inet: Decrease overhead of on-stack inet_cork.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / ip_output.c
blobeb0647a2f07388a0197ad0ac95b1c1845a58d937
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 EXPORT_SYMBOL(ip_send_check);
95 int __ip_local_out(struct sk_buff *skb)
97 struct iphdr *iph = ip_hdr(skb);
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
105 int ip_local_out(struct sk_buff *skb)
107 int err;
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
113 return err;
115 EXPORT_SYMBOL_GPL(ip_local_out);
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 netif_rx_ni(newskb);
126 return 0;
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 int ttl = inet->uc_ttl;
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 iph->saddr = saddr;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
166 if (opt && opt->opt.optlen) {
167 iph->ihl += opt->opt.optlen>>2;
168 ip_options_build(skb, &opt->opt, daddr, rt, 0);
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
174 /* Send it out. */
175 return ip_local_out(skb);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179 static inline int ip_finish_output2(struct sk_buff *skb)
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 if (rt->rt_type == RTN_MULTICAST) {
187 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
188 } else if (rt->rt_type == RTN_BROADCAST)
189 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 if (skb2 == NULL) {
197 kfree_skb(skb);
198 return -ENOMEM;
200 if (skb->sk)
201 skb_set_owner_w(skb2, skb->sk);
202 kfree_skb(skb);
203 skb = skb2;
206 if (dst->hh)
207 return neigh_hh_output(dst->hh, skb);
208 else if (dst->neighbour)
209 return dst->neighbour->output(skb);
211 if (net_ratelimit())
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 kfree_skb(skb);
214 return -EINVAL;
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
225 static int ip_finish_output(struct sk_buff *skb)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb)->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
233 #endif
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
236 else
237 return ip_finish_output2(skb);
240 int ip_mc_output(struct sk_buff *skb)
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb_rtable(skb);
244 struct net_device *dev = rt->dst.dev;
247 * If the indicated interface is up and running, send the packet.
249 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
251 skb->dev = dev;
252 skb->protocol = htons(ETH_P_IP);
255 * Multicasts are looped back for other local users
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if (sk_mc_loop(sk)
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
265 to local recipients.
267 This check is duplicated in ip_mr_input at the moment.
270 ((rt->rt_flags & RTCF_LOCAL) ||
271 !(IPCB(skb)->flags & IPSKB_FORWARDED))
272 #endif
274 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 if (newskb)
276 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 newskb, NULL, newskb->dev,
278 ip_dev_loopback_xmit);
281 /* Multicasts with ttl 0 must not go beyond the host */
283 if (ip_hdr(skb)->ttl == 0) {
284 kfree_skb(skb);
285 return 0;
289 if (rt->rt_flags&RTCF_BROADCAST) {
290 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 if (newskb)
292 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 NULL, newskb->dev, ip_dev_loopback_xmit);
296 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 skb->dev, ip_finish_output,
298 !(IPCB(skb)->flags & IPSKB_REROUTED));
301 int ip_output(struct sk_buff *skb)
303 struct net_device *dev = skb_dst(skb)->dev;
305 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
307 skb->dev = dev;
308 skb->protocol = htons(ETH_P_IP);
310 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 ip_finish_output,
312 !(IPCB(skb)->flags & IPSKB_REROUTED));
315 int ip_queue_xmit(struct sk_buff *skb)
317 struct sock *sk = skb->sk;
318 struct inet_sock *inet = inet_sk(sk);
319 struct ip_options_rcu *inet_opt;
320 struct rtable *rt;
321 struct iphdr *iph;
322 int res;
324 /* Skip all of this if the packet is already routed,
325 * f.e. by something like SCTP.
327 rcu_read_lock();
328 inet_opt = rcu_dereference(inet->inet_opt);
329 rt = skb_rtable(skb);
330 if (rt != NULL)
331 goto packet_routed;
333 /* Make sure we can route this packet. */
334 rt = (struct rtable *)__sk_dst_check(sk, 0);
335 if (rt == NULL) {
336 struct flowi4 fl4;
337 __be32 daddr;
339 /* Use correct destination address if we have options. */
340 daddr = inet->inet_daddr;
341 if (inet_opt && inet_opt->opt.srr)
342 daddr = inet_opt->opt.faddr;
344 /* If this fails, retransmit mechanism of transport layer will
345 * keep trying until route appears or the connection times
346 * itself out.
348 rt = ip_route_output_ports(sock_net(sk), &fl4, sk,
349 daddr, inet->inet_saddr,
350 inet->inet_dport,
351 inet->inet_sport,
352 sk->sk_protocol,
353 RT_CONN_FLAGS(sk),
354 sk->sk_bound_dev_if);
355 if (IS_ERR(rt))
356 goto no_route;
357 sk_setup_caps(sk, &rt->dst);
359 skb_dst_set_noref(skb, &rt->dst);
361 packet_routed:
362 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_dst != rt->rt_gateway)
363 goto no_route;
365 /* OK, we know where to send it, allocate and build IP header. */
366 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
367 skb_reset_network_header(skb);
368 iph = ip_hdr(skb);
369 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
370 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
371 iph->frag_off = htons(IP_DF);
372 else
373 iph->frag_off = 0;
374 iph->ttl = ip_select_ttl(inet, &rt->dst);
375 iph->protocol = sk->sk_protocol;
376 iph->saddr = rt->rt_src;
377 iph->daddr = rt->rt_dst;
378 /* Transport layer set skb->h.foo itself. */
380 if (inet_opt && inet_opt->opt.optlen) {
381 iph->ihl += inet_opt->opt.optlen >> 2;
382 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
385 ip_select_ident_more(iph, &rt->dst, sk,
386 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
388 skb->priority = sk->sk_priority;
389 skb->mark = sk->sk_mark;
391 res = ip_local_out(skb);
392 rcu_read_unlock();
393 return res;
395 no_route:
396 rcu_read_unlock();
397 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
398 kfree_skb(skb);
399 return -EHOSTUNREACH;
401 EXPORT_SYMBOL(ip_queue_xmit);
404 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
406 to->pkt_type = from->pkt_type;
407 to->priority = from->priority;
408 to->protocol = from->protocol;
409 skb_dst_drop(to);
410 skb_dst_copy(to, from);
411 to->dev = from->dev;
412 to->mark = from->mark;
414 /* Copy the flags to each fragment. */
415 IPCB(to)->flags = IPCB(from)->flags;
417 #ifdef CONFIG_NET_SCHED
418 to->tc_index = from->tc_index;
419 #endif
420 nf_copy(to, from);
421 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
422 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
423 to->nf_trace = from->nf_trace;
424 #endif
425 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
426 to->ipvs_property = from->ipvs_property;
427 #endif
428 skb_copy_secmark(to, from);
432 * This IP datagram is too large to be sent in one piece. Break it up into
433 * smaller pieces (each of size equal to IP header plus
434 * a block of the data of the original IP data part) that will yet fit in a
435 * single device frame, and queue such a frame for sending.
438 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
440 struct iphdr *iph;
441 int ptr;
442 struct net_device *dev;
443 struct sk_buff *skb2;
444 unsigned int mtu, hlen, left, len, ll_rs;
445 int offset;
446 __be16 not_last_frag;
447 struct rtable *rt = skb_rtable(skb);
448 int err = 0;
450 dev = rt->dst.dev;
453 * Point into the IP datagram header.
456 iph = ip_hdr(skb);
458 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
459 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
460 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
461 htonl(ip_skb_dst_mtu(skb)));
462 kfree_skb(skb);
463 return -EMSGSIZE;
467 * Setup starting values.
470 hlen = iph->ihl * 4;
471 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
472 #ifdef CONFIG_BRIDGE_NETFILTER
473 if (skb->nf_bridge)
474 mtu -= nf_bridge_mtu_reduction(skb);
475 #endif
476 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
478 /* When frag_list is given, use it. First, check its validity:
479 * some transformers could create wrong frag_list or break existing
480 * one, it is not prohibited. In this case fall back to copying.
482 * LATER: this step can be merged to real generation of fragments,
483 * we can switch to copy when see the first bad fragment.
485 if (skb_has_frag_list(skb)) {
486 struct sk_buff *frag, *frag2;
487 int first_len = skb_pagelen(skb);
489 if (first_len - hlen > mtu ||
490 ((first_len - hlen) & 7) ||
491 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
492 skb_cloned(skb))
493 goto slow_path;
495 skb_walk_frags(skb, frag) {
496 /* Correct geometry. */
497 if (frag->len > mtu ||
498 ((frag->len & 7) && frag->next) ||
499 skb_headroom(frag) < hlen)
500 goto slow_path_clean;
502 /* Partially cloned skb? */
503 if (skb_shared(frag))
504 goto slow_path_clean;
506 BUG_ON(frag->sk);
507 if (skb->sk) {
508 frag->sk = skb->sk;
509 frag->destructor = sock_wfree;
511 skb->truesize -= frag->truesize;
514 /* Everything is OK. Generate! */
516 err = 0;
517 offset = 0;
518 frag = skb_shinfo(skb)->frag_list;
519 skb_frag_list_init(skb);
520 skb->data_len = first_len - skb_headlen(skb);
521 skb->len = first_len;
522 iph->tot_len = htons(first_len);
523 iph->frag_off = htons(IP_MF);
524 ip_send_check(iph);
526 for (;;) {
527 /* Prepare header of the next frame,
528 * before previous one went down. */
529 if (frag) {
530 frag->ip_summed = CHECKSUM_NONE;
531 skb_reset_transport_header(frag);
532 __skb_push(frag, hlen);
533 skb_reset_network_header(frag);
534 memcpy(skb_network_header(frag), iph, hlen);
535 iph = ip_hdr(frag);
536 iph->tot_len = htons(frag->len);
537 ip_copy_metadata(frag, skb);
538 if (offset == 0)
539 ip_options_fragment(frag);
540 offset += skb->len - hlen;
541 iph->frag_off = htons(offset>>3);
542 if (frag->next != NULL)
543 iph->frag_off |= htons(IP_MF);
544 /* Ready, complete checksum */
545 ip_send_check(iph);
548 err = output(skb);
550 if (!err)
551 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
552 if (err || !frag)
553 break;
555 skb = frag;
556 frag = skb->next;
557 skb->next = NULL;
560 if (err == 0) {
561 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
562 return 0;
565 while (frag) {
566 skb = frag->next;
567 kfree_skb(frag);
568 frag = skb;
570 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
571 return err;
573 slow_path_clean:
574 skb_walk_frags(skb, frag2) {
575 if (frag2 == frag)
576 break;
577 frag2->sk = NULL;
578 frag2->destructor = NULL;
579 skb->truesize += frag2->truesize;
583 slow_path:
584 left = skb->len - hlen; /* Space per frame */
585 ptr = hlen; /* Where to start from */
587 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
588 * we need to make room for the encapsulating header
590 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
593 * Fragment the datagram.
596 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
597 not_last_frag = iph->frag_off & htons(IP_MF);
600 * Keep copying data until we run out.
603 while (left > 0) {
604 len = left;
605 /* IF: it doesn't fit, use 'mtu' - the data space left */
606 if (len > mtu)
607 len = mtu;
608 /* IF: we are not sending up to and including the packet end
609 then align the next start on an eight byte boundary */
610 if (len < left) {
611 len &= ~7;
614 * Allocate buffer.
617 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
618 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
619 err = -ENOMEM;
620 goto fail;
624 * Set up data on packet
627 ip_copy_metadata(skb2, skb);
628 skb_reserve(skb2, ll_rs);
629 skb_put(skb2, len + hlen);
630 skb_reset_network_header(skb2);
631 skb2->transport_header = skb2->network_header + hlen;
634 * Charge the memory for the fragment to any owner
635 * it might possess
638 if (skb->sk)
639 skb_set_owner_w(skb2, skb->sk);
642 * Copy the packet header into the new buffer.
645 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
648 * Copy a block of the IP datagram.
650 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
651 BUG();
652 left -= len;
655 * Fill in the new header fields.
657 iph = ip_hdr(skb2);
658 iph->frag_off = htons((offset >> 3));
660 /* ANK: dirty, but effective trick. Upgrade options only if
661 * the segment to be fragmented was THE FIRST (otherwise,
662 * options are already fixed) and make it ONCE
663 * on the initial skb, so that all the following fragments
664 * will inherit fixed options.
666 if (offset == 0)
667 ip_options_fragment(skb);
670 * Added AC : If we are fragmenting a fragment that's not the
671 * last fragment then keep MF on each bit
673 if (left > 0 || not_last_frag)
674 iph->frag_off |= htons(IP_MF);
675 ptr += len;
676 offset += len;
679 * Put this fragment into the sending queue.
681 iph->tot_len = htons(len + hlen);
683 ip_send_check(iph);
685 err = output(skb2);
686 if (err)
687 goto fail;
689 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
691 kfree_skb(skb);
692 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
693 return err;
695 fail:
696 kfree_skb(skb);
697 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
698 return err;
700 EXPORT_SYMBOL(ip_fragment);
703 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
705 struct iovec *iov = from;
707 if (skb->ip_summed == CHECKSUM_PARTIAL) {
708 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
709 return -EFAULT;
710 } else {
711 __wsum csum = 0;
712 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
713 return -EFAULT;
714 skb->csum = csum_block_add(skb->csum, csum, odd);
716 return 0;
718 EXPORT_SYMBOL(ip_generic_getfrag);
720 static inline __wsum
721 csum_page(struct page *page, int offset, int copy)
723 char *kaddr;
724 __wsum csum;
725 kaddr = kmap(page);
726 csum = csum_partial(kaddr + offset, copy, 0);
727 kunmap(page);
728 return csum;
731 static inline int ip_ufo_append_data(struct sock *sk,
732 struct sk_buff_head *queue,
733 int getfrag(void *from, char *to, int offset, int len,
734 int odd, struct sk_buff *skb),
735 void *from, int length, int hh_len, int fragheaderlen,
736 int transhdrlen, int mtu, unsigned int flags)
738 struct sk_buff *skb;
739 int err;
741 /* There is support for UDP fragmentation offload by network
742 * device, so create one single skb packet containing complete
743 * udp datagram
745 if ((skb = skb_peek_tail(queue)) == NULL) {
746 skb = sock_alloc_send_skb(sk,
747 hh_len + fragheaderlen + transhdrlen + 20,
748 (flags & MSG_DONTWAIT), &err);
750 if (skb == NULL)
751 return err;
753 /* reserve space for Hardware header */
754 skb_reserve(skb, hh_len);
756 /* create space for UDP/IP header */
757 skb_put(skb, fragheaderlen + transhdrlen);
759 /* initialize network header pointer */
760 skb_reset_network_header(skb);
762 /* initialize protocol header pointer */
763 skb->transport_header = skb->network_header + fragheaderlen;
765 skb->ip_summed = CHECKSUM_PARTIAL;
766 skb->csum = 0;
768 /* specify the length of each IP datagram fragment */
769 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
770 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
771 __skb_queue_tail(queue, skb);
774 return skb_append_datato_frags(sk, skb, getfrag, from,
775 (length - transhdrlen));
778 static int __ip_append_data(struct sock *sk, struct sk_buff_head *queue,
779 struct inet_cork *cork,
780 int getfrag(void *from, char *to, int offset,
781 int len, int odd, struct sk_buff *skb),
782 void *from, int length, int transhdrlen,
783 unsigned int flags)
785 struct inet_sock *inet = inet_sk(sk);
786 struct sk_buff *skb;
788 struct ip_options *opt = cork->opt;
789 int hh_len;
790 int exthdrlen;
791 int mtu;
792 int copy;
793 int err;
794 int offset = 0;
795 unsigned int maxfraglen, fragheaderlen;
796 int csummode = CHECKSUM_NONE;
797 struct rtable *rt = (struct rtable *)cork->dst;
799 exthdrlen = transhdrlen ? rt->dst.header_len : 0;
800 length += exthdrlen;
801 transhdrlen += exthdrlen;
802 mtu = cork->fragsize;
804 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
806 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
807 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
809 if (cork->length + length > 0xFFFF - fragheaderlen) {
810 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
811 mtu-exthdrlen);
812 return -EMSGSIZE;
816 * transhdrlen > 0 means that this is the first fragment and we wish
817 * it won't be fragmented in the future.
819 if (transhdrlen &&
820 length + fragheaderlen <= mtu &&
821 rt->dst.dev->features & NETIF_F_V4_CSUM &&
822 !exthdrlen)
823 csummode = CHECKSUM_PARTIAL;
825 skb = skb_peek_tail(queue);
827 cork->length += length;
828 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
829 (sk->sk_protocol == IPPROTO_UDP) &&
830 (rt->dst.dev->features & NETIF_F_UFO)) {
831 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
832 hh_len, fragheaderlen, transhdrlen,
833 mtu, flags);
834 if (err)
835 goto error;
836 return 0;
839 /* So, what's going on in the loop below?
841 * We use calculated fragment length to generate chained skb,
842 * each of segments is IP fragment ready for sending to network after
843 * adding appropriate IP header.
846 if (!skb)
847 goto alloc_new_skb;
849 while (length > 0) {
850 /* Check if the remaining data fits into current packet. */
851 copy = mtu - skb->len;
852 if (copy < length)
853 copy = maxfraglen - skb->len;
854 if (copy <= 0) {
855 char *data;
856 unsigned int datalen;
857 unsigned int fraglen;
858 unsigned int fraggap;
859 unsigned int alloclen;
860 struct sk_buff *skb_prev;
861 alloc_new_skb:
862 skb_prev = skb;
863 if (skb_prev)
864 fraggap = skb_prev->len - maxfraglen;
865 else
866 fraggap = 0;
869 * If remaining data exceeds the mtu,
870 * we know we need more fragment(s).
872 datalen = length + fraggap;
873 if (datalen > mtu - fragheaderlen)
874 datalen = maxfraglen - fragheaderlen;
875 fraglen = datalen + fragheaderlen;
877 if ((flags & MSG_MORE) &&
878 !(rt->dst.dev->features&NETIF_F_SG))
879 alloclen = mtu;
880 else
881 alloclen = fraglen;
883 /* The last fragment gets additional space at tail.
884 * Note, with MSG_MORE we overallocate on fragments,
885 * because we have no idea what fragment will be
886 * the last.
888 if (datalen == length + fraggap) {
889 alloclen += rt->dst.trailer_len;
890 /* make sure mtu is not reached */
891 if (datalen > mtu - fragheaderlen - rt->dst.trailer_len)
892 datalen -= ALIGN(rt->dst.trailer_len, 8);
894 if (transhdrlen) {
895 skb = sock_alloc_send_skb(sk,
896 alloclen + hh_len + 15,
897 (flags & MSG_DONTWAIT), &err);
898 } else {
899 skb = NULL;
900 if (atomic_read(&sk->sk_wmem_alloc) <=
901 2 * sk->sk_sndbuf)
902 skb = sock_wmalloc(sk,
903 alloclen + hh_len + 15, 1,
904 sk->sk_allocation);
905 if (unlikely(skb == NULL))
906 err = -ENOBUFS;
907 else
908 /* only the initial fragment is
909 time stamped */
910 cork->tx_flags = 0;
912 if (skb == NULL)
913 goto error;
916 * Fill in the control structures
918 skb->ip_summed = csummode;
919 skb->csum = 0;
920 skb_reserve(skb, hh_len);
921 skb_shinfo(skb)->tx_flags = cork->tx_flags;
924 * Find where to start putting bytes.
926 data = skb_put(skb, fraglen);
927 skb_set_network_header(skb, exthdrlen);
928 skb->transport_header = (skb->network_header +
929 fragheaderlen);
930 data += fragheaderlen;
932 if (fraggap) {
933 skb->csum = skb_copy_and_csum_bits(
934 skb_prev, maxfraglen,
935 data + transhdrlen, fraggap, 0);
936 skb_prev->csum = csum_sub(skb_prev->csum,
937 skb->csum);
938 data += fraggap;
939 pskb_trim_unique(skb_prev, maxfraglen);
942 copy = datalen - transhdrlen - fraggap;
943 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
944 err = -EFAULT;
945 kfree_skb(skb);
946 goto error;
949 offset += copy;
950 length -= datalen - fraggap;
951 transhdrlen = 0;
952 exthdrlen = 0;
953 csummode = CHECKSUM_NONE;
956 * Put the packet on the pending queue.
958 __skb_queue_tail(queue, skb);
959 continue;
962 if (copy > length)
963 copy = length;
965 if (!(rt->dst.dev->features&NETIF_F_SG)) {
966 unsigned int off;
968 off = skb->len;
969 if (getfrag(from, skb_put(skb, copy),
970 offset, copy, off, skb) < 0) {
971 __skb_trim(skb, off);
972 err = -EFAULT;
973 goto error;
975 } else {
976 int i = skb_shinfo(skb)->nr_frags;
977 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
978 struct page *page = cork->page;
979 int off = cork->off;
980 unsigned int left;
982 if (page && (left = PAGE_SIZE - off) > 0) {
983 if (copy >= left)
984 copy = left;
985 if (page != frag->page) {
986 if (i == MAX_SKB_FRAGS) {
987 err = -EMSGSIZE;
988 goto error;
990 get_page(page);
991 skb_fill_page_desc(skb, i, page, off, 0);
992 frag = &skb_shinfo(skb)->frags[i];
994 } else if (i < MAX_SKB_FRAGS) {
995 if (copy > PAGE_SIZE)
996 copy = PAGE_SIZE;
997 page = alloc_pages(sk->sk_allocation, 0);
998 if (page == NULL) {
999 err = -ENOMEM;
1000 goto error;
1002 cork->page = page;
1003 cork->off = 0;
1005 skb_fill_page_desc(skb, i, page, 0, 0);
1006 frag = &skb_shinfo(skb)->frags[i];
1007 } else {
1008 err = -EMSGSIZE;
1009 goto error;
1011 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1012 err = -EFAULT;
1013 goto error;
1015 cork->off += copy;
1016 frag->size += copy;
1017 skb->len += copy;
1018 skb->data_len += copy;
1019 skb->truesize += copy;
1020 atomic_add(copy, &sk->sk_wmem_alloc);
1022 offset += copy;
1023 length -= copy;
1026 return 0;
1028 error:
1029 cork->length -= length;
1030 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1031 return err;
1034 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1035 struct ipcm_cookie *ipc, struct rtable **rtp)
1037 struct inet_sock *inet = inet_sk(sk);
1038 struct ip_options_rcu *opt;
1039 struct rtable *rt;
1042 * setup for corking.
1044 opt = ipc->opt;
1045 if (opt) {
1046 if (cork->opt == NULL) {
1047 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1048 sk->sk_allocation);
1049 if (unlikely(cork->opt == NULL))
1050 return -ENOBUFS;
1052 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1053 cork->flags |= IPCORK_OPT;
1054 cork->addr = ipc->addr;
1056 rt = *rtp;
1057 if (unlikely(!rt))
1058 return -EFAULT;
1060 * We steal reference to this route, caller should not release it
1062 *rtp = NULL;
1063 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1064 rt->dst.dev->mtu : dst_mtu(rt->dst.path);
1065 cork->dst = &rt->dst;
1066 cork->length = 0;
1067 cork->tx_flags = ipc->tx_flags;
1068 cork->page = NULL;
1069 cork->off = 0;
1071 return 0;
1075 * ip_append_data() and ip_append_page() can make one large IP datagram
1076 * from many pieces of data. Each pieces will be holded on the socket
1077 * until ip_push_pending_frames() is called. Each piece can be a page
1078 * or non-page data.
1080 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1081 * this interface potentially.
1083 * LATER: length must be adjusted by pad at tail, when it is required.
1085 int ip_append_data(struct sock *sk,
1086 int getfrag(void *from, char *to, int offset, int len,
1087 int odd, struct sk_buff *skb),
1088 void *from, int length, int transhdrlen,
1089 struct ipcm_cookie *ipc, struct rtable **rtp,
1090 unsigned int flags)
1092 struct inet_sock *inet = inet_sk(sk);
1093 int err;
1095 if (flags&MSG_PROBE)
1096 return 0;
1098 if (skb_queue_empty(&sk->sk_write_queue)) {
1099 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1100 if (err)
1101 return err;
1102 } else {
1103 transhdrlen = 0;
1106 return __ip_append_data(sk, &sk->sk_write_queue, &inet->cork.base, getfrag,
1107 from, length, transhdrlen, flags);
1110 ssize_t ip_append_page(struct sock *sk, struct page *page,
1111 int offset, size_t size, int flags)
1113 struct inet_sock *inet = inet_sk(sk);
1114 struct sk_buff *skb;
1115 struct rtable *rt;
1116 struct ip_options *opt = NULL;
1117 struct inet_cork *cork;
1118 int hh_len;
1119 int mtu;
1120 int len;
1121 int err;
1122 unsigned int maxfraglen, fragheaderlen, fraggap;
1124 if (inet->hdrincl)
1125 return -EPERM;
1127 if (flags&MSG_PROBE)
1128 return 0;
1130 if (skb_queue_empty(&sk->sk_write_queue))
1131 return -EINVAL;
1133 cork = &inet->cork.base;
1134 rt = (struct rtable *)cork->dst;
1135 if (cork->flags & IPCORK_OPT)
1136 opt = cork->opt;
1138 if (!(rt->dst.dev->features&NETIF_F_SG))
1139 return -EOPNOTSUPP;
1141 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1142 mtu = cork->fragsize;
1144 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1145 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1147 if (cork->length + size > 0xFFFF - fragheaderlen) {
1148 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1149 return -EMSGSIZE;
1152 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1153 return -EINVAL;
1155 cork->length += size;
1156 if ((size + skb->len > mtu) &&
1157 (sk->sk_protocol == IPPROTO_UDP) &&
1158 (rt->dst.dev->features & NETIF_F_UFO)) {
1159 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1160 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1164 while (size > 0) {
1165 int i;
1167 if (skb_is_gso(skb))
1168 len = size;
1169 else {
1171 /* Check if the remaining data fits into current packet. */
1172 len = mtu - skb->len;
1173 if (len < size)
1174 len = maxfraglen - skb->len;
1176 if (len <= 0) {
1177 struct sk_buff *skb_prev;
1178 int alloclen;
1180 skb_prev = skb;
1181 fraggap = skb_prev->len - maxfraglen;
1183 alloclen = fragheaderlen + hh_len + fraggap + 15;
1184 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1185 if (unlikely(!skb)) {
1186 err = -ENOBUFS;
1187 goto error;
1191 * Fill in the control structures
1193 skb->ip_summed = CHECKSUM_NONE;
1194 skb->csum = 0;
1195 skb_reserve(skb, hh_len);
1198 * Find where to start putting bytes.
1200 skb_put(skb, fragheaderlen + fraggap);
1201 skb_reset_network_header(skb);
1202 skb->transport_header = (skb->network_header +
1203 fragheaderlen);
1204 if (fraggap) {
1205 skb->csum = skb_copy_and_csum_bits(skb_prev,
1206 maxfraglen,
1207 skb_transport_header(skb),
1208 fraggap, 0);
1209 skb_prev->csum = csum_sub(skb_prev->csum,
1210 skb->csum);
1211 pskb_trim_unique(skb_prev, maxfraglen);
1215 * Put the packet on the pending queue.
1217 __skb_queue_tail(&sk->sk_write_queue, skb);
1218 continue;
1221 i = skb_shinfo(skb)->nr_frags;
1222 if (len > size)
1223 len = size;
1224 if (skb_can_coalesce(skb, i, page, offset)) {
1225 skb_shinfo(skb)->frags[i-1].size += len;
1226 } else if (i < MAX_SKB_FRAGS) {
1227 get_page(page);
1228 skb_fill_page_desc(skb, i, page, offset, len);
1229 } else {
1230 err = -EMSGSIZE;
1231 goto error;
1234 if (skb->ip_summed == CHECKSUM_NONE) {
1235 __wsum csum;
1236 csum = csum_page(page, offset, len);
1237 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1240 skb->len += len;
1241 skb->data_len += len;
1242 skb->truesize += len;
1243 atomic_add(len, &sk->sk_wmem_alloc);
1244 offset += len;
1245 size -= len;
1247 return 0;
1249 error:
1250 cork->length -= size;
1251 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1252 return err;
1255 static void ip_cork_release(struct inet_cork *cork)
1257 cork->flags &= ~IPCORK_OPT;
1258 kfree(cork->opt);
1259 cork->opt = NULL;
1260 dst_release(cork->dst);
1261 cork->dst = NULL;
1265 * Combined all pending IP fragments on the socket as one IP datagram
1266 * and push them out.
1268 struct sk_buff *__ip_make_skb(struct sock *sk,
1269 struct sk_buff_head *queue,
1270 struct inet_cork *cork)
1272 struct sk_buff *skb, *tmp_skb;
1273 struct sk_buff **tail_skb;
1274 struct inet_sock *inet = inet_sk(sk);
1275 struct net *net = sock_net(sk);
1276 struct ip_options *opt = NULL;
1277 struct rtable *rt = (struct rtable *)cork->dst;
1278 struct iphdr *iph;
1279 __be16 df = 0;
1280 __u8 ttl;
1282 if ((skb = __skb_dequeue(queue)) == NULL)
1283 goto out;
1284 tail_skb = &(skb_shinfo(skb)->frag_list);
1286 /* move skb->data to ip header from ext header */
1287 if (skb->data < skb_network_header(skb))
1288 __skb_pull(skb, skb_network_offset(skb));
1289 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1290 __skb_pull(tmp_skb, skb_network_header_len(skb));
1291 *tail_skb = tmp_skb;
1292 tail_skb = &(tmp_skb->next);
1293 skb->len += tmp_skb->len;
1294 skb->data_len += tmp_skb->len;
1295 skb->truesize += tmp_skb->truesize;
1296 tmp_skb->destructor = NULL;
1297 tmp_skb->sk = NULL;
1300 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1301 * to fragment the frame generated here. No matter, what transforms
1302 * how transforms change size of the packet, it will come out.
1304 if (inet->pmtudisc < IP_PMTUDISC_DO)
1305 skb->local_df = 1;
1307 /* DF bit is set when we want to see DF on outgoing frames.
1308 * If local_df is set too, we still allow to fragment this frame
1309 * locally. */
1310 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1311 (skb->len <= dst_mtu(&rt->dst) &&
1312 ip_dont_fragment(sk, &rt->dst)))
1313 df = htons(IP_DF);
1315 if (cork->flags & IPCORK_OPT)
1316 opt = cork->opt;
1318 if (rt->rt_type == RTN_MULTICAST)
1319 ttl = inet->mc_ttl;
1320 else
1321 ttl = ip_select_ttl(inet, &rt->dst);
1323 iph = (struct iphdr *)skb->data;
1324 iph->version = 4;
1325 iph->ihl = 5;
1326 if (opt) {
1327 iph->ihl += opt->optlen>>2;
1328 ip_options_build(skb, opt, cork->addr, rt, 0);
1330 iph->tos = inet->tos;
1331 iph->frag_off = df;
1332 ip_select_ident(iph, &rt->dst, sk);
1333 iph->ttl = ttl;
1334 iph->protocol = sk->sk_protocol;
1335 iph->saddr = rt->rt_src;
1336 iph->daddr = rt->rt_dst;
1338 skb->priority = sk->sk_priority;
1339 skb->mark = sk->sk_mark;
1341 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1342 * on dst refcount
1344 cork->dst = NULL;
1345 skb_dst_set(skb, &rt->dst);
1347 if (iph->protocol == IPPROTO_ICMP)
1348 icmp_out_count(net, ((struct icmphdr *)
1349 skb_transport_header(skb))->type);
1351 ip_cork_release(cork);
1352 out:
1353 return skb;
1356 int ip_send_skb(struct sk_buff *skb)
1358 struct net *net = sock_net(skb->sk);
1359 int err;
1361 err = ip_local_out(skb);
1362 if (err) {
1363 if (err > 0)
1364 err = net_xmit_errno(err);
1365 if (err)
1366 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1369 return err;
1372 int ip_push_pending_frames(struct sock *sk)
1374 struct sk_buff *skb;
1376 skb = ip_finish_skb(sk);
1377 if (!skb)
1378 return 0;
1380 /* Netfilter gets whole the not fragmented skb. */
1381 return ip_send_skb(skb);
1385 * Throw away all pending data on the socket.
1387 static void __ip_flush_pending_frames(struct sock *sk,
1388 struct sk_buff_head *queue,
1389 struct inet_cork *cork)
1391 struct sk_buff *skb;
1393 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1394 kfree_skb(skb);
1396 ip_cork_release(cork);
1399 void ip_flush_pending_frames(struct sock *sk)
1401 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1404 struct sk_buff *ip_make_skb(struct sock *sk,
1405 int getfrag(void *from, char *to, int offset,
1406 int len, int odd, struct sk_buff *skb),
1407 void *from, int length, int transhdrlen,
1408 struct ipcm_cookie *ipc, struct rtable **rtp,
1409 unsigned int flags)
1411 struct inet_cork cork = {};
1412 struct sk_buff_head queue;
1413 int err;
1415 if (flags & MSG_PROBE)
1416 return NULL;
1418 __skb_queue_head_init(&queue);
1420 err = ip_setup_cork(sk, &cork, ipc, rtp);
1421 if (err)
1422 return ERR_PTR(err);
1424 err = __ip_append_data(sk, &queue, &cork, getfrag,
1425 from, length, transhdrlen, flags);
1426 if (err) {
1427 __ip_flush_pending_frames(sk, &queue, &cork);
1428 return ERR_PTR(err);
1431 return __ip_make_skb(sk, &queue, &cork);
1435 * Fetch data from kernel space and fill in checksum if needed.
1437 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1438 int len, int odd, struct sk_buff *skb)
1440 __wsum csum;
1442 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1443 skb->csum = csum_block_add(skb->csum, csum, odd);
1444 return 0;
1448 * Generic function to send a packet as reply to another packet.
1449 * Used to send TCP resets so far. ICMP should use this function too.
1451 * Should run single threaded per socket because it uses the sock
1452 * structure to pass arguments.
1454 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1455 unsigned int len)
1457 struct inet_sock *inet = inet_sk(sk);
1458 struct ip_options_data replyopts;
1459 struct ipcm_cookie ipc;
1460 __be32 daddr;
1461 struct rtable *rt = skb_rtable(skb);
1463 if (ip_options_echo(&replyopts.opt.opt, skb))
1464 return;
1466 daddr = ipc.addr = rt->rt_src;
1467 ipc.opt = NULL;
1468 ipc.tx_flags = 0;
1470 if (replyopts.opt.opt.optlen) {
1471 ipc.opt = &replyopts.opt;
1473 if (replyopts.opt.opt.srr)
1474 daddr = replyopts.opt.opt.faddr;
1478 struct flowi4 fl4;
1480 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1481 RT_TOS(ip_hdr(skb)->tos),
1482 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1483 ip_reply_arg_flowi_flags(arg),
1484 daddr, rt->rt_spec_dst,
1485 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1486 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1487 rt = ip_route_output_key(sock_net(sk), &fl4);
1488 if (IS_ERR(rt))
1489 return;
1492 /* And let IP do all the hard work.
1494 This chunk is not reenterable, hence spinlock.
1495 Note that it uses the fact, that this function is called
1496 with locally disabled BH and that sk cannot be already spinlocked.
1498 bh_lock_sock(sk);
1499 inet->tos = ip_hdr(skb)->tos;
1500 sk->sk_priority = skb->priority;
1501 sk->sk_protocol = ip_hdr(skb)->protocol;
1502 sk->sk_bound_dev_if = arg->bound_dev_if;
1503 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1504 &ipc, &rt, MSG_DONTWAIT);
1505 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1506 if (arg->csumoffset >= 0)
1507 *((__sum16 *)skb_transport_header(skb) +
1508 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1509 arg->csum));
1510 skb->ip_summed = CHECKSUM_NONE;
1511 ip_push_pending_frames(sk);
1514 bh_unlock_sock(sk);
1516 ip_rt_put(rt);
1519 void __init ip_init(void)
1521 ip_rt_init();
1522 inet_initpeers();
1524 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1525 igmp_mc_proc_init();
1526 #endif