2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
56 /* Data structures. */
58 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
69 .signaled = RCU_GP_IDLE, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched_state
);
80 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
82 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
83 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
85 static struct rcu_state
*rcu_state
;
87 int rcu_scheduler_active __read_mostly
;
88 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
91 * Control variables for per-CPU and per-rcu_node kthreads. These
92 * handle all flavors of RCU.
94 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
95 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
96 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu
);
97 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
98 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
99 static char rcu_kthreads_spawnable
;
101 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
102 static void invoke_rcu_cpu_kthread(void);
104 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
115 unsigned long rcutorture_testseq
;
116 unsigned long rcutorture_vernum
;
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
123 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
125 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
129 * Note a quiescent state. Because we do not need to know
130 * how many quiescent states passed, just if there was at least
131 * one since the start of the grace period, this just sets a flag.
133 void rcu_sched_qs(int cpu
)
135 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
137 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
139 rdp
->passed_quiesc
= 1;
142 void rcu_bh_qs(int cpu
)
144 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
146 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
148 rdp
->passed_quiesc
= 1;
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
155 void rcu_note_context_switch(int cpu
)
158 rcu_preempt_note_context_switch(cpu
);
160 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
163 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
164 .dynticks_nesting
= 1,
165 .dynticks
= ATOMIC_INIT(1),
167 #endif /* #ifdef CONFIG_NO_HZ */
169 static int blimit
= 10; /* Maximum callbacks per softirq. */
170 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
171 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
173 module_param(blimit
, int, 0);
174 module_param(qhimark
, int, 0);
175 module_param(qlowmark
, int, 0);
177 int rcu_cpu_stall_suppress __read_mostly
;
178 module_param(rcu_cpu_stall_suppress
, int, 0644);
180 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
181 static int rcu_pending(int cpu
);
184 * Return the number of RCU-sched batches processed thus far for debug & stats.
186 long rcu_batches_completed_sched(void)
188 return rcu_sched_state
.completed
;
190 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
193 * Return the number of RCU BH batches processed thus far for debug & stats.
195 long rcu_batches_completed_bh(void)
197 return rcu_bh_state
.completed
;
199 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
202 * Force a quiescent state for RCU BH.
204 void rcu_bh_force_quiescent_state(void)
206 force_quiescent_state(&rcu_bh_state
, 0);
208 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
211 * Record the number of times rcutorture tests have been initiated and
212 * terminated. This information allows the debugfs tracing stats to be
213 * correlated to the rcutorture messages, even when the rcutorture module
214 * is being repeatedly loaded and unloaded. In other words, we cannot
215 * store this state in rcutorture itself.
217 void rcutorture_record_test_transition(void)
219 rcutorture_testseq
++;
220 rcutorture_vernum
= 0;
222 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
225 * Record the number of writer passes through the current rcutorture test.
226 * This is also used to correlate debugfs tracing stats with the rcutorture
229 void rcutorture_record_progress(unsigned long vernum
)
233 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
236 * Force a quiescent state for RCU-sched.
238 void rcu_sched_force_quiescent_state(void)
240 force_quiescent_state(&rcu_sched_state
, 0);
242 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
245 * Does the CPU have callbacks ready to be invoked?
248 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
250 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
254 * Does the current CPU require a yet-as-unscheduled grace period?
257 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
259 return *rdp
->nxttail
[RCU_DONE_TAIL
] && !rcu_gp_in_progress(rsp
);
263 * Return the root node of the specified rcu_state structure.
265 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
267 return &rsp
->node
[0];
273 * If the specified CPU is offline, tell the caller that it is in
274 * a quiescent state. Otherwise, whack it with a reschedule IPI.
275 * Grace periods can end up waiting on an offline CPU when that
276 * CPU is in the process of coming online -- it will be added to the
277 * rcu_node bitmasks before it actually makes it online. The same thing
278 * can happen while a CPU is in the process of coming online. Because this
279 * race is quite rare, we check for it after detecting that the grace
280 * period has been delayed rather than checking each and every CPU
281 * each and every time we start a new grace period.
283 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
286 * If the CPU is offline, it is in a quiescent state. We can
287 * trust its state not to change because interrupts are disabled.
289 if (cpu_is_offline(rdp
->cpu
)) {
294 /* If preemptible RCU, no point in sending reschedule IPI. */
295 if (rdp
->preemptible
)
298 /* The CPU is online, so send it a reschedule IPI. */
299 if (rdp
->cpu
!= smp_processor_id())
300 smp_send_reschedule(rdp
->cpu
);
307 #endif /* #ifdef CONFIG_SMP */
312 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
314 * Enter nohz mode, in other words, -leave- the mode in which RCU
315 * read-side critical sections can occur. (Though RCU read-side
316 * critical sections can occur in irq handlers in nohz mode, a possibility
317 * handled by rcu_irq_enter() and rcu_irq_exit()).
319 void rcu_enter_nohz(void)
322 struct rcu_dynticks
*rdtp
;
324 local_irq_save(flags
);
325 rdtp
= &__get_cpu_var(rcu_dynticks
);
326 if (--rdtp
->dynticks_nesting
) {
327 local_irq_restore(flags
);
330 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
331 smp_mb__before_atomic_inc(); /* See above. */
332 atomic_inc(&rdtp
->dynticks
);
333 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
334 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
335 local_irq_restore(flags
);
337 /* If the interrupt queued a callback, get out of dyntick mode. */
339 (__get_cpu_var(rcu_sched_data
).nxtlist
||
340 __get_cpu_var(rcu_bh_data
).nxtlist
||
341 rcu_preempt_needs_cpu(smp_processor_id())))
346 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
348 * Exit nohz mode, in other words, -enter- the mode in which RCU
349 * read-side critical sections normally occur.
351 void rcu_exit_nohz(void)
354 struct rcu_dynticks
*rdtp
;
356 local_irq_save(flags
);
357 rdtp
= &__get_cpu_var(rcu_dynticks
);
358 if (rdtp
->dynticks_nesting
++) {
359 local_irq_restore(flags
);
362 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
363 atomic_inc(&rdtp
->dynticks
);
364 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
365 smp_mb__after_atomic_inc(); /* See above. */
366 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
367 local_irq_restore(flags
);
371 * rcu_nmi_enter - inform RCU of entry to NMI context
373 * If the CPU was idle with dynamic ticks active, and there is no
374 * irq handler running, this updates rdtp->dynticks_nmi to let the
375 * RCU grace-period handling know that the CPU is active.
377 void rcu_nmi_enter(void)
379 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
381 if (rdtp
->dynticks_nmi_nesting
== 0 &&
382 (atomic_read(&rdtp
->dynticks
) & 0x1))
384 rdtp
->dynticks_nmi_nesting
++;
385 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
386 atomic_inc(&rdtp
->dynticks
);
387 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
388 smp_mb__after_atomic_inc(); /* See above. */
389 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
393 * rcu_nmi_exit - inform RCU of exit from NMI context
395 * If the CPU was idle with dynamic ticks active, and there is no
396 * irq handler running, this updates rdtp->dynticks_nmi to let the
397 * RCU grace-period handling know that the CPU is no longer active.
399 void rcu_nmi_exit(void)
401 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
403 if (rdtp
->dynticks_nmi_nesting
== 0 ||
404 --rdtp
->dynticks_nmi_nesting
!= 0)
406 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
407 smp_mb__before_atomic_inc(); /* See above. */
408 atomic_inc(&rdtp
->dynticks
);
409 smp_mb__after_atomic_inc(); /* Force delay to next write. */
410 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
414 * rcu_irq_enter - inform RCU of entry to hard irq context
416 * If the CPU was idle with dynamic ticks active, this updates the
417 * rdtp->dynticks to let the RCU handling know that the CPU is active.
419 void rcu_irq_enter(void)
425 * rcu_irq_exit - inform RCU of exit from hard irq context
427 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
428 * to put let the RCU handling be aware that the CPU is going back to idle
431 void rcu_irq_exit(void)
439 * Snapshot the specified CPU's dynticks counter so that we can later
440 * credit them with an implicit quiescent state. Return 1 if this CPU
441 * is in dynticks idle mode, which is an extended quiescent state.
443 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
445 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
450 * Return true if the specified CPU has passed through a quiescent
451 * state by virtue of being in or having passed through an dynticks
452 * idle state since the last call to dyntick_save_progress_counter()
455 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
460 curr
= (unsigned long)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
461 snap
= (unsigned long)rdp
->dynticks_snap
;
464 * If the CPU passed through or entered a dynticks idle phase with
465 * no active irq/NMI handlers, then we can safely pretend that the CPU
466 * already acknowledged the request to pass through a quiescent
467 * state. Either way, that CPU cannot possibly be in an RCU
468 * read-side critical section that started before the beginning
469 * of the current RCU grace period.
471 if ((curr
& 0x1) == 0 || ULONG_CMP_GE(curr
, snap
+ 2)) {
476 /* Go check for the CPU being offline. */
477 return rcu_implicit_offline_qs(rdp
);
480 #endif /* #ifdef CONFIG_SMP */
482 #else /* #ifdef CONFIG_NO_HZ */
486 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
491 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
493 return rcu_implicit_offline_qs(rdp
);
496 #endif /* #ifdef CONFIG_SMP */
498 #endif /* #else #ifdef CONFIG_NO_HZ */
500 int rcu_cpu_stall_suppress __read_mostly
;
502 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
504 rsp
->gp_start
= jiffies
;
505 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
508 static void print_other_cpu_stall(struct rcu_state
*rsp
)
513 struct rcu_node
*rnp
= rcu_get_root(rsp
);
515 /* Only let one CPU complain about others per time interval. */
517 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
518 delta
= jiffies
- rsp
->jiffies_stall
;
519 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
520 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
523 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
526 * Now rat on any tasks that got kicked up to the root rcu_node
527 * due to CPU offlining.
529 rcu_print_task_stall(rnp
);
530 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
533 * OK, time to rat on our buddy...
534 * See Documentation/RCU/stallwarn.txt for info on how to debug
535 * RCU CPU stall warnings.
537 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks: {",
539 rcu_for_each_leaf_node(rsp
, rnp
) {
540 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
541 rcu_print_task_stall(rnp
);
542 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
543 if (rnp
->qsmask
== 0)
545 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
546 if (rnp
->qsmask
& (1UL << cpu
))
547 printk(" %d", rnp
->grplo
+ cpu
);
549 printk("} (detected by %d, t=%ld jiffies)\n",
550 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
551 trigger_all_cpu_backtrace();
553 /* If so configured, complain about tasks blocking the grace period. */
555 rcu_print_detail_task_stall(rsp
);
557 force_quiescent_state(rsp
, 0); /* Kick them all. */
560 static void print_cpu_stall(struct rcu_state
*rsp
)
563 struct rcu_node
*rnp
= rcu_get_root(rsp
);
566 * OK, time to rat on ourselves...
567 * See Documentation/RCU/stallwarn.txt for info on how to debug
568 * RCU CPU stall warnings.
570 printk(KERN_ERR
"INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
571 rsp
->name
, smp_processor_id(), jiffies
- rsp
->gp_start
);
572 trigger_all_cpu_backtrace();
574 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
575 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
577 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
578 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
580 set_need_resched(); /* kick ourselves to get things going. */
583 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
587 struct rcu_node
*rnp
;
589 if (rcu_cpu_stall_suppress
)
591 j
= ACCESS_ONCE(jiffies
);
592 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
594 if ((ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
596 /* We haven't checked in, so go dump stack. */
597 print_cpu_stall(rsp
);
599 } else if (rcu_gp_in_progress(rsp
) &&
600 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
602 /* They had a few time units to dump stack, so complain. */
603 print_other_cpu_stall(rsp
);
607 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
609 rcu_cpu_stall_suppress
= 1;
614 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
616 * Set the stall-warning timeout way off into the future, thus preventing
617 * any RCU CPU stall-warning messages from appearing in the current set of
620 * The caller must disable hard irqs.
622 void rcu_cpu_stall_reset(void)
624 rcu_sched_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
625 rcu_bh_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
626 rcu_preempt_stall_reset();
629 static struct notifier_block rcu_panic_block
= {
630 .notifier_call
= rcu_panic
,
633 static void __init
check_cpu_stall_init(void)
635 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
639 * Update CPU-local rcu_data state to record the newly noticed grace period.
640 * This is used both when we started the grace period and when we notice
641 * that someone else started the grace period. The caller must hold the
642 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
643 * and must have irqs disabled.
645 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
647 if (rdp
->gpnum
!= rnp
->gpnum
) {
649 * If the current grace period is waiting for this CPU,
650 * set up to detect a quiescent state, otherwise don't
651 * go looking for one.
653 rdp
->gpnum
= rnp
->gpnum
;
654 if (rnp
->qsmask
& rdp
->grpmask
) {
656 rdp
->passed_quiesc
= 0;
662 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
665 struct rcu_node
*rnp
;
667 local_irq_save(flags
);
669 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
670 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
671 local_irq_restore(flags
);
674 __note_new_gpnum(rsp
, rnp
, rdp
);
675 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
679 * Did someone else start a new RCU grace period start since we last
680 * checked? Update local state appropriately if so. Must be called
681 * on the CPU corresponding to rdp.
684 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
689 local_irq_save(flags
);
690 if (rdp
->gpnum
!= rsp
->gpnum
) {
691 note_new_gpnum(rsp
, rdp
);
694 local_irq_restore(flags
);
699 * Advance this CPU's callbacks, but only if the current grace period
700 * has ended. This may be called only from the CPU to whom the rdp
701 * belongs. In addition, the corresponding leaf rcu_node structure's
702 * ->lock must be held by the caller, with irqs disabled.
705 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
707 /* Did another grace period end? */
708 if (rdp
->completed
!= rnp
->completed
) {
710 /* Advance callbacks. No harm if list empty. */
711 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
712 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
713 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
715 /* Remember that we saw this grace-period completion. */
716 rdp
->completed
= rnp
->completed
;
719 * If we were in an extended quiescent state, we may have
720 * missed some grace periods that others CPUs handled on
721 * our behalf. Catch up with this state to avoid noting
722 * spurious new grace periods. If another grace period
723 * has started, then rnp->gpnum will have advanced, so
724 * we will detect this later on.
726 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
))
727 rdp
->gpnum
= rdp
->completed
;
730 * If RCU does not need a quiescent state from this CPU,
731 * then make sure that this CPU doesn't go looking for one.
733 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
739 * Advance this CPU's callbacks, but only if the current grace period
740 * has ended. This may be called only from the CPU to whom the rdp
744 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
747 struct rcu_node
*rnp
;
749 local_irq_save(flags
);
751 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
752 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
753 local_irq_restore(flags
);
756 __rcu_process_gp_end(rsp
, rnp
, rdp
);
757 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
761 * Do per-CPU grace-period initialization for running CPU. The caller
762 * must hold the lock of the leaf rcu_node structure corresponding to
766 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
768 /* Prior grace period ended, so advance callbacks for current CPU. */
769 __rcu_process_gp_end(rsp
, rnp
, rdp
);
772 * Because this CPU just now started the new grace period, we know
773 * that all of its callbacks will be covered by this upcoming grace
774 * period, even the ones that were registered arbitrarily recently.
775 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
777 * Other CPUs cannot be sure exactly when the grace period started.
778 * Therefore, their recently registered callbacks must pass through
779 * an additional RCU_NEXT_READY stage, so that they will be handled
780 * by the next RCU grace period.
782 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
783 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
785 /* Set state so that this CPU will detect the next quiescent state. */
786 __note_new_gpnum(rsp
, rnp
, rdp
);
790 * Start a new RCU grace period if warranted, re-initializing the hierarchy
791 * in preparation for detecting the next grace period. The caller must hold
792 * the root node's ->lock, which is released before return. Hard irqs must
796 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
797 __releases(rcu_get_root(rsp
)->lock
)
799 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
800 struct rcu_node
*rnp
= rcu_get_root(rsp
);
802 if (!cpu_needs_another_gp(rsp
, rdp
) || rsp
->fqs_active
) {
803 if (cpu_needs_another_gp(rsp
, rdp
))
804 rsp
->fqs_need_gp
= 1;
805 if (rnp
->completed
== rsp
->completed
) {
806 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
809 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
812 * Propagate new ->completed value to rcu_node structures
813 * so that other CPUs don't have to wait until the start
814 * of the next grace period to process their callbacks.
816 rcu_for_each_node_breadth_first(rsp
, rnp
) {
817 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
818 rnp
->completed
= rsp
->completed
;
819 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
821 local_irq_restore(flags
);
825 /* Advance to a new grace period and initialize state. */
827 WARN_ON_ONCE(rsp
->signaled
== RCU_GP_INIT
);
828 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
829 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
830 record_gp_stall_check_time(rsp
);
832 /* Special-case the common single-level case. */
833 if (NUM_RCU_NODES
== 1) {
834 rcu_preempt_check_blocked_tasks(rnp
);
835 rnp
->qsmask
= rnp
->qsmaskinit
;
836 rnp
->gpnum
= rsp
->gpnum
;
837 rnp
->completed
= rsp
->completed
;
838 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
839 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
840 rcu_preempt_boost_start_gp(rnp
);
841 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
845 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
848 /* Exclude any concurrent CPU-hotplug operations. */
849 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
852 * Set the quiescent-state-needed bits in all the rcu_node
853 * structures for all currently online CPUs in breadth-first
854 * order, starting from the root rcu_node structure. This
855 * operation relies on the layout of the hierarchy within the
856 * rsp->node[] array. Note that other CPUs will access only
857 * the leaves of the hierarchy, which still indicate that no
858 * grace period is in progress, at least until the corresponding
859 * leaf node has been initialized. In addition, we have excluded
860 * CPU-hotplug operations.
862 * Note that the grace period cannot complete until we finish
863 * the initialization process, as there will be at least one
864 * qsmask bit set in the root node until that time, namely the
865 * one corresponding to this CPU, due to the fact that we have
868 rcu_for_each_node_breadth_first(rsp
, rnp
) {
869 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
870 rcu_preempt_check_blocked_tasks(rnp
);
871 rnp
->qsmask
= rnp
->qsmaskinit
;
872 rnp
->gpnum
= rsp
->gpnum
;
873 rnp
->completed
= rsp
->completed
;
874 if (rnp
== rdp
->mynode
)
875 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
876 rcu_preempt_boost_start_gp(rnp
);
877 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
880 rnp
= rcu_get_root(rsp
);
881 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
882 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
883 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
884 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
888 * Report a full set of quiescent states to the specified rcu_state
889 * data structure. This involves cleaning up after the prior grace
890 * period and letting rcu_start_gp() start up the next grace period
891 * if one is needed. Note that the caller must hold rnp->lock, as
892 * required by rcu_start_gp(), which will release it.
894 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
895 __releases(rcu_get_root(rsp
)->lock
)
897 unsigned long gp_duration
;
899 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
902 * Ensure that all grace-period and pre-grace-period activity
903 * is seen before the assignment to rsp->completed.
905 smp_mb(); /* See above block comment. */
906 gp_duration
= jiffies
- rsp
->gp_start
;
907 if (gp_duration
> rsp
->gp_max
)
908 rsp
->gp_max
= gp_duration
;
909 rsp
->completed
= rsp
->gpnum
;
910 rsp
->signaled
= RCU_GP_IDLE
;
911 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
915 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
916 * Allows quiescent states for a group of CPUs to be reported at one go
917 * to the specified rcu_node structure, though all the CPUs in the group
918 * must be represented by the same rcu_node structure (which need not be
919 * a leaf rcu_node structure, though it often will be). That structure's
920 * lock must be held upon entry, and it is released before return.
923 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
924 struct rcu_node
*rnp
, unsigned long flags
)
925 __releases(rnp
->lock
)
927 struct rcu_node
*rnp_c
;
929 /* Walk up the rcu_node hierarchy. */
931 if (!(rnp
->qsmask
& mask
)) {
933 /* Our bit has already been cleared, so done. */
934 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
937 rnp
->qsmask
&= ~mask
;
938 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
940 /* Other bits still set at this level, so done. */
941 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
945 if (rnp
->parent
== NULL
) {
947 /* No more levels. Exit loop holding root lock. */
951 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
954 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
955 WARN_ON_ONCE(rnp_c
->qsmask
);
959 * Get here if we are the last CPU to pass through a quiescent
960 * state for this grace period. Invoke rcu_report_qs_rsp()
961 * to clean up and start the next grace period if one is needed.
963 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
967 * Record a quiescent state for the specified CPU to that CPU's rcu_data
968 * structure. This must be either called from the specified CPU, or
969 * called when the specified CPU is known to be offline (and when it is
970 * also known that no other CPU is concurrently trying to help the offline
971 * CPU). The lastcomp argument is used to make sure we are still in the
972 * grace period of interest. We don't want to end the current grace period
973 * based on quiescent states detected in an earlier grace period!
976 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
980 struct rcu_node
*rnp
;
983 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
984 if (lastcomp
!= rnp
->completed
) {
987 * Someone beat us to it for this grace period, so leave.
988 * The race with GP start is resolved by the fact that we
989 * hold the leaf rcu_node lock, so that the per-CPU bits
990 * cannot yet be initialized -- so we would simply find our
991 * CPU's bit already cleared in rcu_report_qs_rnp() if this
994 rdp
->passed_quiesc
= 0; /* try again later! */
995 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
999 if ((rnp
->qsmask
& mask
) == 0) {
1000 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1002 rdp
->qs_pending
= 0;
1005 * This GP can't end until cpu checks in, so all of our
1006 * callbacks can be processed during the next GP.
1008 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1010 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1015 * Check to see if there is a new grace period of which this CPU
1016 * is not yet aware, and if so, set up local rcu_data state for it.
1017 * Otherwise, see if this CPU has just passed through its first
1018 * quiescent state for this grace period, and record that fact if so.
1021 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1023 /* If there is now a new grace period, record and return. */
1024 if (check_for_new_grace_period(rsp
, rdp
))
1028 * Does this CPU still need to do its part for current grace period?
1029 * If no, return and let the other CPUs do their part as well.
1031 if (!rdp
->qs_pending
)
1035 * Was there a quiescent state since the beginning of the grace
1036 * period? If no, then exit and wait for the next call.
1038 if (!rdp
->passed_quiesc
)
1042 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1045 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
1048 #ifdef CONFIG_HOTPLUG_CPU
1051 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1052 * Synchronization is not required because this function executes
1053 * in stop_machine() context.
1055 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1058 /* current DYING CPU is cleared in the cpu_online_mask */
1059 int receive_cpu
= cpumask_any(cpu_online_mask
);
1060 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1061 struct rcu_data
*receive_rdp
= per_cpu_ptr(rsp
->rda
, receive_cpu
);
1063 if (rdp
->nxtlist
== NULL
)
1064 return; /* irqs disabled, so comparison is stable. */
1066 *receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
1067 receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1068 receive_rdp
->qlen
+= rdp
->qlen
;
1069 receive_rdp
->n_cbs_adopted
+= rdp
->qlen
;
1070 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1072 rdp
->nxtlist
= NULL
;
1073 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1074 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1079 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1080 * and move all callbacks from the outgoing CPU to the current one.
1081 * There can only be one CPU hotplug operation at a time, so no other
1082 * CPU can be attempting to update rcu_cpu_kthread_task.
1084 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
1086 unsigned long flags
;
1088 int need_report
= 0;
1089 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1090 struct rcu_node
*rnp
;
1091 struct task_struct
*t
;
1093 /* Stop the CPU's kthread. */
1094 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1096 per_cpu(rcu_cpu_kthread_task
, cpu
) = NULL
;
1100 /* Exclude any attempts to start a new grace period. */
1101 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1103 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1104 rnp
= rdp
->mynode
; /* this is the outgoing CPU's rnp. */
1105 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1107 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1108 rnp
->qsmaskinit
&= ~mask
;
1109 if (rnp
->qsmaskinit
!= 0) {
1110 if (rnp
!= rdp
->mynode
)
1111 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1114 if (rnp
== rdp
->mynode
)
1115 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1117 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1118 mask
= rnp
->grpmask
;
1120 } while (rnp
!= NULL
);
1123 * We still hold the leaf rcu_node structure lock here, and
1124 * irqs are still disabled. The reason for this subterfuge is
1125 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1126 * held leads to deadlock.
1128 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1130 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1131 rcu_report_unblock_qs_rnp(rnp
, flags
);
1133 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1134 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1135 rcu_report_exp_rnp(rsp
, rnp
);
1136 rcu_node_kthread_setaffinity(rnp
, -1);
1140 * Remove the specified CPU from the RCU hierarchy and move any pending
1141 * callbacks that it might have to the current CPU. This code assumes
1142 * that at least one CPU in the system will remain running at all times.
1143 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1145 static void rcu_offline_cpu(int cpu
)
1147 __rcu_offline_cpu(cpu
, &rcu_sched_state
);
1148 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
1149 rcu_preempt_offline_cpu(cpu
);
1152 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1154 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1158 static void rcu_offline_cpu(int cpu
)
1162 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1165 * Invoke any RCU callbacks that have made it to the end of their grace
1166 * period. Thottle as specified by rdp->blimit.
1168 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1170 unsigned long flags
;
1171 struct rcu_head
*next
, *list
, **tail
;
1174 /* If no callbacks are ready, just return.*/
1175 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
1179 * Extract the list of ready callbacks, disabling to prevent
1180 * races with call_rcu() from interrupt handlers.
1182 local_irq_save(flags
);
1183 list
= rdp
->nxtlist
;
1184 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1185 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1186 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1187 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1188 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1189 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1190 local_irq_restore(flags
);
1192 /* Invoke callbacks. */
1197 debug_rcu_head_unqueue(list
);
1198 __rcu_reclaim(list
);
1200 if (++count
>= rdp
->blimit
)
1204 local_irq_save(flags
);
1206 /* Update count, and requeue any remaining callbacks. */
1208 rdp
->n_cbs_invoked
+= count
;
1210 *tail
= rdp
->nxtlist
;
1211 rdp
->nxtlist
= list
;
1212 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1213 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1214 rdp
->nxttail
[count
] = tail
;
1219 /* Reinstate batch limit if we have worked down the excess. */
1220 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1221 rdp
->blimit
= blimit
;
1223 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1224 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1225 rdp
->qlen_last_fqs_check
= 0;
1226 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1227 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1228 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1230 local_irq_restore(flags
);
1232 /* Re-raise the RCU softirq if there are callbacks remaining. */
1233 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1234 invoke_rcu_cpu_kthread();
1238 * Check to see if this CPU is in a non-context-switch quiescent state
1239 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1240 * Also schedule the RCU softirq handler.
1242 * This function must be called with hardirqs disabled. It is normally
1243 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1244 * false, there is no point in invoking rcu_check_callbacks().
1246 void rcu_check_callbacks(int cpu
, int user
)
1249 (idle_cpu(cpu
) && rcu_scheduler_active
&&
1250 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
1253 * Get here if this CPU took its interrupt from user
1254 * mode or from the idle loop, and if this is not a
1255 * nested interrupt. In this case, the CPU is in
1256 * a quiescent state, so note it.
1258 * No memory barrier is required here because both
1259 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1260 * variables that other CPUs neither access nor modify,
1261 * at least not while the corresponding CPU is online.
1267 } else if (!in_softirq()) {
1270 * Get here if this CPU did not take its interrupt from
1271 * softirq, in other words, if it is not interrupting
1272 * a rcu_bh read-side critical section. This is an _bh
1273 * critical section, so note it.
1278 rcu_preempt_check_callbacks(cpu
);
1279 if (rcu_pending(cpu
))
1280 invoke_rcu_cpu_kthread();
1286 * Scan the leaf rcu_node structures, processing dyntick state for any that
1287 * have not yet encountered a quiescent state, using the function specified.
1288 * Also initiate boosting for any threads blocked on the root rcu_node.
1290 * The caller must have suppressed start of new grace periods.
1292 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1296 unsigned long flags
;
1298 struct rcu_node
*rnp
;
1300 rcu_for_each_leaf_node(rsp
, rnp
) {
1302 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1303 if (!rcu_gp_in_progress(rsp
)) {
1304 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1307 if (rnp
->qsmask
== 0) {
1308 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
1313 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1314 if ((rnp
->qsmask
& bit
) != 0 &&
1315 f(per_cpu_ptr(rsp
->rda
, cpu
)))
1320 /* rcu_report_qs_rnp() releases rnp->lock. */
1321 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1324 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1326 rnp
= rcu_get_root(rsp
);
1327 if (rnp
->qsmask
== 0) {
1328 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1329 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1334 * Force quiescent states on reluctant CPUs, and also detect which
1335 * CPUs are in dyntick-idle mode.
1337 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1339 unsigned long flags
;
1340 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1342 if (!rcu_gp_in_progress(rsp
))
1343 return; /* No grace period in progress, nothing to force. */
1344 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1345 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1346 return; /* Someone else is already on the job. */
1348 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1349 goto unlock_fqs_ret
; /* no emergency and done recently. */
1351 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1352 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1353 if(!rcu_gp_in_progress(rsp
)) {
1354 rsp
->n_force_qs_ngp
++;
1355 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1356 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1358 rsp
->fqs_active
= 1;
1359 switch (rsp
->signaled
) {
1363 break; /* grace period idle or initializing, ignore. */
1365 case RCU_SAVE_DYNTICK
:
1366 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1367 break; /* So gcc recognizes the dead code. */
1369 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1371 /* Record dyntick-idle state. */
1372 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1373 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1374 if (rcu_gp_in_progress(rsp
))
1375 rsp
->signaled
= RCU_FORCE_QS
;
1380 /* Check dyntick-idle state, send IPI to laggarts. */
1381 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1382 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1384 /* Leave state in case more forcing is required. */
1386 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1389 rsp
->fqs_active
= 0;
1390 if (rsp
->fqs_need_gp
) {
1391 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1392 rsp
->fqs_need_gp
= 0;
1393 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1396 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1398 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1401 #else /* #ifdef CONFIG_SMP */
1403 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1408 #endif /* #else #ifdef CONFIG_SMP */
1411 * This does the RCU processing work from softirq context for the
1412 * specified rcu_state and rcu_data structures. This may be called
1413 * only from the CPU to whom the rdp belongs.
1416 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1418 unsigned long flags
;
1420 WARN_ON_ONCE(rdp
->beenonline
== 0);
1423 * If an RCU GP has gone long enough, go check for dyntick
1424 * idle CPUs and, if needed, send resched IPIs.
1426 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1427 force_quiescent_state(rsp
, 1);
1430 * Advance callbacks in response to end of earlier grace
1431 * period that some other CPU ended.
1433 rcu_process_gp_end(rsp
, rdp
);
1435 /* Update RCU state based on any recent quiescent states. */
1436 rcu_check_quiescent_state(rsp
, rdp
);
1438 /* Does this CPU require a not-yet-started grace period? */
1439 if (cpu_needs_another_gp(rsp
, rdp
)) {
1440 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1441 rcu_start_gp(rsp
, flags
); /* releases above lock */
1444 /* If there are callbacks ready, invoke them. */
1445 rcu_do_batch(rsp
, rdp
);
1449 * Do softirq processing for the current CPU.
1451 static void rcu_process_callbacks(void)
1453 __rcu_process_callbacks(&rcu_sched_state
,
1454 &__get_cpu_var(rcu_sched_data
));
1455 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1456 rcu_preempt_process_callbacks();
1458 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1459 rcu_needs_cpu_flush();
1463 * Wake up the current CPU's kthread. This replaces raise_softirq()
1464 * in earlier versions of RCU. Note that because we are running on
1465 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1466 * cannot disappear out from under us.
1468 static void invoke_rcu_cpu_kthread(void)
1470 unsigned long flags
;
1472 local_irq_save(flags
);
1473 __this_cpu_write(rcu_cpu_has_work
, 1);
1474 if (__this_cpu_read(rcu_cpu_kthread_task
) == NULL
) {
1475 local_irq_restore(flags
);
1478 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task
));
1479 local_irq_restore(flags
);
1483 * Wake up the specified per-rcu_node-structure kthread.
1484 * Because the per-rcu_node kthreads are immortal, we don't need
1485 * to do anything to keep them alive.
1487 static void invoke_rcu_node_kthread(struct rcu_node
*rnp
)
1489 struct task_struct
*t
;
1491 t
= rnp
->node_kthread_task
;
1497 * Set the specified CPU's kthread to run RT or not, as specified by
1498 * the to_rt argument. The CPU-hotplug locks are held, so the task
1499 * is not going away.
1501 static void rcu_cpu_kthread_setrt(int cpu
, int to_rt
)
1504 struct sched_param sp
;
1505 struct task_struct
*t
;
1507 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1511 policy
= SCHED_FIFO
;
1512 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1514 policy
= SCHED_NORMAL
;
1515 sp
.sched_priority
= 0;
1517 sched_setscheduler_nocheck(t
, policy
, &sp
);
1521 * Timer handler to initiate the waking up of per-CPU kthreads that
1522 * have yielded the CPU due to excess numbers of RCU callbacks.
1523 * We wake up the per-rcu_node kthread, which in turn will wake up
1524 * the booster kthread.
1526 static void rcu_cpu_kthread_timer(unsigned long arg
)
1528 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, arg
);
1529 struct rcu_node
*rnp
= rdp
->mynode
;
1531 atomic_or(rdp
->grpmask
, &rnp
->wakemask
);
1532 invoke_rcu_node_kthread(rnp
);
1536 * Drop to non-real-time priority and yield, but only after posting a
1537 * timer that will cause us to regain our real-time priority if we
1538 * remain preempted. Either way, we restore our real-time priority
1541 static void rcu_yield(void (*f
)(unsigned long), unsigned long arg
)
1543 struct sched_param sp
;
1544 struct timer_list yield_timer
;
1546 setup_timer_on_stack(&yield_timer
, f
, arg
);
1547 mod_timer(&yield_timer
, jiffies
+ 2);
1548 sp
.sched_priority
= 0;
1549 sched_setscheduler_nocheck(current
, SCHED_NORMAL
, &sp
);
1550 set_user_nice(current
, 19);
1552 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1553 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1554 del_timer(&yield_timer
);
1558 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1559 * This can happen while the corresponding CPU is either coming online
1560 * or going offline. We cannot wait until the CPU is fully online
1561 * before starting the kthread, because the various notifier functions
1562 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1563 * the corresponding CPU is online.
1565 * Return 1 if the kthread needs to stop, 0 otherwise.
1567 * Caller must disable bh. This function can momentarily enable it.
1569 static int rcu_cpu_kthread_should_stop(int cpu
)
1571 while (cpu_is_offline(cpu
) ||
1572 !cpumask_equal(¤t
->cpus_allowed
, cpumask_of(cpu
)) ||
1573 smp_processor_id() != cpu
) {
1574 if (kthread_should_stop())
1576 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1577 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = raw_smp_processor_id();
1579 schedule_timeout_uninterruptible(1);
1580 if (!cpumask_equal(¤t
->cpus_allowed
, cpumask_of(cpu
)))
1581 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
1584 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = cpu
;
1589 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1590 * earlier RCU softirq.
1592 static int rcu_cpu_kthread(void *arg
)
1594 int cpu
= (int)(long)arg
;
1595 unsigned long flags
;
1597 unsigned int *statusp
= &per_cpu(rcu_cpu_kthread_status
, cpu
);
1599 char *workp
= &per_cpu(rcu_cpu_has_work
, cpu
);
1602 *statusp
= RCU_KTHREAD_WAITING
;
1603 rcu_wait(*workp
!= 0 || kthread_should_stop());
1605 if (rcu_cpu_kthread_should_stop(cpu
)) {
1609 *statusp
= RCU_KTHREAD_RUNNING
;
1610 per_cpu(rcu_cpu_kthread_loops
, cpu
)++;
1611 local_irq_save(flags
);
1614 local_irq_restore(flags
);
1616 rcu_process_callbacks();
1623 *statusp
= RCU_KTHREAD_YIELDING
;
1624 rcu_yield(rcu_cpu_kthread_timer
, (unsigned long)cpu
);
1628 *statusp
= RCU_KTHREAD_STOPPED
;
1633 * Spawn a per-CPU kthread, setting up affinity and priority.
1634 * Because the CPU hotplug lock is held, no other CPU will be attempting
1635 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1636 * attempting to access it during boot, but the locking in kthread_bind()
1637 * will enforce sufficient ordering.
1639 static int __cpuinit
rcu_spawn_one_cpu_kthread(int cpu
)
1641 struct sched_param sp
;
1642 struct task_struct
*t
;
1644 if (!rcu_kthreads_spawnable
||
1645 per_cpu(rcu_cpu_kthread_task
, cpu
) != NULL
)
1647 t
= kthread_create(rcu_cpu_kthread
, (void *)(long)cpu
, "rcuc%d", cpu
);
1650 kthread_bind(t
, cpu
);
1651 set_task_state(t
, TASK_INTERRUPTIBLE
);
1652 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = cpu
;
1653 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task
, cpu
) != NULL
);
1654 per_cpu(rcu_cpu_kthread_task
, cpu
) = t
;
1655 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1656 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1661 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1662 * kthreads when needed. We ignore requests to wake up kthreads
1663 * for offline CPUs, which is OK because force_quiescent_state()
1664 * takes care of this case.
1666 static int rcu_node_kthread(void *arg
)
1669 unsigned long flags
;
1671 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1672 struct sched_param sp
;
1673 struct task_struct
*t
;
1676 rnp
->node_kthread_status
= RCU_KTHREAD_WAITING
;
1677 rcu_wait(atomic_read(&rnp
->wakemask
) != 0);
1678 rnp
->node_kthread_status
= RCU_KTHREAD_RUNNING
;
1679 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1680 mask
= atomic_xchg(&rnp
->wakemask
, 0);
1681 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1682 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1) {
1683 if ((mask
& 0x1) == 0)
1686 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1687 if (!cpu_online(cpu
) || t
== NULL
) {
1691 per_cpu(rcu_cpu_has_work
, cpu
) = 1;
1692 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1693 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1698 rnp
->node_kthread_status
= RCU_KTHREAD_STOPPED
;
1703 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1704 * served by the rcu_node in question. The CPU hotplug lock is still
1705 * held, so the value of rnp->qsmaskinit will be stable.
1707 * We don't include outgoingcpu in the affinity set, use -1 if there is
1708 * no outgoing CPU. If there are no CPUs left in the affinity set,
1709 * this function allows the kthread to execute on any CPU.
1711 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1715 unsigned long mask
= rnp
->qsmaskinit
;
1717 if (rnp
->node_kthread_task
== NULL
)
1719 if (!alloc_cpumask_var(&cm
, GFP_KERNEL
))
1722 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1)
1723 if ((mask
& 0x1) && cpu
!= outgoingcpu
)
1724 cpumask_set_cpu(cpu
, cm
);
1725 if (cpumask_weight(cm
) == 0) {
1727 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++)
1728 cpumask_clear_cpu(cpu
, cm
);
1729 WARN_ON_ONCE(cpumask_weight(cm
) == 0);
1731 set_cpus_allowed_ptr(rnp
->node_kthread_task
, cm
);
1732 rcu_boost_kthread_setaffinity(rnp
, cm
);
1733 free_cpumask_var(cm
);
1737 * Spawn a per-rcu_node kthread, setting priority and affinity.
1738 * Called during boot before online/offline can happen, or, if
1739 * during runtime, with the main CPU-hotplug locks held. So only
1740 * one of these can be executing at a time.
1742 static int __cpuinit
rcu_spawn_one_node_kthread(struct rcu_state
*rsp
,
1743 struct rcu_node
*rnp
)
1745 unsigned long flags
;
1746 int rnp_index
= rnp
- &rsp
->node
[0];
1747 struct sched_param sp
;
1748 struct task_struct
*t
;
1750 if (!rcu_kthreads_spawnable
||
1751 rnp
->qsmaskinit
== 0)
1753 if (rnp
->node_kthread_task
== NULL
) {
1754 t
= kthread_create(rcu_node_kthread
, (void *)rnp
,
1755 "rcun%d", rnp_index
);
1758 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1759 set_task_state(t
, TASK_INTERRUPTIBLE
);
1760 rnp
->node_kthread_task
= t
;
1761 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1762 sp
.sched_priority
= 99;
1763 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1765 return rcu_spawn_one_boost_kthread(rsp
, rnp
, rnp_index
);
1769 * Spawn all kthreads -- called as soon as the scheduler is running.
1771 static int __init
rcu_spawn_kthreads(void)
1774 struct rcu_node
*rnp
;
1776 rcu_kthreads_spawnable
= 1;
1777 for_each_possible_cpu(cpu
) {
1778 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1779 if (cpu_online(cpu
))
1780 (void)rcu_spawn_one_cpu_kthread(cpu
);
1782 rnp
= rcu_get_root(rcu_state
);
1783 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
1784 if (NUM_RCU_NODES
> 1) {
1785 rcu_for_each_leaf_node(rcu_state
, rnp
)
1786 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
1790 early_initcall(rcu_spawn_kthreads
);
1793 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1794 struct rcu_state
*rsp
)
1796 unsigned long flags
;
1797 struct rcu_data
*rdp
;
1799 debug_rcu_head_queue(head
);
1803 smp_mb(); /* Ensure RCU update seen before callback registry. */
1806 * Opportunistically note grace-period endings and beginnings.
1807 * Note that we might see a beginning right after we see an
1808 * end, but never vice versa, since this CPU has to pass through
1809 * a quiescent state betweentimes.
1811 local_irq_save(flags
);
1812 rdp
= this_cpu_ptr(rsp
->rda
);
1814 /* Add the callback to our list. */
1815 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1816 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1819 /* If interrupts were disabled, don't dive into RCU core. */
1820 if (irqs_disabled_flags(flags
)) {
1821 local_irq_restore(flags
);
1826 * Force the grace period if too many callbacks or too long waiting.
1827 * Enforce hysteresis, and don't invoke force_quiescent_state()
1828 * if some other CPU has recently done so. Also, don't bother
1829 * invoking force_quiescent_state() if the newly enqueued callback
1830 * is the only one waiting for a grace period to complete.
1832 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1834 /* Are we ignoring a completed grace period? */
1835 rcu_process_gp_end(rsp
, rdp
);
1836 check_for_new_grace_period(rsp
, rdp
);
1838 /* Start a new grace period if one not already started. */
1839 if (!rcu_gp_in_progress(rsp
)) {
1840 unsigned long nestflag
;
1841 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1843 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1844 rcu_start_gp(rsp
, nestflag
); /* rlses rnp_root->lock */
1846 /* Give the grace period a kick. */
1847 rdp
->blimit
= LONG_MAX
;
1848 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1849 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1850 force_quiescent_state(rsp
, 0);
1851 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1852 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1854 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1855 force_quiescent_state(rsp
, 1);
1856 local_irq_restore(flags
);
1860 * Queue an RCU-sched callback for invocation after a grace period.
1862 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1864 __call_rcu(head
, func
, &rcu_sched_state
);
1866 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1869 * Queue an RCU for invocation after a quicker grace period.
1871 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1873 __call_rcu(head
, func
, &rcu_bh_state
);
1875 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1878 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1880 * Control will return to the caller some time after a full rcu-sched
1881 * grace period has elapsed, in other words after all currently executing
1882 * rcu-sched read-side critical sections have completed. These read-side
1883 * critical sections are delimited by rcu_read_lock_sched() and
1884 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1885 * local_irq_disable(), and so on may be used in place of
1886 * rcu_read_lock_sched().
1888 * This means that all preempt_disable code sequences, including NMI and
1889 * hardware-interrupt handlers, in progress on entry will have completed
1890 * before this primitive returns. However, this does not guarantee that
1891 * softirq handlers will have completed, since in some kernels, these
1892 * handlers can run in process context, and can block.
1894 * This primitive provides the guarantees made by the (now removed)
1895 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1896 * guarantees that rcu_read_lock() sections will have completed.
1897 * In "classic RCU", these two guarantees happen to be one and
1898 * the same, but can differ in realtime RCU implementations.
1900 void synchronize_sched(void)
1902 struct rcu_synchronize rcu
;
1904 if (rcu_blocking_is_gp())
1907 init_rcu_head_on_stack(&rcu
.head
);
1908 init_completion(&rcu
.completion
);
1909 /* Will wake me after RCU finished. */
1910 call_rcu_sched(&rcu
.head
, wakeme_after_rcu
);
1912 wait_for_completion(&rcu
.completion
);
1913 destroy_rcu_head_on_stack(&rcu
.head
);
1915 EXPORT_SYMBOL_GPL(synchronize_sched
);
1918 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1920 * Control will return to the caller some time after a full rcu_bh grace
1921 * period has elapsed, in other words after all currently executing rcu_bh
1922 * read-side critical sections have completed. RCU read-side critical
1923 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1924 * and may be nested.
1926 void synchronize_rcu_bh(void)
1928 struct rcu_synchronize rcu
;
1930 if (rcu_blocking_is_gp())
1933 init_rcu_head_on_stack(&rcu
.head
);
1934 init_completion(&rcu
.completion
);
1935 /* Will wake me after RCU finished. */
1936 call_rcu_bh(&rcu
.head
, wakeme_after_rcu
);
1938 wait_for_completion(&rcu
.completion
);
1939 destroy_rcu_head_on_stack(&rcu
.head
);
1941 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
1944 * Check to see if there is any immediate RCU-related work to be done
1945 * by the current CPU, for the specified type of RCU, returning 1 if so.
1946 * The checks are in order of increasing expense: checks that can be
1947 * carried out against CPU-local state are performed first. However,
1948 * we must check for CPU stalls first, else we might not get a chance.
1950 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1952 struct rcu_node
*rnp
= rdp
->mynode
;
1954 rdp
->n_rcu_pending
++;
1956 /* Check for CPU stalls, if enabled. */
1957 check_cpu_stall(rsp
, rdp
);
1959 /* Is the RCU core waiting for a quiescent state from this CPU? */
1960 if (rdp
->qs_pending
&& !rdp
->passed_quiesc
) {
1963 * If force_quiescent_state() coming soon and this CPU
1964 * needs a quiescent state, and this is either RCU-sched
1965 * or RCU-bh, force a local reschedule.
1967 rdp
->n_rp_qs_pending
++;
1968 if (!rdp
->preemptible
&&
1969 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
1972 } else if (rdp
->qs_pending
&& rdp
->passed_quiesc
) {
1973 rdp
->n_rp_report_qs
++;
1977 /* Does this CPU have callbacks ready to invoke? */
1978 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
1979 rdp
->n_rp_cb_ready
++;
1983 /* Has RCU gone idle with this CPU needing another grace period? */
1984 if (cpu_needs_another_gp(rsp
, rdp
)) {
1985 rdp
->n_rp_cpu_needs_gp
++;
1989 /* Has another RCU grace period completed? */
1990 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
1991 rdp
->n_rp_gp_completed
++;
1995 /* Has a new RCU grace period started? */
1996 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
1997 rdp
->n_rp_gp_started
++;
2001 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2002 if (rcu_gp_in_progress(rsp
) &&
2003 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
2004 rdp
->n_rp_need_fqs
++;
2009 rdp
->n_rp_need_nothing
++;
2014 * Check to see if there is any immediate RCU-related work to be done
2015 * by the current CPU, returning 1 if so. This function is part of the
2016 * RCU implementation; it is -not- an exported member of the RCU API.
2018 static int rcu_pending(int cpu
)
2020 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
2021 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
2022 rcu_preempt_pending(cpu
);
2026 * Check to see if any future RCU-related work will need to be done
2027 * by the current CPU, even if none need be done immediately, returning
2030 static int rcu_needs_cpu_quick_check(int cpu
)
2032 /* RCU callbacks either ready or pending? */
2033 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
2034 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
2035 rcu_preempt_needs_cpu(cpu
);
2038 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
2039 static atomic_t rcu_barrier_cpu_count
;
2040 static DEFINE_MUTEX(rcu_barrier_mutex
);
2041 static struct completion rcu_barrier_completion
;
2043 static void rcu_barrier_callback(struct rcu_head
*notused
)
2045 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2046 complete(&rcu_barrier_completion
);
2050 * Called with preemption disabled, and from cross-cpu IRQ context.
2052 static void rcu_barrier_func(void *type
)
2054 int cpu
= smp_processor_id();
2055 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
2056 void (*call_rcu_func
)(struct rcu_head
*head
,
2057 void (*func
)(struct rcu_head
*head
));
2059 atomic_inc(&rcu_barrier_cpu_count
);
2060 call_rcu_func
= type
;
2061 call_rcu_func(head
, rcu_barrier_callback
);
2065 * Orchestrate the specified type of RCU barrier, waiting for all
2066 * RCU callbacks of the specified type to complete.
2068 static void _rcu_barrier(struct rcu_state
*rsp
,
2069 void (*call_rcu_func
)(struct rcu_head
*head
,
2070 void (*func
)(struct rcu_head
*head
)))
2072 BUG_ON(in_interrupt());
2073 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2074 mutex_lock(&rcu_barrier_mutex
);
2075 init_completion(&rcu_barrier_completion
);
2077 * Initialize rcu_barrier_cpu_count to 1, then invoke
2078 * rcu_barrier_func() on each CPU, so that each CPU also has
2079 * incremented rcu_barrier_cpu_count. Only then is it safe to
2080 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2081 * might complete its grace period before all of the other CPUs
2082 * did their increment, causing this function to return too
2083 * early. Note that on_each_cpu() disables irqs, which prevents
2084 * any CPUs from coming online or going offline until each online
2085 * CPU has queued its RCU-barrier callback.
2087 atomic_set(&rcu_barrier_cpu_count
, 1);
2088 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
2089 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2090 complete(&rcu_barrier_completion
);
2091 wait_for_completion(&rcu_barrier_completion
);
2092 mutex_unlock(&rcu_barrier_mutex
);
2096 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2098 void rcu_barrier_bh(void)
2100 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
2102 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
2105 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2107 void rcu_barrier_sched(void)
2109 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
2111 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
2114 * Do boot-time initialization of a CPU's per-CPU RCU data.
2117 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
2119 unsigned long flags
;
2121 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2122 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2124 /* Set up local state, ensuring consistent view of global state. */
2125 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2126 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
2127 rdp
->nxtlist
= NULL
;
2128 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2129 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2132 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
2133 #endif /* #ifdef CONFIG_NO_HZ */
2135 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2139 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2140 * offline event can be happening at a given time. Note also that we
2141 * can accept some slop in the rsp->completed access due to the fact
2142 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2144 static void __cpuinit
2145 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
2147 unsigned long flags
;
2149 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2150 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2152 /* Set up local state, ensuring consistent view of global state. */
2153 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2154 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
2155 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
2156 rdp
->beenonline
= 1; /* We have now been online. */
2157 rdp
->preemptible
= preemptible
;
2158 rdp
->qlen_last_fqs_check
= 0;
2159 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2160 rdp
->blimit
= blimit
;
2161 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2164 * A new grace period might start here. If so, we won't be part
2165 * of it, but that is OK, as we are currently in a quiescent state.
2168 /* Exclude any attempts to start a new GP on large systems. */
2169 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
2171 /* Add CPU to rcu_node bitmasks. */
2173 mask
= rdp
->grpmask
;
2175 /* Exclude any attempts to start a new GP on small systems. */
2176 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
2177 rnp
->qsmaskinit
|= mask
;
2178 mask
= rnp
->grpmask
;
2179 if (rnp
== rdp
->mynode
) {
2180 rdp
->gpnum
= rnp
->completed
; /* if GP in progress... */
2181 rdp
->completed
= rnp
->completed
;
2182 rdp
->passed_quiesc_completed
= rnp
->completed
- 1;
2184 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
2186 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
2188 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
2191 static void __cpuinit
rcu_online_cpu(int cpu
)
2193 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
2194 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
2195 rcu_preempt_init_percpu_data(cpu
);
2198 static void __cpuinit
rcu_online_kthreads(int cpu
)
2200 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
2201 struct rcu_node
*rnp
= rdp
->mynode
;
2203 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2204 if (rcu_kthreads_spawnable
) {
2205 (void)rcu_spawn_one_cpu_kthread(cpu
);
2206 if (rnp
->node_kthread_task
== NULL
)
2207 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
2212 * Handle CPU online/offline notification events.
2214 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
2215 unsigned long action
, void *hcpu
)
2217 long cpu
= (long)hcpu
;
2218 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
2219 struct rcu_node
*rnp
= rdp
->mynode
;
2222 case CPU_UP_PREPARE
:
2223 case CPU_UP_PREPARE_FROZEN
:
2224 rcu_online_cpu(cpu
);
2225 rcu_online_kthreads(cpu
);
2228 case CPU_DOWN_FAILED
:
2229 rcu_node_kthread_setaffinity(rnp
, -1);
2230 rcu_cpu_kthread_setrt(cpu
, 1);
2232 case CPU_DOWN_PREPARE
:
2233 rcu_node_kthread_setaffinity(rnp
, cpu
);
2234 rcu_cpu_kthread_setrt(cpu
, 0);
2237 case CPU_DYING_FROZEN
:
2239 * The whole machine is "stopped" except this CPU, so we can
2240 * touch any data without introducing corruption. We send the
2241 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2243 rcu_send_cbs_to_online(&rcu_bh_state
);
2244 rcu_send_cbs_to_online(&rcu_sched_state
);
2245 rcu_preempt_send_cbs_to_online();
2248 case CPU_DEAD_FROZEN
:
2249 case CPU_UP_CANCELED
:
2250 case CPU_UP_CANCELED_FROZEN
:
2251 rcu_offline_cpu(cpu
);
2260 * This function is invoked towards the end of the scheduler's initialization
2261 * process. Before this is called, the idle task might contain
2262 * RCU read-side critical sections (during which time, this idle
2263 * task is booting the system). After this function is called, the
2264 * idle tasks are prohibited from containing RCU read-side critical
2265 * sections. This function also enables RCU lockdep checking.
2267 void rcu_scheduler_starting(void)
2269 WARN_ON(num_online_cpus() != 1);
2270 WARN_ON(nr_context_switches() > 0);
2271 rcu_scheduler_active
= 1;
2275 * Compute the per-level fanout, either using the exact fanout specified
2276 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2278 #ifdef CONFIG_RCU_FANOUT_EXACT
2279 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2283 for (i
= NUM_RCU_LVLS
- 1; i
> 0; i
--)
2284 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
2285 rsp
->levelspread
[0] = RCU_FANOUT_LEAF
;
2287 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2288 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2295 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2296 ccur
= rsp
->levelcnt
[i
];
2297 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
2301 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2304 * Helper function for rcu_init() that initializes one rcu_state structure.
2306 static void __init
rcu_init_one(struct rcu_state
*rsp
,
2307 struct rcu_data __percpu
*rda
)
2309 static char *buf
[] = { "rcu_node_level_0",
2312 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2316 struct rcu_node
*rnp
;
2318 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
2320 /* Initialize the level-tracking arrays. */
2322 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
2323 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
2324 rcu_init_levelspread(rsp
);
2326 /* Initialize the elements themselves, starting from the leaves. */
2328 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2329 cpustride
*= rsp
->levelspread
[i
];
2330 rnp
= rsp
->level
[i
];
2331 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
2332 raw_spin_lock_init(&rnp
->lock
);
2333 lockdep_set_class_and_name(&rnp
->lock
,
2334 &rcu_node_class
[i
], buf
[i
]);
2337 rnp
->qsmaskinit
= 0;
2338 rnp
->grplo
= j
* cpustride
;
2339 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
2340 if (rnp
->grphi
>= NR_CPUS
)
2341 rnp
->grphi
= NR_CPUS
- 1;
2347 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
2348 rnp
->grpmask
= 1UL << rnp
->grpnum
;
2349 rnp
->parent
= rsp
->level
[i
- 1] +
2350 j
/ rsp
->levelspread
[i
- 1];
2353 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
2358 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
2359 for_each_possible_cpu(i
) {
2360 while (i
> rnp
->grphi
)
2362 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
2363 rcu_boot_init_percpu_data(i
, rsp
);
2367 void __init
rcu_init(void)
2371 rcu_bootup_announce();
2372 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
2373 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
2374 __rcu_init_preempt();
2377 * We don't need protection against CPU-hotplug here because
2378 * this is called early in boot, before either interrupts
2379 * or the scheduler are operational.
2381 cpu_notifier(rcu_cpu_notify
, 0);
2382 for_each_online_cpu(cpu
)
2383 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
2384 check_cpu_stall_init();
2387 #include "rcutree_plugin.h"