4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * This function is used through-out the kernel (including mm and fs)
9 * to indicate a major problem.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/delay.h>
14 #include <linux/reboot.h>
15 #include <linux/notifier.h>
16 #include <linux/init.h>
17 #include <linux/sysrq.h>
18 #include <linux/interrupt.h>
19 #include <linux/nmi.h>
20 #include <linux/kexec.h>
24 static int pause_on_oops
;
25 static int pause_on_oops_flag
;
26 static DEFINE_SPINLOCK(pause_on_oops_lock
);
30 ATOMIC_NOTIFIER_HEAD(panic_notifier_list
);
32 EXPORT_SYMBOL(panic_notifier_list
);
34 static int __init
panic_setup(char *str
)
36 panic_timeout
= simple_strtoul(str
, NULL
, 0);
39 __setup("panic=", panic_setup
);
41 static long no_blink(long time
)
46 /* Returns how long it waited in ms */
47 long (*panic_blink
)(long time
);
48 EXPORT_SYMBOL(panic_blink
);
51 * panic - halt the system
52 * @fmt: The text string to print
54 * Display a message, then perform cleanups.
56 * This function never returns.
59 NORET_TYPE
void panic(const char * fmt
, ...)
62 static char buf
[1024];
64 #if defined(CONFIG_S390)
65 unsigned long caller
= (unsigned long) __builtin_return_address(0);
69 * It's possible to come here directly from a panic-assertion and not
70 * have preempt disabled. Some functions called from here want
71 * preempt to be disabled. No point enabling it later though...
77 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
79 printk(KERN_EMERG
"Kernel panic - not syncing: %s\n",buf
);
83 * If we have crashed and we have a crash kernel loaded let it handle
85 * Do we want to call this before we try to display a message?
91 * Note smp_send_stop is the usual smp shutdown function, which
92 * unfortunately means it may not be hardened to work in a panic
98 atomic_notifier_call_chain(&panic_notifier_list
, 0, buf
);
101 panic_blink
= no_blink
;
103 if (panic_timeout
> 0) {
105 * Delay timeout seconds before rebooting the machine.
106 * We can't use the "normal" timers since we just panicked..
108 printk(KERN_EMERG
"Rebooting in %d seconds..",panic_timeout
);
109 for (i
= 0; i
< panic_timeout
*1000; ) {
110 touch_nmi_watchdog();
115 /* This will not be a clean reboot, with everything
116 * shutting down. But if there is a chance of
117 * rebooting the system it will be rebooted.
123 extern int stop_a_enabled
;
124 /* Make sure the user can actually press Stop-A (L1-A) */
126 printk(KERN_EMERG
"Press Stop-A (L1-A) to return to the boot prom\n");
129 #if defined(CONFIG_S390)
130 disabled_wait(caller
);
134 touch_softlockup_watchdog();
141 EXPORT_SYMBOL(panic
);
144 * print_tainted - return a string to represent the kernel taint state.
146 * 'P' - Proprietary module has been loaded.
147 * 'F' - Module has been forcibly loaded.
148 * 'S' - SMP with CPUs not designed for SMP.
149 * 'R' - User forced a module unload.
150 * 'M' - Machine had a machine check experience.
151 * 'B' - System has hit bad_page.
153 * The string is overwritten by the next call to print_taint().
156 const char *print_tainted(void)
160 snprintf(buf
, sizeof(buf
), "Tainted: %c%c%c%c%c%c",
161 tainted
& TAINT_PROPRIETARY_MODULE
? 'P' : 'G',
162 tainted
& TAINT_FORCED_MODULE
? 'F' : ' ',
163 tainted
& TAINT_UNSAFE_SMP
? 'S' : ' ',
164 tainted
& TAINT_FORCED_RMMOD
? 'R' : ' ',
165 tainted
& TAINT_MACHINE_CHECK
? 'M' : ' ',
166 tainted
& TAINT_BAD_PAGE
? 'B' : ' ');
169 snprintf(buf
, sizeof(buf
), "Not tainted");
173 void add_taint(unsigned flag
)
175 debug_locks_off(); /* can't trust the integrity of the kernel anymore */
178 EXPORT_SYMBOL(add_taint
);
180 static int __init
pause_on_oops_setup(char *str
)
182 pause_on_oops
= simple_strtoul(str
, NULL
, 0);
185 __setup("pause_on_oops=", pause_on_oops_setup
);
187 static void spin_msec(int msecs
)
191 for (i
= 0; i
< msecs
; i
++) {
192 touch_nmi_watchdog();
198 * It just happens that oops_enter() and oops_exit() are identically
201 static void do_oops_enter_exit(void)
204 static int spin_counter
;
209 spin_lock_irqsave(&pause_on_oops_lock
, flags
);
210 if (pause_on_oops_flag
== 0) {
211 /* This CPU may now print the oops message */
212 pause_on_oops_flag
= 1;
214 /* We need to stall this CPU */
216 /* This CPU gets to do the counting */
217 spin_counter
= pause_on_oops
;
219 spin_unlock(&pause_on_oops_lock
);
220 spin_msec(MSEC_PER_SEC
);
221 spin_lock(&pause_on_oops_lock
);
222 } while (--spin_counter
);
223 pause_on_oops_flag
= 0;
225 /* This CPU waits for a different one */
226 while (spin_counter
) {
227 spin_unlock(&pause_on_oops_lock
);
229 spin_lock(&pause_on_oops_lock
);
233 spin_unlock_irqrestore(&pause_on_oops_lock
, flags
);
237 * Return true if the calling CPU is allowed to print oops-related info. This
240 int oops_may_print(void)
242 return pause_on_oops_flag
== 0;
246 * Called when the architecture enters its oops handler, before it prints
247 * anything. If this is the first CPU to oops, and it's oopsing the first time
248 * then let it proceed.
250 * This is all enabled by the pause_on_oops kernel boot option. We do all this
251 * to ensure that oopses don't scroll off the screen. It has the side-effect
252 * of preventing later-oopsing CPUs from mucking up the display, too.
254 * It turns out that the CPU which is allowed to print ends up pausing for the
255 * right duration, whereas all the other CPUs pause for twice as long: once in
256 * oops_enter(), once in oops_exit().
258 void oops_enter(void)
260 debug_locks_off(); /* can't trust the integrity of the kernel anymore */
261 do_oops_enter_exit();
265 * Called when the architecture exits its oops handler, after printing
270 do_oops_enter_exit();