ath9k: Use suitable macros with 4k eeprom data
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / sata_mv.c
blob7007edd2d4517fed1a5b75773622cae9da003e44
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 * sata_mv TODO list:
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Develop a low-power-consumption strategy, and implement it.
38 * --> [Experiment, low priority] Investigate interrupt coalescing.
39 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
40 * the overhead reduced by interrupt mitigation is quite often not
41 * worth the latency cost.
43 * --> [Experiment, Marvell value added] Is it possible to use target
44 * mode to cross-connect two Linux boxes with Marvell cards? If so,
45 * creating LibATA target mode support would be very interesting.
47 * Target mode, for those without docs, is the ability to directly
48 * connect two SATA ports.
51 #include <linux/kernel.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/init.h>
55 #include <linux/blkdev.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/dmapool.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/device.h>
61 #include <linux/platform_device.h>
62 #include <linux/ata_platform.h>
63 #include <linux/mbus.h>
64 #include <linux/bitops.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_cmnd.h>
67 #include <scsi/scsi_device.h>
68 #include <linux/libata.h>
70 #define DRV_NAME "sata_mv"
71 #define DRV_VERSION "1.25"
73 enum {
74 /* BAR's are enumerated in terms of pci_resource_start() terms */
75 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
76 MV_IO_BAR = 2, /* offset 0x18: IO space */
77 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
79 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
80 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
82 MV_PCI_REG_BASE = 0,
83 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
84 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
85 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
86 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
87 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
88 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
90 MV_SATAHC0_REG_BASE = 0x20000,
91 MV_FLASH_CTL_OFS = 0x1046c,
92 MV_GPIO_PORT_CTL_OFS = 0x104f0,
93 MV_RESET_CFG_OFS = 0x180d8,
95 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
96 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
97 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
98 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
100 MV_MAX_Q_DEPTH = 32,
101 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
103 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
104 * CRPB needs alignment on a 256B boundary. Size == 256B
105 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
107 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
108 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
109 MV_MAX_SG_CT = 256,
110 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
112 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
113 MV_PORT_HC_SHIFT = 2,
114 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
115 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
116 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
118 /* Host Flags */
119 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
120 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
122 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
123 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
124 ATA_FLAG_PIO_POLLING,
126 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
128 MV_GENIIE_FLAGS = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
129 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
130 ATA_FLAG_NCQ | ATA_FLAG_AN,
132 CRQB_FLAG_READ = (1 << 0),
133 CRQB_TAG_SHIFT = 1,
134 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
135 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
136 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
137 CRQB_CMD_ADDR_SHIFT = 8,
138 CRQB_CMD_CS = (0x2 << 11),
139 CRQB_CMD_LAST = (1 << 15),
141 CRPB_FLAG_STATUS_SHIFT = 8,
142 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
143 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
145 EPRD_FLAG_END_OF_TBL = (1 << 31),
147 /* PCI interface registers */
149 PCI_COMMAND_OFS = 0xc00,
150 PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
152 PCI_MAIN_CMD_STS_OFS = 0xd30,
153 STOP_PCI_MASTER = (1 << 2),
154 PCI_MASTER_EMPTY = (1 << 3),
155 GLOB_SFT_RST = (1 << 4),
157 MV_PCI_MODE_OFS = 0xd00,
158 MV_PCI_MODE_MASK = 0x30,
160 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
161 MV_PCI_DISC_TIMER = 0xd04,
162 MV_PCI_MSI_TRIGGER = 0xc38,
163 MV_PCI_SERR_MASK = 0xc28,
164 MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
165 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
166 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
167 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
168 MV_PCI_ERR_COMMAND = 0x1d50,
170 PCI_IRQ_CAUSE_OFS = 0x1d58,
171 PCI_IRQ_MASK_OFS = 0x1d5c,
172 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
174 PCIE_IRQ_CAUSE_OFS = 0x1900,
175 PCIE_IRQ_MASK_OFS = 0x1910,
176 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
178 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
179 PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
180 PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
181 SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
182 SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
183 ERR_IRQ = (1 << 0), /* shift by port # */
184 DONE_IRQ = (1 << 1), /* shift by port # */
185 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
186 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
187 PCI_ERR = (1 << 18),
188 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
189 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
190 PORTS_0_3_COAL_DONE = (1 << 8),
191 PORTS_4_7_COAL_DONE = (1 << 17),
192 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
193 GPIO_INT = (1 << 22),
194 SELF_INT = (1 << 23),
195 TWSI_INT = (1 << 24),
196 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
197 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
198 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
200 /* SATAHC registers */
201 HC_CFG_OFS = 0,
203 HC_IRQ_CAUSE_OFS = 0x14,
204 DMA_IRQ = (1 << 0), /* shift by port # */
205 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
206 DEV_IRQ = (1 << 8), /* shift by port # */
208 /* Shadow block registers */
209 SHD_BLK_OFS = 0x100,
210 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
212 /* SATA registers */
213 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
214 SATA_ACTIVE_OFS = 0x350,
215 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
216 SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
218 LTMODE_OFS = 0x30c,
219 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
221 PHY_MODE3 = 0x310,
222 PHY_MODE4 = 0x314,
223 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
224 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
225 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
226 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
228 PHY_MODE2 = 0x330,
229 SATA_IFCTL_OFS = 0x344,
230 SATA_TESTCTL_OFS = 0x348,
231 SATA_IFSTAT_OFS = 0x34c,
232 VENDOR_UNIQUE_FIS_OFS = 0x35c,
234 FISCFG_OFS = 0x360,
235 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
236 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
238 MV5_PHY_MODE = 0x74,
239 MV5_LTMODE_OFS = 0x30,
240 MV5_PHY_CTL_OFS = 0x0C,
241 SATA_INTERFACE_CFG_OFS = 0x050,
243 MV_M2_PREAMP_MASK = 0x7e0,
245 /* Port registers */
246 EDMA_CFG_OFS = 0,
247 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
248 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
249 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
250 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
251 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
252 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
253 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
255 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
256 EDMA_ERR_IRQ_MASK_OFS = 0xc,
257 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
258 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
259 EDMA_ERR_DEV = (1 << 2), /* device error */
260 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
261 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
262 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
263 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
264 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
265 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
266 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
267 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
268 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
269 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
270 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
272 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
273 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
274 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
275 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
276 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
278 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
280 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
281 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
282 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
283 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
284 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
285 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
287 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
289 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
290 EDMA_ERR_OVERRUN_5 = (1 << 5),
291 EDMA_ERR_UNDERRUN_5 = (1 << 6),
293 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
294 EDMA_ERR_LNK_CTRL_RX_1 |
295 EDMA_ERR_LNK_CTRL_RX_3 |
296 EDMA_ERR_LNK_CTRL_TX,
298 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
299 EDMA_ERR_PRD_PAR |
300 EDMA_ERR_DEV_DCON |
301 EDMA_ERR_DEV_CON |
302 EDMA_ERR_SERR |
303 EDMA_ERR_SELF_DIS |
304 EDMA_ERR_CRQB_PAR |
305 EDMA_ERR_CRPB_PAR |
306 EDMA_ERR_INTRL_PAR |
307 EDMA_ERR_IORDY |
308 EDMA_ERR_LNK_CTRL_RX_2 |
309 EDMA_ERR_LNK_DATA_RX |
310 EDMA_ERR_LNK_DATA_TX |
311 EDMA_ERR_TRANS_PROTO,
313 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
314 EDMA_ERR_PRD_PAR |
315 EDMA_ERR_DEV_DCON |
316 EDMA_ERR_DEV_CON |
317 EDMA_ERR_OVERRUN_5 |
318 EDMA_ERR_UNDERRUN_5 |
319 EDMA_ERR_SELF_DIS_5 |
320 EDMA_ERR_CRQB_PAR |
321 EDMA_ERR_CRPB_PAR |
322 EDMA_ERR_INTRL_PAR |
323 EDMA_ERR_IORDY,
325 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
326 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
328 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
329 EDMA_REQ_Q_PTR_SHIFT = 5,
331 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
332 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
333 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
334 EDMA_RSP_Q_PTR_SHIFT = 3,
336 EDMA_CMD_OFS = 0x28, /* EDMA command register */
337 EDMA_EN = (1 << 0), /* enable EDMA */
338 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
339 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
341 EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
342 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
343 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
345 EDMA_IORDY_TMOUT_OFS = 0x34,
346 EDMA_ARB_CFG_OFS = 0x38,
348 EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
350 /* Host private flags (hp_flags) */
351 MV_HP_FLAG_MSI = (1 << 0),
352 MV_HP_ERRATA_50XXB0 = (1 << 1),
353 MV_HP_ERRATA_50XXB2 = (1 << 2),
354 MV_HP_ERRATA_60X1B2 = (1 << 3),
355 MV_HP_ERRATA_60X1C0 = (1 << 4),
356 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
357 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
358 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
359 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
360 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
361 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
363 /* Port private flags (pp_flags) */
364 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
365 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
366 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
367 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
370 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
371 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
372 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
373 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
374 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
376 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
377 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
379 enum {
380 /* DMA boundary 0xffff is required by the s/g splitting
381 * we need on /length/ in mv_fill-sg().
383 MV_DMA_BOUNDARY = 0xffffU,
385 /* mask of register bits containing lower 32 bits
386 * of EDMA request queue DMA address
388 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
390 /* ditto, for response queue */
391 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
394 enum chip_type {
395 chip_504x,
396 chip_508x,
397 chip_5080,
398 chip_604x,
399 chip_608x,
400 chip_6042,
401 chip_7042,
402 chip_soc,
405 /* Command ReQuest Block: 32B */
406 struct mv_crqb {
407 __le32 sg_addr;
408 __le32 sg_addr_hi;
409 __le16 ctrl_flags;
410 __le16 ata_cmd[11];
413 struct mv_crqb_iie {
414 __le32 addr;
415 __le32 addr_hi;
416 __le32 flags;
417 __le32 len;
418 __le32 ata_cmd[4];
421 /* Command ResPonse Block: 8B */
422 struct mv_crpb {
423 __le16 id;
424 __le16 flags;
425 __le32 tmstmp;
428 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
429 struct mv_sg {
430 __le32 addr;
431 __le32 flags_size;
432 __le32 addr_hi;
433 __le32 reserved;
436 struct mv_port_priv {
437 struct mv_crqb *crqb;
438 dma_addr_t crqb_dma;
439 struct mv_crpb *crpb;
440 dma_addr_t crpb_dma;
441 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
442 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
444 unsigned int req_idx;
445 unsigned int resp_idx;
447 u32 pp_flags;
448 unsigned int delayed_eh_pmp_map;
451 struct mv_port_signal {
452 u32 amps;
453 u32 pre;
456 struct mv_host_priv {
457 u32 hp_flags;
458 u32 main_irq_mask;
459 struct mv_port_signal signal[8];
460 const struct mv_hw_ops *ops;
461 int n_ports;
462 void __iomem *base;
463 void __iomem *main_irq_cause_addr;
464 void __iomem *main_irq_mask_addr;
465 u32 irq_cause_ofs;
466 u32 irq_mask_ofs;
467 u32 unmask_all_irqs;
469 * These consistent DMA memory pools give us guaranteed
470 * alignment for hardware-accessed data structures,
471 * and less memory waste in accomplishing the alignment.
473 struct dma_pool *crqb_pool;
474 struct dma_pool *crpb_pool;
475 struct dma_pool *sg_tbl_pool;
478 struct mv_hw_ops {
479 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
480 unsigned int port);
481 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
482 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
483 void __iomem *mmio);
484 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
485 unsigned int n_hc);
486 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
487 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
490 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
491 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
492 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
493 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
494 static int mv_port_start(struct ata_port *ap);
495 static void mv_port_stop(struct ata_port *ap);
496 static int mv_qc_defer(struct ata_queued_cmd *qc);
497 static void mv_qc_prep(struct ata_queued_cmd *qc);
498 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
499 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
500 static int mv_hardreset(struct ata_link *link, unsigned int *class,
501 unsigned long deadline);
502 static void mv_eh_freeze(struct ata_port *ap);
503 static void mv_eh_thaw(struct ata_port *ap);
504 static void mv6_dev_config(struct ata_device *dev);
506 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
507 unsigned int port);
508 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
509 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
510 void __iomem *mmio);
511 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
512 unsigned int n_hc);
513 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
514 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
516 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
517 unsigned int port);
518 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
519 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
520 void __iomem *mmio);
521 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
522 unsigned int n_hc);
523 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
524 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
525 void __iomem *mmio);
526 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
527 void __iomem *mmio);
528 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
529 void __iomem *mmio, unsigned int n_hc);
530 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
531 void __iomem *mmio);
532 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
533 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
534 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
535 unsigned int port_no);
536 static int mv_stop_edma(struct ata_port *ap);
537 static int mv_stop_edma_engine(void __iomem *port_mmio);
538 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
540 static void mv_pmp_select(struct ata_port *ap, int pmp);
541 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
542 unsigned long deadline);
543 static int mv_softreset(struct ata_link *link, unsigned int *class,
544 unsigned long deadline);
545 static void mv_pmp_error_handler(struct ata_port *ap);
546 static void mv_process_crpb_entries(struct ata_port *ap,
547 struct mv_port_priv *pp);
549 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
550 * because we have to allow room for worst case splitting of
551 * PRDs for 64K boundaries in mv_fill_sg().
553 static struct scsi_host_template mv5_sht = {
554 ATA_BASE_SHT(DRV_NAME),
555 .sg_tablesize = MV_MAX_SG_CT / 2,
556 .dma_boundary = MV_DMA_BOUNDARY,
559 static struct scsi_host_template mv6_sht = {
560 ATA_NCQ_SHT(DRV_NAME),
561 .can_queue = MV_MAX_Q_DEPTH - 1,
562 .sg_tablesize = MV_MAX_SG_CT / 2,
563 .dma_boundary = MV_DMA_BOUNDARY,
566 static struct ata_port_operations mv5_ops = {
567 .inherits = &ata_sff_port_ops,
569 .qc_defer = mv_qc_defer,
570 .qc_prep = mv_qc_prep,
571 .qc_issue = mv_qc_issue,
573 .freeze = mv_eh_freeze,
574 .thaw = mv_eh_thaw,
575 .hardreset = mv_hardreset,
576 .error_handler = ata_std_error_handler, /* avoid SFF EH */
577 .post_internal_cmd = ATA_OP_NULL,
579 .scr_read = mv5_scr_read,
580 .scr_write = mv5_scr_write,
582 .port_start = mv_port_start,
583 .port_stop = mv_port_stop,
586 static struct ata_port_operations mv6_ops = {
587 .inherits = &mv5_ops,
588 .dev_config = mv6_dev_config,
589 .scr_read = mv_scr_read,
590 .scr_write = mv_scr_write,
592 .pmp_hardreset = mv_pmp_hardreset,
593 .pmp_softreset = mv_softreset,
594 .softreset = mv_softreset,
595 .error_handler = mv_pmp_error_handler,
598 static struct ata_port_operations mv_iie_ops = {
599 .inherits = &mv6_ops,
600 .dev_config = ATA_OP_NULL,
601 .qc_prep = mv_qc_prep_iie,
604 static const struct ata_port_info mv_port_info[] = {
605 { /* chip_504x */
606 .flags = MV_COMMON_FLAGS,
607 .pio_mask = 0x1f, /* pio0-4 */
608 .udma_mask = ATA_UDMA6,
609 .port_ops = &mv5_ops,
611 { /* chip_508x */
612 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
613 .pio_mask = 0x1f, /* pio0-4 */
614 .udma_mask = ATA_UDMA6,
615 .port_ops = &mv5_ops,
617 { /* chip_5080 */
618 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
619 .pio_mask = 0x1f, /* pio0-4 */
620 .udma_mask = ATA_UDMA6,
621 .port_ops = &mv5_ops,
623 { /* chip_604x */
624 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
625 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
626 ATA_FLAG_NCQ,
627 .pio_mask = 0x1f, /* pio0-4 */
628 .udma_mask = ATA_UDMA6,
629 .port_ops = &mv6_ops,
631 { /* chip_608x */
632 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
633 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
634 ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
635 .pio_mask = 0x1f, /* pio0-4 */
636 .udma_mask = ATA_UDMA6,
637 .port_ops = &mv6_ops,
639 { /* chip_6042 */
640 .flags = MV_GENIIE_FLAGS,
641 .pio_mask = 0x1f, /* pio0-4 */
642 .udma_mask = ATA_UDMA6,
643 .port_ops = &mv_iie_ops,
645 { /* chip_7042 */
646 .flags = MV_GENIIE_FLAGS,
647 .pio_mask = 0x1f, /* pio0-4 */
648 .udma_mask = ATA_UDMA6,
649 .port_ops = &mv_iie_ops,
651 { /* chip_soc */
652 .flags = MV_GENIIE_FLAGS,
653 .pio_mask = 0x1f, /* pio0-4 */
654 .udma_mask = ATA_UDMA6,
655 .port_ops = &mv_iie_ops,
659 static const struct pci_device_id mv_pci_tbl[] = {
660 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
661 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
662 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
663 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
664 /* RocketRAID 1720/174x have different identifiers */
665 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
666 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
667 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
669 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
670 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
671 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
672 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
673 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
675 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
677 /* Adaptec 1430SA */
678 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
680 /* Marvell 7042 support */
681 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
683 /* Highpoint RocketRAID PCIe series */
684 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
685 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
687 { } /* terminate list */
690 static const struct mv_hw_ops mv5xxx_ops = {
691 .phy_errata = mv5_phy_errata,
692 .enable_leds = mv5_enable_leds,
693 .read_preamp = mv5_read_preamp,
694 .reset_hc = mv5_reset_hc,
695 .reset_flash = mv5_reset_flash,
696 .reset_bus = mv5_reset_bus,
699 static const struct mv_hw_ops mv6xxx_ops = {
700 .phy_errata = mv6_phy_errata,
701 .enable_leds = mv6_enable_leds,
702 .read_preamp = mv6_read_preamp,
703 .reset_hc = mv6_reset_hc,
704 .reset_flash = mv6_reset_flash,
705 .reset_bus = mv_reset_pci_bus,
708 static const struct mv_hw_ops mv_soc_ops = {
709 .phy_errata = mv6_phy_errata,
710 .enable_leds = mv_soc_enable_leds,
711 .read_preamp = mv_soc_read_preamp,
712 .reset_hc = mv_soc_reset_hc,
713 .reset_flash = mv_soc_reset_flash,
714 .reset_bus = mv_soc_reset_bus,
718 * Functions
721 static inline void writelfl(unsigned long data, void __iomem *addr)
723 writel(data, addr);
724 (void) readl(addr); /* flush to avoid PCI posted write */
727 static inline unsigned int mv_hc_from_port(unsigned int port)
729 return port >> MV_PORT_HC_SHIFT;
732 static inline unsigned int mv_hardport_from_port(unsigned int port)
734 return port & MV_PORT_MASK;
738 * Consolidate some rather tricky bit shift calculations.
739 * This is hot-path stuff, so not a function.
740 * Simple code, with two return values, so macro rather than inline.
742 * port is the sole input, in range 0..7.
743 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
744 * hardport is the other output, in range 0..3.
746 * Note that port and hardport may be the same variable in some cases.
748 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
750 shift = mv_hc_from_port(port) * HC_SHIFT; \
751 hardport = mv_hardport_from_port(port); \
752 shift += hardport * 2; \
755 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
757 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
760 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
761 unsigned int port)
763 return mv_hc_base(base, mv_hc_from_port(port));
766 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
768 return mv_hc_base_from_port(base, port) +
769 MV_SATAHC_ARBTR_REG_SZ +
770 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
773 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
775 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
776 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
778 return hc_mmio + ofs;
781 static inline void __iomem *mv_host_base(struct ata_host *host)
783 struct mv_host_priv *hpriv = host->private_data;
784 return hpriv->base;
787 static inline void __iomem *mv_ap_base(struct ata_port *ap)
789 return mv_port_base(mv_host_base(ap->host), ap->port_no);
792 static inline int mv_get_hc_count(unsigned long port_flags)
794 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
797 static void mv_set_edma_ptrs(void __iomem *port_mmio,
798 struct mv_host_priv *hpriv,
799 struct mv_port_priv *pp)
801 u32 index;
804 * initialize request queue
806 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
807 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
809 WARN_ON(pp->crqb_dma & 0x3ff);
810 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
811 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
812 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
813 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
816 * initialize response queue
818 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
819 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
821 WARN_ON(pp->crpb_dma & 0xff);
822 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
823 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
824 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
825 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
828 static void mv_set_main_irq_mask(struct ata_host *host,
829 u32 disable_bits, u32 enable_bits)
831 struct mv_host_priv *hpriv = host->private_data;
832 u32 old_mask, new_mask;
834 old_mask = hpriv->main_irq_mask;
835 new_mask = (old_mask & ~disable_bits) | enable_bits;
836 if (new_mask != old_mask) {
837 hpriv->main_irq_mask = new_mask;
838 writelfl(new_mask, hpriv->main_irq_mask_addr);
842 static void mv_enable_port_irqs(struct ata_port *ap,
843 unsigned int port_bits)
845 unsigned int shift, hardport, port = ap->port_no;
846 u32 disable_bits, enable_bits;
848 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
850 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
851 enable_bits = port_bits << shift;
852 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
856 * mv_start_dma - Enable eDMA engine
857 * @base: port base address
858 * @pp: port private data
860 * Verify the local cache of the eDMA state is accurate with a
861 * WARN_ON.
863 * LOCKING:
864 * Inherited from caller.
866 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
867 struct mv_port_priv *pp, u8 protocol)
869 int want_ncq = (protocol == ATA_PROT_NCQ);
871 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
872 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
873 if (want_ncq != using_ncq)
874 mv_stop_edma(ap);
876 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
877 struct mv_host_priv *hpriv = ap->host->private_data;
878 int hardport = mv_hardport_from_port(ap->port_no);
879 void __iomem *hc_mmio = mv_hc_base_from_port(
880 mv_host_base(ap->host), ap->port_no);
881 u32 hc_irq_cause;
883 /* clear EDMA event indicators, if any */
884 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
886 /* clear pending irq events */
887 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
888 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
890 mv_edma_cfg(ap, want_ncq);
892 /* clear FIS IRQ Cause */
893 if (IS_GEN_IIE(hpriv))
894 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
896 mv_set_edma_ptrs(port_mmio, hpriv, pp);
897 mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
899 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
900 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
904 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
906 void __iomem *port_mmio = mv_ap_base(ap);
907 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
908 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
909 int i;
912 * Wait for the EDMA engine to finish transactions in progress.
913 * No idea what a good "timeout" value might be, but measurements
914 * indicate that it often requires hundreds of microseconds
915 * with two drives in-use. So we use the 15msec value above
916 * as a rough guess at what even more drives might require.
918 for (i = 0; i < timeout; ++i) {
919 u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
920 if ((edma_stat & empty_idle) == empty_idle)
921 break;
922 udelay(per_loop);
924 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
928 * mv_stop_edma_engine - Disable eDMA engine
929 * @port_mmio: io base address
931 * LOCKING:
932 * Inherited from caller.
934 static int mv_stop_edma_engine(void __iomem *port_mmio)
936 int i;
938 /* Disable eDMA. The disable bit auto clears. */
939 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
941 /* Wait for the chip to confirm eDMA is off. */
942 for (i = 10000; i > 0; i--) {
943 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
944 if (!(reg & EDMA_EN))
945 return 0;
946 udelay(10);
948 return -EIO;
951 static int mv_stop_edma(struct ata_port *ap)
953 void __iomem *port_mmio = mv_ap_base(ap);
954 struct mv_port_priv *pp = ap->private_data;
956 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
957 return 0;
958 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
959 mv_wait_for_edma_empty_idle(ap);
960 if (mv_stop_edma_engine(port_mmio)) {
961 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
962 return -EIO;
964 return 0;
967 #ifdef ATA_DEBUG
968 static void mv_dump_mem(void __iomem *start, unsigned bytes)
970 int b, w;
971 for (b = 0; b < bytes; ) {
972 DPRINTK("%p: ", start + b);
973 for (w = 0; b < bytes && w < 4; w++) {
974 printk("%08x ", readl(start + b));
975 b += sizeof(u32);
977 printk("\n");
980 #endif
982 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
984 #ifdef ATA_DEBUG
985 int b, w;
986 u32 dw;
987 for (b = 0; b < bytes; ) {
988 DPRINTK("%02x: ", b);
989 for (w = 0; b < bytes && w < 4; w++) {
990 (void) pci_read_config_dword(pdev, b, &dw);
991 printk("%08x ", dw);
992 b += sizeof(u32);
994 printk("\n");
996 #endif
998 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
999 struct pci_dev *pdev)
1001 #ifdef ATA_DEBUG
1002 void __iomem *hc_base = mv_hc_base(mmio_base,
1003 port >> MV_PORT_HC_SHIFT);
1004 void __iomem *port_base;
1005 int start_port, num_ports, p, start_hc, num_hcs, hc;
1007 if (0 > port) {
1008 start_hc = start_port = 0;
1009 num_ports = 8; /* shld be benign for 4 port devs */
1010 num_hcs = 2;
1011 } else {
1012 start_hc = port >> MV_PORT_HC_SHIFT;
1013 start_port = port;
1014 num_ports = num_hcs = 1;
1016 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1017 num_ports > 1 ? num_ports - 1 : start_port);
1019 if (NULL != pdev) {
1020 DPRINTK("PCI config space regs:\n");
1021 mv_dump_pci_cfg(pdev, 0x68);
1023 DPRINTK("PCI regs:\n");
1024 mv_dump_mem(mmio_base+0xc00, 0x3c);
1025 mv_dump_mem(mmio_base+0xd00, 0x34);
1026 mv_dump_mem(mmio_base+0xf00, 0x4);
1027 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1028 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1029 hc_base = mv_hc_base(mmio_base, hc);
1030 DPRINTK("HC regs (HC %i):\n", hc);
1031 mv_dump_mem(hc_base, 0x1c);
1033 for (p = start_port; p < start_port + num_ports; p++) {
1034 port_base = mv_port_base(mmio_base, p);
1035 DPRINTK("EDMA regs (port %i):\n", p);
1036 mv_dump_mem(port_base, 0x54);
1037 DPRINTK("SATA regs (port %i):\n", p);
1038 mv_dump_mem(port_base+0x300, 0x60);
1040 #endif
1043 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1045 unsigned int ofs;
1047 switch (sc_reg_in) {
1048 case SCR_STATUS:
1049 case SCR_CONTROL:
1050 case SCR_ERROR:
1051 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1052 break;
1053 case SCR_ACTIVE:
1054 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1055 break;
1056 default:
1057 ofs = 0xffffffffU;
1058 break;
1060 return ofs;
1063 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1065 unsigned int ofs = mv_scr_offset(sc_reg_in);
1067 if (ofs != 0xffffffffU) {
1068 *val = readl(mv_ap_base(link->ap) + ofs);
1069 return 0;
1070 } else
1071 return -EINVAL;
1074 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1076 unsigned int ofs = mv_scr_offset(sc_reg_in);
1078 if (ofs != 0xffffffffU) {
1079 writelfl(val, mv_ap_base(link->ap) + ofs);
1080 return 0;
1081 } else
1082 return -EINVAL;
1085 static void mv6_dev_config(struct ata_device *adev)
1088 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1090 * Gen-II does not support NCQ over a port multiplier
1091 * (no FIS-based switching).
1093 if (adev->flags & ATA_DFLAG_NCQ) {
1094 if (sata_pmp_attached(adev->link->ap)) {
1095 adev->flags &= ~ATA_DFLAG_NCQ;
1096 ata_dev_printk(adev, KERN_INFO,
1097 "NCQ disabled for command-based switching\n");
1102 static int mv_qc_defer(struct ata_queued_cmd *qc)
1104 struct ata_link *link = qc->dev->link;
1105 struct ata_port *ap = link->ap;
1106 struct mv_port_priv *pp = ap->private_data;
1109 * Don't allow new commands if we're in a delayed EH state
1110 * for NCQ and/or FIS-based switching.
1112 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1113 return ATA_DEFER_PORT;
1115 * If the port is completely idle, then allow the new qc.
1117 if (ap->nr_active_links == 0)
1118 return 0;
1121 * The port is operating in host queuing mode (EDMA) with NCQ
1122 * enabled, allow multiple NCQ commands. EDMA also allows
1123 * queueing multiple DMA commands but libata core currently
1124 * doesn't allow it.
1126 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1127 (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
1128 return 0;
1130 return ATA_DEFER_PORT;
1133 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1135 u32 new_fiscfg, old_fiscfg;
1136 u32 new_ltmode, old_ltmode;
1137 u32 new_haltcond, old_haltcond;
1139 old_fiscfg = readl(port_mmio + FISCFG_OFS);
1140 old_ltmode = readl(port_mmio + LTMODE_OFS);
1141 old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1143 new_fiscfg = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1144 new_ltmode = old_ltmode & ~LTMODE_BIT8;
1145 new_haltcond = old_haltcond | EDMA_ERR_DEV;
1147 if (want_fbs) {
1148 new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1149 new_ltmode = old_ltmode | LTMODE_BIT8;
1150 if (want_ncq)
1151 new_haltcond &= ~EDMA_ERR_DEV;
1152 else
1153 new_fiscfg |= FISCFG_WAIT_DEV_ERR;
1156 if (new_fiscfg != old_fiscfg)
1157 writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1158 if (new_ltmode != old_ltmode)
1159 writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1160 if (new_haltcond != old_haltcond)
1161 writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1164 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1166 struct mv_host_priv *hpriv = ap->host->private_data;
1167 u32 old, new;
1169 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1170 old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1171 if (want_ncq)
1172 new = old | (1 << 22);
1173 else
1174 new = old & ~(1 << 22);
1175 if (new != old)
1176 writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1179 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1181 u32 cfg;
1182 struct mv_port_priv *pp = ap->private_data;
1183 struct mv_host_priv *hpriv = ap->host->private_data;
1184 void __iomem *port_mmio = mv_ap_base(ap);
1186 /* set up non-NCQ EDMA configuration */
1187 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1188 pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1190 if (IS_GEN_I(hpriv))
1191 cfg |= (1 << 8); /* enab config burst size mask */
1193 else if (IS_GEN_II(hpriv)) {
1194 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1195 mv_60x1_errata_sata25(ap, want_ncq);
1197 } else if (IS_GEN_IIE(hpriv)) {
1198 int want_fbs = sata_pmp_attached(ap);
1200 * Possible future enhancement:
1202 * The chip can use FBS with non-NCQ, if we allow it,
1203 * But first we need to have the error handling in place
1204 * for this mode (datasheet section 7.3.15.4.2.3).
1205 * So disallow non-NCQ FBS for now.
1207 want_fbs &= want_ncq;
1209 mv_config_fbs(port_mmio, want_ncq, want_fbs);
1211 if (want_fbs) {
1212 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1213 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1216 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1217 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1218 if (!IS_SOC(hpriv))
1219 cfg |= (1 << 18); /* enab early completion */
1220 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1221 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1224 if (want_ncq) {
1225 cfg |= EDMA_CFG_NCQ;
1226 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1227 } else
1228 pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1230 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1233 static void mv_port_free_dma_mem(struct ata_port *ap)
1235 struct mv_host_priv *hpriv = ap->host->private_data;
1236 struct mv_port_priv *pp = ap->private_data;
1237 int tag;
1239 if (pp->crqb) {
1240 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1241 pp->crqb = NULL;
1243 if (pp->crpb) {
1244 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1245 pp->crpb = NULL;
1248 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1249 * For later hardware, we have one unique sg_tbl per NCQ tag.
1251 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1252 if (pp->sg_tbl[tag]) {
1253 if (tag == 0 || !IS_GEN_I(hpriv))
1254 dma_pool_free(hpriv->sg_tbl_pool,
1255 pp->sg_tbl[tag],
1256 pp->sg_tbl_dma[tag]);
1257 pp->sg_tbl[tag] = NULL;
1263 * mv_port_start - Port specific init/start routine.
1264 * @ap: ATA channel to manipulate
1266 * Allocate and point to DMA memory, init port private memory,
1267 * zero indices.
1269 * LOCKING:
1270 * Inherited from caller.
1272 static int mv_port_start(struct ata_port *ap)
1274 struct device *dev = ap->host->dev;
1275 struct mv_host_priv *hpriv = ap->host->private_data;
1276 struct mv_port_priv *pp;
1277 int tag;
1279 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1280 if (!pp)
1281 return -ENOMEM;
1282 ap->private_data = pp;
1284 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1285 if (!pp->crqb)
1286 return -ENOMEM;
1287 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1289 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1290 if (!pp->crpb)
1291 goto out_port_free_dma_mem;
1292 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1294 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1295 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1296 ap->flags |= ATA_FLAG_AN;
1298 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1299 * For later hardware, we need one unique sg_tbl per NCQ tag.
1301 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1302 if (tag == 0 || !IS_GEN_I(hpriv)) {
1303 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1304 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1305 if (!pp->sg_tbl[tag])
1306 goto out_port_free_dma_mem;
1307 } else {
1308 pp->sg_tbl[tag] = pp->sg_tbl[0];
1309 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1312 return 0;
1314 out_port_free_dma_mem:
1315 mv_port_free_dma_mem(ap);
1316 return -ENOMEM;
1320 * mv_port_stop - Port specific cleanup/stop routine.
1321 * @ap: ATA channel to manipulate
1323 * Stop DMA, cleanup port memory.
1325 * LOCKING:
1326 * This routine uses the host lock to protect the DMA stop.
1328 static void mv_port_stop(struct ata_port *ap)
1330 mv_stop_edma(ap);
1331 mv_enable_port_irqs(ap, 0);
1332 mv_port_free_dma_mem(ap);
1336 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1337 * @qc: queued command whose SG list to source from
1339 * Populate the SG list and mark the last entry.
1341 * LOCKING:
1342 * Inherited from caller.
1344 static void mv_fill_sg(struct ata_queued_cmd *qc)
1346 struct mv_port_priv *pp = qc->ap->private_data;
1347 struct scatterlist *sg;
1348 struct mv_sg *mv_sg, *last_sg = NULL;
1349 unsigned int si;
1351 mv_sg = pp->sg_tbl[qc->tag];
1352 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1353 dma_addr_t addr = sg_dma_address(sg);
1354 u32 sg_len = sg_dma_len(sg);
1356 while (sg_len) {
1357 u32 offset = addr & 0xffff;
1358 u32 len = sg_len;
1360 if ((offset + sg_len > 0x10000))
1361 len = 0x10000 - offset;
1363 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1364 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1365 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1367 sg_len -= len;
1368 addr += len;
1370 last_sg = mv_sg;
1371 mv_sg++;
1375 if (likely(last_sg))
1376 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1379 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1381 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1382 (last ? CRQB_CMD_LAST : 0);
1383 *cmdw = cpu_to_le16(tmp);
1387 * mv_qc_prep - Host specific command preparation.
1388 * @qc: queued command to prepare
1390 * This routine simply redirects to the general purpose routine
1391 * if command is not DMA. Else, it handles prep of the CRQB
1392 * (command request block), does some sanity checking, and calls
1393 * the SG load routine.
1395 * LOCKING:
1396 * Inherited from caller.
1398 static void mv_qc_prep(struct ata_queued_cmd *qc)
1400 struct ata_port *ap = qc->ap;
1401 struct mv_port_priv *pp = ap->private_data;
1402 __le16 *cw;
1403 struct ata_taskfile *tf;
1404 u16 flags = 0;
1405 unsigned in_index;
1407 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1408 (qc->tf.protocol != ATA_PROT_NCQ))
1409 return;
1411 /* Fill in command request block
1413 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1414 flags |= CRQB_FLAG_READ;
1415 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1416 flags |= qc->tag << CRQB_TAG_SHIFT;
1417 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1419 /* get current queue index from software */
1420 in_index = pp->req_idx;
1422 pp->crqb[in_index].sg_addr =
1423 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1424 pp->crqb[in_index].sg_addr_hi =
1425 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1426 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1428 cw = &pp->crqb[in_index].ata_cmd[0];
1429 tf = &qc->tf;
1431 /* Sadly, the CRQB cannot accomodate all registers--there are
1432 * only 11 bytes...so we must pick and choose required
1433 * registers based on the command. So, we drop feature and
1434 * hob_feature for [RW] DMA commands, but they are needed for
1435 * NCQ. NCQ will drop hob_nsect, which is not needed there
1436 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
1438 switch (tf->command) {
1439 case ATA_CMD_READ:
1440 case ATA_CMD_READ_EXT:
1441 case ATA_CMD_WRITE:
1442 case ATA_CMD_WRITE_EXT:
1443 case ATA_CMD_WRITE_FUA_EXT:
1444 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1445 break;
1446 case ATA_CMD_FPDMA_READ:
1447 case ATA_CMD_FPDMA_WRITE:
1448 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1449 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1450 break;
1451 default:
1452 /* The only other commands EDMA supports in non-queued and
1453 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1454 * of which are defined/used by Linux. If we get here, this
1455 * driver needs work.
1457 * FIXME: modify libata to give qc_prep a return value and
1458 * return error here.
1460 BUG_ON(tf->command);
1461 break;
1463 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1464 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1465 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1466 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1467 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1468 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1469 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1470 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1471 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1473 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1474 return;
1475 mv_fill_sg(qc);
1479 * mv_qc_prep_iie - Host specific command preparation.
1480 * @qc: queued command to prepare
1482 * This routine simply redirects to the general purpose routine
1483 * if command is not DMA. Else, it handles prep of the CRQB
1484 * (command request block), does some sanity checking, and calls
1485 * the SG load routine.
1487 * LOCKING:
1488 * Inherited from caller.
1490 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1492 struct ata_port *ap = qc->ap;
1493 struct mv_port_priv *pp = ap->private_data;
1494 struct mv_crqb_iie *crqb;
1495 struct ata_taskfile *tf;
1496 unsigned in_index;
1497 u32 flags = 0;
1499 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1500 (qc->tf.protocol != ATA_PROT_NCQ))
1501 return;
1503 /* Fill in Gen IIE command request block */
1504 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1505 flags |= CRQB_FLAG_READ;
1507 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1508 flags |= qc->tag << CRQB_TAG_SHIFT;
1509 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1510 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1512 /* get current queue index from software */
1513 in_index = pp->req_idx;
1515 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1516 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1517 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1518 crqb->flags = cpu_to_le32(flags);
1520 tf = &qc->tf;
1521 crqb->ata_cmd[0] = cpu_to_le32(
1522 (tf->command << 16) |
1523 (tf->feature << 24)
1525 crqb->ata_cmd[1] = cpu_to_le32(
1526 (tf->lbal << 0) |
1527 (tf->lbam << 8) |
1528 (tf->lbah << 16) |
1529 (tf->device << 24)
1531 crqb->ata_cmd[2] = cpu_to_le32(
1532 (tf->hob_lbal << 0) |
1533 (tf->hob_lbam << 8) |
1534 (tf->hob_lbah << 16) |
1535 (tf->hob_feature << 24)
1537 crqb->ata_cmd[3] = cpu_to_le32(
1538 (tf->nsect << 0) |
1539 (tf->hob_nsect << 8)
1542 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1543 return;
1544 mv_fill_sg(qc);
1548 * mv_qc_issue - Initiate a command to the host
1549 * @qc: queued command to start
1551 * This routine simply redirects to the general purpose routine
1552 * if command is not DMA. Else, it sanity checks our local
1553 * caches of the request producer/consumer indices then enables
1554 * DMA and bumps the request producer index.
1556 * LOCKING:
1557 * Inherited from caller.
1559 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1561 struct ata_port *ap = qc->ap;
1562 void __iomem *port_mmio = mv_ap_base(ap);
1563 struct mv_port_priv *pp = ap->private_data;
1564 u32 in_index;
1566 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1567 (qc->tf.protocol != ATA_PROT_NCQ)) {
1568 static int limit_warnings = 10;
1570 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1572 * Someday, we might implement special polling workarounds
1573 * for these, but it all seems rather unnecessary since we
1574 * normally use only DMA for commands which transfer more
1575 * than a single block of data.
1577 * Much of the time, this could just work regardless.
1578 * So for now, just log the incident, and allow the attempt.
1580 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
1581 --limit_warnings;
1582 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
1583 ": attempting PIO w/multiple DRQ: "
1584 "this may fail due to h/w errata\n");
1587 * We're about to send a non-EDMA capable command to the
1588 * port. Turn off EDMA so there won't be problems accessing
1589 * shadow block, etc registers.
1591 mv_stop_edma(ap);
1592 mv_enable_port_irqs(ap, ERR_IRQ);
1593 mv_pmp_select(ap, qc->dev->link->pmp);
1594 return ata_sff_qc_issue(qc);
1597 mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1599 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1600 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1602 /* and write the request in pointer to kick the EDMA to life */
1603 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1604 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1606 return 0;
1609 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1611 struct mv_port_priv *pp = ap->private_data;
1612 struct ata_queued_cmd *qc;
1614 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1615 return NULL;
1616 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1617 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1618 qc = NULL;
1619 return qc;
1622 static void mv_pmp_error_handler(struct ata_port *ap)
1624 unsigned int pmp, pmp_map;
1625 struct mv_port_priv *pp = ap->private_data;
1627 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1629 * Perform NCQ error analysis on failed PMPs
1630 * before we freeze the port entirely.
1632 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1634 pmp_map = pp->delayed_eh_pmp_map;
1635 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1636 for (pmp = 0; pmp_map != 0; pmp++) {
1637 unsigned int this_pmp = (1 << pmp);
1638 if (pmp_map & this_pmp) {
1639 struct ata_link *link = &ap->pmp_link[pmp];
1640 pmp_map &= ~this_pmp;
1641 ata_eh_analyze_ncq_error(link);
1644 ata_port_freeze(ap);
1646 sata_pmp_error_handler(ap);
1649 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1651 void __iomem *port_mmio = mv_ap_base(ap);
1653 return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1656 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1658 struct ata_eh_info *ehi;
1659 unsigned int pmp;
1662 * Initialize EH info for PMPs which saw device errors
1664 ehi = &ap->link.eh_info;
1665 for (pmp = 0; pmp_map != 0; pmp++) {
1666 unsigned int this_pmp = (1 << pmp);
1667 if (pmp_map & this_pmp) {
1668 struct ata_link *link = &ap->pmp_link[pmp];
1670 pmp_map &= ~this_pmp;
1671 ehi = &link->eh_info;
1672 ata_ehi_clear_desc(ehi);
1673 ata_ehi_push_desc(ehi, "dev err");
1674 ehi->err_mask |= AC_ERR_DEV;
1675 ehi->action |= ATA_EH_RESET;
1676 ata_link_abort(link);
1681 static int mv_req_q_empty(struct ata_port *ap)
1683 void __iomem *port_mmio = mv_ap_base(ap);
1684 u32 in_ptr, out_ptr;
1686 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1687 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1688 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1689 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1690 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
1693 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1695 struct mv_port_priv *pp = ap->private_data;
1696 int failed_links;
1697 unsigned int old_map, new_map;
1700 * Device error during FBS+NCQ operation:
1702 * Set a port flag to prevent further I/O being enqueued.
1703 * Leave the EDMA running to drain outstanding commands from this port.
1704 * Perform the post-mortem/EH only when all responses are complete.
1705 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1707 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1708 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1709 pp->delayed_eh_pmp_map = 0;
1711 old_map = pp->delayed_eh_pmp_map;
1712 new_map = old_map | mv_get_err_pmp_map(ap);
1714 if (old_map != new_map) {
1715 pp->delayed_eh_pmp_map = new_map;
1716 mv_pmp_eh_prep(ap, new_map & ~old_map);
1718 failed_links = hweight16(new_map);
1720 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1721 "failed_links=%d nr_active_links=%d\n",
1722 __func__, pp->delayed_eh_pmp_map,
1723 ap->qc_active, failed_links,
1724 ap->nr_active_links);
1726 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1727 mv_process_crpb_entries(ap, pp);
1728 mv_stop_edma(ap);
1729 mv_eh_freeze(ap);
1730 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1731 return 1; /* handled */
1733 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1734 return 1; /* handled */
1737 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1740 * Possible future enhancement:
1742 * FBS+non-NCQ operation is not yet implemented.
1743 * See related notes in mv_edma_cfg().
1745 * Device error during FBS+non-NCQ operation:
1747 * We need to snapshot the shadow registers for each failed command.
1748 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1750 return 0; /* not handled */
1753 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1755 struct mv_port_priv *pp = ap->private_data;
1757 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1758 return 0; /* EDMA was not active: not handled */
1759 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1760 return 0; /* FBS was not active: not handled */
1762 if (!(edma_err_cause & EDMA_ERR_DEV))
1763 return 0; /* non DEV error: not handled */
1764 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1765 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1766 return 0; /* other problems: not handled */
1768 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1770 * EDMA should NOT have self-disabled for this case.
1771 * If it did, then something is wrong elsewhere,
1772 * and we cannot handle it here.
1774 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1775 ata_port_printk(ap, KERN_WARNING,
1776 "%s: err_cause=0x%x pp_flags=0x%x\n",
1777 __func__, edma_err_cause, pp->pp_flags);
1778 return 0; /* not handled */
1780 return mv_handle_fbs_ncq_dev_err(ap);
1781 } else {
1783 * EDMA should have self-disabled for this case.
1784 * If it did not, then something is wrong elsewhere,
1785 * and we cannot handle it here.
1787 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1788 ata_port_printk(ap, KERN_WARNING,
1789 "%s: err_cause=0x%x pp_flags=0x%x\n",
1790 __func__, edma_err_cause, pp->pp_flags);
1791 return 0; /* not handled */
1793 return mv_handle_fbs_non_ncq_dev_err(ap);
1795 return 0; /* not handled */
1798 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1800 struct ata_eh_info *ehi = &ap->link.eh_info;
1801 char *when = "idle";
1803 ata_ehi_clear_desc(ehi);
1804 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1805 when = "disabled";
1806 } else if (edma_was_enabled) {
1807 when = "EDMA enabled";
1808 } else {
1809 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1810 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1811 when = "polling";
1813 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1814 ehi->err_mask |= AC_ERR_OTHER;
1815 ehi->action |= ATA_EH_RESET;
1816 ata_port_freeze(ap);
1820 * mv_err_intr - Handle error interrupts on the port
1821 * @ap: ATA channel to manipulate
1823 * Most cases require a full reset of the chip's state machine,
1824 * which also performs a COMRESET.
1825 * Also, if the port disabled DMA, update our cached copy to match.
1827 * LOCKING:
1828 * Inherited from caller.
1830 static void mv_err_intr(struct ata_port *ap)
1832 void __iomem *port_mmio = mv_ap_base(ap);
1833 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1834 u32 fis_cause = 0;
1835 struct mv_port_priv *pp = ap->private_data;
1836 struct mv_host_priv *hpriv = ap->host->private_data;
1837 unsigned int action = 0, err_mask = 0;
1838 struct ata_eh_info *ehi = &ap->link.eh_info;
1839 struct ata_queued_cmd *qc;
1840 int abort = 0;
1843 * Read and clear the SError and err_cause bits.
1844 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1845 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1847 sata_scr_read(&ap->link, SCR_ERROR, &serr);
1848 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1850 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1851 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1852 fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1853 writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1855 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1857 if (edma_err_cause & EDMA_ERR_DEV) {
1859 * Device errors during FIS-based switching operation
1860 * require special handling.
1862 if (mv_handle_dev_err(ap, edma_err_cause))
1863 return;
1866 qc = mv_get_active_qc(ap);
1867 ata_ehi_clear_desc(ehi);
1868 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1869 edma_err_cause, pp->pp_flags);
1871 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1872 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1873 if (fis_cause & SATA_FIS_IRQ_AN) {
1874 u32 ec = edma_err_cause &
1875 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1876 sata_async_notification(ap);
1877 if (!ec)
1878 return; /* Just an AN; no need for the nukes */
1879 ata_ehi_push_desc(ehi, "SDB notify");
1883 * All generations share these EDMA error cause bits:
1885 if (edma_err_cause & EDMA_ERR_DEV) {
1886 err_mask |= AC_ERR_DEV;
1887 action |= ATA_EH_RESET;
1888 ata_ehi_push_desc(ehi, "dev error");
1890 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1891 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1892 EDMA_ERR_INTRL_PAR)) {
1893 err_mask |= AC_ERR_ATA_BUS;
1894 action |= ATA_EH_RESET;
1895 ata_ehi_push_desc(ehi, "parity error");
1897 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1898 ata_ehi_hotplugged(ehi);
1899 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1900 "dev disconnect" : "dev connect");
1901 action |= ATA_EH_RESET;
1905 * Gen-I has a different SELF_DIS bit,
1906 * different FREEZE bits, and no SERR bit:
1908 if (IS_GEN_I(hpriv)) {
1909 eh_freeze_mask = EDMA_EH_FREEZE_5;
1910 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1911 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1912 ata_ehi_push_desc(ehi, "EDMA self-disable");
1914 } else {
1915 eh_freeze_mask = EDMA_EH_FREEZE;
1916 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1917 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1918 ata_ehi_push_desc(ehi, "EDMA self-disable");
1920 if (edma_err_cause & EDMA_ERR_SERR) {
1921 ata_ehi_push_desc(ehi, "SError=%08x", serr);
1922 err_mask |= AC_ERR_ATA_BUS;
1923 action |= ATA_EH_RESET;
1927 if (!err_mask) {
1928 err_mask = AC_ERR_OTHER;
1929 action |= ATA_EH_RESET;
1932 ehi->serror |= serr;
1933 ehi->action |= action;
1935 if (qc)
1936 qc->err_mask |= err_mask;
1937 else
1938 ehi->err_mask |= err_mask;
1940 if (err_mask == AC_ERR_DEV) {
1942 * Cannot do ata_port_freeze() here,
1943 * because it would kill PIO access,
1944 * which is needed for further diagnosis.
1946 mv_eh_freeze(ap);
1947 abort = 1;
1948 } else if (edma_err_cause & eh_freeze_mask) {
1950 * Note to self: ata_port_freeze() calls ata_port_abort()
1952 ata_port_freeze(ap);
1953 } else {
1954 abort = 1;
1957 if (abort) {
1958 if (qc)
1959 ata_link_abort(qc->dev->link);
1960 else
1961 ata_port_abort(ap);
1965 static void mv_process_crpb_response(struct ata_port *ap,
1966 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1968 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
1970 if (qc) {
1971 u8 ata_status;
1972 u16 edma_status = le16_to_cpu(response->flags);
1974 * edma_status from a response queue entry:
1975 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1976 * MSB is saved ATA status from command completion.
1978 if (!ncq_enabled) {
1979 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
1980 if (err_cause) {
1982 * Error will be seen/handled by mv_err_intr().
1983 * So do nothing at all here.
1985 return;
1988 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
1989 if (!ac_err_mask(ata_status))
1990 ata_qc_complete(qc);
1991 /* else: leave it for mv_err_intr() */
1992 } else {
1993 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
1994 __func__, tag);
1998 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2000 void __iomem *port_mmio = mv_ap_base(ap);
2001 struct mv_host_priv *hpriv = ap->host->private_data;
2002 u32 in_index;
2003 bool work_done = false;
2004 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2006 /* Get the hardware queue position index */
2007 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2008 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2010 /* Process new responses from since the last time we looked */
2011 while (in_index != pp->resp_idx) {
2012 unsigned int tag;
2013 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2015 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2017 if (IS_GEN_I(hpriv)) {
2018 /* 50xx: no NCQ, only one command active at a time */
2019 tag = ap->link.active_tag;
2020 } else {
2021 /* Gen II/IIE: get command tag from CRPB entry */
2022 tag = le16_to_cpu(response->id) & 0x1f;
2024 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2025 work_done = true;
2028 /* Update the software queue position index in hardware */
2029 if (work_done)
2030 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2031 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2032 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2035 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2037 struct mv_port_priv *pp;
2038 int edma_was_enabled;
2040 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2041 mv_unexpected_intr(ap, 0);
2042 return;
2045 * Grab a snapshot of the EDMA_EN flag setting,
2046 * so that we have a consistent view for this port,
2047 * even if something we call of our routines changes it.
2049 pp = ap->private_data;
2050 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2052 * Process completed CRPB response(s) before other events.
2054 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2055 mv_process_crpb_entries(ap, pp);
2056 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2057 mv_handle_fbs_ncq_dev_err(ap);
2060 * Handle chip-reported errors, or continue on to handle PIO.
2062 if (unlikely(port_cause & ERR_IRQ)) {
2063 mv_err_intr(ap);
2064 } else if (!edma_was_enabled) {
2065 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2066 if (qc)
2067 ata_sff_host_intr(ap, qc);
2068 else
2069 mv_unexpected_intr(ap, edma_was_enabled);
2074 * mv_host_intr - Handle all interrupts on the given host controller
2075 * @host: host specific structure
2076 * @main_irq_cause: Main interrupt cause register for the chip.
2078 * LOCKING:
2079 * Inherited from caller.
2081 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2083 struct mv_host_priv *hpriv = host->private_data;
2084 void __iomem *mmio = hpriv->base, *hc_mmio;
2085 unsigned int handled = 0, port;
2087 for (port = 0; port < hpriv->n_ports; port++) {
2088 struct ata_port *ap = host->ports[port];
2089 unsigned int p, shift, hardport, port_cause;
2091 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2093 * Each hc within the host has its own hc_irq_cause register,
2094 * where the interrupting ports bits get ack'd.
2096 if (hardport == 0) { /* first port on this hc ? */
2097 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2098 u32 port_mask, ack_irqs;
2100 * Skip this entire hc if nothing pending for any ports
2102 if (!hc_cause) {
2103 port += MV_PORTS_PER_HC - 1;
2104 continue;
2107 * We don't need/want to read the hc_irq_cause register,
2108 * because doing so hurts performance, and
2109 * main_irq_cause already gives us everything we need.
2111 * But we do have to *write* to the hc_irq_cause to ack
2112 * the ports that we are handling this time through.
2114 * This requires that we create a bitmap for those
2115 * ports which interrupted us, and use that bitmap
2116 * to ack (only) those ports via hc_irq_cause.
2118 ack_irqs = 0;
2119 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2120 if ((port + p) >= hpriv->n_ports)
2121 break;
2122 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2123 if (hc_cause & port_mask)
2124 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2126 hc_mmio = mv_hc_base_from_port(mmio, port);
2127 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2128 handled = 1;
2131 * Handle interrupts signalled for this port:
2133 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2134 if (port_cause)
2135 mv_port_intr(ap, port_cause);
2137 return handled;
2140 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2142 struct mv_host_priv *hpriv = host->private_data;
2143 struct ata_port *ap;
2144 struct ata_queued_cmd *qc;
2145 struct ata_eh_info *ehi;
2146 unsigned int i, err_mask, printed = 0;
2147 u32 err_cause;
2149 err_cause = readl(mmio + hpriv->irq_cause_ofs);
2151 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2152 err_cause);
2154 DPRINTK("All regs @ PCI error\n");
2155 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2157 writelfl(0, mmio + hpriv->irq_cause_ofs);
2159 for (i = 0; i < host->n_ports; i++) {
2160 ap = host->ports[i];
2161 if (!ata_link_offline(&ap->link)) {
2162 ehi = &ap->link.eh_info;
2163 ata_ehi_clear_desc(ehi);
2164 if (!printed++)
2165 ata_ehi_push_desc(ehi,
2166 "PCI err cause 0x%08x", err_cause);
2167 err_mask = AC_ERR_HOST_BUS;
2168 ehi->action = ATA_EH_RESET;
2169 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2170 if (qc)
2171 qc->err_mask |= err_mask;
2172 else
2173 ehi->err_mask |= err_mask;
2175 ata_port_freeze(ap);
2178 return 1; /* handled */
2182 * mv_interrupt - Main interrupt event handler
2183 * @irq: unused
2184 * @dev_instance: private data; in this case the host structure
2186 * Read the read only register to determine if any host
2187 * controllers have pending interrupts. If so, call lower level
2188 * routine to handle. Also check for PCI errors which are only
2189 * reported here.
2191 * LOCKING:
2192 * This routine holds the host lock while processing pending
2193 * interrupts.
2195 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2197 struct ata_host *host = dev_instance;
2198 struct mv_host_priv *hpriv = host->private_data;
2199 unsigned int handled = 0;
2200 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2201 u32 main_irq_cause, pending_irqs;
2203 spin_lock(&host->lock);
2205 /* for MSI: block new interrupts while in here */
2206 if (using_msi)
2207 writel(0, hpriv->main_irq_mask_addr);
2209 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2210 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2212 * Deal with cases where we either have nothing pending, or have read
2213 * a bogus register value which can indicate HW removal or PCI fault.
2215 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2216 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2217 handled = mv_pci_error(host, hpriv->base);
2218 else
2219 handled = mv_host_intr(host, pending_irqs);
2221 spin_unlock(&host->lock);
2223 /* for MSI: unmask; interrupt cause bits will retrigger now */
2224 if (using_msi)
2225 writel(hpriv->main_irq_mask, hpriv->main_irq_mask_addr);
2227 return IRQ_RETVAL(handled);
2230 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2232 unsigned int ofs;
2234 switch (sc_reg_in) {
2235 case SCR_STATUS:
2236 case SCR_ERROR:
2237 case SCR_CONTROL:
2238 ofs = sc_reg_in * sizeof(u32);
2239 break;
2240 default:
2241 ofs = 0xffffffffU;
2242 break;
2244 return ofs;
2247 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
2249 struct mv_host_priv *hpriv = link->ap->host->private_data;
2250 void __iomem *mmio = hpriv->base;
2251 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2252 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2254 if (ofs != 0xffffffffU) {
2255 *val = readl(addr + ofs);
2256 return 0;
2257 } else
2258 return -EINVAL;
2261 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
2263 struct mv_host_priv *hpriv = link->ap->host->private_data;
2264 void __iomem *mmio = hpriv->base;
2265 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
2266 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2268 if (ofs != 0xffffffffU) {
2269 writelfl(val, addr + ofs);
2270 return 0;
2271 } else
2272 return -EINVAL;
2275 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2277 struct pci_dev *pdev = to_pci_dev(host->dev);
2278 int early_5080;
2280 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2282 if (!early_5080) {
2283 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2284 tmp |= (1 << 0);
2285 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2288 mv_reset_pci_bus(host, mmio);
2291 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2293 writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2296 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2297 void __iomem *mmio)
2299 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2300 u32 tmp;
2302 tmp = readl(phy_mmio + MV5_PHY_MODE);
2304 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
2305 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
2308 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2310 u32 tmp;
2312 writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2314 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2316 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2317 tmp |= ~(1 << 0);
2318 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2321 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2322 unsigned int port)
2324 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2325 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2326 u32 tmp;
2327 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2329 if (fix_apm_sq) {
2330 tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2331 tmp |= (1 << 19);
2332 writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2334 tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2335 tmp &= ~0x3;
2336 tmp |= 0x1;
2337 writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2340 tmp = readl(phy_mmio + MV5_PHY_MODE);
2341 tmp &= ~mask;
2342 tmp |= hpriv->signal[port].pre;
2343 tmp |= hpriv->signal[port].amps;
2344 writel(tmp, phy_mmio + MV5_PHY_MODE);
2348 #undef ZERO
2349 #define ZERO(reg) writel(0, port_mmio + (reg))
2350 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2351 unsigned int port)
2353 void __iomem *port_mmio = mv_port_base(mmio, port);
2355 mv_reset_channel(hpriv, mmio, port);
2357 ZERO(0x028); /* command */
2358 writel(0x11f, port_mmio + EDMA_CFG_OFS);
2359 ZERO(0x004); /* timer */
2360 ZERO(0x008); /* irq err cause */
2361 ZERO(0x00c); /* irq err mask */
2362 ZERO(0x010); /* rq bah */
2363 ZERO(0x014); /* rq inp */
2364 ZERO(0x018); /* rq outp */
2365 ZERO(0x01c); /* respq bah */
2366 ZERO(0x024); /* respq outp */
2367 ZERO(0x020); /* respq inp */
2368 ZERO(0x02c); /* test control */
2369 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2371 #undef ZERO
2373 #define ZERO(reg) writel(0, hc_mmio + (reg))
2374 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2375 unsigned int hc)
2377 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2378 u32 tmp;
2380 ZERO(0x00c);
2381 ZERO(0x010);
2382 ZERO(0x014);
2383 ZERO(0x018);
2385 tmp = readl(hc_mmio + 0x20);
2386 tmp &= 0x1c1c1c1c;
2387 tmp |= 0x03030303;
2388 writel(tmp, hc_mmio + 0x20);
2390 #undef ZERO
2392 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2393 unsigned int n_hc)
2395 unsigned int hc, port;
2397 for (hc = 0; hc < n_hc; hc++) {
2398 for (port = 0; port < MV_PORTS_PER_HC; port++)
2399 mv5_reset_hc_port(hpriv, mmio,
2400 (hc * MV_PORTS_PER_HC) + port);
2402 mv5_reset_one_hc(hpriv, mmio, hc);
2405 return 0;
2408 #undef ZERO
2409 #define ZERO(reg) writel(0, mmio + (reg))
2410 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2412 struct mv_host_priv *hpriv = host->private_data;
2413 u32 tmp;
2415 tmp = readl(mmio + MV_PCI_MODE_OFS);
2416 tmp &= 0xff00ffff;
2417 writel(tmp, mmio + MV_PCI_MODE_OFS);
2419 ZERO(MV_PCI_DISC_TIMER);
2420 ZERO(MV_PCI_MSI_TRIGGER);
2421 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2422 ZERO(MV_PCI_SERR_MASK);
2423 ZERO(hpriv->irq_cause_ofs);
2424 ZERO(hpriv->irq_mask_ofs);
2425 ZERO(MV_PCI_ERR_LOW_ADDRESS);
2426 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2427 ZERO(MV_PCI_ERR_ATTRIBUTE);
2428 ZERO(MV_PCI_ERR_COMMAND);
2430 #undef ZERO
2432 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2434 u32 tmp;
2436 mv5_reset_flash(hpriv, mmio);
2438 tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2439 tmp &= 0x3;
2440 tmp |= (1 << 5) | (1 << 6);
2441 writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2445 * mv6_reset_hc - Perform the 6xxx global soft reset
2446 * @mmio: base address of the HBA
2448 * This routine only applies to 6xxx parts.
2450 * LOCKING:
2451 * Inherited from caller.
2453 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2454 unsigned int n_hc)
2456 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2457 int i, rc = 0;
2458 u32 t;
2460 /* Following procedure defined in PCI "main command and status
2461 * register" table.
2463 t = readl(reg);
2464 writel(t | STOP_PCI_MASTER, reg);
2466 for (i = 0; i < 1000; i++) {
2467 udelay(1);
2468 t = readl(reg);
2469 if (PCI_MASTER_EMPTY & t)
2470 break;
2472 if (!(PCI_MASTER_EMPTY & t)) {
2473 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2474 rc = 1;
2475 goto done;
2478 /* set reset */
2479 i = 5;
2480 do {
2481 writel(t | GLOB_SFT_RST, reg);
2482 t = readl(reg);
2483 udelay(1);
2484 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2486 if (!(GLOB_SFT_RST & t)) {
2487 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2488 rc = 1;
2489 goto done;
2492 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2493 i = 5;
2494 do {
2495 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2496 t = readl(reg);
2497 udelay(1);
2498 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2500 if (GLOB_SFT_RST & t) {
2501 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2502 rc = 1;
2504 done:
2505 return rc;
2508 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2509 void __iomem *mmio)
2511 void __iomem *port_mmio;
2512 u32 tmp;
2514 tmp = readl(mmio + MV_RESET_CFG_OFS);
2515 if ((tmp & (1 << 0)) == 0) {
2516 hpriv->signal[idx].amps = 0x7 << 8;
2517 hpriv->signal[idx].pre = 0x1 << 5;
2518 return;
2521 port_mmio = mv_port_base(mmio, idx);
2522 tmp = readl(port_mmio + PHY_MODE2);
2524 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2525 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2528 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2530 writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2533 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2534 unsigned int port)
2536 void __iomem *port_mmio = mv_port_base(mmio, port);
2538 u32 hp_flags = hpriv->hp_flags;
2539 int fix_phy_mode2 =
2540 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2541 int fix_phy_mode4 =
2542 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2543 u32 m2, m3;
2545 if (fix_phy_mode2) {
2546 m2 = readl(port_mmio + PHY_MODE2);
2547 m2 &= ~(1 << 16);
2548 m2 |= (1 << 31);
2549 writel(m2, port_mmio + PHY_MODE2);
2551 udelay(200);
2553 m2 = readl(port_mmio + PHY_MODE2);
2554 m2 &= ~((1 << 16) | (1 << 31));
2555 writel(m2, port_mmio + PHY_MODE2);
2557 udelay(200);
2561 * Gen-II/IIe PHY_MODE3 errata RM#2:
2562 * Achieves better receiver noise performance than the h/w default:
2564 m3 = readl(port_mmio + PHY_MODE3);
2565 m3 = (m3 & 0x1f) | (0x5555601 << 5);
2567 /* Guideline 88F5182 (GL# SATA-S11) */
2568 if (IS_SOC(hpriv))
2569 m3 &= ~0x1c;
2571 if (fix_phy_mode4) {
2572 u32 m4 = readl(port_mmio + PHY_MODE4);
2574 * Enforce reserved-bit restrictions on GenIIe devices only.
2575 * For earlier chipsets, force only the internal config field
2576 * (workaround for errata FEr SATA#10 part 1).
2578 if (IS_GEN_IIE(hpriv))
2579 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2580 else
2581 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2582 writel(m4, port_mmio + PHY_MODE4);
2585 * Workaround for 60x1-B2 errata SATA#13:
2586 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2587 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2589 writel(m3, port_mmio + PHY_MODE3);
2591 /* Revert values of pre-emphasis and signal amps to the saved ones */
2592 m2 = readl(port_mmio + PHY_MODE2);
2594 m2 &= ~MV_M2_PREAMP_MASK;
2595 m2 |= hpriv->signal[port].amps;
2596 m2 |= hpriv->signal[port].pre;
2597 m2 &= ~(1 << 16);
2599 /* according to mvSata 3.6.1, some IIE values are fixed */
2600 if (IS_GEN_IIE(hpriv)) {
2601 m2 &= ~0xC30FF01F;
2602 m2 |= 0x0000900F;
2605 writel(m2, port_mmio + PHY_MODE2);
2608 /* TODO: use the generic LED interface to configure the SATA Presence */
2609 /* & Acitivy LEDs on the board */
2610 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2611 void __iomem *mmio)
2613 return;
2616 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2617 void __iomem *mmio)
2619 void __iomem *port_mmio;
2620 u32 tmp;
2622 port_mmio = mv_port_base(mmio, idx);
2623 tmp = readl(port_mmio + PHY_MODE2);
2625 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2626 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2629 #undef ZERO
2630 #define ZERO(reg) writel(0, port_mmio + (reg))
2631 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2632 void __iomem *mmio, unsigned int port)
2634 void __iomem *port_mmio = mv_port_base(mmio, port);
2636 mv_reset_channel(hpriv, mmio, port);
2638 ZERO(0x028); /* command */
2639 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2640 ZERO(0x004); /* timer */
2641 ZERO(0x008); /* irq err cause */
2642 ZERO(0x00c); /* irq err mask */
2643 ZERO(0x010); /* rq bah */
2644 ZERO(0x014); /* rq inp */
2645 ZERO(0x018); /* rq outp */
2646 ZERO(0x01c); /* respq bah */
2647 ZERO(0x024); /* respq outp */
2648 ZERO(0x020); /* respq inp */
2649 ZERO(0x02c); /* test control */
2650 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2653 #undef ZERO
2655 #define ZERO(reg) writel(0, hc_mmio + (reg))
2656 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2657 void __iomem *mmio)
2659 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2661 ZERO(0x00c);
2662 ZERO(0x010);
2663 ZERO(0x014);
2667 #undef ZERO
2669 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2670 void __iomem *mmio, unsigned int n_hc)
2672 unsigned int port;
2674 for (port = 0; port < hpriv->n_ports; port++)
2675 mv_soc_reset_hc_port(hpriv, mmio, port);
2677 mv_soc_reset_one_hc(hpriv, mmio);
2679 return 0;
2682 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2683 void __iomem *mmio)
2685 return;
2688 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2690 return;
2693 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2695 u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2697 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
2698 if (want_gen2i)
2699 ifcfg |= (1 << 7); /* enable gen2i speed */
2700 writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2703 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2704 unsigned int port_no)
2706 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2709 * The datasheet warns against setting EDMA_RESET when EDMA is active
2710 * (but doesn't say what the problem might be). So we first try
2711 * to disable the EDMA engine before doing the EDMA_RESET operation.
2713 mv_stop_edma_engine(port_mmio);
2714 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2716 if (!IS_GEN_I(hpriv)) {
2717 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2718 mv_setup_ifcfg(port_mmio, 1);
2721 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2722 * link, and physical layers. It resets all SATA interface registers
2723 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2725 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2726 udelay(25); /* allow reset propagation */
2727 writelfl(0, port_mmio + EDMA_CMD_OFS);
2729 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2731 if (IS_GEN_I(hpriv))
2732 mdelay(1);
2735 static void mv_pmp_select(struct ata_port *ap, int pmp)
2737 if (sata_pmp_supported(ap)) {
2738 void __iomem *port_mmio = mv_ap_base(ap);
2739 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2740 int old = reg & 0xf;
2742 if (old != pmp) {
2743 reg = (reg & ~0xf) | pmp;
2744 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2749 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2750 unsigned long deadline)
2752 mv_pmp_select(link->ap, sata_srst_pmp(link));
2753 return sata_std_hardreset(link, class, deadline);
2756 static int mv_softreset(struct ata_link *link, unsigned int *class,
2757 unsigned long deadline)
2759 mv_pmp_select(link->ap, sata_srst_pmp(link));
2760 return ata_sff_softreset(link, class, deadline);
2763 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2764 unsigned long deadline)
2766 struct ata_port *ap = link->ap;
2767 struct mv_host_priv *hpriv = ap->host->private_data;
2768 struct mv_port_priv *pp = ap->private_data;
2769 void __iomem *mmio = hpriv->base;
2770 int rc, attempts = 0, extra = 0;
2771 u32 sstatus;
2772 bool online;
2774 mv_reset_channel(hpriv, mmio, ap->port_no);
2775 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2777 /* Workaround for errata FEr SATA#10 (part 2) */
2778 do {
2779 const unsigned long *timing =
2780 sata_ehc_deb_timing(&link->eh_context);
2782 rc = sata_link_hardreset(link, timing, deadline + extra,
2783 &online, NULL);
2784 rc = online ? -EAGAIN : rc;
2785 if (rc)
2786 return rc;
2787 sata_scr_read(link, SCR_STATUS, &sstatus);
2788 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2789 /* Force 1.5gb/s link speed and try again */
2790 mv_setup_ifcfg(mv_ap_base(ap), 0);
2791 if (time_after(jiffies + HZ, deadline))
2792 extra = HZ; /* only extend it once, max */
2794 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2796 return rc;
2799 static void mv_eh_freeze(struct ata_port *ap)
2801 mv_stop_edma(ap);
2802 mv_enable_port_irqs(ap, 0);
2805 static void mv_eh_thaw(struct ata_port *ap)
2807 struct mv_host_priv *hpriv = ap->host->private_data;
2808 unsigned int port = ap->port_no;
2809 unsigned int hardport = mv_hardport_from_port(port);
2810 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2811 void __iomem *port_mmio = mv_ap_base(ap);
2812 u32 hc_irq_cause;
2814 /* clear EDMA errors on this port */
2815 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2817 /* clear pending irq events */
2818 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
2819 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2821 mv_enable_port_irqs(ap, ERR_IRQ);
2825 * mv_port_init - Perform some early initialization on a single port.
2826 * @port: libata data structure storing shadow register addresses
2827 * @port_mmio: base address of the port
2829 * Initialize shadow register mmio addresses, clear outstanding
2830 * interrupts on the port, and unmask interrupts for the future
2831 * start of the port.
2833 * LOCKING:
2834 * Inherited from caller.
2836 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2838 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2839 unsigned serr_ofs;
2841 /* PIO related setup
2843 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2844 port->error_addr =
2845 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2846 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2847 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2848 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2849 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2850 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2851 port->status_addr =
2852 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2853 /* special case: control/altstatus doesn't have ATA_REG_ address */
2854 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2856 /* unused: */
2857 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2859 /* Clear any currently outstanding port interrupt conditions */
2860 serr_ofs = mv_scr_offset(SCR_ERROR);
2861 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2862 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2864 /* unmask all non-transient EDMA error interrupts */
2865 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2867 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2868 readl(port_mmio + EDMA_CFG_OFS),
2869 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2870 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2873 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2875 struct mv_host_priv *hpriv = host->private_data;
2876 void __iomem *mmio = hpriv->base;
2877 u32 reg;
2879 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2880 return 0; /* not PCI-X capable */
2881 reg = readl(mmio + MV_PCI_MODE_OFS);
2882 if ((reg & MV_PCI_MODE_MASK) == 0)
2883 return 0; /* conventional PCI mode */
2884 return 1; /* chip is in PCI-X mode */
2887 static int mv_pci_cut_through_okay(struct ata_host *host)
2889 struct mv_host_priv *hpriv = host->private_data;
2890 void __iomem *mmio = hpriv->base;
2891 u32 reg;
2893 if (!mv_in_pcix_mode(host)) {
2894 reg = readl(mmio + PCI_COMMAND_OFS);
2895 if (reg & PCI_COMMAND_MRDTRIG)
2896 return 0; /* not okay */
2898 return 1; /* okay */
2901 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2903 struct pci_dev *pdev = to_pci_dev(host->dev);
2904 struct mv_host_priv *hpriv = host->private_data;
2905 u32 hp_flags = hpriv->hp_flags;
2907 switch (board_idx) {
2908 case chip_5080:
2909 hpriv->ops = &mv5xxx_ops;
2910 hp_flags |= MV_HP_GEN_I;
2912 switch (pdev->revision) {
2913 case 0x1:
2914 hp_flags |= MV_HP_ERRATA_50XXB0;
2915 break;
2916 case 0x3:
2917 hp_flags |= MV_HP_ERRATA_50XXB2;
2918 break;
2919 default:
2920 dev_printk(KERN_WARNING, &pdev->dev,
2921 "Applying 50XXB2 workarounds to unknown rev\n");
2922 hp_flags |= MV_HP_ERRATA_50XXB2;
2923 break;
2925 break;
2927 case chip_504x:
2928 case chip_508x:
2929 hpriv->ops = &mv5xxx_ops;
2930 hp_flags |= MV_HP_GEN_I;
2932 switch (pdev->revision) {
2933 case 0x0:
2934 hp_flags |= MV_HP_ERRATA_50XXB0;
2935 break;
2936 case 0x3:
2937 hp_flags |= MV_HP_ERRATA_50XXB2;
2938 break;
2939 default:
2940 dev_printk(KERN_WARNING, &pdev->dev,
2941 "Applying B2 workarounds to unknown rev\n");
2942 hp_flags |= MV_HP_ERRATA_50XXB2;
2943 break;
2945 break;
2947 case chip_604x:
2948 case chip_608x:
2949 hpriv->ops = &mv6xxx_ops;
2950 hp_flags |= MV_HP_GEN_II;
2952 switch (pdev->revision) {
2953 case 0x7:
2954 hp_flags |= MV_HP_ERRATA_60X1B2;
2955 break;
2956 case 0x9:
2957 hp_flags |= MV_HP_ERRATA_60X1C0;
2958 break;
2959 default:
2960 dev_printk(KERN_WARNING, &pdev->dev,
2961 "Applying B2 workarounds to unknown rev\n");
2962 hp_flags |= MV_HP_ERRATA_60X1B2;
2963 break;
2965 break;
2967 case chip_7042:
2968 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2969 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2970 (pdev->device == 0x2300 || pdev->device == 0x2310))
2973 * Highpoint RocketRAID PCIe 23xx series cards:
2975 * Unconfigured drives are treated as "Legacy"
2976 * by the BIOS, and it overwrites sector 8 with
2977 * a "Lgcy" metadata block prior to Linux boot.
2979 * Configured drives (RAID or JBOD) leave sector 8
2980 * alone, but instead overwrite a high numbered
2981 * sector for the RAID metadata. This sector can
2982 * be determined exactly, by truncating the physical
2983 * drive capacity to a nice even GB value.
2985 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2987 * Warn the user, lest they think we're just buggy.
2989 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
2990 " BIOS CORRUPTS DATA on all attached drives,"
2991 " regardless of if/how they are configured."
2992 " BEWARE!\n");
2993 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
2994 " use sectors 8-9 on \"Legacy\" drives,"
2995 " and avoid the final two gigabytes on"
2996 " all RocketRAID BIOS initialized drives.\n");
2998 /* drop through */
2999 case chip_6042:
3000 hpriv->ops = &mv6xxx_ops;
3001 hp_flags |= MV_HP_GEN_IIE;
3002 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3003 hp_flags |= MV_HP_CUT_THROUGH;
3005 switch (pdev->revision) {
3006 case 0x2: /* Rev.B0: the first/only public release */
3007 hp_flags |= MV_HP_ERRATA_60X1C0;
3008 break;
3009 default:
3010 dev_printk(KERN_WARNING, &pdev->dev,
3011 "Applying 60X1C0 workarounds to unknown rev\n");
3012 hp_flags |= MV_HP_ERRATA_60X1C0;
3013 break;
3015 break;
3016 case chip_soc:
3017 hpriv->ops = &mv_soc_ops;
3018 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3019 MV_HP_ERRATA_60X1C0;
3020 break;
3022 default:
3023 dev_printk(KERN_ERR, host->dev,
3024 "BUG: invalid board index %u\n", board_idx);
3025 return 1;
3028 hpriv->hp_flags = hp_flags;
3029 if (hp_flags & MV_HP_PCIE) {
3030 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
3031 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
3032 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3033 } else {
3034 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
3035 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
3036 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3039 return 0;
3043 * mv_init_host - Perform some early initialization of the host.
3044 * @host: ATA host to initialize
3045 * @board_idx: controller index
3047 * If possible, do an early global reset of the host. Then do
3048 * our port init and clear/unmask all/relevant host interrupts.
3050 * LOCKING:
3051 * Inherited from caller.
3053 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3055 int rc = 0, n_hc, port, hc;
3056 struct mv_host_priv *hpriv = host->private_data;
3057 void __iomem *mmio = hpriv->base;
3059 rc = mv_chip_id(host, board_idx);
3060 if (rc)
3061 goto done;
3063 if (IS_SOC(hpriv)) {
3064 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3065 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3066 } else {
3067 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3068 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3071 /* initialize shadow irq mask with register's value */
3072 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3074 /* global interrupt mask: 0 == mask everything */
3075 mv_set_main_irq_mask(host, ~0, 0);
3077 n_hc = mv_get_hc_count(host->ports[0]->flags);
3079 for (port = 0; port < host->n_ports; port++)
3080 hpriv->ops->read_preamp(hpriv, port, mmio);
3082 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3083 if (rc)
3084 goto done;
3086 hpriv->ops->reset_flash(hpriv, mmio);
3087 hpriv->ops->reset_bus(host, mmio);
3088 hpriv->ops->enable_leds(hpriv, mmio);
3090 for (port = 0; port < host->n_ports; port++) {
3091 struct ata_port *ap = host->ports[port];
3092 void __iomem *port_mmio = mv_port_base(mmio, port);
3094 mv_port_init(&ap->ioaddr, port_mmio);
3096 #ifdef CONFIG_PCI
3097 if (!IS_SOC(hpriv)) {
3098 unsigned int offset = port_mmio - mmio;
3099 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3100 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3102 #endif
3105 for (hc = 0; hc < n_hc; hc++) {
3106 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3108 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3109 "(before clear)=0x%08x\n", hc,
3110 readl(hc_mmio + HC_CFG_OFS),
3111 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3113 /* Clear any currently outstanding hc interrupt conditions */
3114 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3117 /* Clear any currently outstanding host interrupt conditions */
3118 writelfl(0, mmio + hpriv->irq_cause_ofs);
3120 /* and unmask interrupt generation for host regs */
3121 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3124 * enable only global host interrupts for now.
3125 * The per-port interrupts get done later as ports are set up.
3127 mv_set_main_irq_mask(host, 0, PCI_ERR);
3128 done:
3129 return rc;
3132 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3134 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3135 MV_CRQB_Q_SZ, 0);
3136 if (!hpriv->crqb_pool)
3137 return -ENOMEM;
3139 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3140 MV_CRPB_Q_SZ, 0);
3141 if (!hpriv->crpb_pool)
3142 return -ENOMEM;
3144 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3145 MV_SG_TBL_SZ, 0);
3146 if (!hpriv->sg_tbl_pool)
3147 return -ENOMEM;
3149 return 0;
3152 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3153 struct mbus_dram_target_info *dram)
3155 int i;
3157 for (i = 0; i < 4; i++) {
3158 writel(0, hpriv->base + WINDOW_CTRL(i));
3159 writel(0, hpriv->base + WINDOW_BASE(i));
3162 for (i = 0; i < dram->num_cs; i++) {
3163 struct mbus_dram_window *cs = dram->cs + i;
3165 writel(((cs->size - 1) & 0xffff0000) |
3166 (cs->mbus_attr << 8) |
3167 (dram->mbus_dram_target_id << 4) | 1,
3168 hpriv->base + WINDOW_CTRL(i));
3169 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3174 * mv_platform_probe - handle a positive probe of an soc Marvell
3175 * host
3176 * @pdev: platform device found
3178 * LOCKING:
3179 * Inherited from caller.
3181 static int mv_platform_probe(struct platform_device *pdev)
3183 static int printed_version;
3184 const struct mv_sata_platform_data *mv_platform_data;
3185 const struct ata_port_info *ppi[] =
3186 { &mv_port_info[chip_soc], NULL };
3187 struct ata_host *host;
3188 struct mv_host_priv *hpriv;
3189 struct resource *res;
3190 int n_ports, rc;
3192 if (!printed_version++)
3193 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3196 * Simple resource validation ..
3198 if (unlikely(pdev->num_resources != 2)) {
3199 dev_err(&pdev->dev, "invalid number of resources\n");
3200 return -EINVAL;
3204 * Get the register base first
3206 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3207 if (res == NULL)
3208 return -EINVAL;
3210 /* allocate host */
3211 mv_platform_data = pdev->dev.platform_data;
3212 n_ports = mv_platform_data->n_ports;
3214 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3215 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3217 if (!host || !hpriv)
3218 return -ENOMEM;
3219 host->private_data = hpriv;
3220 hpriv->n_ports = n_ports;
3222 host->iomap = NULL;
3223 hpriv->base = devm_ioremap(&pdev->dev, res->start,
3224 res->end - res->start + 1);
3225 hpriv->base -= MV_SATAHC0_REG_BASE;
3228 * (Re-)program MBUS remapping windows if we are asked to.
3230 if (mv_platform_data->dram != NULL)
3231 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3233 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3234 if (rc)
3235 return rc;
3237 /* initialize adapter */
3238 rc = mv_init_host(host, chip_soc);
3239 if (rc)
3240 return rc;
3242 dev_printk(KERN_INFO, &pdev->dev,
3243 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3244 host->n_ports);
3246 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3247 IRQF_SHARED, &mv6_sht);
3252 * mv_platform_remove - unplug a platform interface
3253 * @pdev: platform device
3255 * A platform bus SATA device has been unplugged. Perform the needed
3256 * cleanup. Also called on module unload for any active devices.
3258 static int __devexit mv_platform_remove(struct platform_device *pdev)
3260 struct device *dev = &pdev->dev;
3261 struct ata_host *host = dev_get_drvdata(dev);
3263 ata_host_detach(host);
3264 return 0;
3267 static struct platform_driver mv_platform_driver = {
3268 .probe = mv_platform_probe,
3269 .remove = __devexit_p(mv_platform_remove),
3270 .driver = {
3271 .name = DRV_NAME,
3272 .owner = THIS_MODULE,
3277 #ifdef CONFIG_PCI
3278 static int mv_pci_init_one(struct pci_dev *pdev,
3279 const struct pci_device_id *ent);
3282 static struct pci_driver mv_pci_driver = {
3283 .name = DRV_NAME,
3284 .id_table = mv_pci_tbl,
3285 .probe = mv_pci_init_one,
3286 .remove = ata_pci_remove_one,
3290 * module options
3292 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
3295 /* move to PCI layer or libata core? */
3296 static int pci_go_64(struct pci_dev *pdev)
3298 int rc;
3300 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3301 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3302 if (rc) {
3303 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3304 if (rc) {
3305 dev_printk(KERN_ERR, &pdev->dev,
3306 "64-bit DMA enable failed\n");
3307 return rc;
3310 } else {
3311 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3312 if (rc) {
3313 dev_printk(KERN_ERR, &pdev->dev,
3314 "32-bit DMA enable failed\n");
3315 return rc;
3317 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3318 if (rc) {
3319 dev_printk(KERN_ERR, &pdev->dev,
3320 "32-bit consistent DMA enable failed\n");
3321 return rc;
3325 return rc;
3329 * mv_print_info - Dump key info to kernel log for perusal.
3330 * @host: ATA host to print info about
3332 * FIXME: complete this.
3334 * LOCKING:
3335 * Inherited from caller.
3337 static void mv_print_info(struct ata_host *host)
3339 struct pci_dev *pdev = to_pci_dev(host->dev);
3340 struct mv_host_priv *hpriv = host->private_data;
3341 u8 scc;
3342 const char *scc_s, *gen;
3344 /* Use this to determine the HW stepping of the chip so we know
3345 * what errata to workaround
3347 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3348 if (scc == 0)
3349 scc_s = "SCSI";
3350 else if (scc == 0x01)
3351 scc_s = "RAID";
3352 else
3353 scc_s = "?";
3355 if (IS_GEN_I(hpriv))
3356 gen = "I";
3357 else if (IS_GEN_II(hpriv))
3358 gen = "II";
3359 else if (IS_GEN_IIE(hpriv))
3360 gen = "IIE";
3361 else
3362 gen = "?";
3364 dev_printk(KERN_INFO, &pdev->dev,
3365 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3366 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3367 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3371 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3372 * @pdev: PCI device found
3373 * @ent: PCI device ID entry for the matched host
3375 * LOCKING:
3376 * Inherited from caller.
3378 static int mv_pci_init_one(struct pci_dev *pdev,
3379 const struct pci_device_id *ent)
3381 static int printed_version;
3382 unsigned int board_idx = (unsigned int)ent->driver_data;
3383 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3384 struct ata_host *host;
3385 struct mv_host_priv *hpriv;
3386 int n_ports, rc;
3388 if (!printed_version++)
3389 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3391 /* allocate host */
3392 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3394 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3395 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3396 if (!host || !hpriv)
3397 return -ENOMEM;
3398 host->private_data = hpriv;
3399 hpriv->n_ports = n_ports;
3401 /* acquire resources */
3402 rc = pcim_enable_device(pdev);
3403 if (rc)
3404 return rc;
3406 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3407 if (rc == -EBUSY)
3408 pcim_pin_device(pdev);
3409 if (rc)
3410 return rc;
3411 host->iomap = pcim_iomap_table(pdev);
3412 hpriv->base = host->iomap[MV_PRIMARY_BAR];
3414 rc = pci_go_64(pdev);
3415 if (rc)
3416 return rc;
3418 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3419 if (rc)
3420 return rc;
3422 /* initialize adapter */
3423 rc = mv_init_host(host, board_idx);
3424 if (rc)
3425 return rc;
3427 /* Enable message-switched interrupts, if requested */
3428 if (msi && pci_enable_msi(pdev) == 0)
3429 hpriv->hp_flags |= MV_HP_FLAG_MSI;
3431 mv_dump_pci_cfg(pdev, 0x68);
3432 mv_print_info(host);
3434 pci_set_master(pdev);
3435 pci_try_set_mwi(pdev);
3436 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3437 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3439 #endif
3441 static int mv_platform_probe(struct platform_device *pdev);
3442 static int __devexit mv_platform_remove(struct platform_device *pdev);
3444 static int __init mv_init(void)
3446 int rc = -ENODEV;
3447 #ifdef CONFIG_PCI
3448 rc = pci_register_driver(&mv_pci_driver);
3449 if (rc < 0)
3450 return rc;
3451 #endif
3452 rc = platform_driver_register(&mv_platform_driver);
3454 #ifdef CONFIG_PCI
3455 if (rc < 0)
3456 pci_unregister_driver(&mv_pci_driver);
3457 #endif
3458 return rc;
3461 static void __exit mv_exit(void)
3463 #ifdef CONFIG_PCI
3464 pci_unregister_driver(&mv_pci_driver);
3465 #endif
3466 platform_driver_unregister(&mv_platform_driver);
3469 MODULE_AUTHOR("Brett Russ");
3470 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3471 MODULE_LICENSE("GPL");
3472 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3473 MODULE_VERSION(DRV_VERSION);
3474 MODULE_ALIAS("platform:" DRV_NAME);
3476 #ifdef CONFIG_PCI
3477 module_param(msi, int, 0444);
3478 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3479 #endif
3481 module_init(mv_init);
3482 module_exit(mv_exit);