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
883 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
884 * for the whole region.
886 static void pcpu_post_map_flush(struct pcpu_chunk
*chunk
,
887 int page_start
, int page_end
)
890 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
891 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
895 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
896 * @chunk: chunk to depopulate
897 * @off: offset to the area to depopulate
898 * @size: size of the area to depopulate in bytes
899 * @flush: whether to flush cache and tlb or not
901 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
902 * from @chunk. If @flush is true, vcache is flushed before unmapping
908 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
910 int page_start
= PFN_DOWN(off
);
911 int page_end
= PFN_UP(off
+ size
);
913 unsigned long *populated
;
916 /* quick path, check whether it's empty already */
917 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
918 if (rs
== page_start
&& re
== page_end
)
923 /* immutable chunks can't be depopulated */
924 WARN_ON(chunk
->immutable
);
927 * If control reaches here, there must have been at least one
928 * successful population attempt so the temp pages array must
931 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, false);
935 pcpu_pre_unmap_flush(chunk
, page_start
, page_end
);
937 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
938 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
940 /* no need to flush tlb, vmalloc will handle it lazily */
942 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
943 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
945 /* commit new bitmap */
946 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
950 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
951 * @chunk: chunk of interest
952 * @off: offset to the area to populate
953 * @size: size of the area to populate in bytes
955 * For each cpu, populate and map pages [@page_start,@page_end) into
956 * @chunk. The area is cleared on return.
959 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
961 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
963 int page_start
= PFN_DOWN(off
);
964 int page_end
= PFN_UP(off
+ size
);
965 int free_end
= page_start
, unmap_end
= page_start
;
967 unsigned long *populated
;
971 /* quick path, check whether all pages are already there */
972 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
) {
973 if (rs
== page_start
&& re
== page_end
)
978 /* need to allocate and map pages, this chunk can't be immutable */
979 WARN_ON(chunk
->immutable
);
981 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, true);
986 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
987 rc
= pcpu_alloc_pages(chunk
, pages
, populated
, rs
, re
);
993 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
994 rc
= pcpu_map_pages(chunk
, pages
, populated
, rs
, re
);
999 pcpu_post_map_flush(chunk
, page_start
, page_end
);
1001 /* commit new bitmap */
1002 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
1004 for_each_possible_cpu(cpu
)
1005 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1009 pcpu_pre_unmap_flush(chunk
, page_start
, unmap_end
);
1010 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, unmap_end
)
1011 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
1012 pcpu_post_unmap_tlb_flush(chunk
, page_start
, unmap_end
);
1014 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, free_end
)
1015 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
1019 static void free_pcpu_chunk(struct pcpu_chunk
*chunk
)
1024 pcpu_free_vm_areas(chunk
->vms
, pcpu_nr_groups
);
1025 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
1029 static struct pcpu_chunk
*alloc_pcpu_chunk(void)
1031 struct pcpu_chunk
*chunk
;
1033 chunk
= kzalloc(pcpu_chunk_struct_size
, GFP_KERNEL
);
1037 chunk
->map
= pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC
* sizeof(chunk
->map
[0]));
1038 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
1039 chunk
->map
[chunk
->map_used
++] = pcpu_unit_size
;
1041 chunk
->vms
= pcpu_get_vm_areas(pcpu_group_offsets
, pcpu_group_sizes
,
1042 pcpu_nr_groups
, pcpu_atom_size
,
1045 free_pcpu_chunk(chunk
);
1049 INIT_LIST_HEAD(&chunk
->list
);
1050 chunk
->free_size
= pcpu_unit_size
;
1051 chunk
->contig_hint
= pcpu_unit_size
;
1052 chunk
->base_addr
= chunk
->vms
[0]->addr
- pcpu_group_offsets
[0];
1058 * pcpu_alloc - the percpu allocator
1059 * @size: size of area to allocate in bytes
1060 * @align: alignment of area (max PAGE_SIZE)
1061 * @reserved: allocate from the reserved chunk if available
1063 * Allocate percpu area of @size bytes aligned at @align.
1066 * Does GFP_KERNEL allocation.
1069 * Percpu pointer to the allocated area on success, NULL on failure.
1071 static void *pcpu_alloc(size_t size
, size_t align
, bool reserved
)
1073 static int warn_limit
= 10;
1074 struct pcpu_chunk
*chunk
;
1076 int slot
, off
, new_alloc
;
1077 unsigned long flags
;
1079 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
1080 WARN(true, "illegal size (%zu) or align (%zu) for "
1081 "percpu allocation\n", size
, align
);
1085 mutex_lock(&pcpu_alloc_mutex
);
1086 spin_lock_irqsave(&pcpu_lock
, flags
);
1088 /* serve reserved allocations from the reserved chunk if available */
1089 if (reserved
&& pcpu_reserved_chunk
) {
1090 chunk
= pcpu_reserved_chunk
;
1092 if (size
> chunk
->contig_hint
) {
1093 err
= "alloc from reserved chunk failed";
1097 while ((new_alloc
= pcpu_need_to_extend(chunk
))) {
1098 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1099 if (pcpu_extend_area_map(chunk
, new_alloc
) < 0) {
1100 err
= "failed to extend area map of reserved chunk";
1101 goto fail_unlock_mutex
;
1103 spin_lock_irqsave(&pcpu_lock
, flags
);
1106 off
= pcpu_alloc_area(chunk
, size
, align
);
1110 err
= "alloc from reserved chunk failed";
1115 /* search through normal chunks */
1116 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
1117 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1118 if (size
> chunk
->contig_hint
)
1121 new_alloc
= pcpu_need_to_extend(chunk
);
1123 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1124 if (pcpu_extend_area_map(chunk
,
1126 err
= "failed to extend area map";
1127 goto fail_unlock_mutex
;
1129 spin_lock_irqsave(&pcpu_lock
, flags
);
1131 * pcpu_lock has been dropped, need to
1132 * restart cpu_slot list walking.
1137 off
= pcpu_alloc_area(chunk
, size
, align
);
1143 /* hmmm... no space left, create a new chunk */
1144 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1146 chunk
= alloc_pcpu_chunk();
1148 err
= "failed to allocate new chunk";
1149 goto fail_unlock_mutex
;
1152 spin_lock_irqsave(&pcpu_lock
, flags
);
1153 pcpu_chunk_relocate(chunk
, -1);
1157 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1159 /* populate, map and clear the area */
1160 if (pcpu_populate_chunk(chunk
, off
, size
)) {
1161 spin_lock_irqsave(&pcpu_lock
, flags
);
1162 pcpu_free_area(chunk
, off
);
1163 err
= "failed to populate";
1167 mutex_unlock(&pcpu_alloc_mutex
);
1169 /* return address relative to base address */
1170 return __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1173 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1175 mutex_unlock(&pcpu_alloc_mutex
);
1177 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1178 "%s\n", size
, align
, err
);
1181 pr_info("PERCPU: limit reached, disable warning\n");
1187 * __alloc_percpu - allocate dynamic percpu area
1188 * @size: size of area to allocate in bytes
1189 * @align: alignment of area (max PAGE_SIZE)
1191 * Allocate percpu area of @size bytes aligned at @align. Might
1192 * sleep. Might trigger writeouts.
1195 * Does GFP_KERNEL allocation.
1198 * Percpu pointer to the allocated area on success, NULL on failure.
1200 void *__alloc_percpu(size_t size
, size_t align
)
1202 return pcpu_alloc(size
, align
, false);
1204 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1207 * __alloc_reserved_percpu - allocate reserved percpu area
1208 * @size: size of area to allocate in bytes
1209 * @align: alignment of area (max PAGE_SIZE)
1211 * Allocate percpu area of @size bytes aligned at @align from reserved
1212 * percpu area if arch has set it up; otherwise, allocation is served
1213 * from the same dynamic area. Might sleep. Might trigger writeouts.
1216 * Does GFP_KERNEL allocation.
1219 * Percpu pointer to the allocated area on success, NULL on failure.
1221 void *__alloc_reserved_percpu(size_t size
, size_t align
)
1223 return pcpu_alloc(size
, align
, true);
1227 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1230 * Reclaim all fully free chunks except for the first one.
1233 * workqueue context.
1235 static void pcpu_reclaim(struct work_struct
*work
)
1238 struct list_head
*head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1239 struct pcpu_chunk
*chunk
, *next
;
1241 mutex_lock(&pcpu_alloc_mutex
);
1242 spin_lock_irq(&pcpu_lock
);
1244 list_for_each_entry_safe(chunk
, next
, head
, list
) {
1245 WARN_ON(chunk
->immutable
);
1247 /* spare the first one */
1248 if (chunk
== list_first_entry(head
, struct pcpu_chunk
, list
))
1251 list_move(&chunk
->list
, &todo
);
1254 spin_unlock_irq(&pcpu_lock
);
1256 list_for_each_entry_safe(chunk
, next
, &todo
, list
) {
1257 pcpu_depopulate_chunk(chunk
, 0, pcpu_unit_size
);
1258 free_pcpu_chunk(chunk
);
1261 mutex_unlock(&pcpu_alloc_mutex
);
1265 * free_percpu - free percpu area
1266 * @ptr: pointer to area to free
1268 * Free percpu area @ptr.
1271 * Can be called from atomic context.
1273 void free_percpu(void *ptr
)
1275 void *addr
= __pcpu_ptr_to_addr(ptr
);
1276 struct pcpu_chunk
*chunk
;
1277 unsigned long flags
;
1283 spin_lock_irqsave(&pcpu_lock
, flags
);
1285 chunk
= pcpu_chunk_addr_search(addr
);
1286 off
= addr
- chunk
->base_addr
;
1288 pcpu_free_area(chunk
, off
);
1290 /* if there are more than one fully free chunks, wake up grim reaper */
1291 if (chunk
->free_size
== pcpu_unit_size
) {
1292 struct pcpu_chunk
*pos
;
1294 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1296 schedule_work(&pcpu_reclaim_work
);
1301 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1303 EXPORT_SYMBOL_GPL(free_percpu
);
1305 static inline size_t pcpu_calc_fc_sizes(size_t static_size
,
1306 size_t reserved_size
,
1311 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
1312 (*dyn_sizep
>= 0 ? *dyn_sizep
: 0));
1313 if (*dyn_sizep
!= 0)
1314 *dyn_sizep
= size_sum
- static_size
- reserved_size
;
1320 * pcpu_alloc_alloc_info - allocate percpu allocation info
1321 * @nr_groups: the number of groups
1322 * @nr_units: the number of units
1324 * Allocate ai which is large enough for @nr_groups groups containing
1325 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1326 * cpu_map array which is long enough for @nr_units and filled with
1327 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1328 * pointer of other groups.
1331 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1334 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1337 struct pcpu_alloc_info
*ai
;
1338 size_t base_size
, ai_size
;
1342 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1343 __alignof__(ai
->groups
[0].cpu_map
[0]));
1344 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1346 ptr
= alloc_bootmem_nopanic(PFN_ALIGN(ai_size
));
1352 ai
->groups
[0].cpu_map
= ptr
;
1354 for (unit
= 0; unit
< nr_units
; unit
++)
1355 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1357 ai
->nr_groups
= nr_groups
;
1358 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1364 * pcpu_free_alloc_info - free percpu allocation info
1365 * @ai: pcpu_alloc_info to free
1367 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1369 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1371 free_bootmem(__pa(ai
), ai
->__ai_size
);
1375 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1376 * @reserved_size: the size of reserved percpu area in bytes
1377 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1378 * @atom_size: allocation atom size
1379 * @cpu_distance_fn: callback to determine distance between cpus, optional
1381 * This function determines grouping of units, their mappings to cpus
1382 * and other parameters considering needed percpu size, allocation
1383 * atom size and distances between CPUs.
1385 * Groups are always mutliples of atom size and CPUs which are of
1386 * LOCAL_DISTANCE both ways are grouped together and share space for
1387 * units in the same group. The returned configuration is guaranteed
1388 * to have CPUs on different nodes on different groups and >=75% usage
1389 * of allocated virtual address space.
1392 * On success, pointer to the new allocation_info is returned. On
1393 * failure, ERR_PTR value is returned.
1395 struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
1396 size_t reserved_size
, ssize_t dyn_size
,
1398 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
1400 static int group_map
[NR_CPUS
] __initdata
;
1401 static int group_cnt
[NR_CPUS
] __initdata
;
1402 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1403 int group_cnt_max
= 0, nr_groups
= 1, nr_units
= 0;
1404 size_t size_sum
, min_unit_size
, alloc_size
;
1405 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
1406 int last_allocs
, group
, unit
;
1407 unsigned int cpu
, tcpu
;
1408 struct pcpu_alloc_info
*ai
;
1409 unsigned int *cpu_map
;
1411 /* this function may be called multiple times */
1412 memset(group_map
, 0, sizeof(group_map
));
1413 memset(group_cnt
, 0, sizeof(group_map
));
1416 * Determine min_unit_size, alloc_size and max_upa such that
1417 * alloc_size is multiple of atom_size and is the smallest
1418 * which can accomodate 4k aligned segments which are equal to
1419 * or larger than min_unit_size.
1421 size_sum
= pcpu_calc_fc_sizes(static_size
, reserved_size
, &dyn_size
);
1422 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
1424 alloc_size
= roundup(min_unit_size
, atom_size
);
1425 upa
= alloc_size
/ min_unit_size
;
1426 while (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1430 /* group cpus according to their proximity */
1431 for_each_possible_cpu(cpu
) {
1434 for_each_possible_cpu(tcpu
) {
1437 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
1438 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
1439 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
1441 nr_groups
= max(nr_groups
, group
+ 1);
1445 group_map
[cpu
] = group
;
1447 group_cnt_max
= max(group_cnt_max
, group_cnt
[group
]);
1451 * Expand unit size until address space usage goes over 75%
1452 * and then as much as possible without using more address
1455 last_allocs
= INT_MAX
;
1456 for (upa
= max_upa
; upa
; upa
--) {
1457 int allocs
= 0, wasted
= 0;
1459 if (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1462 for (group
= 0; group
< nr_groups
; group
++) {
1463 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
1464 allocs
+= this_allocs
;
1465 wasted
+= this_allocs
* upa
- group_cnt
[group
];
1469 * Don't accept if wastage is over 25%. The
1470 * greater-than comparison ensures upa==1 always
1471 * passes the following check.
1473 if (wasted
> num_possible_cpus() / 3)
1476 /* and then don't consume more memory */
1477 if (allocs
> last_allocs
)
1479 last_allocs
= allocs
;
1484 /* allocate and fill alloc_info */
1485 for (group
= 0; group
< nr_groups
; group
++)
1486 nr_units
+= roundup(group_cnt
[group
], upa
);
1488 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
1490 return ERR_PTR(-ENOMEM
);
1491 cpu_map
= ai
->groups
[0].cpu_map
;
1493 for (group
= 0; group
< nr_groups
; group
++) {
1494 ai
->groups
[group
].cpu_map
= cpu_map
;
1495 cpu_map
+= roundup(group_cnt
[group
], upa
);
1498 ai
->static_size
= static_size
;
1499 ai
->reserved_size
= reserved_size
;
1500 ai
->dyn_size
= dyn_size
;
1501 ai
->unit_size
= alloc_size
/ upa
;
1502 ai
->atom_size
= atom_size
;
1503 ai
->alloc_size
= alloc_size
;
1505 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
1506 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1509 * Initialize base_offset as if all groups are located
1510 * back-to-back. The caller should update this to
1511 * reflect actual allocation.
1513 gi
->base_offset
= unit
* ai
->unit_size
;
1515 for_each_possible_cpu(cpu
)
1516 if (group_map
[cpu
] == group
)
1517 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
1518 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
1519 unit
+= gi
->nr_units
;
1521 BUG_ON(unit
!= nr_units
);
1527 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1529 * @ai: allocation info to dump
1531 * Print out information about @ai using loglevel @lvl.
1533 static void pcpu_dump_alloc_info(const char *lvl
,
1534 const struct pcpu_alloc_info
*ai
)
1536 int group_width
= 1, cpu_width
= 1, width
;
1537 char empty_str
[] = "--------";
1538 int alloc
= 0, alloc_end
= 0;
1540 int upa
, apl
; /* units per alloc, allocs per line */
1546 v
= num_possible_cpus();
1549 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1551 upa
= ai
->alloc_size
/ ai
->unit_size
;
1552 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1553 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1555 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1556 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1557 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1559 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1560 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1561 int unit
= 0, unit_end
= 0;
1563 BUG_ON(gi
->nr_units
% upa
);
1564 for (alloc_end
+= gi
->nr_units
/ upa
;
1565 alloc
< alloc_end
; alloc
++) {
1566 if (!(alloc
% apl
)) {
1568 printk("%spcpu-alloc: ", lvl
);
1570 printk("[%0*d] ", group_width
, group
);
1572 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1573 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1574 printk("%0*d ", cpu_width
,
1577 printk("%s ", empty_str
);
1584 * pcpu_setup_first_chunk - initialize the first percpu chunk
1585 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1586 * @base_addr: mapped address
1588 * Initialize the first percpu chunk which contains the kernel static
1589 * perpcu area. This function is to be called from arch percpu area
1592 * @ai contains all information necessary to initialize the first
1593 * chunk and prime the dynamic percpu allocator.
1595 * @ai->static_size is the size of static percpu area.
1597 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1598 * reserve after the static area in the first chunk. This reserves
1599 * the first chunk such that it's available only through reserved
1600 * percpu allocation. This is primarily used to serve module percpu
1601 * static areas on architectures where the addressing model has
1602 * limited offset range for symbol relocations to guarantee module
1603 * percpu symbols fall inside the relocatable range.
1605 * @ai->dyn_size determines the number of bytes available for dynamic
1606 * allocation in the first chunk. The area between @ai->static_size +
1607 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1609 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1610 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1613 * @ai->atom_size is the allocation atom size and used as alignment
1616 * @ai->alloc_size is the allocation size and always multiple of
1617 * @ai->atom_size. This is larger than @ai->atom_size if
1618 * @ai->unit_size is larger than @ai->atom_size.
1620 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1621 * percpu areas. Units which should be colocated are put into the
1622 * same group. Dynamic VM areas will be allocated according to these
1623 * groupings. If @ai->nr_groups is zero, a single group containing
1624 * all units is assumed.
1626 * The caller should have mapped the first chunk at @base_addr and
1627 * copied static data to each unit.
1629 * If the first chunk ends up with both reserved and dynamic areas, it
1630 * is served by two chunks - one to serve the core static and reserved
1631 * areas and the other for the dynamic area. They share the same vm
1632 * and page map but uses different area allocation map to stay away
1633 * from each other. The latter chunk is circulated in the chunk slots
1634 * and available for dynamic allocation like any other chunks.
1637 * 0 on success, -errno on failure.
1639 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
1642 static char cpus_buf
[4096] __initdata
;
1643 static int smap
[2], dmap
[2];
1644 size_t dyn_size
= ai
->dyn_size
;
1645 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ dyn_size
;
1646 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1647 unsigned long *group_offsets
;
1648 size_t *group_sizes
;
1649 unsigned long *unit_off
;
1654 cpumask_scnprintf(cpus_buf
, sizeof(cpus_buf
), cpu_possible_mask
);
1656 #define PCPU_SETUP_BUG_ON(cond) do { \
1657 if (unlikely(cond)) { \
1658 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1659 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1660 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1666 BUILD_BUG_ON(ARRAY_SIZE(smap
) >= PCPU_DFL_MAP_ALLOC
||
1667 ARRAY_SIZE(dmap
) >= PCPU_DFL_MAP_ALLOC
);
1668 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
1669 PCPU_SETUP_BUG_ON(!ai
->static_size
);
1670 PCPU_SETUP_BUG_ON(!base_addr
);
1671 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
1672 PCPU_SETUP_BUG_ON(ai
->unit_size
& ~PAGE_MASK
);
1673 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
1675 /* process group information and build config tables accordingly */
1676 group_offsets
= alloc_bootmem(ai
->nr_groups
* sizeof(group_offsets
[0]));
1677 group_sizes
= alloc_bootmem(ai
->nr_groups
* sizeof(group_sizes
[0]));
1678 unit_map
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_map
[0]));
1679 unit_off
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_off
[0]));
1681 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
1682 unit_map
[cpu
] = UINT_MAX
;
1683 pcpu_first_unit_cpu
= NR_CPUS
;
1685 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
1686 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1688 group_offsets
[group
] = gi
->base_offset
;
1689 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
1691 for (i
= 0; i
< gi
->nr_units
; i
++) {
1692 cpu
= gi
->cpu_map
[i
];
1696 PCPU_SETUP_BUG_ON(cpu
> nr_cpu_ids
);
1697 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
1698 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
1700 unit_map
[cpu
] = unit
+ i
;
1701 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
1703 if (pcpu_first_unit_cpu
== NR_CPUS
)
1704 pcpu_first_unit_cpu
= cpu
;
1707 pcpu_last_unit_cpu
= cpu
;
1708 pcpu_nr_units
= unit
;
1710 for_each_possible_cpu(cpu
)
1711 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
1713 /* we're done parsing the input, undefine BUG macro and dump config */
1714 #undef PCPU_SETUP_BUG_ON
1715 pcpu_dump_alloc_info(KERN_INFO
, ai
);
1717 pcpu_nr_groups
= ai
->nr_groups
;
1718 pcpu_group_offsets
= group_offsets
;
1719 pcpu_group_sizes
= group_sizes
;
1720 pcpu_unit_map
= unit_map
;
1721 pcpu_unit_offsets
= unit_off
;
1723 /* determine basic parameters */
1724 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1725 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1726 pcpu_atom_size
= ai
->atom_size
;
1727 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
1728 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
1731 * Allocate chunk slots. The additional last slot is for
1734 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1735 pcpu_slot
= alloc_bootmem(pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
1736 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1737 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1740 * Initialize static chunk. If reserved_size is zero, the
1741 * static chunk covers static area + dynamic allocation area
1742 * in the first chunk. If reserved_size is not zero, it
1743 * covers static area + reserved area (mostly used for module
1744 * static percpu allocation).
1746 schunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1747 INIT_LIST_HEAD(&schunk
->list
);
1748 schunk
->base_addr
= base_addr
;
1750 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1751 schunk
->immutable
= true;
1752 bitmap_fill(schunk
->populated
, pcpu_unit_pages
);
1754 if (ai
->reserved_size
) {
1755 schunk
->free_size
= ai
->reserved_size
;
1756 pcpu_reserved_chunk
= schunk
;
1757 pcpu_reserved_chunk_limit
= ai
->static_size
+ ai
->reserved_size
;
1759 schunk
->free_size
= dyn_size
;
1760 dyn_size
= 0; /* dynamic area covered */
1762 schunk
->contig_hint
= schunk
->free_size
;
1764 schunk
->map
[schunk
->map_used
++] = -ai
->static_size
;
1765 if (schunk
->free_size
)
1766 schunk
->map
[schunk
->map_used
++] = schunk
->free_size
;
1768 /* init dynamic chunk if necessary */
1770 dchunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1771 INIT_LIST_HEAD(&dchunk
->list
);
1772 dchunk
->base_addr
= base_addr
;
1774 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1775 dchunk
->immutable
= true;
1776 bitmap_fill(dchunk
->populated
, pcpu_unit_pages
);
1778 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1779 dchunk
->map
[dchunk
->map_used
++] = -pcpu_reserved_chunk_limit
;
1780 dchunk
->map
[dchunk
->map_used
++] = dchunk
->free_size
;
1783 /* link the first chunk in */
1784 pcpu_first_chunk
= dchunk
?: schunk
;
1785 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1788 pcpu_base_addr
= base_addr
;
1792 const char *pcpu_fc_names
[PCPU_FC_NR
] __initdata
= {
1793 [PCPU_FC_AUTO
] = "auto",
1794 [PCPU_FC_EMBED
] = "embed",
1795 [PCPU_FC_PAGE
] = "page",
1798 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
1800 static int __init
percpu_alloc_setup(char *str
)
1804 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1805 else if (!strcmp(str
, "embed"))
1806 pcpu_chosen_fc
= PCPU_FC_EMBED
;
1808 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1809 else if (!strcmp(str
, "page"))
1810 pcpu_chosen_fc
= PCPU_FC_PAGE
;
1813 pr_warning("PERCPU: unknown allocator %s specified\n", str
);
1817 early_param("percpu_alloc", percpu_alloc_setup
);
1819 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1820 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1822 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1823 * @reserved_size: the size of reserved percpu area in bytes
1824 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1825 * @atom_size: allocation atom size
1826 * @cpu_distance_fn: callback to determine distance between cpus, optional
1827 * @alloc_fn: function to allocate percpu page
1828 * @free_fn: funtion to free percpu page
1830 * This is a helper to ease setting up embedded first percpu chunk and
1831 * can be called where pcpu_setup_first_chunk() is expected.
1833 * If this function is used to setup the first chunk, it is allocated
1834 * by calling @alloc_fn and used as-is without being mapped into
1835 * vmalloc area. Allocations are always whole multiples of @atom_size
1836 * aligned to @atom_size.
1838 * This enables the first chunk to piggy back on the linear physical
1839 * mapping which often uses larger page size. Please note that this
1840 * can result in very sparse cpu->unit mapping on NUMA machines thus
1841 * requiring large vmalloc address space. Don't use this allocator if
1842 * vmalloc space is not orders of magnitude larger than distances
1843 * between node memory addresses (ie. 32bit NUMA machines).
1845 * When @dyn_size is positive, dynamic area might be larger than
1846 * specified to fill page alignment. When @dyn_size is auto,
1847 * @dyn_size is just big enough to fill page alignment after static
1848 * and reserved areas.
1850 * If the needed size is smaller than the minimum or specified unit
1851 * size, the leftover is returned using @free_fn.
1854 * 0 on success, -errno on failure.
1856 int __init
pcpu_embed_first_chunk(size_t reserved_size
, ssize_t dyn_size
,
1858 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
1859 pcpu_fc_alloc_fn_t alloc_fn
,
1860 pcpu_fc_free_fn_t free_fn
)
1862 void *base
= (void *)ULONG_MAX
;
1863 void **areas
= NULL
;
1864 struct pcpu_alloc_info
*ai
;
1865 size_t size_sum
, areas_size
, max_distance
;
1868 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
1873 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
1874 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
1876 areas
= alloc_bootmem_nopanic(areas_size
);
1882 /* allocate, copy and determine base address */
1883 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1884 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1885 unsigned int cpu
= NR_CPUS
;
1888 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
1889 cpu
= gi
->cpu_map
[i
];
1890 BUG_ON(cpu
== NR_CPUS
);
1892 /* allocate space for the whole group */
1893 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
1896 goto out_free_areas
;
1900 base
= min(ptr
, base
);
1902 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
1903 if (gi
->cpu_map
[i
] == NR_CPUS
) {
1904 /* unused unit, free whole */
1905 free_fn(ptr
, ai
->unit_size
);
1908 /* copy and return the unused part */
1909 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
1910 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
1914 /* base address is now known, determine group base offsets */
1916 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1917 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
1918 max_distance
= max_t(size_t, max_distance
,
1919 ai
->groups
[group
].base_offset
);
1921 max_distance
+= ai
->unit_size
;
1923 /* warn if maximum distance is further than 75% of vmalloc space */
1924 if (max_distance
> (VMALLOC_END
- VMALLOC_START
) * 3 / 4) {
1925 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1927 max_distance
, VMALLOC_END
- VMALLOC_START
);
1928 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1929 /* and fail if we have fallback */
1935 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1936 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
1937 ai
->dyn_size
, ai
->unit_size
);
1939 rc
= pcpu_setup_first_chunk(ai
, base
);
1943 for (group
= 0; group
< ai
->nr_groups
; group
++)
1944 free_fn(areas
[group
],
1945 ai
->groups
[group
].nr_units
* ai
->unit_size
);
1947 pcpu_free_alloc_info(ai
);
1949 free_bootmem(__pa(areas
), areas_size
);
1952 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1953 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1955 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1957 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1958 * @reserved_size: the size of reserved percpu area in bytes
1959 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1960 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1961 * @populate_pte_fn: function to populate pte
1963 * This is a helper to ease setting up page-remapped first percpu
1964 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1966 * This is the basic allocator. Static percpu area is allocated
1967 * page-by-page into vmalloc area.
1970 * 0 on success, -errno on failure.
1972 int __init
pcpu_page_first_chunk(size_t reserved_size
,
1973 pcpu_fc_alloc_fn_t alloc_fn
,
1974 pcpu_fc_free_fn_t free_fn
,
1975 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
1977 static struct vm_struct vm
;
1978 struct pcpu_alloc_info
*ai
;
1982 struct page
**pages
;
1985 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
1987 ai
= pcpu_build_alloc_info(reserved_size
, -1, PAGE_SIZE
, NULL
);
1990 BUG_ON(ai
->nr_groups
!= 1);
1991 BUG_ON(ai
->groups
[0].nr_units
!= num_possible_cpus());
1993 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1995 /* unaligned allocations can't be freed, round up to page size */
1996 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
1998 pages
= alloc_bootmem(pages_size
);
2000 /* allocate pages */
2002 for (unit
= 0; unit
< num_possible_cpus(); unit
++)
2003 for (i
= 0; i
< unit_pages
; i
++) {
2004 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2007 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2009 pr_warning("PERCPU: failed to allocate %s page "
2010 "for cpu%u\n", psize_str
, cpu
);
2013 pages
[j
++] = virt_to_page(ptr
);
2016 /* allocate vm area, map the pages and copy static data */
2017 vm
.flags
= VM_ALLOC
;
2018 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2019 vm_area_register_early(&vm
, PAGE_SIZE
);
2021 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2022 unsigned long unit_addr
=
2023 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2025 for (i
= 0; i
< unit_pages
; i
++)
2026 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2028 /* pte already populated, the following shouldn't fail */
2029 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2032 panic("failed to map percpu area, err=%d\n", rc
);
2035 * FIXME: Archs with virtual cache should flush local
2036 * cache for the linear mapping here - something
2037 * equivalent to flush_cache_vmap() on the local cpu.
2038 * flush_cache_vmap() can't be used as most supporting
2039 * data structures are not set up yet.
2042 /* copy static data */
2043 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2046 /* we're ready, commit */
2047 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2048 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
2049 ai
->reserved_size
, ai
->dyn_size
);
2051 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
2056 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2059 free_bootmem(__pa(pages
), pages_size
);
2060 pcpu_free_alloc_info(ai
);
2063 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2066 * Generic percpu area setup.
2068 * The embedding helper is used because its behavior closely resembles
2069 * the original non-dynamic generic percpu area setup. This is
2070 * important because many archs have addressing restrictions and might
2071 * fail if the percpu area is located far away from the previous
2072 * location. As an added bonus, in non-NUMA cases, embedding is
2073 * generally a good idea TLB-wise because percpu area can piggy back
2074 * on the physical linear memory mapping which uses large page
2075 * mappings on applicable archs.
2077 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2078 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2079 EXPORT_SYMBOL(__per_cpu_offset
);
2081 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2084 return __alloc_bootmem_nopanic(size
, align
, __pa(MAX_DMA_ADDRESS
));
2087 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2089 free_bootmem(__pa(ptr
), size
);
2092 void __init
setup_per_cpu_areas(void)
2094 unsigned long delta
;
2099 * Always reserve area for module percpu variables. That's
2100 * what the legacy allocator did.
2102 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2103 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2104 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2106 panic("Failed to initialized percpu areas.");
2108 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2109 for_each_possible_cpu(cpu
)
2110 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2112 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */