[IPV4]: ARP header annotated
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / ll_rw_blk.c
blob9c3a06bcb7ba97b02d12de6638944ac79e33baa2
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
33 * for max sense size
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
39 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
40 static void init_request_from_bio(struct request *req, struct bio *bio);
41 static int __make_request(request_queue_t *q, struct bio *bio);
44 * For the allocated request tables
46 static kmem_cache_t *request_cachep;
49 * For queue allocation
51 static kmem_cache_t *requestq_cachep;
54 * For io context allocations
56 static kmem_cache_t *iocontext_cachep;
58 static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
64 * Controlling structure to kblockd
66 static struct workqueue_struct *kblockd_workqueue;
68 unsigned long blk_max_low_pfn, blk_max_pfn;
70 EXPORT_SYMBOL(blk_max_low_pfn);
71 EXPORT_SYMBOL(blk_max_pfn);
73 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75 /* Amount of time in which a process may batch requests */
76 #define BLK_BATCH_TIME (HZ/50UL)
78 /* Number of requests a "batching" process may submit */
79 #define BLK_BATCH_REQ 32
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
86 static inline int queue_congestion_on_threshold(struct request_queue *q)
88 return q->nr_congestion_on;
92 * The threshold at which a queue is considered to be uncongested
94 static inline int queue_congestion_off_threshold(struct request_queue *q)
96 return q->nr_congestion_off;
99 static void blk_queue_congestion_threshold(struct request_queue *q)
101 int nr;
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
117 * put back.
119 static void clear_queue_congested(request_queue_t *q, int rw)
121 enum bdi_state bit;
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
128 wake_up(wqh);
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
135 static void set_queue_congested(request_queue_t *q, int rw)
137 enum bdi_state bit;
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
145 * @bdev: device
147 * Locates the passed device's request queue and returns the address of its
148 * backing_dev_info
150 * Will return NULL if the request queue cannot be located.
152 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
157 if (q)
158 ret = &q->backing_dev_info;
159 return ret;
162 EXPORT_SYMBOL(blk_get_backing_dev_info);
164 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
166 q->activity_fn = fn;
167 q->activity_data = data;
170 EXPORT_SYMBOL(blk_queue_activity_fn);
173 * blk_queue_prep_rq - set a prepare_request function for queue
174 * @q: queue
175 * @pfn: prepare_request function
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
183 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
185 q->prep_rq_fn = pfn;
188 EXPORT_SYMBOL(blk_queue_prep_rq);
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
192 * @q: queue
193 * @mbfn: merge_bvec_fn
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
204 * honored.
206 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
208 q->merge_bvec_fn = mbfn;
211 EXPORT_SYMBOL(blk_queue_merge_bvec);
213 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
215 q->softirq_done_fn = fn;
218 EXPORT_SYMBOL(blk_queue_softirq_done);
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
225 * Description:
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
236 * Caveat:
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
242 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
245 * set defaults
247 q->nr_requests = BLKDEV_MAX_RQ;
248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
263 q->unplug_delay = 1;
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
271 * by default assume old behaviour and bounce for any highmem page
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
275 blk_queue_activity_fn(q, NULL, NULL);
278 EXPORT_SYMBOL(blk_queue_make_request);
280 static inline void rq_init(request_queue_t *q, struct request *rq)
282 INIT_LIST_HEAD(&rq->queuelist);
283 INIT_LIST_HEAD(&rq->donelist);
285 rq->errors = 0;
286 rq->rq_status = RQ_ACTIVE;
287 rq->bio = rq->biotail = NULL;
288 rq->ioprio = 0;
289 rq->buffer = NULL;
290 rq->ref_count = 1;
291 rq->q = q;
292 rq->waiting = NULL;
293 rq->special = NULL;
294 rq->data_len = 0;
295 rq->data = NULL;
296 rq->nr_phys_segments = 0;
297 rq->sense = NULL;
298 rq->end_io = NULL;
299 rq->end_io_data = NULL;
300 rq->completion_data = NULL;
304 * blk_queue_ordered - does this queue support ordered writes
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
309 * Description:
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
316 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
317 prepare_flush_fn *prepare_flush_fn)
319 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
320 prepare_flush_fn == NULL) {
321 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
322 return -EINVAL;
325 if (ordered != QUEUE_ORDERED_NONE &&
326 ordered != QUEUE_ORDERED_DRAIN &&
327 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
328 ordered != QUEUE_ORDERED_DRAIN_FUA &&
329 ordered != QUEUE_ORDERED_TAG &&
330 ordered != QUEUE_ORDERED_TAG_FLUSH &&
331 ordered != QUEUE_ORDERED_TAG_FUA) {
332 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
333 return -EINVAL;
336 q->ordered = ordered;
337 q->next_ordered = ordered;
338 q->prepare_flush_fn = prepare_flush_fn;
340 return 0;
343 EXPORT_SYMBOL(blk_queue_ordered);
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
350 * Description:
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
355 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
357 q->issue_flush_fn = iff;
360 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
363 * Cache flushing for ordered writes handling
365 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
367 if (!q->ordseq)
368 return 0;
369 return 1 << ffz(q->ordseq);
372 unsigned blk_ordered_req_seq(struct request *rq)
374 request_queue_t *q = rq->q;
376 BUG_ON(q->ordseq == 0);
378 if (rq == &q->pre_flush_rq)
379 return QUEUE_ORDSEQ_PREFLUSH;
380 if (rq == &q->bar_rq)
381 return QUEUE_ORDSEQ_BAR;
382 if (rq == &q->post_flush_rq)
383 return QUEUE_ORDSEQ_POSTFLUSH;
385 if ((rq->flags & REQ_ORDERED_COLOR) ==
386 (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
387 return QUEUE_ORDSEQ_DRAIN;
388 else
389 return QUEUE_ORDSEQ_DONE;
392 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
394 struct request *rq;
395 int uptodate;
397 if (error && !q->orderr)
398 q->orderr = error;
400 BUG_ON(q->ordseq & seq);
401 q->ordseq |= seq;
403 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
404 return;
407 * Okay, sequence complete.
409 rq = q->orig_bar_rq;
410 uptodate = q->orderr ? q->orderr : 1;
412 q->ordseq = 0;
414 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
415 end_that_request_last(rq, uptodate);
418 static void pre_flush_end_io(struct request *rq, int error)
420 elv_completed_request(rq->q, rq);
421 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
424 static void bar_end_io(struct request *rq, int error)
426 elv_completed_request(rq->q, rq);
427 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
430 static void post_flush_end_io(struct request *rq, int error)
432 elv_completed_request(rq->q, rq);
433 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
436 static void queue_flush(request_queue_t *q, unsigned which)
438 struct request *rq;
439 rq_end_io_fn *end_io;
441 if (which == QUEUE_ORDERED_PREFLUSH) {
442 rq = &q->pre_flush_rq;
443 end_io = pre_flush_end_io;
444 } else {
445 rq = &q->post_flush_rq;
446 end_io = post_flush_end_io;
449 rq_init(q, rq);
450 rq->flags = REQ_HARDBARRIER;
451 rq->elevator_private = NULL;
452 rq->rq_disk = q->bar_rq.rq_disk;
453 rq->rl = NULL;
454 rq->end_io = end_io;
455 q->prepare_flush_fn(q, rq);
457 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
460 static inline struct request *start_ordered(request_queue_t *q,
461 struct request *rq)
463 q->bi_size = 0;
464 q->orderr = 0;
465 q->ordered = q->next_ordered;
466 q->ordseq |= QUEUE_ORDSEQ_STARTED;
469 * Prep proxy barrier request.
471 blkdev_dequeue_request(rq);
472 q->orig_bar_rq = rq;
473 rq = &q->bar_rq;
474 rq_init(q, rq);
475 rq->flags = bio_data_dir(q->orig_bar_rq->bio);
476 rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
477 rq->elevator_private = NULL;
478 rq->rl = NULL;
479 init_request_from_bio(rq, q->orig_bar_rq->bio);
480 rq->end_io = bar_end_io;
483 * Queue ordered sequence. As we stack them at the head, we
484 * need to queue in reverse order. Note that we rely on that
485 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
486 * request gets inbetween ordered sequence.
488 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
489 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
490 else
491 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
493 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
495 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
496 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
497 rq = &q->pre_flush_rq;
498 } else
499 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
501 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
502 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
503 else
504 rq = NULL;
506 return rq;
509 int blk_do_ordered(request_queue_t *q, struct request **rqp)
511 struct request *rq = *rqp;
512 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
514 if (!q->ordseq) {
515 if (!is_barrier)
516 return 1;
518 if (q->next_ordered != QUEUE_ORDERED_NONE) {
519 *rqp = start_ordered(q, rq);
520 return 1;
521 } else {
523 * This can happen when the queue switches to
524 * ORDERED_NONE while this request is on it.
526 blkdev_dequeue_request(rq);
527 end_that_request_first(rq, -EOPNOTSUPP,
528 rq->hard_nr_sectors);
529 end_that_request_last(rq, -EOPNOTSUPP);
530 *rqp = NULL;
531 return 0;
536 * Ordered sequence in progress
539 /* Special requests are not subject to ordering rules. */
540 if (!blk_fs_request(rq) &&
541 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
542 return 1;
544 if (q->ordered & QUEUE_ORDERED_TAG) {
545 /* Ordered by tag. Blocking the next barrier is enough. */
546 if (is_barrier && rq != &q->bar_rq)
547 *rqp = NULL;
548 } else {
549 /* Ordered by draining. Wait for turn. */
550 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
551 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
552 *rqp = NULL;
555 return 1;
558 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
560 request_queue_t *q = bio->bi_private;
561 struct bio_vec *bvec;
562 int i;
565 * This is dry run, restore bio_sector and size. We'll finish
566 * this request again with the original bi_end_io after an
567 * error occurs or post flush is complete.
569 q->bi_size += bytes;
571 if (bio->bi_size)
572 return 1;
574 /* Rewind bvec's */
575 bio->bi_idx = 0;
576 bio_for_each_segment(bvec, bio, i) {
577 bvec->bv_len += bvec->bv_offset;
578 bvec->bv_offset = 0;
581 /* Reset bio */
582 set_bit(BIO_UPTODATE, &bio->bi_flags);
583 bio->bi_size = q->bi_size;
584 bio->bi_sector -= (q->bi_size >> 9);
585 q->bi_size = 0;
587 return 0;
590 static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
591 unsigned int nbytes, int error)
593 request_queue_t *q = rq->q;
594 bio_end_io_t *endio;
595 void *private;
597 if (&q->bar_rq != rq)
598 return 0;
601 * Okay, this is the barrier request in progress, dry finish it.
603 if (error && !q->orderr)
604 q->orderr = error;
606 endio = bio->bi_end_io;
607 private = bio->bi_private;
608 bio->bi_end_io = flush_dry_bio_endio;
609 bio->bi_private = q;
611 bio_endio(bio, nbytes, error);
613 bio->bi_end_io = endio;
614 bio->bi_private = private;
616 return 1;
620 * blk_queue_bounce_limit - set bounce buffer limit for queue
621 * @q: the request queue for the device
622 * @dma_addr: bus address limit
624 * Description:
625 * Different hardware can have different requirements as to what pages
626 * it can do I/O directly to. A low level driver can call
627 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
628 * buffers for doing I/O to pages residing above @page.
630 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
632 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
633 int dma = 0;
635 q->bounce_gfp = GFP_NOIO;
636 #if BITS_PER_LONG == 64
637 /* Assume anything <= 4GB can be handled by IOMMU.
638 Actually some IOMMUs can handle everything, but I don't
639 know of a way to test this here. */
640 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
641 dma = 1;
642 q->bounce_pfn = max_low_pfn;
643 #else
644 if (bounce_pfn < blk_max_low_pfn)
645 dma = 1;
646 q->bounce_pfn = bounce_pfn;
647 #endif
648 if (dma) {
649 init_emergency_isa_pool();
650 q->bounce_gfp = GFP_NOIO | GFP_DMA;
651 q->bounce_pfn = bounce_pfn;
655 EXPORT_SYMBOL(blk_queue_bounce_limit);
658 * blk_queue_max_sectors - set max sectors for a request for this queue
659 * @q: the request queue for the device
660 * @max_sectors: max sectors in the usual 512b unit
662 * Description:
663 * Enables a low level driver to set an upper limit on the size of
664 * received requests.
666 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
668 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
669 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
670 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
673 if (BLK_DEF_MAX_SECTORS > max_sectors)
674 q->max_hw_sectors = q->max_sectors = max_sectors;
675 else {
676 q->max_sectors = BLK_DEF_MAX_SECTORS;
677 q->max_hw_sectors = max_sectors;
681 EXPORT_SYMBOL(blk_queue_max_sectors);
684 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
685 * @q: the request queue for the device
686 * @max_segments: max number of segments
688 * Description:
689 * Enables a low level driver to set an upper limit on the number of
690 * physical data segments in a request. This would be the largest sized
691 * scatter list the driver could handle.
693 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
695 if (!max_segments) {
696 max_segments = 1;
697 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
700 q->max_phys_segments = max_segments;
703 EXPORT_SYMBOL(blk_queue_max_phys_segments);
706 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
707 * @q: the request queue for the device
708 * @max_segments: max number of segments
710 * Description:
711 * Enables a low level driver to set an upper limit on the number of
712 * hw data segments in a request. This would be the largest number of
713 * address/length pairs the host adapter can actually give as once
714 * to the device.
716 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
718 if (!max_segments) {
719 max_segments = 1;
720 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
723 q->max_hw_segments = max_segments;
726 EXPORT_SYMBOL(blk_queue_max_hw_segments);
729 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
730 * @q: the request queue for the device
731 * @max_size: max size of segment in bytes
733 * Description:
734 * Enables a low level driver to set an upper limit on the size of a
735 * coalesced segment
737 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
739 if (max_size < PAGE_CACHE_SIZE) {
740 max_size = PAGE_CACHE_SIZE;
741 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
744 q->max_segment_size = max_size;
747 EXPORT_SYMBOL(blk_queue_max_segment_size);
750 * blk_queue_hardsect_size - set hardware sector size for the queue
751 * @q: the request queue for the device
752 * @size: the hardware sector size, in bytes
754 * Description:
755 * This should typically be set to the lowest possible sector size
756 * that the hardware can operate on (possible without reverting to
757 * even internal read-modify-write operations). Usually the default
758 * of 512 covers most hardware.
760 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
762 q->hardsect_size = size;
765 EXPORT_SYMBOL(blk_queue_hardsect_size);
768 * Returns the minimum that is _not_ zero, unless both are zero.
770 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
773 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
774 * @t: the stacking driver (top)
775 * @b: the underlying device (bottom)
777 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
779 /* zero is "infinity" */
780 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
781 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
783 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
784 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
785 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
786 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
787 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
788 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
791 EXPORT_SYMBOL(blk_queue_stack_limits);
794 * blk_queue_segment_boundary - set boundary rules for segment merging
795 * @q: the request queue for the device
796 * @mask: the memory boundary mask
798 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
800 if (mask < PAGE_CACHE_SIZE - 1) {
801 mask = PAGE_CACHE_SIZE - 1;
802 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
805 q->seg_boundary_mask = mask;
808 EXPORT_SYMBOL(blk_queue_segment_boundary);
811 * blk_queue_dma_alignment - set dma length and memory alignment
812 * @q: the request queue for the device
813 * @mask: alignment mask
815 * description:
816 * set required memory and length aligment for direct dma transactions.
817 * this is used when buiding direct io requests for the queue.
820 void blk_queue_dma_alignment(request_queue_t *q, int mask)
822 q->dma_alignment = mask;
825 EXPORT_SYMBOL(blk_queue_dma_alignment);
828 * blk_queue_find_tag - find a request by its tag and queue
829 * @q: The request queue for the device
830 * @tag: The tag of the request
832 * Notes:
833 * Should be used when a device returns a tag and you want to match
834 * it with a request.
836 * no locks need be held.
838 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
840 struct blk_queue_tag *bqt = q->queue_tags;
842 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
843 return NULL;
845 return bqt->tag_index[tag];
848 EXPORT_SYMBOL(blk_queue_find_tag);
851 * __blk_free_tags - release a given set of tag maintenance info
852 * @bqt: the tag map to free
854 * Tries to free the specified @bqt@. Returns true if it was
855 * actually freed and false if there are still references using it
857 static int __blk_free_tags(struct blk_queue_tag *bqt)
859 int retval;
861 retval = atomic_dec_and_test(&bqt->refcnt);
862 if (retval) {
863 BUG_ON(bqt->busy);
864 BUG_ON(!list_empty(&bqt->busy_list));
866 kfree(bqt->tag_index);
867 bqt->tag_index = NULL;
869 kfree(bqt->tag_map);
870 bqt->tag_map = NULL;
872 kfree(bqt);
876 return retval;
880 * __blk_queue_free_tags - release tag maintenance info
881 * @q: the request queue for the device
883 * Notes:
884 * blk_cleanup_queue() will take care of calling this function, if tagging
885 * has been used. So there's no need to call this directly.
887 static void __blk_queue_free_tags(request_queue_t *q)
889 struct blk_queue_tag *bqt = q->queue_tags;
891 if (!bqt)
892 return;
894 __blk_free_tags(bqt);
896 q->queue_tags = NULL;
897 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
902 * blk_free_tags - release a given set of tag maintenance info
903 * @bqt: the tag map to free
905 * For externally managed @bqt@ frees the map. Callers of this
906 * function must guarantee to have released all the queues that
907 * might have been using this tag map.
909 void blk_free_tags(struct blk_queue_tag *bqt)
911 if (unlikely(!__blk_free_tags(bqt)))
912 BUG();
914 EXPORT_SYMBOL(blk_free_tags);
917 * blk_queue_free_tags - release tag maintenance info
918 * @q: the request queue for the device
920 * Notes:
921 * This is used to disabled tagged queuing to a device, yet leave
922 * queue in function.
924 void blk_queue_free_tags(request_queue_t *q)
926 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
929 EXPORT_SYMBOL(blk_queue_free_tags);
931 static int
932 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
934 struct request **tag_index;
935 unsigned long *tag_map;
936 int nr_ulongs;
938 if (q && depth > q->nr_requests * 2) {
939 depth = q->nr_requests * 2;
940 printk(KERN_ERR "%s: adjusted depth to %d\n",
941 __FUNCTION__, depth);
944 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
945 if (!tag_index)
946 goto fail;
948 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
949 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
950 if (!tag_map)
951 goto fail;
953 tags->real_max_depth = depth;
954 tags->max_depth = depth;
955 tags->tag_index = tag_index;
956 tags->tag_map = tag_map;
958 return 0;
959 fail:
960 kfree(tag_index);
961 return -ENOMEM;
964 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
965 int depth)
967 struct blk_queue_tag *tags;
969 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
970 if (!tags)
971 goto fail;
973 if (init_tag_map(q, tags, depth))
974 goto fail;
976 INIT_LIST_HEAD(&tags->busy_list);
977 tags->busy = 0;
978 atomic_set(&tags->refcnt, 1);
979 return tags;
980 fail:
981 kfree(tags);
982 return NULL;
986 * blk_init_tags - initialize the tag info for an external tag map
987 * @depth: the maximum queue depth supported
988 * @tags: the tag to use
990 struct blk_queue_tag *blk_init_tags(int depth)
992 return __blk_queue_init_tags(NULL, depth);
994 EXPORT_SYMBOL(blk_init_tags);
997 * blk_queue_init_tags - initialize the queue tag info
998 * @q: the request queue for the device
999 * @depth: the maximum queue depth supported
1000 * @tags: the tag to use
1002 int blk_queue_init_tags(request_queue_t *q, int depth,
1003 struct blk_queue_tag *tags)
1005 int rc;
1007 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
1009 if (!tags && !q->queue_tags) {
1010 tags = __blk_queue_init_tags(q, depth);
1012 if (!tags)
1013 goto fail;
1014 } else if (q->queue_tags) {
1015 if ((rc = blk_queue_resize_tags(q, depth)))
1016 return rc;
1017 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1018 return 0;
1019 } else
1020 atomic_inc(&tags->refcnt);
1023 * assign it, all done
1025 q->queue_tags = tags;
1026 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1027 return 0;
1028 fail:
1029 kfree(tags);
1030 return -ENOMEM;
1033 EXPORT_SYMBOL(blk_queue_init_tags);
1036 * blk_queue_resize_tags - change the queueing depth
1037 * @q: the request queue for the device
1038 * @new_depth: the new max command queueing depth
1040 * Notes:
1041 * Must be called with the queue lock held.
1043 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1045 struct blk_queue_tag *bqt = q->queue_tags;
1046 struct request **tag_index;
1047 unsigned long *tag_map;
1048 int max_depth, nr_ulongs;
1050 if (!bqt)
1051 return -ENXIO;
1054 * if we already have large enough real_max_depth. just
1055 * adjust max_depth. *NOTE* as requests with tag value
1056 * between new_depth and real_max_depth can be in-flight, tag
1057 * map can not be shrunk blindly here.
1059 if (new_depth <= bqt->real_max_depth) {
1060 bqt->max_depth = new_depth;
1061 return 0;
1065 * Currently cannot replace a shared tag map with a new
1066 * one, so error out if this is the case
1068 if (atomic_read(&bqt->refcnt) != 1)
1069 return -EBUSY;
1072 * save the old state info, so we can copy it back
1074 tag_index = bqt->tag_index;
1075 tag_map = bqt->tag_map;
1076 max_depth = bqt->real_max_depth;
1078 if (init_tag_map(q, bqt, new_depth))
1079 return -ENOMEM;
1081 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1082 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1083 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1085 kfree(tag_index);
1086 kfree(tag_map);
1087 return 0;
1090 EXPORT_SYMBOL(blk_queue_resize_tags);
1093 * blk_queue_end_tag - end tag operations for a request
1094 * @q: the request queue for the device
1095 * @rq: the request that has completed
1097 * Description:
1098 * Typically called when end_that_request_first() returns 0, meaning
1099 * all transfers have been done for a request. It's important to call
1100 * this function before end_that_request_last(), as that will put the
1101 * request back on the free list thus corrupting the internal tag list.
1103 * Notes:
1104 * queue lock must be held.
1106 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1108 struct blk_queue_tag *bqt = q->queue_tags;
1109 int tag = rq->tag;
1111 BUG_ON(tag == -1);
1113 if (unlikely(tag >= bqt->real_max_depth))
1115 * This can happen after tag depth has been reduced.
1116 * FIXME: how about a warning or info message here?
1118 return;
1120 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1121 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1122 __FUNCTION__, tag);
1123 return;
1126 list_del_init(&rq->queuelist);
1127 rq->flags &= ~REQ_QUEUED;
1128 rq->tag = -1;
1130 if (unlikely(bqt->tag_index[tag] == NULL))
1131 printk(KERN_ERR "%s: tag %d is missing\n",
1132 __FUNCTION__, tag);
1134 bqt->tag_index[tag] = NULL;
1135 bqt->busy--;
1138 EXPORT_SYMBOL(blk_queue_end_tag);
1141 * blk_queue_start_tag - find a free tag and assign it
1142 * @q: the request queue for the device
1143 * @rq: the block request that needs tagging
1145 * Description:
1146 * This can either be used as a stand-alone helper, or possibly be
1147 * assigned as the queue &prep_rq_fn (in which case &struct request
1148 * automagically gets a tag assigned). Note that this function
1149 * assumes that any type of request can be queued! if this is not
1150 * true for your device, you must check the request type before
1151 * calling this function. The request will also be removed from
1152 * the request queue, so it's the drivers responsibility to readd
1153 * it if it should need to be restarted for some reason.
1155 * Notes:
1156 * queue lock must be held.
1158 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1160 struct blk_queue_tag *bqt = q->queue_tags;
1161 int tag;
1163 if (unlikely((rq->flags & REQ_QUEUED))) {
1164 printk(KERN_ERR
1165 "%s: request %p for device [%s] already tagged %d",
1166 __FUNCTION__, rq,
1167 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1168 BUG();
1171 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1172 if (tag >= bqt->max_depth)
1173 return 1;
1175 __set_bit(tag, bqt->tag_map);
1177 rq->flags |= REQ_QUEUED;
1178 rq->tag = tag;
1179 bqt->tag_index[tag] = rq;
1180 blkdev_dequeue_request(rq);
1181 list_add(&rq->queuelist, &bqt->busy_list);
1182 bqt->busy++;
1183 return 0;
1186 EXPORT_SYMBOL(blk_queue_start_tag);
1189 * blk_queue_invalidate_tags - invalidate all pending tags
1190 * @q: the request queue for the device
1192 * Description:
1193 * Hardware conditions may dictate a need to stop all pending requests.
1194 * In this case, we will safely clear the block side of the tag queue and
1195 * readd all requests to the request queue in the right order.
1197 * Notes:
1198 * queue lock must be held.
1200 void blk_queue_invalidate_tags(request_queue_t *q)
1202 struct blk_queue_tag *bqt = q->queue_tags;
1203 struct list_head *tmp, *n;
1204 struct request *rq;
1206 list_for_each_safe(tmp, n, &bqt->busy_list) {
1207 rq = list_entry_rq(tmp);
1209 if (rq->tag == -1) {
1210 printk(KERN_ERR
1211 "%s: bad tag found on list\n", __FUNCTION__);
1212 list_del_init(&rq->queuelist);
1213 rq->flags &= ~REQ_QUEUED;
1214 } else
1215 blk_queue_end_tag(q, rq);
1217 rq->flags &= ~REQ_STARTED;
1218 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1222 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1224 static const char * const rq_flags[] = {
1225 "REQ_RW",
1226 "REQ_FAILFAST",
1227 "REQ_SORTED",
1228 "REQ_SOFTBARRIER",
1229 "REQ_HARDBARRIER",
1230 "REQ_FUA",
1231 "REQ_CMD",
1232 "REQ_NOMERGE",
1233 "REQ_STARTED",
1234 "REQ_DONTPREP",
1235 "REQ_QUEUED",
1236 "REQ_ELVPRIV",
1237 "REQ_PC",
1238 "REQ_BLOCK_PC",
1239 "REQ_SENSE",
1240 "REQ_FAILED",
1241 "REQ_QUIET",
1242 "REQ_SPECIAL",
1243 "REQ_DRIVE_CMD",
1244 "REQ_DRIVE_TASK",
1245 "REQ_DRIVE_TASKFILE",
1246 "REQ_PREEMPT",
1247 "REQ_PM_SUSPEND",
1248 "REQ_PM_RESUME",
1249 "REQ_PM_SHUTDOWN",
1250 "REQ_ORDERED_COLOR",
1253 void blk_dump_rq_flags(struct request *rq, char *msg)
1255 int bit;
1257 printk("%s: dev %s: flags = ", msg,
1258 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1259 bit = 0;
1260 do {
1261 if (rq->flags & (1 << bit))
1262 printk("%s ", rq_flags[bit]);
1263 bit++;
1264 } while (bit < __REQ_NR_BITS);
1266 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1267 rq->nr_sectors,
1268 rq->current_nr_sectors);
1269 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1271 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1272 printk("cdb: ");
1273 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1274 printk("%02x ", rq->cmd[bit]);
1275 printk("\n");
1279 EXPORT_SYMBOL(blk_dump_rq_flags);
1281 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1283 struct bio_vec *bv, *bvprv = NULL;
1284 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1285 int high, highprv = 1;
1287 if (unlikely(!bio->bi_io_vec))
1288 return;
1290 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1291 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1292 bio_for_each_segment(bv, bio, i) {
1294 * the trick here is making sure that a high page is never
1295 * considered part of another segment, since that might
1296 * change with the bounce page.
1298 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1299 if (high || highprv)
1300 goto new_hw_segment;
1301 if (cluster) {
1302 if (seg_size + bv->bv_len > q->max_segment_size)
1303 goto new_segment;
1304 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1305 goto new_segment;
1306 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1307 goto new_segment;
1308 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1309 goto new_hw_segment;
1311 seg_size += bv->bv_len;
1312 hw_seg_size += bv->bv_len;
1313 bvprv = bv;
1314 continue;
1316 new_segment:
1317 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1318 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1319 hw_seg_size += bv->bv_len;
1320 } else {
1321 new_hw_segment:
1322 if (hw_seg_size > bio->bi_hw_front_size)
1323 bio->bi_hw_front_size = hw_seg_size;
1324 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1325 nr_hw_segs++;
1328 nr_phys_segs++;
1329 bvprv = bv;
1330 seg_size = bv->bv_len;
1331 highprv = high;
1333 if (hw_seg_size > bio->bi_hw_back_size)
1334 bio->bi_hw_back_size = hw_seg_size;
1335 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1336 bio->bi_hw_front_size = hw_seg_size;
1337 bio->bi_phys_segments = nr_phys_segs;
1338 bio->bi_hw_segments = nr_hw_segs;
1339 bio->bi_flags |= (1 << BIO_SEG_VALID);
1343 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1344 struct bio *nxt)
1346 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1347 return 0;
1349 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1350 return 0;
1351 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1352 return 0;
1355 * bio and nxt are contigous in memory, check if the queue allows
1356 * these two to be merged into one
1358 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1359 return 1;
1361 return 0;
1364 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1365 struct bio *nxt)
1367 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1368 blk_recount_segments(q, bio);
1369 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1370 blk_recount_segments(q, nxt);
1371 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1372 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1373 return 0;
1374 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1375 return 0;
1377 return 1;
1381 * map a request to scatterlist, return number of sg entries setup. Caller
1382 * must make sure sg can hold rq->nr_phys_segments entries
1384 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1386 struct bio_vec *bvec, *bvprv;
1387 struct bio *bio;
1388 int nsegs, i, cluster;
1390 nsegs = 0;
1391 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1394 * for each bio in rq
1396 bvprv = NULL;
1397 rq_for_each_bio(bio, rq) {
1399 * for each segment in bio
1401 bio_for_each_segment(bvec, bio, i) {
1402 int nbytes = bvec->bv_len;
1404 if (bvprv && cluster) {
1405 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1406 goto new_segment;
1408 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1409 goto new_segment;
1410 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1411 goto new_segment;
1413 sg[nsegs - 1].length += nbytes;
1414 } else {
1415 new_segment:
1416 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1417 sg[nsegs].page = bvec->bv_page;
1418 sg[nsegs].length = nbytes;
1419 sg[nsegs].offset = bvec->bv_offset;
1421 nsegs++;
1423 bvprv = bvec;
1424 } /* segments in bio */
1425 } /* bios in rq */
1427 return nsegs;
1430 EXPORT_SYMBOL(blk_rq_map_sg);
1433 * the standard queue merge functions, can be overridden with device
1434 * specific ones if so desired
1437 static inline int ll_new_mergeable(request_queue_t *q,
1438 struct request *req,
1439 struct bio *bio)
1441 int nr_phys_segs = bio_phys_segments(q, bio);
1443 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1444 req->flags |= REQ_NOMERGE;
1445 if (req == q->last_merge)
1446 q->last_merge = NULL;
1447 return 0;
1451 * A hw segment is just getting larger, bump just the phys
1452 * counter.
1454 req->nr_phys_segments += nr_phys_segs;
1455 return 1;
1458 static inline int ll_new_hw_segment(request_queue_t *q,
1459 struct request *req,
1460 struct bio *bio)
1462 int nr_hw_segs = bio_hw_segments(q, bio);
1463 int nr_phys_segs = bio_phys_segments(q, bio);
1465 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1466 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1467 req->flags |= REQ_NOMERGE;
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1470 return 0;
1474 * This will form the start of a new hw segment. Bump both
1475 * counters.
1477 req->nr_hw_segments += nr_hw_segs;
1478 req->nr_phys_segments += nr_phys_segs;
1479 return 1;
1482 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1483 struct bio *bio)
1485 unsigned short max_sectors;
1486 int len;
1488 if (unlikely(blk_pc_request(req)))
1489 max_sectors = q->max_hw_sectors;
1490 else
1491 max_sectors = q->max_sectors;
1493 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1494 req->flags |= REQ_NOMERGE;
1495 if (req == q->last_merge)
1496 q->last_merge = NULL;
1497 return 0;
1499 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1500 blk_recount_segments(q, req->biotail);
1501 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1502 blk_recount_segments(q, bio);
1503 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1504 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1505 !BIOVEC_VIRT_OVERSIZE(len)) {
1506 int mergeable = ll_new_mergeable(q, req, bio);
1508 if (mergeable) {
1509 if (req->nr_hw_segments == 1)
1510 req->bio->bi_hw_front_size = len;
1511 if (bio->bi_hw_segments == 1)
1512 bio->bi_hw_back_size = len;
1514 return mergeable;
1517 return ll_new_hw_segment(q, req, bio);
1520 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1521 struct bio *bio)
1523 unsigned short max_sectors;
1524 int len;
1526 if (unlikely(blk_pc_request(req)))
1527 max_sectors = q->max_hw_sectors;
1528 else
1529 max_sectors = q->max_sectors;
1532 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1533 req->flags |= REQ_NOMERGE;
1534 if (req == q->last_merge)
1535 q->last_merge = NULL;
1536 return 0;
1538 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1539 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1540 blk_recount_segments(q, bio);
1541 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1542 blk_recount_segments(q, req->bio);
1543 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1544 !BIOVEC_VIRT_OVERSIZE(len)) {
1545 int mergeable = ll_new_mergeable(q, req, bio);
1547 if (mergeable) {
1548 if (bio->bi_hw_segments == 1)
1549 bio->bi_hw_front_size = len;
1550 if (req->nr_hw_segments == 1)
1551 req->biotail->bi_hw_back_size = len;
1553 return mergeable;
1556 return ll_new_hw_segment(q, req, bio);
1559 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1560 struct request *next)
1562 int total_phys_segments;
1563 int total_hw_segments;
1566 * First check if the either of the requests are re-queued
1567 * requests. Can't merge them if they are.
1569 if (req->special || next->special)
1570 return 0;
1573 * Will it become too large?
1575 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1576 return 0;
1578 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1579 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1580 total_phys_segments--;
1582 if (total_phys_segments > q->max_phys_segments)
1583 return 0;
1585 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1586 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1587 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1589 * propagate the combined length to the end of the requests
1591 if (req->nr_hw_segments == 1)
1592 req->bio->bi_hw_front_size = len;
1593 if (next->nr_hw_segments == 1)
1594 next->biotail->bi_hw_back_size = len;
1595 total_hw_segments--;
1598 if (total_hw_segments > q->max_hw_segments)
1599 return 0;
1601 /* Merge is OK... */
1602 req->nr_phys_segments = total_phys_segments;
1603 req->nr_hw_segments = total_hw_segments;
1604 return 1;
1608 * "plug" the device if there are no outstanding requests: this will
1609 * force the transfer to start only after we have put all the requests
1610 * on the list.
1612 * This is called with interrupts off and no requests on the queue and
1613 * with the queue lock held.
1615 void blk_plug_device(request_queue_t *q)
1617 WARN_ON(!irqs_disabled());
1620 * don't plug a stopped queue, it must be paired with blk_start_queue()
1621 * which will restart the queueing
1623 if (blk_queue_stopped(q))
1624 return;
1626 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1627 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1628 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1632 EXPORT_SYMBOL(blk_plug_device);
1635 * remove the queue from the plugged list, if present. called with
1636 * queue lock held and interrupts disabled.
1638 int blk_remove_plug(request_queue_t *q)
1640 WARN_ON(!irqs_disabled());
1642 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1643 return 0;
1645 del_timer(&q->unplug_timer);
1646 return 1;
1649 EXPORT_SYMBOL(blk_remove_plug);
1652 * remove the plug and let it rip..
1654 void __generic_unplug_device(request_queue_t *q)
1656 if (unlikely(blk_queue_stopped(q)))
1657 return;
1659 if (!blk_remove_plug(q))
1660 return;
1662 q->request_fn(q);
1664 EXPORT_SYMBOL(__generic_unplug_device);
1667 * generic_unplug_device - fire a request queue
1668 * @q: The &request_queue_t in question
1670 * Description:
1671 * Linux uses plugging to build bigger requests queues before letting
1672 * the device have at them. If a queue is plugged, the I/O scheduler
1673 * is still adding and merging requests on the queue. Once the queue
1674 * gets unplugged, the request_fn defined for the queue is invoked and
1675 * transfers started.
1677 void generic_unplug_device(request_queue_t *q)
1679 spin_lock_irq(q->queue_lock);
1680 __generic_unplug_device(q);
1681 spin_unlock_irq(q->queue_lock);
1683 EXPORT_SYMBOL(generic_unplug_device);
1685 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1686 struct page *page)
1688 request_queue_t *q = bdi->unplug_io_data;
1691 * devices don't necessarily have an ->unplug_fn defined
1693 if (q->unplug_fn) {
1694 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1695 q->rq.count[READ] + q->rq.count[WRITE]);
1697 q->unplug_fn(q);
1701 static void blk_unplug_work(void *data)
1703 request_queue_t *q = data;
1705 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1706 q->rq.count[READ] + q->rq.count[WRITE]);
1708 q->unplug_fn(q);
1711 static void blk_unplug_timeout(unsigned long data)
1713 request_queue_t *q = (request_queue_t *)data;
1715 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1716 q->rq.count[READ] + q->rq.count[WRITE]);
1718 kblockd_schedule_work(&q->unplug_work);
1722 * blk_start_queue - restart a previously stopped queue
1723 * @q: The &request_queue_t in question
1725 * Description:
1726 * blk_start_queue() will clear the stop flag on the queue, and call
1727 * the request_fn for the queue if it was in a stopped state when
1728 * entered. Also see blk_stop_queue(). Queue lock must be held.
1730 void blk_start_queue(request_queue_t *q)
1732 WARN_ON(!irqs_disabled());
1734 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1737 * one level of recursion is ok and is much faster than kicking
1738 * the unplug handling
1740 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1741 q->request_fn(q);
1742 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1743 } else {
1744 blk_plug_device(q);
1745 kblockd_schedule_work(&q->unplug_work);
1749 EXPORT_SYMBOL(blk_start_queue);
1752 * blk_stop_queue - stop a queue
1753 * @q: The &request_queue_t in question
1755 * Description:
1756 * The Linux block layer assumes that a block driver will consume all
1757 * entries on the request queue when the request_fn strategy is called.
1758 * Often this will not happen, because of hardware limitations (queue
1759 * depth settings). If a device driver gets a 'queue full' response,
1760 * or if it simply chooses not to queue more I/O at one point, it can
1761 * call this function to prevent the request_fn from being called until
1762 * the driver has signalled it's ready to go again. This happens by calling
1763 * blk_start_queue() to restart queue operations. Queue lock must be held.
1765 void blk_stop_queue(request_queue_t *q)
1767 blk_remove_plug(q);
1768 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1770 EXPORT_SYMBOL(blk_stop_queue);
1773 * blk_sync_queue - cancel any pending callbacks on a queue
1774 * @q: the queue
1776 * Description:
1777 * The block layer may perform asynchronous callback activity
1778 * on a queue, such as calling the unplug function after a timeout.
1779 * A block device may call blk_sync_queue to ensure that any
1780 * such activity is cancelled, thus allowing it to release resources
1781 * the the callbacks might use. The caller must already have made sure
1782 * that its ->make_request_fn will not re-add plugging prior to calling
1783 * this function.
1786 void blk_sync_queue(struct request_queue *q)
1788 del_timer_sync(&q->unplug_timer);
1789 kblockd_flush();
1791 EXPORT_SYMBOL(blk_sync_queue);
1794 * blk_run_queue - run a single device queue
1795 * @q: The queue to run
1797 void blk_run_queue(struct request_queue *q)
1799 unsigned long flags;
1801 spin_lock_irqsave(q->queue_lock, flags);
1802 blk_remove_plug(q);
1805 * Only recurse once to avoid overrunning the stack, let the unplug
1806 * handling reinvoke the handler shortly if we already got there.
1808 if (!elv_queue_empty(q)) {
1809 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1810 q->request_fn(q);
1811 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1812 } else {
1813 blk_plug_device(q);
1814 kblockd_schedule_work(&q->unplug_work);
1818 spin_unlock_irqrestore(q->queue_lock, flags);
1820 EXPORT_SYMBOL(blk_run_queue);
1823 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1824 * @kobj: the kobj belonging of the request queue to be released
1826 * Description:
1827 * blk_cleanup_queue is the pair to blk_init_queue() or
1828 * blk_queue_make_request(). It should be called when a request queue is
1829 * being released; typically when a block device is being de-registered.
1830 * Currently, its primary task it to free all the &struct request
1831 * structures that were allocated to the queue and the queue itself.
1833 * Caveat:
1834 * Hopefully the low level driver will have finished any
1835 * outstanding requests first...
1837 static void blk_release_queue(struct kobject *kobj)
1839 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1840 struct request_list *rl = &q->rq;
1842 blk_sync_queue(q);
1844 if (rl->rq_pool)
1845 mempool_destroy(rl->rq_pool);
1847 if (q->queue_tags)
1848 __blk_queue_free_tags(q);
1850 if (q->blk_trace)
1851 blk_trace_shutdown(q);
1853 kmem_cache_free(requestq_cachep, q);
1856 void blk_put_queue(request_queue_t *q)
1858 kobject_put(&q->kobj);
1860 EXPORT_SYMBOL(blk_put_queue);
1862 void blk_cleanup_queue(request_queue_t * q)
1864 mutex_lock(&q->sysfs_lock);
1865 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1866 mutex_unlock(&q->sysfs_lock);
1868 if (q->elevator)
1869 elevator_exit(q->elevator);
1871 blk_put_queue(q);
1874 EXPORT_SYMBOL(blk_cleanup_queue);
1876 static int blk_init_free_list(request_queue_t *q)
1878 struct request_list *rl = &q->rq;
1880 rl->count[READ] = rl->count[WRITE] = 0;
1881 rl->starved[READ] = rl->starved[WRITE] = 0;
1882 rl->elvpriv = 0;
1883 init_waitqueue_head(&rl->wait[READ]);
1884 init_waitqueue_head(&rl->wait[WRITE]);
1886 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1887 mempool_free_slab, request_cachep, q->node);
1889 if (!rl->rq_pool)
1890 return -ENOMEM;
1892 return 0;
1895 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1897 return blk_alloc_queue_node(gfp_mask, -1);
1899 EXPORT_SYMBOL(blk_alloc_queue);
1901 static struct kobj_type queue_ktype;
1903 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1905 request_queue_t *q;
1907 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1908 if (!q)
1909 return NULL;
1911 memset(q, 0, sizeof(*q));
1912 init_timer(&q->unplug_timer);
1914 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1915 q->kobj.ktype = &queue_ktype;
1916 kobject_init(&q->kobj);
1918 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1919 q->backing_dev_info.unplug_io_data = q;
1921 mutex_init(&q->sysfs_lock);
1923 return q;
1925 EXPORT_SYMBOL(blk_alloc_queue_node);
1928 * blk_init_queue - prepare a request queue for use with a block device
1929 * @rfn: The function to be called to process requests that have been
1930 * placed on the queue.
1931 * @lock: Request queue spin lock
1933 * Description:
1934 * If a block device wishes to use the standard request handling procedures,
1935 * which sorts requests and coalesces adjacent requests, then it must
1936 * call blk_init_queue(). The function @rfn will be called when there
1937 * are requests on the queue that need to be processed. If the device
1938 * supports plugging, then @rfn may not be called immediately when requests
1939 * are available on the queue, but may be called at some time later instead.
1940 * Plugged queues are generally unplugged when a buffer belonging to one
1941 * of the requests on the queue is needed, or due to memory pressure.
1943 * @rfn is not required, or even expected, to remove all requests off the
1944 * queue, but only as many as it can handle at a time. If it does leave
1945 * requests on the queue, it is responsible for arranging that the requests
1946 * get dealt with eventually.
1948 * The queue spin lock must be held while manipulating the requests on the
1949 * request queue; this lock will be taken also from interrupt context, so irq
1950 * disabling is needed for it.
1952 * Function returns a pointer to the initialized request queue, or NULL if
1953 * it didn't succeed.
1955 * Note:
1956 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1957 * when the block device is deactivated (such as at module unload).
1960 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1962 return blk_init_queue_node(rfn, lock, -1);
1964 EXPORT_SYMBOL(blk_init_queue);
1966 request_queue_t *
1967 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1969 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1971 if (!q)
1972 return NULL;
1974 q->node = node_id;
1975 if (blk_init_free_list(q)) {
1976 kmem_cache_free(requestq_cachep, q);
1977 return NULL;
1981 * if caller didn't supply a lock, they get per-queue locking with
1982 * our embedded lock
1984 if (!lock) {
1985 spin_lock_init(&q->__queue_lock);
1986 lock = &q->__queue_lock;
1989 q->request_fn = rfn;
1990 q->back_merge_fn = ll_back_merge_fn;
1991 q->front_merge_fn = ll_front_merge_fn;
1992 q->merge_requests_fn = ll_merge_requests_fn;
1993 q->prep_rq_fn = NULL;
1994 q->unplug_fn = generic_unplug_device;
1995 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1996 q->queue_lock = lock;
1998 blk_queue_segment_boundary(q, 0xffffffff);
2000 blk_queue_make_request(q, __make_request);
2001 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
2003 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
2004 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
2007 * all done
2009 if (!elevator_init(q, NULL)) {
2010 blk_queue_congestion_threshold(q);
2011 return q;
2014 blk_put_queue(q);
2015 return NULL;
2017 EXPORT_SYMBOL(blk_init_queue_node);
2019 int blk_get_queue(request_queue_t *q)
2021 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
2022 kobject_get(&q->kobj);
2023 return 0;
2026 return 1;
2029 EXPORT_SYMBOL(blk_get_queue);
2031 static inline void blk_free_request(request_queue_t *q, struct request *rq)
2033 if (rq->flags & REQ_ELVPRIV)
2034 elv_put_request(q, rq);
2035 mempool_free(rq, q->rq.rq_pool);
2038 static inline struct request *
2039 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
2040 int priv, gfp_t gfp_mask)
2042 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2044 if (!rq)
2045 return NULL;
2048 * first three bits are identical in rq->flags and bio->bi_rw,
2049 * see bio.h and blkdev.h
2051 rq->flags = rw;
2053 if (priv) {
2054 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
2055 mempool_free(rq, q->rq.rq_pool);
2056 return NULL;
2058 rq->flags |= REQ_ELVPRIV;
2061 return rq;
2065 * ioc_batching returns true if the ioc is a valid batching request and
2066 * should be given priority access to a request.
2068 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2070 if (!ioc)
2071 return 0;
2074 * Make sure the process is able to allocate at least 1 request
2075 * even if the batch times out, otherwise we could theoretically
2076 * lose wakeups.
2078 return ioc->nr_batch_requests == q->nr_batching ||
2079 (ioc->nr_batch_requests > 0
2080 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2084 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2085 * will cause the process to be a "batcher" on all queues in the system. This
2086 * is the behaviour we want though - once it gets a wakeup it should be given
2087 * a nice run.
2089 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2091 if (!ioc || ioc_batching(q, ioc))
2092 return;
2094 ioc->nr_batch_requests = q->nr_batching;
2095 ioc->last_waited = jiffies;
2098 static void __freed_request(request_queue_t *q, int rw)
2100 struct request_list *rl = &q->rq;
2102 if (rl->count[rw] < queue_congestion_off_threshold(q))
2103 clear_queue_congested(q, rw);
2105 if (rl->count[rw] + 1 <= q->nr_requests) {
2106 if (waitqueue_active(&rl->wait[rw]))
2107 wake_up(&rl->wait[rw]);
2109 blk_clear_queue_full(q, rw);
2114 * A request has just been released. Account for it, update the full and
2115 * congestion status, wake up any waiters. Called under q->queue_lock.
2117 static void freed_request(request_queue_t *q, int rw, int priv)
2119 struct request_list *rl = &q->rq;
2121 rl->count[rw]--;
2122 if (priv)
2123 rl->elvpriv--;
2125 __freed_request(q, rw);
2127 if (unlikely(rl->starved[rw ^ 1]))
2128 __freed_request(q, rw ^ 1);
2131 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2133 * Get a free request, queue_lock must be held.
2134 * Returns NULL on failure, with queue_lock held.
2135 * Returns !NULL on success, with queue_lock *not held*.
2137 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2138 gfp_t gfp_mask)
2140 struct request *rq = NULL;
2141 struct request_list *rl = &q->rq;
2142 struct io_context *ioc = NULL;
2143 int may_queue, priv;
2145 may_queue = elv_may_queue(q, rw, bio);
2146 if (may_queue == ELV_MQUEUE_NO)
2147 goto rq_starved;
2149 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2150 if (rl->count[rw]+1 >= q->nr_requests) {
2151 ioc = current_io_context(GFP_ATOMIC);
2153 * The queue will fill after this allocation, so set
2154 * it as full, and mark this process as "batching".
2155 * This process will be allowed to complete a batch of
2156 * requests, others will be blocked.
2158 if (!blk_queue_full(q, rw)) {
2159 ioc_set_batching(q, ioc);
2160 blk_set_queue_full(q, rw);
2161 } else {
2162 if (may_queue != ELV_MQUEUE_MUST
2163 && !ioc_batching(q, ioc)) {
2165 * The queue is full and the allocating
2166 * process is not a "batcher", and not
2167 * exempted by the IO scheduler
2169 goto out;
2173 set_queue_congested(q, rw);
2177 * Only allow batching queuers to allocate up to 50% over the defined
2178 * limit of requests, otherwise we could have thousands of requests
2179 * allocated with any setting of ->nr_requests
2181 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2182 goto out;
2184 rl->count[rw]++;
2185 rl->starved[rw] = 0;
2187 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2188 if (priv)
2189 rl->elvpriv++;
2191 spin_unlock_irq(q->queue_lock);
2193 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
2194 if (unlikely(!rq)) {
2196 * Allocation failed presumably due to memory. Undo anything
2197 * we might have messed up.
2199 * Allocating task should really be put onto the front of the
2200 * wait queue, but this is pretty rare.
2202 spin_lock_irq(q->queue_lock);
2203 freed_request(q, rw, priv);
2206 * in the very unlikely event that allocation failed and no
2207 * requests for this direction was pending, mark us starved
2208 * so that freeing of a request in the other direction will
2209 * notice us. another possible fix would be to split the
2210 * rq mempool into READ and WRITE
2212 rq_starved:
2213 if (unlikely(rl->count[rw] == 0))
2214 rl->starved[rw] = 1;
2216 goto out;
2220 * ioc may be NULL here, and ioc_batching will be false. That's
2221 * OK, if the queue is under the request limit then requests need
2222 * not count toward the nr_batch_requests limit. There will always
2223 * be some limit enforced by BLK_BATCH_TIME.
2225 if (ioc_batching(q, ioc))
2226 ioc->nr_batch_requests--;
2228 rq_init(q, rq);
2229 rq->rl = rl;
2231 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2232 out:
2233 return rq;
2237 * No available requests for this queue, unplug the device and wait for some
2238 * requests to become available.
2240 * Called with q->queue_lock held, and returns with it unlocked.
2242 static struct request *get_request_wait(request_queue_t *q, int rw,
2243 struct bio *bio)
2245 struct request *rq;
2247 rq = get_request(q, rw, bio, GFP_NOIO);
2248 while (!rq) {
2249 DEFINE_WAIT(wait);
2250 struct request_list *rl = &q->rq;
2252 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2253 TASK_UNINTERRUPTIBLE);
2255 rq = get_request(q, rw, bio, GFP_NOIO);
2257 if (!rq) {
2258 struct io_context *ioc;
2260 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2262 __generic_unplug_device(q);
2263 spin_unlock_irq(q->queue_lock);
2264 io_schedule();
2267 * After sleeping, we become a "batching" process and
2268 * will be able to allocate at least one request, and
2269 * up to a big batch of them for a small period time.
2270 * See ioc_batching, ioc_set_batching
2272 ioc = current_io_context(GFP_NOIO);
2273 ioc_set_batching(q, ioc);
2275 spin_lock_irq(q->queue_lock);
2277 finish_wait(&rl->wait[rw], &wait);
2280 return rq;
2283 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2285 struct request *rq;
2287 BUG_ON(rw != READ && rw != WRITE);
2289 spin_lock_irq(q->queue_lock);
2290 if (gfp_mask & __GFP_WAIT) {
2291 rq = get_request_wait(q, rw, NULL);
2292 } else {
2293 rq = get_request(q, rw, NULL, gfp_mask);
2294 if (!rq)
2295 spin_unlock_irq(q->queue_lock);
2297 /* q->queue_lock is unlocked at this point */
2299 return rq;
2301 EXPORT_SYMBOL(blk_get_request);
2304 * blk_requeue_request - put a request back on queue
2305 * @q: request queue where request should be inserted
2306 * @rq: request to be inserted
2308 * Description:
2309 * Drivers often keep queueing requests until the hardware cannot accept
2310 * more, when that condition happens we need to put the request back
2311 * on the queue. Must be called with queue lock held.
2313 void blk_requeue_request(request_queue_t *q, struct request *rq)
2315 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2317 if (blk_rq_tagged(rq))
2318 blk_queue_end_tag(q, rq);
2320 elv_requeue_request(q, rq);
2323 EXPORT_SYMBOL(blk_requeue_request);
2326 * blk_insert_request - insert a special request in to a request queue
2327 * @q: request queue where request should be inserted
2328 * @rq: request to be inserted
2329 * @at_head: insert request at head or tail of queue
2330 * @data: private data
2332 * Description:
2333 * Many block devices need to execute commands asynchronously, so they don't
2334 * block the whole kernel from preemption during request execution. This is
2335 * accomplished normally by inserting aritficial requests tagged as
2336 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2337 * scheduled for actual execution by the request queue.
2339 * We have the option of inserting the head or the tail of the queue.
2340 * Typically we use the tail for new ioctls and so forth. We use the head
2341 * of the queue for things like a QUEUE_FULL message from a device, or a
2342 * host that is unable to accept a particular command.
2344 void blk_insert_request(request_queue_t *q, struct request *rq,
2345 int at_head, void *data)
2347 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2348 unsigned long flags;
2351 * tell I/O scheduler that this isn't a regular read/write (ie it
2352 * must not attempt merges on this) and that it acts as a soft
2353 * barrier
2355 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2357 rq->special = data;
2359 spin_lock_irqsave(q->queue_lock, flags);
2362 * If command is tagged, release the tag
2364 if (blk_rq_tagged(rq))
2365 blk_queue_end_tag(q, rq);
2367 drive_stat_acct(rq, rq->nr_sectors, 1);
2368 __elv_add_request(q, rq, where, 0);
2370 if (blk_queue_plugged(q))
2371 __generic_unplug_device(q);
2372 else
2373 q->request_fn(q);
2374 spin_unlock_irqrestore(q->queue_lock, flags);
2377 EXPORT_SYMBOL(blk_insert_request);
2380 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2381 * @q: request queue where request should be inserted
2382 * @rq: request structure to fill
2383 * @ubuf: the user buffer
2384 * @len: length of user data
2386 * Description:
2387 * Data will be mapped directly for zero copy io, if possible. Otherwise
2388 * a kernel bounce buffer is used.
2390 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2391 * still in process context.
2393 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2394 * before being submitted to the device, as pages mapped may be out of
2395 * reach. It's the callers responsibility to make sure this happens. The
2396 * original bio must be passed back in to blk_rq_unmap_user() for proper
2397 * unmapping.
2399 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2400 unsigned int len)
2402 unsigned long uaddr;
2403 struct bio *bio;
2404 int reading;
2406 if (len > (q->max_hw_sectors << 9))
2407 return -EINVAL;
2408 if (!len || !ubuf)
2409 return -EINVAL;
2411 reading = rq_data_dir(rq) == READ;
2414 * if alignment requirement is satisfied, map in user pages for
2415 * direct dma. else, set up kernel bounce buffers
2417 uaddr = (unsigned long) ubuf;
2418 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2419 bio = bio_map_user(q, NULL, uaddr, len, reading);
2420 else
2421 bio = bio_copy_user(q, uaddr, len, reading);
2423 if (!IS_ERR(bio)) {
2424 rq->bio = rq->biotail = bio;
2425 blk_rq_bio_prep(q, rq, bio);
2427 rq->buffer = rq->data = NULL;
2428 rq->data_len = len;
2429 return 0;
2433 * bio is the err-ptr
2435 return PTR_ERR(bio);
2438 EXPORT_SYMBOL(blk_rq_map_user);
2441 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2442 * @q: request queue where request should be inserted
2443 * @rq: request to map data to
2444 * @iov: pointer to the iovec
2445 * @iov_count: number of elements in the iovec
2447 * Description:
2448 * Data will be mapped directly for zero copy io, if possible. Otherwise
2449 * a kernel bounce buffer is used.
2451 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2452 * still in process context.
2454 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2455 * before being submitted to the device, as pages mapped may be out of
2456 * reach. It's the callers responsibility to make sure this happens. The
2457 * original bio must be passed back in to blk_rq_unmap_user() for proper
2458 * unmapping.
2460 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2461 struct sg_iovec *iov, int iov_count)
2463 struct bio *bio;
2465 if (!iov || iov_count <= 0)
2466 return -EINVAL;
2468 /* we don't allow misaligned data like bio_map_user() does. If the
2469 * user is using sg, they're expected to know the alignment constraints
2470 * and respect them accordingly */
2471 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2472 if (IS_ERR(bio))
2473 return PTR_ERR(bio);
2475 rq->bio = rq->biotail = bio;
2476 blk_rq_bio_prep(q, rq, bio);
2477 rq->buffer = rq->data = NULL;
2478 rq->data_len = bio->bi_size;
2479 return 0;
2482 EXPORT_SYMBOL(blk_rq_map_user_iov);
2485 * blk_rq_unmap_user - unmap a request with user data
2486 * @bio: bio to be unmapped
2487 * @ulen: length of user buffer
2489 * Description:
2490 * Unmap a bio previously mapped by blk_rq_map_user().
2492 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2494 int ret = 0;
2496 if (bio) {
2497 if (bio_flagged(bio, BIO_USER_MAPPED))
2498 bio_unmap_user(bio);
2499 else
2500 ret = bio_uncopy_user(bio);
2503 return 0;
2506 EXPORT_SYMBOL(blk_rq_unmap_user);
2509 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2510 * @q: request queue where request should be inserted
2511 * @rq: request to fill
2512 * @kbuf: the kernel buffer
2513 * @len: length of user data
2514 * @gfp_mask: memory allocation flags
2516 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2517 unsigned int len, gfp_t gfp_mask)
2519 struct bio *bio;
2521 if (len > (q->max_hw_sectors << 9))
2522 return -EINVAL;
2523 if (!len || !kbuf)
2524 return -EINVAL;
2526 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2527 if (IS_ERR(bio))
2528 return PTR_ERR(bio);
2530 if (rq_data_dir(rq) == WRITE)
2531 bio->bi_rw |= (1 << BIO_RW);
2533 rq->bio = rq->biotail = bio;
2534 blk_rq_bio_prep(q, rq, bio);
2536 rq->buffer = rq->data = NULL;
2537 rq->data_len = len;
2538 return 0;
2541 EXPORT_SYMBOL(blk_rq_map_kern);
2544 * blk_execute_rq_nowait - insert a request into queue for execution
2545 * @q: queue to insert the request in
2546 * @bd_disk: matching gendisk
2547 * @rq: request to insert
2548 * @at_head: insert request at head or tail of queue
2549 * @done: I/O completion handler
2551 * Description:
2552 * Insert a fully prepared request at the back of the io scheduler queue
2553 * for execution. Don't wait for completion.
2555 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2556 struct request *rq, int at_head,
2557 rq_end_io_fn *done)
2559 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2561 rq->rq_disk = bd_disk;
2562 rq->flags |= REQ_NOMERGE;
2563 rq->end_io = done;
2564 WARN_ON(irqs_disabled());
2565 spin_lock_irq(q->queue_lock);
2566 __elv_add_request(q, rq, where, 1);
2567 __generic_unplug_device(q);
2568 spin_unlock_irq(q->queue_lock);
2570 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2573 * blk_execute_rq - insert a request into queue for execution
2574 * @q: queue to insert the request in
2575 * @bd_disk: matching gendisk
2576 * @rq: request to insert
2577 * @at_head: insert request at head or tail of queue
2579 * Description:
2580 * Insert a fully prepared request at the back of the io scheduler queue
2581 * for execution and wait for completion.
2583 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2584 struct request *rq, int at_head)
2586 DECLARE_COMPLETION_ONSTACK(wait);
2587 char sense[SCSI_SENSE_BUFFERSIZE];
2588 int err = 0;
2591 * we need an extra reference to the request, so we can look at
2592 * it after io completion
2594 rq->ref_count++;
2596 if (!rq->sense) {
2597 memset(sense, 0, sizeof(sense));
2598 rq->sense = sense;
2599 rq->sense_len = 0;
2602 rq->waiting = &wait;
2603 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2604 wait_for_completion(&wait);
2605 rq->waiting = NULL;
2607 if (rq->errors)
2608 err = -EIO;
2610 return err;
2613 EXPORT_SYMBOL(blk_execute_rq);
2616 * blkdev_issue_flush - queue a flush
2617 * @bdev: blockdev to issue flush for
2618 * @error_sector: error sector
2620 * Description:
2621 * Issue a flush for the block device in question. Caller can supply
2622 * room for storing the error offset in case of a flush error, if they
2623 * wish to. Caller must run wait_for_completion() on its own.
2625 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2627 request_queue_t *q;
2629 if (bdev->bd_disk == NULL)
2630 return -ENXIO;
2632 q = bdev_get_queue(bdev);
2633 if (!q)
2634 return -ENXIO;
2635 if (!q->issue_flush_fn)
2636 return -EOPNOTSUPP;
2638 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2641 EXPORT_SYMBOL(blkdev_issue_flush);
2643 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2645 int rw = rq_data_dir(rq);
2647 if (!blk_fs_request(rq) || !rq->rq_disk)
2648 return;
2650 if (!new_io) {
2651 __disk_stat_inc(rq->rq_disk, merges[rw]);
2652 } else {
2653 disk_round_stats(rq->rq_disk);
2654 rq->rq_disk->in_flight++;
2659 * add-request adds a request to the linked list.
2660 * queue lock is held and interrupts disabled, as we muck with the
2661 * request queue list.
2663 static inline void add_request(request_queue_t * q, struct request * req)
2665 drive_stat_acct(req, req->nr_sectors, 1);
2667 if (q->activity_fn)
2668 q->activity_fn(q->activity_data, rq_data_dir(req));
2671 * elevator indicated where it wants this request to be
2672 * inserted at elevator_merge time
2674 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2678 * disk_round_stats() - Round off the performance stats on a struct
2679 * disk_stats.
2681 * The average IO queue length and utilisation statistics are maintained
2682 * by observing the current state of the queue length and the amount of
2683 * time it has been in this state for.
2685 * Normally, that accounting is done on IO completion, but that can result
2686 * in more than a second's worth of IO being accounted for within any one
2687 * second, leading to >100% utilisation. To deal with that, we call this
2688 * function to do a round-off before returning the results when reading
2689 * /proc/diskstats. This accounts immediately for all queue usage up to
2690 * the current jiffies and restarts the counters again.
2692 void disk_round_stats(struct gendisk *disk)
2694 unsigned long now = jiffies;
2696 if (now == disk->stamp)
2697 return;
2699 if (disk->in_flight) {
2700 __disk_stat_add(disk, time_in_queue,
2701 disk->in_flight * (now - disk->stamp));
2702 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2704 disk->stamp = now;
2707 EXPORT_SYMBOL_GPL(disk_round_stats);
2710 * queue lock must be held
2712 void __blk_put_request(request_queue_t *q, struct request *req)
2714 struct request_list *rl = req->rl;
2716 if (unlikely(!q))
2717 return;
2718 if (unlikely(--req->ref_count))
2719 return;
2721 elv_completed_request(q, req);
2723 req->rq_status = RQ_INACTIVE;
2724 req->rl = NULL;
2727 * Request may not have originated from ll_rw_blk. if not,
2728 * it didn't come out of our reserved rq pools
2730 if (rl) {
2731 int rw = rq_data_dir(req);
2732 int priv = req->flags & REQ_ELVPRIV;
2734 BUG_ON(!list_empty(&req->queuelist));
2736 blk_free_request(q, req);
2737 freed_request(q, rw, priv);
2741 EXPORT_SYMBOL_GPL(__blk_put_request);
2743 void blk_put_request(struct request *req)
2745 unsigned long flags;
2746 request_queue_t *q = req->q;
2749 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2750 * following if (q) test.
2752 if (q) {
2753 spin_lock_irqsave(q->queue_lock, flags);
2754 __blk_put_request(q, req);
2755 spin_unlock_irqrestore(q->queue_lock, flags);
2759 EXPORT_SYMBOL(blk_put_request);
2762 * blk_end_sync_rq - executes a completion event on a request
2763 * @rq: request to complete
2764 * @error: end io status of the request
2766 void blk_end_sync_rq(struct request *rq, int error)
2768 struct completion *waiting = rq->waiting;
2770 rq->waiting = NULL;
2771 __blk_put_request(rq->q, rq);
2774 * complete last, if this is a stack request the process (and thus
2775 * the rq pointer) could be invalid right after this complete()
2777 complete(waiting);
2779 EXPORT_SYMBOL(blk_end_sync_rq);
2782 * blk_congestion_wait - wait for a queue to become uncongested
2783 * @rw: READ or WRITE
2784 * @timeout: timeout in jiffies
2786 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2787 * If no queues are congested then just wait for the next request to be
2788 * returned.
2790 long blk_congestion_wait(int rw, long timeout)
2792 long ret;
2793 DEFINE_WAIT(wait);
2794 wait_queue_head_t *wqh = &congestion_wqh[rw];
2796 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2797 ret = io_schedule_timeout(timeout);
2798 finish_wait(wqh, &wait);
2799 return ret;
2802 EXPORT_SYMBOL(blk_congestion_wait);
2805 * blk_congestion_end - wake up sleepers on a congestion queue
2806 * @rw: READ or WRITE
2808 void blk_congestion_end(int rw)
2810 wait_queue_head_t *wqh = &congestion_wqh[rw];
2812 if (waitqueue_active(wqh))
2813 wake_up(wqh);
2817 * Has to be called with the request spinlock acquired
2819 static int attempt_merge(request_queue_t *q, struct request *req,
2820 struct request *next)
2822 if (!rq_mergeable(req) || !rq_mergeable(next))
2823 return 0;
2826 * not contiguous
2828 if (req->sector + req->nr_sectors != next->sector)
2829 return 0;
2831 if (rq_data_dir(req) != rq_data_dir(next)
2832 || req->rq_disk != next->rq_disk
2833 || next->waiting || next->special)
2834 return 0;
2837 * If we are allowed to merge, then append bio list
2838 * from next to rq and release next. merge_requests_fn
2839 * will have updated segment counts, update sector
2840 * counts here.
2842 if (!q->merge_requests_fn(q, req, next))
2843 return 0;
2846 * At this point we have either done a back merge
2847 * or front merge. We need the smaller start_time of
2848 * the merged requests to be the current request
2849 * for accounting purposes.
2851 if (time_after(req->start_time, next->start_time))
2852 req->start_time = next->start_time;
2854 req->biotail->bi_next = next->bio;
2855 req->biotail = next->biotail;
2857 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2859 elv_merge_requests(q, req, next);
2861 if (req->rq_disk) {
2862 disk_round_stats(req->rq_disk);
2863 req->rq_disk->in_flight--;
2866 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2868 __blk_put_request(q, next);
2869 return 1;
2872 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2874 struct request *next = elv_latter_request(q, rq);
2876 if (next)
2877 return attempt_merge(q, rq, next);
2879 return 0;
2882 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2884 struct request *prev = elv_former_request(q, rq);
2886 if (prev)
2887 return attempt_merge(q, prev, rq);
2889 return 0;
2892 static void init_request_from_bio(struct request *req, struct bio *bio)
2894 req->flags |= REQ_CMD;
2897 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2899 if (bio_rw_ahead(bio) || bio_failfast(bio))
2900 req->flags |= REQ_FAILFAST;
2903 * REQ_BARRIER implies no merging, but lets make it explicit
2905 if (unlikely(bio_barrier(bio)))
2906 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2908 if (bio_sync(bio))
2909 req->flags |= REQ_RW_SYNC;
2911 req->errors = 0;
2912 req->hard_sector = req->sector = bio->bi_sector;
2913 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2914 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2915 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2916 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2917 req->buffer = bio_data(bio); /* see ->buffer comment above */
2918 req->waiting = NULL;
2919 req->bio = req->biotail = bio;
2920 req->ioprio = bio_prio(bio);
2921 req->rq_disk = bio->bi_bdev->bd_disk;
2922 req->start_time = jiffies;
2925 static int __make_request(request_queue_t *q, struct bio *bio)
2927 struct request *req;
2928 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2929 unsigned short prio;
2930 sector_t sector;
2932 sector = bio->bi_sector;
2933 nr_sectors = bio_sectors(bio);
2934 cur_nr_sectors = bio_cur_sectors(bio);
2935 prio = bio_prio(bio);
2937 rw = bio_data_dir(bio);
2938 sync = bio_sync(bio);
2941 * low level driver can indicate that it wants pages above a
2942 * certain limit bounced to low memory (ie for highmem, or even
2943 * ISA dma in theory)
2945 blk_queue_bounce(q, &bio);
2947 spin_lock_prefetch(q->queue_lock);
2949 barrier = bio_barrier(bio);
2950 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2951 err = -EOPNOTSUPP;
2952 goto end_io;
2955 spin_lock_irq(q->queue_lock);
2957 if (unlikely(barrier) || elv_queue_empty(q))
2958 goto get_rq;
2960 el_ret = elv_merge(q, &req, bio);
2961 switch (el_ret) {
2962 case ELEVATOR_BACK_MERGE:
2963 BUG_ON(!rq_mergeable(req));
2965 if (!q->back_merge_fn(q, req, bio))
2966 break;
2968 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2970 req->biotail->bi_next = bio;
2971 req->biotail = bio;
2972 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2973 req->ioprio = ioprio_best(req->ioprio, prio);
2974 drive_stat_acct(req, nr_sectors, 0);
2975 if (!attempt_back_merge(q, req))
2976 elv_merged_request(q, req);
2977 goto out;
2979 case ELEVATOR_FRONT_MERGE:
2980 BUG_ON(!rq_mergeable(req));
2982 if (!q->front_merge_fn(q, req, bio))
2983 break;
2985 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2987 bio->bi_next = req->bio;
2988 req->bio = bio;
2991 * may not be valid. if the low level driver said
2992 * it didn't need a bounce buffer then it better
2993 * not touch req->buffer either...
2995 req->buffer = bio_data(bio);
2996 req->current_nr_sectors = cur_nr_sectors;
2997 req->hard_cur_sectors = cur_nr_sectors;
2998 req->sector = req->hard_sector = sector;
2999 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3000 req->ioprio = ioprio_best(req->ioprio, prio);
3001 drive_stat_acct(req, nr_sectors, 0);
3002 if (!attempt_front_merge(q, req))
3003 elv_merged_request(q, req);
3004 goto out;
3006 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3007 default:
3011 get_rq:
3013 * Grab a free request. This is might sleep but can not fail.
3014 * Returns with the queue unlocked.
3016 req = get_request_wait(q, rw, bio);
3019 * After dropping the lock and possibly sleeping here, our request
3020 * may now be mergeable after it had proven unmergeable (above).
3021 * We don't worry about that case for efficiency. It won't happen
3022 * often, and the elevators are able to handle it.
3024 init_request_from_bio(req, bio);
3026 spin_lock_irq(q->queue_lock);
3027 if (elv_queue_empty(q))
3028 blk_plug_device(q);
3029 add_request(q, req);
3030 out:
3031 if (sync)
3032 __generic_unplug_device(q);
3034 spin_unlock_irq(q->queue_lock);
3035 return 0;
3037 end_io:
3038 bio_endio(bio, nr_sectors << 9, err);
3039 return 0;
3043 * If bio->bi_dev is a partition, remap the location
3045 static inline void blk_partition_remap(struct bio *bio)
3047 struct block_device *bdev = bio->bi_bdev;
3049 if (bdev != bdev->bd_contains) {
3050 struct hd_struct *p = bdev->bd_part;
3051 const int rw = bio_data_dir(bio);
3053 p->sectors[rw] += bio_sectors(bio);
3054 p->ios[rw]++;
3056 bio->bi_sector += p->start_sect;
3057 bio->bi_bdev = bdev->bd_contains;
3061 static void handle_bad_sector(struct bio *bio)
3063 char b[BDEVNAME_SIZE];
3065 printk(KERN_INFO "attempt to access beyond end of device\n");
3066 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3067 bdevname(bio->bi_bdev, b),
3068 bio->bi_rw,
3069 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3070 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3072 set_bit(BIO_EOF, &bio->bi_flags);
3076 * generic_make_request: hand a buffer to its device driver for I/O
3077 * @bio: The bio describing the location in memory and on the device.
3079 * generic_make_request() is used to make I/O requests of block
3080 * devices. It is passed a &struct bio, which describes the I/O that needs
3081 * to be done.
3083 * generic_make_request() does not return any status. The
3084 * success/failure status of the request, along with notification of
3085 * completion, is delivered asynchronously through the bio->bi_end_io
3086 * function described (one day) else where.
3088 * The caller of generic_make_request must make sure that bi_io_vec
3089 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3090 * set to describe the device address, and the
3091 * bi_end_io and optionally bi_private are set to describe how
3092 * completion notification should be signaled.
3094 * generic_make_request and the drivers it calls may use bi_next if this
3095 * bio happens to be merged with someone else, and may change bi_dev and
3096 * bi_sector for remaps as it sees fit. So the values of these fields
3097 * should NOT be depended on after the call to generic_make_request.
3099 void generic_make_request(struct bio *bio)
3101 request_queue_t *q;
3102 sector_t maxsector;
3103 int ret, nr_sectors = bio_sectors(bio);
3104 dev_t old_dev;
3106 might_sleep();
3107 /* Test device or partition size, when known. */
3108 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3109 if (maxsector) {
3110 sector_t sector = bio->bi_sector;
3112 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3114 * This may well happen - the kernel calls bread()
3115 * without checking the size of the device, e.g., when
3116 * mounting a device.
3118 handle_bad_sector(bio);
3119 goto end_io;
3124 * Resolve the mapping until finished. (drivers are
3125 * still free to implement/resolve their own stacking
3126 * by explicitly returning 0)
3128 * NOTE: we don't repeat the blk_size check for each new device.
3129 * Stacking drivers are expected to know what they are doing.
3131 maxsector = -1;
3132 old_dev = 0;
3133 do {
3134 char b[BDEVNAME_SIZE];
3136 q = bdev_get_queue(bio->bi_bdev);
3137 if (!q) {
3138 printk(KERN_ERR
3139 "generic_make_request: Trying to access "
3140 "nonexistent block-device %s (%Lu)\n",
3141 bdevname(bio->bi_bdev, b),
3142 (long long) bio->bi_sector);
3143 end_io:
3144 bio_endio(bio, bio->bi_size, -EIO);
3145 break;
3148 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3149 printk("bio too big device %s (%u > %u)\n",
3150 bdevname(bio->bi_bdev, b),
3151 bio_sectors(bio),
3152 q->max_hw_sectors);
3153 goto end_io;
3156 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3157 goto end_io;
3160 * If this device has partitions, remap block n
3161 * of partition p to block n+start(p) of the disk.
3163 blk_partition_remap(bio);
3165 if (maxsector != -1)
3166 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3167 maxsector);
3169 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3171 maxsector = bio->bi_sector;
3172 old_dev = bio->bi_bdev->bd_dev;
3174 ret = q->make_request_fn(q, bio);
3175 } while (ret);
3178 EXPORT_SYMBOL(generic_make_request);
3181 * submit_bio: submit a bio to the block device layer for I/O
3182 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3183 * @bio: The &struct bio which describes the I/O
3185 * submit_bio() is very similar in purpose to generic_make_request(), and
3186 * uses that function to do most of the work. Both are fairly rough
3187 * interfaces, @bio must be presetup and ready for I/O.
3190 void submit_bio(int rw, struct bio *bio)
3192 int count = bio_sectors(bio);
3194 BIO_BUG_ON(!bio->bi_size);
3195 BIO_BUG_ON(!bio->bi_io_vec);
3196 bio->bi_rw |= rw;
3197 if (rw & WRITE)
3198 count_vm_events(PGPGOUT, count);
3199 else
3200 count_vm_events(PGPGIN, count);
3202 if (unlikely(block_dump)) {
3203 char b[BDEVNAME_SIZE];
3204 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3205 current->comm, current->pid,
3206 (rw & WRITE) ? "WRITE" : "READ",
3207 (unsigned long long)bio->bi_sector,
3208 bdevname(bio->bi_bdev,b));
3211 generic_make_request(bio);
3214 EXPORT_SYMBOL(submit_bio);
3216 static void blk_recalc_rq_segments(struct request *rq)
3218 struct bio *bio, *prevbio = NULL;
3219 int nr_phys_segs, nr_hw_segs;
3220 unsigned int phys_size, hw_size;
3221 request_queue_t *q = rq->q;
3223 if (!rq->bio)
3224 return;
3226 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3227 rq_for_each_bio(bio, rq) {
3228 /* Force bio hw/phys segs to be recalculated. */
3229 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3231 nr_phys_segs += bio_phys_segments(q, bio);
3232 nr_hw_segs += bio_hw_segments(q, bio);
3233 if (prevbio) {
3234 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3235 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3237 if (blk_phys_contig_segment(q, prevbio, bio) &&
3238 pseg <= q->max_segment_size) {
3239 nr_phys_segs--;
3240 phys_size += prevbio->bi_size + bio->bi_size;
3241 } else
3242 phys_size = 0;
3244 if (blk_hw_contig_segment(q, prevbio, bio) &&
3245 hseg <= q->max_segment_size) {
3246 nr_hw_segs--;
3247 hw_size += prevbio->bi_size + bio->bi_size;
3248 } else
3249 hw_size = 0;
3251 prevbio = bio;
3254 rq->nr_phys_segments = nr_phys_segs;
3255 rq->nr_hw_segments = nr_hw_segs;
3258 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3260 if (blk_fs_request(rq)) {
3261 rq->hard_sector += nsect;
3262 rq->hard_nr_sectors -= nsect;
3265 * Move the I/O submission pointers ahead if required.
3267 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3268 (rq->sector <= rq->hard_sector)) {
3269 rq->sector = rq->hard_sector;
3270 rq->nr_sectors = rq->hard_nr_sectors;
3271 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3272 rq->current_nr_sectors = rq->hard_cur_sectors;
3273 rq->buffer = bio_data(rq->bio);
3277 * if total number of sectors is less than the first segment
3278 * size, something has gone terribly wrong
3280 if (rq->nr_sectors < rq->current_nr_sectors) {
3281 printk("blk: request botched\n");
3282 rq->nr_sectors = rq->current_nr_sectors;
3287 static int __end_that_request_first(struct request *req, int uptodate,
3288 int nr_bytes)
3290 int total_bytes, bio_nbytes, error, next_idx = 0;
3291 struct bio *bio;
3293 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3296 * extend uptodate bool to allow < 0 value to be direct io error
3298 error = 0;
3299 if (end_io_error(uptodate))
3300 error = !uptodate ? -EIO : uptodate;
3303 * for a REQ_BLOCK_PC request, we want to carry any eventual
3304 * sense key with us all the way through
3306 if (!blk_pc_request(req))
3307 req->errors = 0;
3309 if (!uptodate) {
3310 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3311 printk("end_request: I/O error, dev %s, sector %llu\n",
3312 req->rq_disk ? req->rq_disk->disk_name : "?",
3313 (unsigned long long)req->sector);
3316 if (blk_fs_request(req) && req->rq_disk) {
3317 const int rw = rq_data_dir(req);
3319 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3322 total_bytes = bio_nbytes = 0;
3323 while ((bio = req->bio) != NULL) {
3324 int nbytes;
3326 if (nr_bytes >= bio->bi_size) {
3327 req->bio = bio->bi_next;
3328 nbytes = bio->bi_size;
3329 if (!ordered_bio_endio(req, bio, nbytes, error))
3330 bio_endio(bio, nbytes, error);
3331 next_idx = 0;
3332 bio_nbytes = 0;
3333 } else {
3334 int idx = bio->bi_idx + next_idx;
3336 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3337 blk_dump_rq_flags(req, "__end_that");
3338 printk("%s: bio idx %d >= vcnt %d\n",
3339 __FUNCTION__,
3340 bio->bi_idx, bio->bi_vcnt);
3341 break;
3344 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3345 BIO_BUG_ON(nbytes > bio->bi_size);
3348 * not a complete bvec done
3350 if (unlikely(nbytes > nr_bytes)) {
3351 bio_nbytes += nr_bytes;
3352 total_bytes += nr_bytes;
3353 break;
3357 * advance to the next vector
3359 next_idx++;
3360 bio_nbytes += nbytes;
3363 total_bytes += nbytes;
3364 nr_bytes -= nbytes;
3366 if ((bio = req->bio)) {
3368 * end more in this run, or just return 'not-done'
3370 if (unlikely(nr_bytes <= 0))
3371 break;
3376 * completely done
3378 if (!req->bio)
3379 return 0;
3382 * if the request wasn't completed, update state
3384 if (bio_nbytes) {
3385 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3386 bio_endio(bio, bio_nbytes, error);
3387 bio->bi_idx += next_idx;
3388 bio_iovec(bio)->bv_offset += nr_bytes;
3389 bio_iovec(bio)->bv_len -= nr_bytes;
3392 blk_recalc_rq_sectors(req, total_bytes >> 9);
3393 blk_recalc_rq_segments(req);
3394 return 1;
3398 * end_that_request_first - end I/O on a request
3399 * @req: the request being processed
3400 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3401 * @nr_sectors: number of sectors to end I/O on
3403 * Description:
3404 * Ends I/O on a number of sectors attached to @req, and sets it up
3405 * for the next range of segments (if any) in the cluster.
3407 * Return:
3408 * 0 - we are done with this request, call end_that_request_last()
3409 * 1 - still buffers pending for this request
3411 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3413 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3416 EXPORT_SYMBOL(end_that_request_first);
3419 * end_that_request_chunk - end I/O on a request
3420 * @req: the request being processed
3421 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3422 * @nr_bytes: number of bytes to complete
3424 * Description:
3425 * Ends I/O on a number of bytes attached to @req, and sets it up
3426 * for the next range of segments (if any). Like end_that_request_first(),
3427 * but deals with bytes instead of sectors.
3429 * Return:
3430 * 0 - we are done with this request, call end_that_request_last()
3431 * 1 - still buffers pending for this request
3433 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3435 return __end_that_request_first(req, uptodate, nr_bytes);
3438 EXPORT_SYMBOL(end_that_request_chunk);
3441 * splice the completion data to a local structure and hand off to
3442 * process_completion_queue() to complete the requests
3444 static void blk_done_softirq(struct softirq_action *h)
3446 struct list_head *cpu_list, local_list;
3448 local_irq_disable();
3449 cpu_list = &__get_cpu_var(blk_cpu_done);
3450 list_replace_init(cpu_list, &local_list);
3451 local_irq_enable();
3453 while (!list_empty(&local_list)) {
3454 struct request *rq = list_entry(local_list.next, struct request, donelist);
3456 list_del_init(&rq->donelist);
3457 rq->q->softirq_done_fn(rq);
3461 #ifdef CONFIG_HOTPLUG_CPU
3463 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3464 void *hcpu)
3467 * If a CPU goes away, splice its entries to the current CPU
3468 * and trigger a run of the softirq
3470 if (action == CPU_DEAD) {
3471 int cpu = (unsigned long) hcpu;
3473 local_irq_disable();
3474 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3475 &__get_cpu_var(blk_cpu_done));
3476 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3477 local_irq_enable();
3480 return NOTIFY_OK;
3484 static struct notifier_block __devinitdata blk_cpu_notifier = {
3485 .notifier_call = blk_cpu_notify,
3488 #endif /* CONFIG_HOTPLUG_CPU */
3491 * blk_complete_request - end I/O on a request
3492 * @req: the request being processed
3494 * Description:
3495 * Ends all I/O on a request. It does not handle partial completions,
3496 * unless the driver actually implements this in its completion callback
3497 * through requeueing. Theh actual completion happens out-of-order,
3498 * through a softirq handler. The user must have registered a completion
3499 * callback through blk_queue_softirq_done().
3502 void blk_complete_request(struct request *req)
3504 struct list_head *cpu_list;
3505 unsigned long flags;
3507 BUG_ON(!req->q->softirq_done_fn);
3509 local_irq_save(flags);
3511 cpu_list = &__get_cpu_var(blk_cpu_done);
3512 list_add_tail(&req->donelist, cpu_list);
3513 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3515 local_irq_restore(flags);
3518 EXPORT_SYMBOL(blk_complete_request);
3521 * queue lock must be held
3523 void end_that_request_last(struct request *req, int uptodate)
3525 struct gendisk *disk = req->rq_disk;
3526 int error;
3529 * extend uptodate bool to allow < 0 value to be direct io error
3531 error = 0;
3532 if (end_io_error(uptodate))
3533 error = !uptodate ? -EIO : uptodate;
3535 if (unlikely(laptop_mode) && blk_fs_request(req))
3536 laptop_io_completion();
3539 * Account IO completion. bar_rq isn't accounted as a normal
3540 * IO on queueing nor completion. Accounting the containing
3541 * request is enough.
3543 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3544 unsigned long duration = jiffies - req->start_time;
3545 const int rw = rq_data_dir(req);
3547 __disk_stat_inc(disk, ios[rw]);
3548 __disk_stat_add(disk, ticks[rw], duration);
3549 disk_round_stats(disk);
3550 disk->in_flight--;
3552 if (req->end_io)
3553 req->end_io(req, error);
3554 else
3555 __blk_put_request(req->q, req);
3558 EXPORT_SYMBOL(end_that_request_last);
3560 void end_request(struct request *req, int uptodate)
3562 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3563 add_disk_randomness(req->rq_disk);
3564 blkdev_dequeue_request(req);
3565 end_that_request_last(req, uptodate);
3569 EXPORT_SYMBOL(end_request);
3571 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3573 /* first two bits are identical in rq->flags and bio->bi_rw */
3574 rq->flags |= (bio->bi_rw & 3);
3576 rq->nr_phys_segments = bio_phys_segments(q, bio);
3577 rq->nr_hw_segments = bio_hw_segments(q, bio);
3578 rq->current_nr_sectors = bio_cur_sectors(bio);
3579 rq->hard_cur_sectors = rq->current_nr_sectors;
3580 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3581 rq->buffer = bio_data(bio);
3583 rq->bio = rq->biotail = bio;
3586 EXPORT_SYMBOL(blk_rq_bio_prep);
3588 int kblockd_schedule_work(struct work_struct *work)
3590 return queue_work(kblockd_workqueue, work);
3593 EXPORT_SYMBOL(kblockd_schedule_work);
3595 void kblockd_flush(void)
3597 flush_workqueue(kblockd_workqueue);
3599 EXPORT_SYMBOL(kblockd_flush);
3601 int __init blk_dev_init(void)
3603 int i;
3605 kblockd_workqueue = create_workqueue("kblockd");
3606 if (!kblockd_workqueue)
3607 panic("Failed to create kblockd\n");
3609 request_cachep = kmem_cache_create("blkdev_requests",
3610 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3612 requestq_cachep = kmem_cache_create("blkdev_queue",
3613 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3615 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3616 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3618 for_each_possible_cpu(i)
3619 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3621 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3622 register_hotcpu_notifier(&blk_cpu_notifier);
3624 blk_max_low_pfn = max_low_pfn;
3625 blk_max_pfn = max_pfn;
3627 return 0;
3631 * IO Context helper functions
3633 void put_io_context(struct io_context *ioc)
3635 if (ioc == NULL)
3636 return;
3638 BUG_ON(atomic_read(&ioc->refcount) == 0);
3640 if (atomic_dec_and_test(&ioc->refcount)) {
3641 struct cfq_io_context *cic;
3643 rcu_read_lock();
3644 if (ioc->aic && ioc->aic->dtor)
3645 ioc->aic->dtor(ioc->aic);
3646 if (ioc->cic_root.rb_node != NULL) {
3647 struct rb_node *n = rb_first(&ioc->cic_root);
3649 cic = rb_entry(n, struct cfq_io_context, rb_node);
3650 cic->dtor(ioc);
3652 rcu_read_unlock();
3654 kmem_cache_free(iocontext_cachep, ioc);
3657 EXPORT_SYMBOL(put_io_context);
3659 /* Called by the exitting task */
3660 void exit_io_context(void)
3662 unsigned long flags;
3663 struct io_context *ioc;
3664 struct cfq_io_context *cic;
3666 local_irq_save(flags);
3667 task_lock(current);
3668 ioc = current->io_context;
3669 current->io_context = NULL;
3670 ioc->task = NULL;
3671 task_unlock(current);
3672 local_irq_restore(flags);
3674 if (ioc->aic && ioc->aic->exit)
3675 ioc->aic->exit(ioc->aic);
3676 if (ioc->cic_root.rb_node != NULL) {
3677 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3678 cic->exit(ioc);
3681 put_io_context(ioc);
3685 * If the current task has no IO context then create one and initialise it.
3686 * Otherwise, return its existing IO context.
3688 * This returned IO context doesn't have a specifically elevated refcount,
3689 * but since the current task itself holds a reference, the context can be
3690 * used in general code, so long as it stays within `current` context.
3692 struct io_context *current_io_context(gfp_t gfp_flags)
3694 struct task_struct *tsk = current;
3695 struct io_context *ret;
3697 ret = tsk->io_context;
3698 if (likely(ret))
3699 return ret;
3701 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3702 if (ret) {
3703 atomic_set(&ret->refcount, 1);
3704 ret->task = current;
3705 ret->set_ioprio = NULL;
3706 ret->last_waited = jiffies; /* doesn't matter... */
3707 ret->nr_batch_requests = 0; /* because this is 0 */
3708 ret->aic = NULL;
3709 ret->cic_root.rb_node = NULL;
3710 /* make sure set_task_ioprio() sees the settings above */
3711 smp_wmb();
3712 tsk->io_context = ret;
3715 return ret;
3717 EXPORT_SYMBOL(current_io_context);
3720 * If the current task has no IO context then create one and initialise it.
3721 * If it does have a context, take a ref on it.
3723 * This is always called in the context of the task which submitted the I/O.
3725 struct io_context *get_io_context(gfp_t gfp_flags)
3727 struct io_context *ret;
3728 ret = current_io_context(gfp_flags);
3729 if (likely(ret))
3730 atomic_inc(&ret->refcount);
3731 return ret;
3733 EXPORT_SYMBOL(get_io_context);
3735 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3737 struct io_context *src = *psrc;
3738 struct io_context *dst = *pdst;
3740 if (src) {
3741 BUG_ON(atomic_read(&src->refcount) == 0);
3742 atomic_inc(&src->refcount);
3743 put_io_context(dst);
3744 *pdst = src;
3747 EXPORT_SYMBOL(copy_io_context);
3749 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3751 struct io_context *temp;
3752 temp = *ioc1;
3753 *ioc1 = *ioc2;
3754 *ioc2 = temp;
3756 EXPORT_SYMBOL(swap_io_context);
3759 * sysfs parts below
3761 struct queue_sysfs_entry {
3762 struct attribute attr;
3763 ssize_t (*show)(struct request_queue *, char *);
3764 ssize_t (*store)(struct request_queue *, const char *, size_t);
3767 static ssize_t
3768 queue_var_show(unsigned int var, char *page)
3770 return sprintf(page, "%d\n", var);
3773 static ssize_t
3774 queue_var_store(unsigned long *var, const char *page, size_t count)
3776 char *p = (char *) page;
3778 *var = simple_strtoul(p, &p, 10);
3779 return count;
3782 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3784 return queue_var_show(q->nr_requests, (page));
3787 static ssize_t
3788 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3790 struct request_list *rl = &q->rq;
3791 unsigned long nr;
3792 int ret = queue_var_store(&nr, page, count);
3793 if (nr < BLKDEV_MIN_RQ)
3794 nr = BLKDEV_MIN_RQ;
3796 spin_lock_irq(q->queue_lock);
3797 q->nr_requests = nr;
3798 blk_queue_congestion_threshold(q);
3800 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3801 set_queue_congested(q, READ);
3802 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3803 clear_queue_congested(q, READ);
3805 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3806 set_queue_congested(q, WRITE);
3807 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3808 clear_queue_congested(q, WRITE);
3810 if (rl->count[READ] >= q->nr_requests) {
3811 blk_set_queue_full(q, READ);
3812 } else if (rl->count[READ]+1 <= q->nr_requests) {
3813 blk_clear_queue_full(q, READ);
3814 wake_up(&rl->wait[READ]);
3817 if (rl->count[WRITE] >= q->nr_requests) {
3818 blk_set_queue_full(q, WRITE);
3819 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3820 blk_clear_queue_full(q, WRITE);
3821 wake_up(&rl->wait[WRITE]);
3823 spin_unlock_irq(q->queue_lock);
3824 return ret;
3827 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3829 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3831 return queue_var_show(ra_kb, (page));
3834 static ssize_t
3835 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3837 unsigned long ra_kb;
3838 ssize_t ret = queue_var_store(&ra_kb, page, count);
3840 spin_lock_irq(q->queue_lock);
3841 if (ra_kb > (q->max_sectors >> 1))
3842 ra_kb = (q->max_sectors >> 1);
3844 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3845 spin_unlock_irq(q->queue_lock);
3847 return ret;
3850 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3852 int max_sectors_kb = q->max_sectors >> 1;
3854 return queue_var_show(max_sectors_kb, (page));
3857 static ssize_t
3858 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3860 unsigned long max_sectors_kb,
3861 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3862 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3863 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3864 int ra_kb;
3866 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3867 return -EINVAL;
3869 * Take the queue lock to update the readahead and max_sectors
3870 * values synchronously:
3872 spin_lock_irq(q->queue_lock);
3874 * Trim readahead window as well, if necessary:
3876 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3877 if (ra_kb > max_sectors_kb)
3878 q->backing_dev_info.ra_pages =
3879 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3881 q->max_sectors = max_sectors_kb << 1;
3882 spin_unlock_irq(q->queue_lock);
3884 return ret;
3887 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3889 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3891 return queue_var_show(max_hw_sectors_kb, (page));
3895 static struct queue_sysfs_entry queue_requests_entry = {
3896 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3897 .show = queue_requests_show,
3898 .store = queue_requests_store,
3901 static struct queue_sysfs_entry queue_ra_entry = {
3902 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3903 .show = queue_ra_show,
3904 .store = queue_ra_store,
3907 static struct queue_sysfs_entry queue_max_sectors_entry = {
3908 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3909 .show = queue_max_sectors_show,
3910 .store = queue_max_sectors_store,
3913 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3914 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3915 .show = queue_max_hw_sectors_show,
3918 static struct queue_sysfs_entry queue_iosched_entry = {
3919 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3920 .show = elv_iosched_show,
3921 .store = elv_iosched_store,
3924 static struct attribute *default_attrs[] = {
3925 &queue_requests_entry.attr,
3926 &queue_ra_entry.attr,
3927 &queue_max_hw_sectors_entry.attr,
3928 &queue_max_sectors_entry.attr,
3929 &queue_iosched_entry.attr,
3930 NULL,
3933 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3935 static ssize_t
3936 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3938 struct queue_sysfs_entry *entry = to_queue(attr);
3939 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3940 ssize_t res;
3942 if (!entry->show)
3943 return -EIO;
3944 mutex_lock(&q->sysfs_lock);
3945 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3946 mutex_unlock(&q->sysfs_lock);
3947 return -ENOENT;
3949 res = entry->show(q, page);
3950 mutex_unlock(&q->sysfs_lock);
3951 return res;
3954 static ssize_t
3955 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3956 const char *page, size_t length)
3958 struct queue_sysfs_entry *entry = to_queue(attr);
3959 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3961 ssize_t res;
3963 if (!entry->store)
3964 return -EIO;
3965 mutex_lock(&q->sysfs_lock);
3966 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3967 mutex_unlock(&q->sysfs_lock);
3968 return -ENOENT;
3970 res = entry->store(q, page, length);
3971 mutex_unlock(&q->sysfs_lock);
3972 return res;
3975 static struct sysfs_ops queue_sysfs_ops = {
3976 .show = queue_attr_show,
3977 .store = queue_attr_store,
3980 static struct kobj_type queue_ktype = {
3981 .sysfs_ops = &queue_sysfs_ops,
3982 .default_attrs = default_attrs,
3983 .release = blk_release_queue,
3986 int blk_register_queue(struct gendisk *disk)
3988 int ret;
3990 request_queue_t *q = disk->queue;
3992 if (!q || !q->request_fn)
3993 return -ENXIO;
3995 q->kobj.parent = kobject_get(&disk->kobj);
3997 ret = kobject_add(&q->kobj);
3998 if (ret < 0)
3999 return ret;
4001 kobject_uevent(&q->kobj, KOBJ_ADD);
4003 ret = elv_register_queue(q);
4004 if (ret) {
4005 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4006 kobject_del(&q->kobj);
4007 return ret;
4010 return 0;
4013 void blk_unregister_queue(struct gendisk *disk)
4015 request_queue_t *q = disk->queue;
4017 if (q && q->request_fn) {
4018 elv_unregister_queue(q);
4020 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4021 kobject_del(&q->kobj);
4022 kobject_put(&disk->kobj);