2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32
rt2400pci_bbp_check(struct rt2x00_dev
*rt2x00dev
)
57 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
58 rt2x00pci_register_read(rt2x00dev
, BBPCSR
, ®
);
59 if (!rt2x00_get_field32(reg
, BBPCSR_BUSY
))
61 udelay(REGISTER_BUSY_DELAY
);
67 static void rt2400pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
68 const unsigned int word
, const u8 value
)
73 * Wait until the BBP becomes ready.
75 reg
= rt2400pci_bbp_check(rt2x00dev
);
76 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
77 ERROR(rt2x00dev
, "BBPCSR register busy. Write failed.\n");
82 * Write the data into the BBP.
85 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
86 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
87 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
88 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
90 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
93 static void rt2400pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
94 const unsigned int word
, u8
*value
)
99 * Wait until the BBP becomes ready.
101 reg
= rt2400pci_bbp_check(rt2x00dev
);
102 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
103 ERROR(rt2x00dev
, "BBPCSR register busy. Read failed.\n");
108 * Write the request into the BBP.
111 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
112 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
113 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
115 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
118 * Wait until the BBP becomes ready.
120 reg
= rt2400pci_bbp_check(rt2x00dev
);
121 if (rt2x00_get_field32(reg
, BBPCSR_BUSY
)) {
122 ERROR(rt2x00dev
, "BBPCSR register busy. Read failed.\n");
127 *value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
130 static void rt2400pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
131 const unsigned int word
, const u32 value
)
139 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
140 rt2x00pci_register_read(rt2x00dev
, RFCSR
, ®
);
141 if (!rt2x00_get_field32(reg
, RFCSR_BUSY
))
143 udelay(REGISTER_BUSY_DELAY
);
146 ERROR(rt2x00dev
, "RFCSR register busy. Write failed.\n");
151 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
152 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
153 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
154 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
156 rt2x00pci_register_write(rt2x00dev
, RFCSR
, reg
);
157 rt2x00_rf_write(rt2x00dev
, word
, value
);
160 static void rt2400pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
162 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
165 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
167 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
168 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
169 eeprom
->reg_data_clock
=
170 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
171 eeprom
->reg_chip_select
=
172 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
175 static void rt2400pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
177 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
180 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
181 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
182 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
183 !!eeprom
->reg_data_clock
);
184 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
185 !!eeprom
->reg_chip_select
);
187 rt2x00pci_register_write(rt2x00dev
, CSR21
, reg
);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2400pci_read_csr(struct rt2x00_dev
*rt2x00dev
,
194 const unsigned int word
, u32
*data
)
196 rt2x00pci_register_read(rt2x00dev
, CSR_OFFSET(word
), data
);
199 static void rt2400pci_write_csr(struct rt2x00_dev
*rt2x00dev
,
200 const unsigned int word
, u32 data
)
202 rt2x00pci_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
205 static const struct rt2x00debug rt2400pci_rt2x00debug
= {
206 .owner
= THIS_MODULE
,
208 .read
= rt2400pci_read_csr
,
209 .write
= rt2400pci_write_csr
,
210 .word_size
= sizeof(u32
),
211 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
214 .read
= rt2x00_eeprom_read
,
215 .write
= rt2x00_eeprom_write
,
216 .word_size
= sizeof(u16
),
217 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
220 .read
= rt2400pci_bbp_read
,
221 .write
= rt2400pci_bbp_write
,
222 .word_size
= sizeof(u8
),
223 .word_count
= BBP_SIZE
/ sizeof(u8
),
226 .read
= rt2x00_rf_read
,
227 .write
= rt2400pci_rf_write
,
228 .word_size
= sizeof(u32
),
229 .word_count
= RF_SIZE
/ sizeof(u32
),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2400PCI_RFKILL
235 static int rt2400pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
239 rt2x00pci_register_read(rt2x00dev
, GPIOCSR
, ®
);
240 return rt2x00_get_field32(reg
, GPIOCSR_BIT0
);
243 #define rt2400pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2400PCI_RFKILL */
246 #ifdef CONFIG_RT2400PCI_LEDS
247 static void rt2400pci_brightness_set(struct led_classdev
*led_cdev
,
248 enum led_brightness brightness
)
250 struct rt2x00_led
*led
=
251 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
252 unsigned int enabled
= brightness
!= LED_OFF
;
255 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
257 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
258 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
259 else if (led
->type
== LED_TYPE_ACTIVITY
)
260 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
262 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
265 static int rt2400pci_blink_set(struct led_classdev
*led_cdev
,
266 unsigned long *delay_on
,
267 unsigned long *delay_off
)
269 struct rt2x00_led
*led
=
270 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
273 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
274 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
275 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
276 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
281 static void rt2400pci_init_led(struct rt2x00_dev
*rt2x00dev
,
282 struct rt2x00_led
*led
,
285 led
->rt2x00dev
= rt2x00dev
;
287 led
->led_dev
.brightness_set
= rt2400pci_brightness_set
;
288 led
->led_dev
.blink_set
= rt2400pci_blink_set
;
289 led
->flags
= LED_INITIALIZED
;
291 #endif /* CONFIG_RT2400PCI_LEDS */
294 * Configuration handlers.
296 static void rt2400pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
297 const unsigned int filter_flags
)
302 * Start configuration steps.
303 * Note that the version error will always be dropped
304 * since there is no filter for it at this time.
306 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
307 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
308 !(filter_flags
& FIF_FCSFAIL
));
309 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
310 !(filter_flags
& FIF_PLCPFAIL
));
311 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
312 !(filter_flags
& FIF_CONTROL
));
313 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
314 !(filter_flags
& FIF_PROMISC_IN_BSS
));
315 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
316 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
317 !rt2x00dev
->intf_ap_count
);
318 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
319 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
322 static void rt2400pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
323 struct rt2x00_intf
*intf
,
324 struct rt2x00intf_conf
*conf
,
325 const unsigned int flags
)
327 unsigned int bcn_preload
;
330 if (flags
& CONFIG_UPDATE_TYPE
) {
332 * Enable beacon config
334 bcn_preload
= PREAMBLE
+ get_duration(IEEE80211_HEADER
, 20);
335 rt2x00pci_register_read(rt2x00dev
, BCNCSR1
, ®
);
336 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
337 rt2x00pci_register_write(rt2x00dev
, BCNCSR1
, reg
);
340 * Enable synchronisation.
342 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
343 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
344 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
345 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
346 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
349 if (flags
& CONFIG_UPDATE_MAC
)
350 rt2x00pci_register_multiwrite(rt2x00dev
, CSR3
,
351 conf
->mac
, sizeof(conf
->mac
));
353 if (flags
& CONFIG_UPDATE_BSSID
)
354 rt2x00pci_register_multiwrite(rt2x00dev
, CSR5
,
355 conf
->bssid
, sizeof(conf
->bssid
));
358 static void rt2400pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
359 struct rt2x00lib_erp
*erp
)
365 * When short preamble is enabled, we should set bit 0x08
367 preamble_mask
= erp
->short_preamble
<< 3;
369 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
370 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
,
372 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
,
373 erp
->ack_consume_time
);
374 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
376 rt2x00pci_register_read(rt2x00dev
, ARCSR2
, ®
);
377 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
378 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
379 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 10));
380 rt2x00pci_register_write(rt2x00dev
, ARCSR2
, reg
);
382 rt2x00pci_register_read(rt2x00dev
, ARCSR3
, ®
);
383 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
384 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
385 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 20));
386 rt2x00pci_register_write(rt2x00dev
, ARCSR3
, reg
);
388 rt2x00pci_register_read(rt2x00dev
, ARCSR4
, ®
);
389 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
390 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
391 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 55));
392 rt2x00pci_register_write(rt2x00dev
, ARCSR4
, reg
);
394 rt2x00pci_register_read(rt2x00dev
, ARCSR5
, ®
);
395 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
396 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
397 rt2x00_set_field32(®
, ARCSR2_LENGTH
, get_duration(ACK_SIZE
, 110));
398 rt2x00pci_register_write(rt2x00dev
, ARCSR5
, reg
);
401 static void rt2400pci_config_phymode(struct rt2x00_dev
*rt2x00dev
,
402 const int basic_rate_mask
)
404 rt2x00pci_register_write(rt2x00dev
, ARCSR1
, basic_rate_mask
);
407 static void rt2400pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
408 struct rf_channel
*rf
)
411 * Switch on tuning bits.
413 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
414 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
416 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
417 rt2400pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
418 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
421 * RF2420 chipset don't need any additional actions.
423 if (rt2x00_rf(&rt2x00dev
->chip
, RF2420
))
427 * For the RT2421 chipsets we need to write an invalid
428 * reference clock rate to activate auto_tune.
429 * After that we set the value back to the correct channel.
431 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
432 rt2400pci_rf_write(rt2x00dev
, 2, 0x000c2a32);
433 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
437 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
438 rt2400pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
439 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
444 * Switch off tuning bits.
446 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
447 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
449 rt2400pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
450 rt2400pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
453 * Clear false CRC during channel switch.
455 rt2x00pci_register_read(rt2x00dev
, CNT0
, &rf
->rf1
);
458 static void rt2400pci_config_txpower(struct rt2x00_dev
*rt2x00dev
, int txpower
)
460 rt2400pci_bbp_write(rt2x00dev
, 3, TXPOWER_TO_DEV(txpower
));
463 static void rt2400pci_config_antenna(struct rt2x00_dev
*rt2x00dev
,
464 struct antenna_setup
*ant
)
470 * We should never come here because rt2x00lib is supposed
471 * to catch this and send us the correct antenna explicitely.
473 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
474 ant
->tx
== ANTENNA_SW_DIVERSITY
);
476 rt2400pci_bbp_read(rt2x00dev
, 4, &r4
);
477 rt2400pci_bbp_read(rt2x00dev
, 1, &r1
);
480 * Configure the TX antenna.
483 case ANTENNA_HW_DIVERSITY
:
484 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 1);
487 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 0);
491 rt2x00_set_field8(&r1
, BBP_R1_TX_ANTENNA
, 2);
496 * Configure the RX antenna.
499 case ANTENNA_HW_DIVERSITY
:
500 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 1);
503 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 0);
507 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA
, 2);
511 rt2400pci_bbp_write(rt2x00dev
, 4, r4
);
512 rt2400pci_bbp_write(rt2x00dev
, 1, r1
);
515 static void rt2400pci_config_duration(struct rt2x00_dev
*rt2x00dev
,
516 struct rt2x00lib_conf
*libconf
)
520 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
521 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, libconf
->slot_time
);
522 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
524 rt2x00pci_register_read(rt2x00dev
, CSR18
, ®
);
525 rt2x00_set_field32(®
, CSR18_SIFS
, libconf
->sifs
);
526 rt2x00_set_field32(®
, CSR18_PIFS
, libconf
->pifs
);
527 rt2x00pci_register_write(rt2x00dev
, CSR18
, reg
);
529 rt2x00pci_register_read(rt2x00dev
, CSR19
, ®
);
530 rt2x00_set_field32(®
, CSR19_DIFS
, libconf
->difs
);
531 rt2x00_set_field32(®
, CSR19_EIFS
, libconf
->eifs
);
532 rt2x00pci_register_write(rt2x00dev
, CSR19
, reg
);
534 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
535 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
536 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
537 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
539 rt2x00pci_register_read(rt2x00dev
, CSR12
, ®
);
540 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
541 libconf
->conf
->beacon_int
* 16);
542 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
543 libconf
->conf
->beacon_int
* 16);
544 rt2x00pci_register_write(rt2x00dev
, CSR12
, reg
);
547 static void rt2400pci_config(struct rt2x00_dev
*rt2x00dev
,
548 struct rt2x00lib_conf
*libconf
,
549 const unsigned int flags
)
551 if (flags
& CONFIG_UPDATE_PHYMODE
)
552 rt2400pci_config_phymode(rt2x00dev
, libconf
->basic_rates
);
553 if (flags
& CONFIG_UPDATE_CHANNEL
)
554 rt2400pci_config_channel(rt2x00dev
, &libconf
->rf
);
555 if (flags
& CONFIG_UPDATE_TXPOWER
)
556 rt2400pci_config_txpower(rt2x00dev
,
557 libconf
->conf
->power_level
);
558 if (flags
& CONFIG_UPDATE_ANTENNA
)
559 rt2400pci_config_antenna(rt2x00dev
, &libconf
->ant
);
560 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
561 rt2400pci_config_duration(rt2x00dev
, libconf
);
564 static void rt2400pci_config_cw(struct rt2x00_dev
*rt2x00dev
,
565 const int cw_min
, const int cw_max
)
569 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
570 rt2x00_set_field32(®
, CSR11_CWMIN
, cw_min
);
571 rt2x00_set_field32(®
, CSR11_CWMAX
, cw_max
);
572 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
578 static void rt2400pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
579 struct link_qual
*qual
)
585 * Update FCS error count from register.
587 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
588 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
591 * Update False CCA count from register.
593 rt2400pci_bbp_read(rt2x00dev
, 39, &bbp
);
594 qual
->false_cca
= bbp
;
597 static void rt2400pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
599 rt2400pci_bbp_write(rt2x00dev
, 13, 0x08);
600 rt2x00dev
->link
.vgc_level
= 0x08;
603 static void rt2400pci_link_tuner(struct rt2x00_dev
*rt2x00dev
)
608 * The link tuner should not run longer then 60 seconds,
609 * and should run once every 2 seconds.
611 if (rt2x00dev
->link
.count
> 60 || !(rt2x00dev
->link
.count
& 1))
615 * Base r13 link tuning on the false cca count.
617 rt2400pci_bbp_read(rt2x00dev
, 13, ®
);
619 if (rt2x00dev
->link
.qual
.false_cca
> 512 && reg
< 0x20) {
620 rt2400pci_bbp_write(rt2x00dev
, 13, ++reg
);
621 rt2x00dev
->link
.vgc_level
= reg
;
622 } else if (rt2x00dev
->link
.qual
.false_cca
< 100 && reg
> 0x08) {
623 rt2400pci_bbp_write(rt2x00dev
, 13, --reg
);
624 rt2x00dev
->link
.vgc_level
= reg
;
629 * Initialization functions.
631 static void rt2400pci_init_rxentry(struct rt2x00_dev
*rt2x00dev
,
632 struct queue_entry
*entry
)
634 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
635 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
638 rt2x00_desc_read(entry_priv
->desc
, 2, &word
);
639 rt2x00_set_field32(&word
, RXD_W2_BUFFER_LENGTH
, entry
->skb
->len
);
640 rt2x00_desc_write(entry_priv
->desc
, 2, word
);
642 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
643 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
644 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
646 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
647 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
648 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
651 static void rt2400pci_init_txentry(struct rt2x00_dev
*rt2x00dev
,
652 struct queue_entry
*entry
)
654 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
657 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
658 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
659 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
660 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
663 static int rt2400pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
665 struct queue_entry_priv_pci
*entry_priv
;
669 * Initialize registers.
671 rt2x00pci_register_read(rt2x00dev
, TXCSR2
, ®
);
672 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
673 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
674 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->bcn
[1].limit
);
675 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
676 rt2x00pci_register_write(rt2x00dev
, TXCSR2
, reg
);
678 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
679 rt2x00pci_register_read(rt2x00dev
, TXCSR3
, ®
);
680 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
681 entry_priv
->desc_dma
);
682 rt2x00pci_register_write(rt2x00dev
, TXCSR3
, reg
);
684 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
685 rt2x00pci_register_read(rt2x00dev
, TXCSR5
, ®
);
686 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
687 entry_priv
->desc_dma
);
688 rt2x00pci_register_write(rt2x00dev
, TXCSR5
, reg
);
690 entry_priv
= rt2x00dev
->bcn
[1].entries
[0].priv_data
;
691 rt2x00pci_register_read(rt2x00dev
, TXCSR4
, ®
);
692 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
693 entry_priv
->desc_dma
);
694 rt2x00pci_register_write(rt2x00dev
, TXCSR4
, reg
);
696 entry_priv
= rt2x00dev
->bcn
[0].entries
[0].priv_data
;
697 rt2x00pci_register_read(rt2x00dev
, TXCSR6
, ®
);
698 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
699 entry_priv
->desc_dma
);
700 rt2x00pci_register_write(rt2x00dev
, TXCSR6
, reg
);
702 rt2x00pci_register_read(rt2x00dev
, RXCSR1
, ®
);
703 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
704 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
705 rt2x00pci_register_write(rt2x00dev
, RXCSR1
, reg
);
707 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
708 rt2x00pci_register_read(rt2x00dev
, RXCSR2
, ®
);
709 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
710 entry_priv
->desc_dma
);
711 rt2x00pci_register_write(rt2x00dev
, RXCSR2
, reg
);
716 static int rt2400pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
720 rt2x00pci_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
721 rt2x00pci_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
722 rt2x00pci_register_write(rt2x00dev
, PSCSR2
, 0x00023f20);
723 rt2x00pci_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
725 rt2x00pci_register_read(rt2x00dev
, TIMECSR
, ®
);
726 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
727 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
728 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
729 rt2x00pci_register_write(rt2x00dev
, TIMECSR
, reg
);
731 rt2x00pci_register_read(rt2x00dev
, CSR9
, ®
);
732 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
733 (rt2x00dev
->rx
->data_size
/ 128));
734 rt2x00pci_register_write(rt2x00dev
, CSR9
, reg
);
736 rt2x00pci_register_write(rt2x00dev
, CNT3
, 0x3f080000);
738 rt2x00pci_register_read(rt2x00dev
, ARCSR0
, ®
);
739 rt2x00_set_field32(®
, ARCSR0_AR_BBP_DATA0
, 133);
740 rt2x00_set_field32(®
, ARCSR0_AR_BBP_ID0
, 134);
741 rt2x00_set_field32(®
, ARCSR0_AR_BBP_DATA1
, 136);
742 rt2x00_set_field32(®
, ARCSR0_AR_BBP_ID1
, 135);
743 rt2x00pci_register_write(rt2x00dev
, ARCSR0
, reg
);
745 rt2x00pci_register_read(rt2x00dev
, RXCSR3
, ®
);
746 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 3); /* Tx power.*/
747 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
748 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 32); /* Signal */
749 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
750 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 36); /* Rssi */
751 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
752 rt2x00pci_register_write(rt2x00dev
, RXCSR3
, reg
);
754 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
756 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
759 rt2x00pci_register_write(rt2x00dev
, MACCSR0
, 0x00217223);
760 rt2x00pci_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
762 rt2x00pci_register_read(rt2x00dev
, MACCSR2
, ®
);
763 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
764 rt2x00pci_register_write(rt2x00dev
, MACCSR2
, reg
);
766 rt2x00pci_register_read(rt2x00dev
, RALINKCSR
, ®
);
767 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
768 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 154);
769 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
770 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 154);
771 rt2x00pci_register_write(rt2x00dev
, RALINKCSR
, reg
);
773 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
774 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
775 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
776 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
777 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
779 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
780 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
781 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
782 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
785 * We must clear the FCS and FIFO error count.
786 * These registers are cleared on read,
787 * so we may pass a useless variable to store the value.
789 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
790 rt2x00pci_register_read(rt2x00dev
, CNT4
, ®
);
795 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
800 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
801 rt2400pci_bbp_read(rt2x00dev
, 0, &value
);
802 if ((value
!= 0xff) && (value
!= 0x00))
804 udelay(REGISTER_BUSY_DELAY
);
807 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
811 static int rt2400pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
818 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev
)))
821 rt2400pci_bbp_write(rt2x00dev
, 1, 0x00);
822 rt2400pci_bbp_write(rt2x00dev
, 3, 0x27);
823 rt2400pci_bbp_write(rt2x00dev
, 4, 0x08);
824 rt2400pci_bbp_write(rt2x00dev
, 10, 0x0f);
825 rt2400pci_bbp_write(rt2x00dev
, 15, 0x72);
826 rt2400pci_bbp_write(rt2x00dev
, 16, 0x74);
827 rt2400pci_bbp_write(rt2x00dev
, 17, 0x20);
828 rt2400pci_bbp_write(rt2x00dev
, 18, 0x72);
829 rt2400pci_bbp_write(rt2x00dev
, 19, 0x0b);
830 rt2400pci_bbp_write(rt2x00dev
, 20, 0x00);
831 rt2400pci_bbp_write(rt2x00dev
, 28, 0x11);
832 rt2400pci_bbp_write(rt2x00dev
, 29, 0x04);
833 rt2400pci_bbp_write(rt2x00dev
, 30, 0x21);
834 rt2400pci_bbp_write(rt2x00dev
, 31, 0x00);
836 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
837 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
839 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
840 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
841 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
842 rt2400pci_bbp_write(rt2x00dev
, reg_id
, value
);
850 * Device state switch handlers.
852 static void rt2400pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
853 enum dev_state state
)
857 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
858 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
,
859 (state
== STATE_RADIO_RX_OFF
) ||
860 (state
== STATE_RADIO_RX_OFF_LINK
));
861 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
864 static void rt2400pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
865 enum dev_state state
)
867 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
871 * When interrupts are being enabled, the interrupt registers
872 * should clear the register to assure a clean state.
874 if (state
== STATE_RADIO_IRQ_ON
) {
875 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
876 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
880 * Only toggle the interrupts bits we are going to use.
881 * Non-checked interrupt bits are disabled by default.
883 rt2x00pci_register_read(rt2x00dev
, CSR8
, ®
);
884 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
885 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
886 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
887 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
888 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
889 rt2x00pci_register_write(rt2x00dev
, CSR8
, reg
);
892 static int rt2400pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
895 * Initialize all registers.
897 if (unlikely(rt2400pci_init_queues(rt2x00dev
) ||
898 rt2400pci_init_registers(rt2x00dev
) ||
899 rt2400pci_init_bbp(rt2x00dev
)))
905 static void rt2400pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
909 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0);
912 * Disable synchronisation.
914 rt2x00pci_register_write(rt2x00dev
, CSR14
, 0);
919 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
920 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
921 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
924 static int rt2400pci_set_state(struct rt2x00_dev
*rt2x00dev
,
925 enum dev_state state
)
933 put_to_sleep
= (state
!= STATE_AWAKE
);
935 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
936 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
937 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
938 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
939 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
940 rt2x00pci_register_write(rt2x00dev
, PWRCSR1
, reg
);
943 * Device is not guaranteed to be in the requested state yet.
944 * We must wait until the register indicates that the
945 * device has entered the correct state.
947 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
948 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
949 bbp_state
= rt2x00_get_field32(reg
, PWRCSR1_BBP_CURR_STATE
);
950 rf_state
= rt2x00_get_field32(reg
, PWRCSR1_RF_CURR_STATE
);
951 if (bbp_state
== state
&& rf_state
== state
)
959 static int rt2400pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
960 enum dev_state state
)
966 retval
= rt2400pci_enable_radio(rt2x00dev
);
968 case STATE_RADIO_OFF
:
969 rt2400pci_disable_radio(rt2x00dev
);
971 case STATE_RADIO_RX_ON
:
972 case STATE_RADIO_RX_ON_LINK
:
973 case STATE_RADIO_RX_OFF
:
974 case STATE_RADIO_RX_OFF_LINK
:
975 rt2400pci_toggle_rx(rt2x00dev
, state
);
977 case STATE_RADIO_IRQ_ON
:
978 case STATE_RADIO_IRQ_OFF
:
979 rt2400pci_toggle_irq(rt2x00dev
, state
);
981 case STATE_DEEP_SLEEP
:
985 retval
= rt2400pci_set_state(rt2x00dev
, state
);
992 if (unlikely(retval
))
993 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1000 * TX descriptor initialization
1002 static void rt2400pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1003 struct sk_buff
*skb
,
1004 struct txentry_desc
*txdesc
)
1006 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1007 struct queue_entry_priv_pci
*entry_priv
= skbdesc
->entry
->priv_data
;
1008 __le32
*txd
= skbdesc
->desc
;
1012 * Start writing the descriptor words.
1014 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
1015 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1016 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
1018 rt2x00_desc_read(txd
, 2, &word
);
1019 rt2x00_set_field32(&word
, TXD_W2_BUFFER_LENGTH
, skb
->len
);
1020 rt2x00_set_field32(&word
, TXD_W2_DATABYTE_COUNT
, skb
->len
);
1021 rt2x00_desc_write(txd
, 2, word
);
1023 rt2x00_desc_read(txd
, 3, &word
);
1024 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->signal
);
1025 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL_REGNUM
, 5);
1026 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL_BUSY
, 1);
1027 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->service
);
1028 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE_REGNUM
, 6);
1029 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE_BUSY
, 1);
1030 rt2x00_desc_write(txd
, 3, word
);
1032 rt2x00_desc_read(txd
, 4, &word
);
1033 rt2x00_set_field32(&word
, TXD_W4_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1034 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW_REGNUM
, 8);
1035 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW_BUSY
, 1);
1036 rt2x00_set_field32(&word
, TXD_W4_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1037 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH_REGNUM
, 7);
1038 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH_BUSY
, 1);
1039 rt2x00_desc_write(txd
, 4, word
);
1041 rt2x00_desc_read(txd
, 0, &word
);
1042 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1043 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1044 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1045 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1046 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1047 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1048 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1049 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1050 rt2x00_set_field32(&word
, TXD_W0_RTS
,
1051 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1052 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1053 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1054 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1055 rt2x00_desc_write(txd
, 0, word
);
1059 * TX data initialization
1061 static void rt2400pci_write_beacon(struct queue_entry
*entry
)
1063 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1064 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1065 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1070 * Disable beaconing while we are reloading the beacon data,
1071 * otherwise we might be sending out invalid data.
1073 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1074 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
1075 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
1076 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1077 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1080 * Replace rt2x00lib allocated descriptor with the
1081 * pointer to the _real_ hardware descriptor.
1082 * After that, map the beacon to DMA and update the
1085 memcpy(entry_priv
->desc
, skbdesc
->desc
, skbdesc
->desc_len
);
1086 skbdesc
->desc
= entry_priv
->desc
;
1088 rt2x00queue_map_txskb(rt2x00dev
, entry
->skb
);
1090 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
1091 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1092 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
1095 static void rt2400pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1096 const enum data_queue_qid queue
)
1100 if (queue
== QID_BEACON
) {
1101 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1102 if (!rt2x00_get_field32(reg
, CSR14_BEACON_GEN
)) {
1103 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
1104 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
1105 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1106 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1111 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
1112 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, (queue
== QID_AC_BE
));
1113 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, (queue
== QID_AC_BK
));
1114 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, (queue
== QID_ATIM
));
1115 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
1119 * RX control handlers
1121 static void rt2400pci_fill_rxdone(struct queue_entry
*entry
,
1122 struct rxdone_entry_desc
*rxdesc
)
1124 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1125 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1134 rt2x00_desc_read(entry_priv
->desc
, 0, &word0
);
1135 rt2x00_desc_read(entry_priv
->desc
, 2, &word2
);
1136 rt2x00_desc_read(entry_priv
->desc
, 3, &word3
);
1137 rt2x00_desc_read(entry_priv
->desc
, 4, &word4
);
1139 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1140 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1141 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1142 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1145 * We only get the lower 32bits from the timestamp,
1146 * to get the full 64bits we must complement it with
1147 * the timestamp from get_tsf().
1148 * Note that when a wraparound of the lower 32bits
1149 * has occurred between the frame arrival and the get_tsf()
1150 * call, we must decrease the higher 32bits with 1 to get
1153 tsf
= rt2x00dev
->ops
->hw
->get_tsf(rt2x00dev
->hw
);
1154 rx_low
= rt2x00_get_field32(word4
, RXD_W4_RX_END_TIME
);
1155 rx_high
= upper_32_bits(tsf
);
1157 if ((u32
)tsf
<= rx_low
)
1161 * Obtain the status about this packet.
1162 * The signal is the PLCP value, and needs to be stripped
1163 * of the preamble bit (0x08).
1165 rxdesc
->timestamp
= ((u64
)rx_high
<< 32) | rx_low
;
1166 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
) & ~0x08;
1167 rxdesc
->rssi
= rt2x00_get_field32(word2
, RXD_W3_RSSI
) -
1168 entry
->queue
->rt2x00dev
->rssi_offset
;
1169 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1171 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1172 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1173 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1177 * Interrupt functions.
1179 static void rt2400pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1180 const enum data_queue_qid queue_idx
)
1182 struct data_queue
*queue
= rt2x00queue_get_queue(rt2x00dev
, queue_idx
);
1183 struct queue_entry_priv_pci
*entry_priv
;
1184 struct queue_entry
*entry
;
1185 struct txdone_entry_desc txdesc
;
1188 while (!rt2x00queue_empty(queue
)) {
1189 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1190 entry_priv
= entry
->priv_data
;
1191 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1193 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1194 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1198 * Obtain the status about this packet.
1201 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1202 case 0: /* Success */
1203 case 1: /* Success with retry */
1204 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1206 case 2: /* Failure, excessive retries */
1207 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1208 /* Don't break, this is a failed frame! */
1209 default: /* Failure */
1210 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1212 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1214 rt2x00lib_txdone(entry
, &txdesc
);
1218 static irqreturn_t
rt2400pci_interrupt(int irq
, void *dev_instance
)
1220 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1224 * Get the interrupt sources & saved to local variable.
1225 * Write register value back to clear pending interrupts.
1227 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1228 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1233 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1237 * Handle interrupts, walk through all bits
1238 * and run the tasks, the bits are checked in order of
1243 * 1 - Beacon timer expired interrupt.
1245 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1246 rt2x00lib_beacondone(rt2x00dev
);
1249 * 2 - Rx ring done interrupt.
1251 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1252 rt2x00pci_rxdone(rt2x00dev
);
1255 * 3 - Atim ring transmit done interrupt.
1257 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
))
1258 rt2400pci_txdone(rt2x00dev
, QID_ATIM
);
1261 * 4 - Priority ring transmit done interrupt.
1263 if (rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
))
1264 rt2400pci_txdone(rt2x00dev
, QID_AC_BE
);
1267 * 5 - Tx ring transmit done interrupt.
1269 if (rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
))
1270 rt2400pci_txdone(rt2x00dev
, QID_AC_BK
);
1276 * Device probe functions.
1278 static int rt2400pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1280 struct eeprom_93cx6 eeprom
;
1285 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
1287 eeprom
.data
= rt2x00dev
;
1288 eeprom
.register_read
= rt2400pci_eepromregister_read
;
1289 eeprom
.register_write
= rt2400pci_eepromregister_write
;
1290 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1291 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1292 eeprom
.reg_data_in
= 0;
1293 eeprom
.reg_data_out
= 0;
1294 eeprom
.reg_data_clock
= 0;
1295 eeprom
.reg_chip_select
= 0;
1297 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1298 EEPROM_SIZE
/ sizeof(u16
));
1301 * Start validation of the data that has been read.
1303 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1304 if (!is_valid_ether_addr(mac
)) {
1305 DECLARE_MAC_BUF(macbuf
);
1307 random_ether_addr(mac
);
1308 EEPROM(rt2x00dev
, "MAC: %s\n", print_mac(macbuf
, mac
));
1311 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1312 if (word
== 0xffff) {
1313 ERROR(rt2x00dev
, "Invalid EEPROM data detected.\n");
1320 static int rt2400pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1327 * Read EEPROM word for configuration.
1329 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1332 * Identify RF chipset.
1334 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1335 rt2x00pci_register_read(rt2x00dev
, CSR0
, ®
);
1336 rt2x00_set_chip(rt2x00dev
, RT2460
, value
, reg
);
1338 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2420
) &&
1339 !rt2x00_rf(&rt2x00dev
->chip
, RF2421
)) {
1340 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1345 * Identify default antenna configuration.
1347 rt2x00dev
->default_ant
.tx
=
1348 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1349 rt2x00dev
->default_ant
.rx
=
1350 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1353 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1354 * I am not 100% sure about this, but the legacy drivers do not
1355 * indicate antenna swapping in software is required when
1356 * diversity is enabled.
1358 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1359 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1360 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1361 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1364 * Store led mode, for correct led behaviour.
1366 #ifdef CONFIG_RT2400PCI_LEDS
1367 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1369 rt2400pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1370 if (value
== LED_MODE_TXRX_ACTIVITY
)
1371 rt2400pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1373 #endif /* CONFIG_RT2400PCI_LEDS */
1376 * Detect if this device has an hardware controlled radio.
1378 #ifdef CONFIG_RT2400PCI_RFKILL
1379 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1380 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1381 #endif /* CONFIG_RT2400PCI_RFKILL */
1384 * Check if the BBP tuning should be enabled.
1386 if (!rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_AGCVGC_TUNING
))
1387 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1393 * RF value list for RF2420 & RF2421
1396 static const struct rf_channel rf_vals_bg
[] = {
1397 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1398 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1399 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1400 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1401 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1402 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1403 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1404 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1405 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1406 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1407 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1408 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1409 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1410 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1413 static void rt2400pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1415 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1420 * Initialize all hw fields.
1422 rt2x00dev
->hw
->flags
= IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1423 IEEE80211_HW_SIGNAL_DBM
;
1424 rt2x00dev
->hw
->extra_tx_headroom
= 0;
1426 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1427 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1428 rt2x00_eeprom_addr(rt2x00dev
,
1429 EEPROM_MAC_ADDR_0
));
1432 * Convert tx_power array in eeprom.
1434 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1435 for (i
= 0; i
< 14; i
++)
1436 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
1439 * Initialize hw_mode information.
1441 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1442 spec
->supported_rates
= SUPPORT_RATE_CCK
;
1443 spec
->tx_power_a
= NULL
;
1444 spec
->tx_power_bg
= txpower
;
1445 spec
->tx_power_default
= DEFAULT_TXPOWER
;
1447 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg
);
1448 spec
->channels
= rf_vals_bg
;
1451 static int rt2400pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1456 * Allocate eeprom data.
1458 retval
= rt2400pci_validate_eeprom(rt2x00dev
);
1462 retval
= rt2400pci_init_eeprom(rt2x00dev
);
1467 * Initialize hw specifications.
1469 rt2400pci_probe_hw_mode(rt2x00dev
);
1472 * This device requires the atim queue and DMA-mapped skbs.
1474 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1475 __set_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
);
1478 * Set the rssi offset.
1480 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1486 * IEEE80211 stack callback functions.
1488 static int rt2400pci_set_retry_limit(struct ieee80211_hw
*hw
,
1489 u32 short_retry
, u32 long_retry
)
1491 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1494 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
1495 rt2x00_set_field32(®
, CSR11_LONG_RETRY
, long_retry
);
1496 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
, short_retry
);
1497 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
1502 static int rt2400pci_conf_tx(struct ieee80211_hw
*hw
, u16 queue
,
1503 const struct ieee80211_tx_queue_params
*params
)
1505 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1508 * We don't support variating cw_min and cw_max variables
1509 * per queue. So by default we only configure the TX queue,
1510 * and ignore all other configurations.
1515 if (rt2x00mac_conf_tx(hw
, queue
, params
))
1519 * Write configuration to register.
1521 rt2400pci_config_cw(rt2x00dev
,
1522 rt2x00dev
->tx
->cw_min
, rt2x00dev
->tx
->cw_max
);
1527 static u64
rt2400pci_get_tsf(struct ieee80211_hw
*hw
)
1529 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1533 rt2x00pci_register_read(rt2x00dev
, CSR17
, ®
);
1534 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1535 rt2x00pci_register_read(rt2x00dev
, CSR16
, ®
);
1536 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1541 static int rt2400pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1543 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1546 rt2x00pci_register_read(rt2x00dev
, CSR15
, ®
);
1547 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
1550 static const struct ieee80211_ops rt2400pci_mac80211_ops
= {
1552 .start
= rt2x00mac_start
,
1553 .stop
= rt2x00mac_stop
,
1554 .add_interface
= rt2x00mac_add_interface
,
1555 .remove_interface
= rt2x00mac_remove_interface
,
1556 .config
= rt2x00mac_config
,
1557 .config_interface
= rt2x00mac_config_interface
,
1558 .configure_filter
= rt2x00mac_configure_filter
,
1559 .get_stats
= rt2x00mac_get_stats
,
1560 .set_retry_limit
= rt2400pci_set_retry_limit
,
1561 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1562 .conf_tx
= rt2400pci_conf_tx
,
1563 .get_tx_stats
= rt2x00mac_get_tx_stats
,
1564 .get_tsf
= rt2400pci_get_tsf
,
1565 .tx_last_beacon
= rt2400pci_tx_last_beacon
,
1568 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops
= {
1569 .irq_handler
= rt2400pci_interrupt
,
1570 .probe_hw
= rt2400pci_probe_hw
,
1571 .initialize
= rt2x00pci_initialize
,
1572 .uninitialize
= rt2x00pci_uninitialize
,
1573 .init_rxentry
= rt2400pci_init_rxentry
,
1574 .init_txentry
= rt2400pci_init_txentry
,
1575 .set_device_state
= rt2400pci_set_device_state
,
1576 .rfkill_poll
= rt2400pci_rfkill_poll
,
1577 .link_stats
= rt2400pci_link_stats
,
1578 .reset_tuner
= rt2400pci_reset_tuner
,
1579 .link_tuner
= rt2400pci_link_tuner
,
1580 .write_tx_desc
= rt2400pci_write_tx_desc
,
1581 .write_tx_data
= rt2x00pci_write_tx_data
,
1582 .write_beacon
= rt2400pci_write_beacon
,
1583 .kick_tx_queue
= rt2400pci_kick_tx_queue
,
1584 .fill_rxdone
= rt2400pci_fill_rxdone
,
1585 .config_filter
= rt2400pci_config_filter
,
1586 .config_intf
= rt2400pci_config_intf
,
1587 .config_erp
= rt2400pci_config_erp
,
1588 .config
= rt2400pci_config
,
1591 static const struct data_queue_desc rt2400pci_queue_rx
= {
1592 .entry_num
= RX_ENTRIES
,
1593 .data_size
= DATA_FRAME_SIZE
,
1594 .desc_size
= RXD_DESC_SIZE
,
1595 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1598 static const struct data_queue_desc rt2400pci_queue_tx
= {
1599 .entry_num
= TX_ENTRIES
,
1600 .data_size
= DATA_FRAME_SIZE
,
1601 .desc_size
= TXD_DESC_SIZE
,
1602 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1605 static const struct data_queue_desc rt2400pci_queue_bcn
= {
1606 .entry_num
= BEACON_ENTRIES
,
1607 .data_size
= MGMT_FRAME_SIZE
,
1608 .desc_size
= TXD_DESC_SIZE
,
1609 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1612 static const struct data_queue_desc rt2400pci_queue_atim
= {
1613 .entry_num
= ATIM_ENTRIES
,
1614 .data_size
= DATA_FRAME_SIZE
,
1615 .desc_size
= TXD_DESC_SIZE
,
1616 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1619 static const struct rt2x00_ops rt2400pci_ops
= {
1620 .name
= KBUILD_MODNAME
,
1623 .eeprom_size
= EEPROM_SIZE
,
1625 .tx_queues
= NUM_TX_QUEUES
,
1626 .rx
= &rt2400pci_queue_rx
,
1627 .tx
= &rt2400pci_queue_tx
,
1628 .bcn
= &rt2400pci_queue_bcn
,
1629 .atim
= &rt2400pci_queue_atim
,
1630 .lib
= &rt2400pci_rt2x00_ops
,
1631 .hw
= &rt2400pci_mac80211_ops
,
1632 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1633 .debugfs
= &rt2400pci_rt2x00debug
,
1634 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1638 * RT2400pci module information.
1640 static struct pci_device_id rt2400pci_device_table
[] = {
1641 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops
) },
1645 MODULE_AUTHOR(DRV_PROJECT
);
1646 MODULE_VERSION(DRV_VERSION
);
1647 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1648 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1649 MODULE_DEVICE_TABLE(pci
, rt2400pci_device_table
);
1650 MODULE_LICENSE("GPL");
1652 static struct pci_driver rt2400pci_driver
= {
1653 .name
= KBUILD_MODNAME
,
1654 .id_table
= rt2400pci_device_table
,
1655 .probe
= rt2x00pci_probe
,
1656 .remove
= __devexit_p(rt2x00pci_remove
),
1657 .suspend
= rt2x00pci_suspend
,
1658 .resume
= rt2x00pci_resume
,
1661 static int __init
rt2400pci_init(void)
1663 return pci_register_driver(&rt2400pci_driver
);
1666 static void __exit
rt2400pci_exit(void)
1668 pci_unregister_driver(&rt2400pci_driver
);
1671 module_init(rt2400pci_init
);
1672 module_exit(rt2400pci_exit
);