Btrfs: switch the btrfs tree locks to reader/writer
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / tree-log.c
blobac278dd83175e3a64a573f9a16e154a21226ecda
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
137 int ret;
138 int err = 0;
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
179 static int join_running_log_trans(struct btrfs_root *root)
181 int ret = -ENOENT;
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
192 mutex_unlock(&root->log_mutex);
193 return ret;
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root *root)
203 int ret = -ENOENT;
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root *root)
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
222 return 0;
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
236 int free;
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
241 int write;
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
246 int wait;
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
251 int pin;
253 /* what stage of the replay code we're currently in */
254 int stage;
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
278 if (wc->pin)
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
288 return 0;
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
335 if (item_size == 0) {
336 btrfs_release_path(path);
337 return 0;
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
355 kfree(dst_copy);
356 kfree(src_copy);
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
363 if (ret == 0) {
364 btrfs_release_path(path);
365 return 0;
369 insert:
370 btrfs_release_path(path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
386 } else if (ret) {
387 return ret;
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 path->slots[0]);
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
399 * as it goes
401 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 struct btrfs_inode_item *src_item;
403 struct btrfs_inode_item *dst_item;
405 src_item = (struct btrfs_inode_item *)src_ptr;
406 dst_item = (struct btrfs_inode_item *)dst_ptr;
408 if (btrfs_inode_generation(eb, src_item) == 0)
409 goto no_copy;
411 if (overwrite_root &&
412 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 save_old_i_size = 1;
415 saved_i_size = btrfs_inode_size(path->nodes[0],
416 dst_item);
420 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 src_ptr, item_size);
423 if (save_old_i_size) {
424 struct btrfs_inode_item *dst_item;
425 dst_item = (struct btrfs_inode_item *)dst_ptr;
426 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
429 /* make sure the generation is filled in */
430 if (key->type == BTRFS_INODE_ITEM_KEY) {
431 struct btrfs_inode_item *dst_item;
432 dst_item = (struct btrfs_inode_item *)dst_ptr;
433 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 btrfs_set_inode_generation(path->nodes[0], dst_item,
435 trans->transid);
438 no_copy:
439 btrfs_mark_buffer_dirty(path->nodes[0]);
440 btrfs_release_path(path);
441 return 0;
445 * simple helper to read an inode off the disk from a given root
446 * This can only be called for subvolume roots and not for the log
448 static noinline struct inode *read_one_inode(struct btrfs_root *root,
449 u64 objectid)
451 struct btrfs_key key;
452 struct inode *inode;
454 key.objectid = objectid;
455 key.type = BTRFS_INODE_ITEM_KEY;
456 key.offset = 0;
457 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
458 if (IS_ERR(inode)) {
459 inode = NULL;
460 } else if (is_bad_inode(inode)) {
461 iput(inode);
462 inode = NULL;
464 return inode;
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468 * subvolume 'root'. path is released on entry and should be released
469 * on exit.
471 * extents in the log tree have not been allocated out of the extent
472 * tree yet. So, this completes the allocation, taking a reference
473 * as required if the extent already exists or creating a new extent
474 * if it isn't in the extent allocation tree yet.
476 * The extent is inserted into the file, dropping any existing extents
477 * from the file that overlap the new one.
479 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root,
481 struct btrfs_path *path,
482 struct extent_buffer *eb, int slot,
483 struct btrfs_key *key)
485 int found_type;
486 u64 mask = root->sectorsize - 1;
487 u64 extent_end;
488 u64 alloc_hint;
489 u64 start = key->offset;
490 u64 saved_nbytes;
491 struct btrfs_file_extent_item *item;
492 struct inode *inode = NULL;
493 unsigned long size;
494 int ret = 0;
496 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
497 found_type = btrfs_file_extent_type(eb, item);
499 if (found_type == BTRFS_FILE_EXTENT_REG ||
500 found_type == BTRFS_FILE_EXTENT_PREALLOC)
501 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
502 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
503 size = btrfs_file_extent_inline_len(eb, item);
504 extent_end = (start + size + mask) & ~mask;
505 } else {
506 ret = 0;
507 goto out;
510 inode = read_one_inode(root, key->objectid);
511 if (!inode) {
512 ret = -EIO;
513 goto out;
517 * first check to see if we already have this extent in the
518 * file. This must be done before the btrfs_drop_extents run
519 * so we don't try to drop this extent.
521 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
522 start, 0);
524 if (ret == 0 &&
525 (found_type == BTRFS_FILE_EXTENT_REG ||
526 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
527 struct btrfs_file_extent_item cmp1;
528 struct btrfs_file_extent_item cmp2;
529 struct btrfs_file_extent_item *existing;
530 struct extent_buffer *leaf;
532 leaf = path->nodes[0];
533 existing = btrfs_item_ptr(leaf, path->slots[0],
534 struct btrfs_file_extent_item);
536 read_extent_buffer(eb, &cmp1, (unsigned long)item,
537 sizeof(cmp1));
538 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
539 sizeof(cmp2));
542 * we already have a pointer to this exact extent,
543 * we don't have to do anything
545 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
546 btrfs_release_path(path);
547 goto out;
550 btrfs_release_path(path);
552 saved_nbytes = inode_get_bytes(inode);
553 /* drop any overlapping extents */
554 ret = btrfs_drop_extents(trans, inode, start, extent_end,
555 &alloc_hint, 1);
556 BUG_ON(ret);
558 if (found_type == BTRFS_FILE_EXTENT_REG ||
559 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 u64 offset;
561 unsigned long dest_offset;
562 struct btrfs_key ins;
564 ret = btrfs_insert_empty_item(trans, root, path, key,
565 sizeof(*item));
566 BUG_ON(ret);
567 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 path->slots[0]);
569 copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 (unsigned long)item, sizeof(*item));
572 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 ins.type = BTRFS_EXTENT_ITEM_KEY;
575 offset = key->offset - btrfs_file_extent_offset(eb, item);
577 if (ins.objectid > 0) {
578 u64 csum_start;
579 u64 csum_end;
580 LIST_HEAD(ordered_sums);
582 * is this extent already allocated in the extent
583 * allocation tree? If so, just add a reference
585 ret = btrfs_lookup_extent(root, ins.objectid,
586 ins.offset);
587 if (ret == 0) {
588 ret = btrfs_inc_extent_ref(trans, root,
589 ins.objectid, ins.offset,
590 0, root->root_key.objectid,
591 key->objectid, offset);
592 BUG_ON(ret);
593 } else {
595 * insert the extent pointer in the extent
596 * allocation tree
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
601 BUG_ON(ret);
603 btrfs_release_path(path);
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums, 0);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
631 } else {
632 btrfs_release_path(path);
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
640 inode_set_bytes(inode, saved_nbytes);
641 btrfs_update_inode(trans, root, inode);
642 out:
643 if (inode)
644 iput(inode);
645 return ret;
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
653 * This is a helper function to do the unlink of a specific directory
654 * item
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
669 leaf = path->nodes[0];
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
674 if (!name)
675 return -ENOMEM;
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(path);
680 inode = read_one_inode(root, location.objectid);
681 if (!inode) {
682 kfree(name);
683 return -EIO;
686 ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 BUG_ON(ret);
689 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
690 BUG_ON(ret);
691 kfree(name);
693 iput(inode);
694 return ret;
698 * helper function to see if a given name and sequence number found
699 * in an inode back reference are already in a directory and correctly
700 * point to this inode
702 static noinline int inode_in_dir(struct btrfs_root *root,
703 struct btrfs_path *path,
704 u64 dirid, u64 objectid, u64 index,
705 const char *name, int name_len)
707 struct btrfs_dir_item *di;
708 struct btrfs_key location;
709 int match = 0;
711 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
712 index, name, name_len, 0);
713 if (di && !IS_ERR(di)) {
714 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
715 if (location.objectid != objectid)
716 goto out;
717 } else
718 goto out;
719 btrfs_release_path(path);
721 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
722 if (di && !IS_ERR(di)) {
723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
724 if (location.objectid != objectid)
725 goto out;
726 } else
727 goto out;
728 match = 1;
729 out:
730 btrfs_release_path(path);
731 return match;
735 * helper function to check a log tree for a named back reference in
736 * an inode. This is used to decide if a back reference that is
737 * found in the subvolume conflicts with what we find in the log.
739 * inode backreferences may have multiple refs in a single item,
740 * during replay we process one reference at a time, and we don't
741 * want to delete valid links to a file from the subvolume if that
742 * link is also in the log.
744 static noinline int backref_in_log(struct btrfs_root *log,
745 struct btrfs_key *key,
746 char *name, int namelen)
748 struct btrfs_path *path;
749 struct btrfs_inode_ref *ref;
750 unsigned long ptr;
751 unsigned long ptr_end;
752 unsigned long name_ptr;
753 int found_name_len;
754 int item_size;
755 int ret;
756 int match = 0;
758 path = btrfs_alloc_path();
759 if (!path)
760 return -ENOMEM;
762 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
763 if (ret != 0)
764 goto out;
766 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
767 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
768 ptr_end = ptr + item_size;
769 while (ptr < ptr_end) {
770 ref = (struct btrfs_inode_ref *)ptr;
771 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
772 if (found_name_len == namelen) {
773 name_ptr = (unsigned long)(ref + 1);
774 ret = memcmp_extent_buffer(path->nodes[0], name,
775 name_ptr, namelen);
776 if (ret == 0) {
777 match = 1;
778 goto out;
781 ptr = (unsigned long)(ref + 1) + found_name_len;
783 out:
784 btrfs_free_path(path);
785 return match;
790 * replay one inode back reference item found in the log tree.
791 * eb, slot and key refer to the buffer and key found in the log tree.
792 * root is the destination we are replaying into, and path is for temp
793 * use by this function. (it should be released on return).
795 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
796 struct btrfs_root *root,
797 struct btrfs_root *log,
798 struct btrfs_path *path,
799 struct extent_buffer *eb, int slot,
800 struct btrfs_key *key)
802 struct inode *dir;
803 int ret;
804 struct btrfs_inode_ref *ref;
805 struct inode *inode;
806 char *name;
807 int namelen;
808 unsigned long ref_ptr;
809 unsigned long ref_end;
810 int search_done = 0;
813 * it is possible that we didn't log all the parent directories
814 * for a given inode. If we don't find the dir, just don't
815 * copy the back ref in. The link count fixup code will take
816 * care of the rest
818 dir = read_one_inode(root, key->offset);
819 if (!dir)
820 return -ENOENT;
822 inode = read_one_inode(root, key->objectid);
823 if (!inode) {
824 iput(dir);
825 return -EIO;
828 ref_ptr = btrfs_item_ptr_offset(eb, slot);
829 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
831 again:
832 ref = (struct btrfs_inode_ref *)ref_ptr;
834 namelen = btrfs_inode_ref_name_len(eb, ref);
835 name = kmalloc(namelen, GFP_NOFS);
836 BUG_ON(!name);
838 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
840 /* if we already have a perfect match, we're done */
841 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
842 btrfs_inode_ref_index(eb, ref),
843 name, namelen)) {
844 goto out;
848 * look for a conflicting back reference in the metadata.
849 * if we find one we have to unlink that name of the file
850 * before we add our new link. Later on, we overwrite any
851 * existing back reference, and we don't want to create
852 * dangling pointers in the directory.
855 if (search_done)
856 goto insert;
858 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
859 if (ret == 0) {
860 char *victim_name;
861 int victim_name_len;
862 struct btrfs_inode_ref *victim_ref;
863 unsigned long ptr;
864 unsigned long ptr_end;
865 struct extent_buffer *leaf = path->nodes[0];
867 /* are we trying to overwrite a back ref for the root directory
868 * if so, just jump out, we're done
870 if (key->objectid == key->offset)
871 goto out_nowrite;
873 /* check all the names in this back reference to see
874 * if they are in the log. if so, we allow them to stay
875 * otherwise they must be unlinked as a conflict
877 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
878 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
879 while (ptr < ptr_end) {
880 victim_ref = (struct btrfs_inode_ref *)ptr;
881 victim_name_len = btrfs_inode_ref_name_len(leaf,
882 victim_ref);
883 victim_name = kmalloc(victim_name_len, GFP_NOFS);
884 BUG_ON(!victim_name);
886 read_extent_buffer(leaf, victim_name,
887 (unsigned long)(victim_ref + 1),
888 victim_name_len);
890 if (!backref_in_log(log, key, victim_name,
891 victim_name_len)) {
892 btrfs_inc_nlink(inode);
893 btrfs_release_path(path);
895 ret = btrfs_unlink_inode(trans, root, dir,
896 inode, victim_name,
897 victim_name_len);
899 kfree(victim_name);
900 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
902 BUG_ON(ret);
905 * NOTE: we have searched root tree and checked the
906 * coresponding ref, it does not need to check again.
908 search_done = 1;
910 btrfs_release_path(path);
912 insert:
913 /* insert our name */
914 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
915 btrfs_inode_ref_index(eb, ref));
916 BUG_ON(ret);
918 btrfs_update_inode(trans, root, inode);
920 out:
921 ref_ptr = (unsigned long)(ref + 1) + namelen;
922 kfree(name);
923 if (ref_ptr < ref_end)
924 goto again;
926 /* finally write the back reference in the inode */
927 ret = overwrite_item(trans, root, path, eb, slot, key);
928 BUG_ON(ret);
930 out_nowrite:
931 btrfs_release_path(path);
932 iput(dir);
933 iput(inode);
934 return 0;
937 static int insert_orphan_item(struct btrfs_trans_handle *trans,
938 struct btrfs_root *root, u64 offset)
940 int ret;
941 ret = btrfs_find_orphan_item(root, offset);
942 if (ret > 0)
943 ret = btrfs_insert_orphan_item(trans, root, offset);
944 return ret;
949 * There are a few corners where the link count of the file can't
950 * be properly maintained during replay. So, instead of adding
951 * lots of complexity to the log code, we just scan the backrefs
952 * for any file that has been through replay.
954 * The scan will update the link count on the inode to reflect the
955 * number of back refs found. If it goes down to zero, the iput
956 * will free the inode.
958 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
959 struct btrfs_root *root,
960 struct inode *inode)
962 struct btrfs_path *path;
963 int ret;
964 struct btrfs_key key;
965 u64 nlink = 0;
966 unsigned long ptr;
967 unsigned long ptr_end;
968 int name_len;
969 u64 ino = btrfs_ino(inode);
971 key.objectid = ino;
972 key.type = BTRFS_INODE_REF_KEY;
973 key.offset = (u64)-1;
975 path = btrfs_alloc_path();
976 if (!path)
977 return -ENOMEM;
979 while (1) {
980 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
981 if (ret < 0)
982 break;
983 if (ret > 0) {
984 if (path->slots[0] == 0)
985 break;
986 path->slots[0]--;
988 btrfs_item_key_to_cpu(path->nodes[0], &key,
989 path->slots[0]);
990 if (key.objectid != ino ||
991 key.type != BTRFS_INODE_REF_KEY)
992 break;
993 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
994 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
995 path->slots[0]);
996 while (ptr < ptr_end) {
997 struct btrfs_inode_ref *ref;
999 ref = (struct btrfs_inode_ref *)ptr;
1000 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1001 ref);
1002 ptr = (unsigned long)(ref + 1) + name_len;
1003 nlink++;
1006 if (key.offset == 0)
1007 break;
1008 key.offset--;
1009 btrfs_release_path(path);
1011 btrfs_release_path(path);
1012 if (nlink != inode->i_nlink) {
1013 inode->i_nlink = nlink;
1014 btrfs_update_inode(trans, root, inode);
1016 BTRFS_I(inode)->index_cnt = (u64)-1;
1018 if (inode->i_nlink == 0) {
1019 if (S_ISDIR(inode->i_mode)) {
1020 ret = replay_dir_deletes(trans, root, NULL, path,
1021 ino, 1);
1022 BUG_ON(ret);
1024 ret = insert_orphan_item(trans, root, ino);
1025 BUG_ON(ret);
1027 btrfs_free_path(path);
1029 return 0;
1032 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1033 struct btrfs_root *root,
1034 struct btrfs_path *path)
1036 int ret;
1037 struct btrfs_key key;
1038 struct inode *inode;
1040 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1041 key.type = BTRFS_ORPHAN_ITEM_KEY;
1042 key.offset = (u64)-1;
1043 while (1) {
1044 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1045 if (ret < 0)
1046 break;
1048 if (ret == 1) {
1049 if (path->slots[0] == 0)
1050 break;
1051 path->slots[0]--;
1054 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1055 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1056 key.type != BTRFS_ORPHAN_ITEM_KEY)
1057 break;
1059 ret = btrfs_del_item(trans, root, path);
1060 if (ret)
1061 goto out;
1063 btrfs_release_path(path);
1064 inode = read_one_inode(root, key.offset);
1065 if (!inode)
1066 return -EIO;
1068 ret = fixup_inode_link_count(trans, root, inode);
1069 BUG_ON(ret);
1071 iput(inode);
1074 * fixup on a directory may create new entries,
1075 * make sure we always look for the highset possible
1076 * offset
1078 key.offset = (u64)-1;
1080 ret = 0;
1081 out:
1082 btrfs_release_path(path);
1083 return ret;
1088 * record a given inode in the fixup dir so we can check its link
1089 * count when replay is done. The link count is incremented here
1090 * so the inode won't go away until we check it
1092 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root,
1094 struct btrfs_path *path,
1095 u64 objectid)
1097 struct btrfs_key key;
1098 int ret = 0;
1099 struct inode *inode;
1101 inode = read_one_inode(root, objectid);
1102 if (!inode)
1103 return -EIO;
1105 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1106 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1107 key.offset = objectid;
1109 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1111 btrfs_release_path(path);
1112 if (ret == 0) {
1113 btrfs_inc_nlink(inode);
1114 btrfs_update_inode(trans, root, inode);
1115 } else if (ret == -EEXIST) {
1116 ret = 0;
1117 } else {
1118 BUG();
1120 iput(inode);
1122 return ret;
1126 * when replaying the log for a directory, we only insert names
1127 * for inodes that actually exist. This means an fsync on a directory
1128 * does not implicitly fsync all the new files in it
1130 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root,
1132 struct btrfs_path *path,
1133 u64 dirid, u64 index,
1134 char *name, int name_len, u8 type,
1135 struct btrfs_key *location)
1137 struct inode *inode;
1138 struct inode *dir;
1139 int ret;
1141 inode = read_one_inode(root, location->objectid);
1142 if (!inode)
1143 return -ENOENT;
1145 dir = read_one_inode(root, dirid);
1146 if (!dir) {
1147 iput(inode);
1148 return -EIO;
1150 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1152 /* FIXME, put inode into FIXUP list */
1154 iput(inode);
1155 iput(dir);
1156 return ret;
1160 * take a single entry in a log directory item and replay it into
1161 * the subvolume.
1163 * if a conflicting item exists in the subdirectory already,
1164 * the inode it points to is unlinked and put into the link count
1165 * fix up tree.
1167 * If a name from the log points to a file or directory that does
1168 * not exist in the FS, it is skipped. fsyncs on directories
1169 * do not force down inodes inside that directory, just changes to the
1170 * names or unlinks in a directory.
1172 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1173 struct btrfs_root *root,
1174 struct btrfs_path *path,
1175 struct extent_buffer *eb,
1176 struct btrfs_dir_item *di,
1177 struct btrfs_key *key)
1179 char *name;
1180 int name_len;
1181 struct btrfs_dir_item *dst_di;
1182 struct btrfs_key found_key;
1183 struct btrfs_key log_key;
1184 struct inode *dir;
1185 u8 log_type;
1186 int exists;
1187 int ret;
1189 dir = read_one_inode(root, key->objectid);
1190 if (!dir)
1191 return -EIO;
1193 name_len = btrfs_dir_name_len(eb, di);
1194 name = kmalloc(name_len, GFP_NOFS);
1195 if (!name)
1196 return -ENOMEM;
1198 log_type = btrfs_dir_type(eb, di);
1199 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200 name_len);
1202 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1203 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204 if (exists == 0)
1205 exists = 1;
1206 else
1207 exists = 0;
1208 btrfs_release_path(path);
1210 if (key->type == BTRFS_DIR_ITEM_KEY) {
1211 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212 name, name_len, 1);
1213 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1214 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215 key->objectid,
1216 key->offset, name,
1217 name_len, 1);
1218 } else {
1219 BUG();
1221 if (IS_ERR_OR_NULL(dst_di)) {
1222 /* we need a sequence number to insert, so we only
1223 * do inserts for the BTRFS_DIR_INDEX_KEY types
1225 if (key->type != BTRFS_DIR_INDEX_KEY)
1226 goto out;
1227 goto insert;
1230 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231 /* the existing item matches the logged item */
1232 if (found_key.objectid == log_key.objectid &&
1233 found_key.type == log_key.type &&
1234 found_key.offset == log_key.offset &&
1235 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236 goto out;
1240 * don't drop the conflicting directory entry if the inode
1241 * for the new entry doesn't exist
1243 if (!exists)
1244 goto out;
1246 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247 BUG_ON(ret);
1249 if (key->type == BTRFS_DIR_INDEX_KEY)
1250 goto insert;
1251 out:
1252 btrfs_release_path(path);
1253 kfree(name);
1254 iput(dir);
1255 return 0;
1257 insert:
1258 btrfs_release_path(path);
1259 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260 name, name_len, log_type, &log_key);
1262 BUG_ON(ret && ret != -ENOENT);
1263 goto out;
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1272 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root,
1274 struct btrfs_path *path,
1275 struct extent_buffer *eb, int slot,
1276 struct btrfs_key *key)
1278 int ret;
1279 u32 item_size = btrfs_item_size_nr(eb, slot);
1280 struct btrfs_dir_item *di;
1281 int name_len;
1282 unsigned long ptr;
1283 unsigned long ptr_end;
1285 ptr = btrfs_item_ptr_offset(eb, slot);
1286 ptr_end = ptr + item_size;
1287 while (ptr < ptr_end) {
1288 di = (struct btrfs_dir_item *)ptr;
1289 if (verify_dir_item(root, eb, di))
1290 return -EIO;
1291 name_len = btrfs_dir_name_len(eb, di);
1292 ret = replay_one_name(trans, root, path, eb, di, key);
1293 BUG_ON(ret);
1294 ptr = (unsigned long)(di + 1);
1295 ptr += name_len;
1297 return 0;
1301 * directory replay has two parts. There are the standard directory
1302 * items in the log copied from the subvolume, and range items
1303 * created in the log while the subvolume was logged.
1305 * The range items tell us which parts of the key space the log
1306 * is authoritative for. During replay, if a key in the subvolume
1307 * directory is in a logged range item, but not actually in the log
1308 * that means it was deleted from the directory before the fsync
1309 * and should be removed.
1311 static noinline int find_dir_range(struct btrfs_root *root,
1312 struct btrfs_path *path,
1313 u64 dirid, int key_type,
1314 u64 *start_ret, u64 *end_ret)
1316 struct btrfs_key key;
1317 u64 found_end;
1318 struct btrfs_dir_log_item *item;
1319 int ret;
1320 int nritems;
1322 if (*start_ret == (u64)-1)
1323 return 1;
1325 key.objectid = dirid;
1326 key.type = key_type;
1327 key.offset = *start_ret;
1329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1330 if (ret < 0)
1331 goto out;
1332 if (ret > 0) {
1333 if (path->slots[0] == 0)
1334 goto out;
1335 path->slots[0]--;
1337 if (ret != 0)
1338 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1340 if (key.type != key_type || key.objectid != dirid) {
1341 ret = 1;
1342 goto next;
1344 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1345 struct btrfs_dir_log_item);
1346 found_end = btrfs_dir_log_end(path->nodes[0], item);
1348 if (*start_ret >= key.offset && *start_ret <= found_end) {
1349 ret = 0;
1350 *start_ret = key.offset;
1351 *end_ret = found_end;
1352 goto out;
1354 ret = 1;
1355 next:
1356 /* check the next slot in the tree to see if it is a valid item */
1357 nritems = btrfs_header_nritems(path->nodes[0]);
1358 if (path->slots[0] >= nritems) {
1359 ret = btrfs_next_leaf(root, path);
1360 if (ret)
1361 goto out;
1362 } else {
1363 path->slots[0]++;
1366 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1368 if (key.type != key_type || key.objectid != dirid) {
1369 ret = 1;
1370 goto out;
1372 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373 struct btrfs_dir_log_item);
1374 found_end = btrfs_dir_log_end(path->nodes[0], item);
1375 *start_ret = key.offset;
1376 *end_ret = found_end;
1377 ret = 0;
1378 out:
1379 btrfs_release_path(path);
1380 return ret;
1384 * this looks for a given directory item in the log. If the directory
1385 * item is not in the log, the item is removed and the inode it points
1386 * to is unlinked
1388 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1389 struct btrfs_root *root,
1390 struct btrfs_root *log,
1391 struct btrfs_path *path,
1392 struct btrfs_path *log_path,
1393 struct inode *dir,
1394 struct btrfs_key *dir_key)
1396 int ret;
1397 struct extent_buffer *eb;
1398 int slot;
1399 u32 item_size;
1400 struct btrfs_dir_item *di;
1401 struct btrfs_dir_item *log_di;
1402 int name_len;
1403 unsigned long ptr;
1404 unsigned long ptr_end;
1405 char *name;
1406 struct inode *inode;
1407 struct btrfs_key location;
1409 again:
1410 eb = path->nodes[0];
1411 slot = path->slots[0];
1412 item_size = btrfs_item_size_nr(eb, slot);
1413 ptr = btrfs_item_ptr_offset(eb, slot);
1414 ptr_end = ptr + item_size;
1415 while (ptr < ptr_end) {
1416 di = (struct btrfs_dir_item *)ptr;
1417 if (verify_dir_item(root, eb, di)) {
1418 ret = -EIO;
1419 goto out;
1422 name_len = btrfs_dir_name_len(eb, di);
1423 name = kmalloc(name_len, GFP_NOFS);
1424 if (!name) {
1425 ret = -ENOMEM;
1426 goto out;
1428 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1429 name_len);
1430 log_di = NULL;
1431 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1432 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1433 dir_key->objectid,
1434 name, name_len, 0);
1435 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1436 log_di = btrfs_lookup_dir_index_item(trans, log,
1437 log_path,
1438 dir_key->objectid,
1439 dir_key->offset,
1440 name, name_len, 0);
1442 if (IS_ERR_OR_NULL(log_di)) {
1443 btrfs_dir_item_key_to_cpu(eb, di, &location);
1444 btrfs_release_path(path);
1445 btrfs_release_path(log_path);
1446 inode = read_one_inode(root, location.objectid);
1447 if (!inode) {
1448 kfree(name);
1449 return -EIO;
1452 ret = link_to_fixup_dir(trans, root,
1453 path, location.objectid);
1454 BUG_ON(ret);
1455 btrfs_inc_nlink(inode);
1456 ret = btrfs_unlink_inode(trans, root, dir, inode,
1457 name, name_len);
1458 BUG_ON(ret);
1459 kfree(name);
1460 iput(inode);
1462 /* there might still be more names under this key
1463 * check and repeat if required
1465 ret = btrfs_search_slot(NULL, root, dir_key, path,
1466 0, 0);
1467 if (ret == 0)
1468 goto again;
1469 ret = 0;
1470 goto out;
1472 btrfs_release_path(log_path);
1473 kfree(name);
1475 ptr = (unsigned long)(di + 1);
1476 ptr += name_len;
1478 ret = 0;
1479 out:
1480 btrfs_release_path(path);
1481 btrfs_release_path(log_path);
1482 return ret;
1486 * deletion replay happens before we copy any new directory items
1487 * out of the log or out of backreferences from inodes. It
1488 * scans the log to find ranges of keys that log is authoritative for,
1489 * and then scans the directory to find items in those ranges that are
1490 * not present in the log.
1492 * Anything we don't find in the log is unlinked and removed from the
1493 * directory.
1495 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1496 struct btrfs_root *root,
1497 struct btrfs_root *log,
1498 struct btrfs_path *path,
1499 u64 dirid, int del_all)
1501 u64 range_start;
1502 u64 range_end;
1503 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1504 int ret = 0;
1505 struct btrfs_key dir_key;
1506 struct btrfs_key found_key;
1507 struct btrfs_path *log_path;
1508 struct inode *dir;
1510 dir_key.objectid = dirid;
1511 dir_key.type = BTRFS_DIR_ITEM_KEY;
1512 log_path = btrfs_alloc_path();
1513 if (!log_path)
1514 return -ENOMEM;
1516 dir = read_one_inode(root, dirid);
1517 /* it isn't an error if the inode isn't there, that can happen
1518 * because we replay the deletes before we copy in the inode item
1519 * from the log
1521 if (!dir) {
1522 btrfs_free_path(log_path);
1523 return 0;
1525 again:
1526 range_start = 0;
1527 range_end = 0;
1528 while (1) {
1529 if (del_all)
1530 range_end = (u64)-1;
1531 else {
1532 ret = find_dir_range(log, path, dirid, key_type,
1533 &range_start, &range_end);
1534 if (ret != 0)
1535 break;
1538 dir_key.offset = range_start;
1539 while (1) {
1540 int nritems;
1541 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1542 0, 0);
1543 if (ret < 0)
1544 goto out;
1546 nritems = btrfs_header_nritems(path->nodes[0]);
1547 if (path->slots[0] >= nritems) {
1548 ret = btrfs_next_leaf(root, path);
1549 if (ret)
1550 break;
1552 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1553 path->slots[0]);
1554 if (found_key.objectid != dirid ||
1555 found_key.type != dir_key.type)
1556 goto next_type;
1558 if (found_key.offset > range_end)
1559 break;
1561 ret = check_item_in_log(trans, root, log, path,
1562 log_path, dir,
1563 &found_key);
1564 BUG_ON(ret);
1565 if (found_key.offset == (u64)-1)
1566 break;
1567 dir_key.offset = found_key.offset + 1;
1569 btrfs_release_path(path);
1570 if (range_end == (u64)-1)
1571 break;
1572 range_start = range_end + 1;
1575 next_type:
1576 ret = 0;
1577 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1578 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1579 dir_key.type = BTRFS_DIR_INDEX_KEY;
1580 btrfs_release_path(path);
1581 goto again;
1583 out:
1584 btrfs_release_path(path);
1585 btrfs_free_path(log_path);
1586 iput(dir);
1587 return ret;
1591 * the process_func used to replay items from the log tree. This
1592 * gets called in two different stages. The first stage just looks
1593 * for inodes and makes sure they are all copied into the subvolume.
1595 * The second stage copies all the other item types from the log into
1596 * the subvolume. The two stage approach is slower, but gets rid of
1597 * lots of complexity around inodes referencing other inodes that exist
1598 * only in the log (references come from either directory items or inode
1599 * back refs).
1601 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1602 struct walk_control *wc, u64 gen)
1604 int nritems;
1605 struct btrfs_path *path;
1606 struct btrfs_root *root = wc->replay_dest;
1607 struct btrfs_key key;
1608 int level;
1609 int i;
1610 int ret;
1612 btrfs_read_buffer(eb, gen);
1614 level = btrfs_header_level(eb);
1616 if (level != 0)
1617 return 0;
1619 path = btrfs_alloc_path();
1620 BUG_ON(!path);
1622 nritems = btrfs_header_nritems(eb);
1623 for (i = 0; i < nritems; i++) {
1624 btrfs_item_key_to_cpu(eb, &key, i);
1626 /* inode keys are done during the first stage */
1627 if (key.type == BTRFS_INODE_ITEM_KEY &&
1628 wc->stage == LOG_WALK_REPLAY_INODES) {
1629 struct btrfs_inode_item *inode_item;
1630 u32 mode;
1632 inode_item = btrfs_item_ptr(eb, i,
1633 struct btrfs_inode_item);
1634 mode = btrfs_inode_mode(eb, inode_item);
1635 if (S_ISDIR(mode)) {
1636 ret = replay_dir_deletes(wc->trans,
1637 root, log, path, key.objectid, 0);
1638 BUG_ON(ret);
1640 ret = overwrite_item(wc->trans, root, path,
1641 eb, i, &key);
1642 BUG_ON(ret);
1644 /* for regular files, make sure corresponding
1645 * orhpan item exist. extents past the new EOF
1646 * will be truncated later by orphan cleanup.
1648 if (S_ISREG(mode)) {
1649 ret = insert_orphan_item(wc->trans, root,
1650 key.objectid);
1651 BUG_ON(ret);
1654 ret = link_to_fixup_dir(wc->trans, root,
1655 path, key.objectid);
1656 BUG_ON(ret);
1658 if (wc->stage < LOG_WALK_REPLAY_ALL)
1659 continue;
1661 /* these keys are simply copied */
1662 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1663 ret = overwrite_item(wc->trans, root, path,
1664 eb, i, &key);
1665 BUG_ON(ret);
1666 } else if (key.type == BTRFS_INODE_REF_KEY) {
1667 ret = add_inode_ref(wc->trans, root, log, path,
1668 eb, i, &key);
1669 BUG_ON(ret && ret != -ENOENT);
1670 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1671 ret = replay_one_extent(wc->trans, root, path,
1672 eb, i, &key);
1673 BUG_ON(ret);
1674 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1675 key.type == BTRFS_DIR_INDEX_KEY) {
1676 ret = replay_one_dir_item(wc->trans, root, path,
1677 eb, i, &key);
1678 BUG_ON(ret);
1681 btrfs_free_path(path);
1682 return 0;
1685 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1686 struct btrfs_root *root,
1687 struct btrfs_path *path, int *level,
1688 struct walk_control *wc)
1690 u64 root_owner;
1691 u64 bytenr;
1692 u64 ptr_gen;
1693 struct extent_buffer *next;
1694 struct extent_buffer *cur;
1695 struct extent_buffer *parent;
1696 u32 blocksize;
1697 int ret = 0;
1699 WARN_ON(*level < 0);
1700 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1702 while (*level > 0) {
1703 WARN_ON(*level < 0);
1704 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1705 cur = path->nodes[*level];
1707 if (btrfs_header_level(cur) != *level)
1708 WARN_ON(1);
1710 if (path->slots[*level] >=
1711 btrfs_header_nritems(cur))
1712 break;
1714 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1715 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1716 blocksize = btrfs_level_size(root, *level - 1);
1718 parent = path->nodes[*level];
1719 root_owner = btrfs_header_owner(parent);
1721 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1722 if (!next)
1723 return -ENOMEM;
1725 if (*level == 1) {
1726 wc->process_func(root, next, wc, ptr_gen);
1728 path->slots[*level]++;
1729 if (wc->free) {
1730 btrfs_read_buffer(next, ptr_gen);
1732 btrfs_tree_lock(next);
1733 btrfs_set_lock_blocking(next);
1734 clean_tree_block(trans, root, next);
1735 btrfs_wait_tree_block_writeback(next);
1736 btrfs_tree_unlock(next);
1738 WARN_ON(root_owner !=
1739 BTRFS_TREE_LOG_OBJECTID);
1740 ret = btrfs_free_reserved_extent(root,
1741 bytenr, blocksize);
1742 BUG_ON(ret);
1744 free_extent_buffer(next);
1745 continue;
1747 btrfs_read_buffer(next, ptr_gen);
1749 WARN_ON(*level <= 0);
1750 if (path->nodes[*level-1])
1751 free_extent_buffer(path->nodes[*level-1]);
1752 path->nodes[*level-1] = next;
1753 *level = btrfs_header_level(next);
1754 path->slots[*level] = 0;
1755 cond_resched();
1757 WARN_ON(*level < 0);
1758 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1760 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1762 cond_resched();
1763 return 0;
1766 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1767 struct btrfs_root *root,
1768 struct btrfs_path *path, int *level,
1769 struct walk_control *wc)
1771 u64 root_owner;
1772 int i;
1773 int slot;
1774 int ret;
1776 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1777 slot = path->slots[i];
1778 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1779 path->slots[i]++;
1780 *level = i;
1781 WARN_ON(*level == 0);
1782 return 0;
1783 } else {
1784 struct extent_buffer *parent;
1785 if (path->nodes[*level] == root->node)
1786 parent = path->nodes[*level];
1787 else
1788 parent = path->nodes[*level + 1];
1790 root_owner = btrfs_header_owner(parent);
1791 wc->process_func(root, path->nodes[*level], wc,
1792 btrfs_header_generation(path->nodes[*level]));
1793 if (wc->free) {
1794 struct extent_buffer *next;
1796 next = path->nodes[*level];
1798 btrfs_tree_lock(next);
1799 btrfs_set_lock_blocking(next);
1800 clean_tree_block(trans, root, next);
1801 btrfs_wait_tree_block_writeback(next);
1802 btrfs_tree_unlock(next);
1804 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1805 ret = btrfs_free_reserved_extent(root,
1806 path->nodes[*level]->start,
1807 path->nodes[*level]->len);
1808 BUG_ON(ret);
1810 free_extent_buffer(path->nodes[*level]);
1811 path->nodes[*level] = NULL;
1812 *level = i + 1;
1815 return 1;
1819 * drop the reference count on the tree rooted at 'snap'. This traverses
1820 * the tree freeing any blocks that have a ref count of zero after being
1821 * decremented.
1823 static int walk_log_tree(struct btrfs_trans_handle *trans,
1824 struct btrfs_root *log, struct walk_control *wc)
1826 int ret = 0;
1827 int wret;
1828 int level;
1829 struct btrfs_path *path;
1830 int i;
1831 int orig_level;
1833 path = btrfs_alloc_path();
1834 if (!path)
1835 return -ENOMEM;
1837 level = btrfs_header_level(log->node);
1838 orig_level = level;
1839 path->nodes[level] = log->node;
1840 extent_buffer_get(log->node);
1841 path->slots[level] = 0;
1843 while (1) {
1844 wret = walk_down_log_tree(trans, log, path, &level, wc);
1845 if (wret > 0)
1846 break;
1847 if (wret < 0)
1848 ret = wret;
1850 wret = walk_up_log_tree(trans, log, path, &level, wc);
1851 if (wret > 0)
1852 break;
1853 if (wret < 0)
1854 ret = wret;
1857 /* was the root node processed? if not, catch it here */
1858 if (path->nodes[orig_level]) {
1859 wc->process_func(log, path->nodes[orig_level], wc,
1860 btrfs_header_generation(path->nodes[orig_level]));
1861 if (wc->free) {
1862 struct extent_buffer *next;
1864 next = path->nodes[orig_level];
1866 btrfs_tree_lock(next);
1867 btrfs_set_lock_blocking(next);
1868 clean_tree_block(trans, log, next);
1869 btrfs_wait_tree_block_writeback(next);
1870 btrfs_tree_unlock(next);
1872 WARN_ON(log->root_key.objectid !=
1873 BTRFS_TREE_LOG_OBJECTID);
1874 ret = btrfs_free_reserved_extent(log, next->start,
1875 next->len);
1876 BUG_ON(ret);
1880 for (i = 0; i <= orig_level; i++) {
1881 if (path->nodes[i]) {
1882 free_extent_buffer(path->nodes[i]);
1883 path->nodes[i] = NULL;
1886 btrfs_free_path(path);
1887 return ret;
1891 * helper function to update the item for a given subvolumes log root
1892 * in the tree of log roots
1894 static int update_log_root(struct btrfs_trans_handle *trans,
1895 struct btrfs_root *log)
1897 int ret;
1899 if (log->log_transid == 1) {
1900 /* insert root item on the first sync */
1901 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1902 &log->root_key, &log->root_item);
1903 } else {
1904 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1905 &log->root_key, &log->root_item);
1907 return ret;
1910 static int wait_log_commit(struct btrfs_trans_handle *trans,
1911 struct btrfs_root *root, unsigned long transid)
1913 DEFINE_WAIT(wait);
1914 int index = transid % 2;
1917 * we only allow two pending log transactions at a time,
1918 * so we know that if ours is more than 2 older than the
1919 * current transaction, we're done
1921 do {
1922 prepare_to_wait(&root->log_commit_wait[index],
1923 &wait, TASK_UNINTERRUPTIBLE);
1924 mutex_unlock(&root->log_mutex);
1926 if (root->fs_info->last_trans_log_full_commit !=
1927 trans->transid && root->log_transid < transid + 2 &&
1928 atomic_read(&root->log_commit[index]))
1929 schedule();
1931 finish_wait(&root->log_commit_wait[index], &wait);
1932 mutex_lock(&root->log_mutex);
1933 } while (root->log_transid < transid + 2 &&
1934 atomic_read(&root->log_commit[index]));
1935 return 0;
1938 static int wait_for_writer(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root)
1941 DEFINE_WAIT(wait);
1942 while (atomic_read(&root->log_writers)) {
1943 prepare_to_wait(&root->log_writer_wait,
1944 &wait, TASK_UNINTERRUPTIBLE);
1945 mutex_unlock(&root->log_mutex);
1946 if (root->fs_info->last_trans_log_full_commit !=
1947 trans->transid && atomic_read(&root->log_writers))
1948 schedule();
1949 mutex_lock(&root->log_mutex);
1950 finish_wait(&root->log_writer_wait, &wait);
1952 return 0;
1956 * btrfs_sync_log does sends a given tree log down to the disk and
1957 * updates the super blocks to record it. When this call is done,
1958 * you know that any inodes previously logged are safely on disk only
1959 * if it returns 0.
1961 * Any other return value means you need to call btrfs_commit_transaction.
1962 * Some of the edge cases for fsyncing directories that have had unlinks
1963 * or renames done in the past mean that sometimes the only safe
1964 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1965 * that has happened.
1967 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root)
1970 int index1;
1971 int index2;
1972 int mark;
1973 int ret;
1974 struct btrfs_root *log = root->log_root;
1975 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1976 unsigned long log_transid = 0;
1978 mutex_lock(&root->log_mutex);
1979 index1 = root->log_transid % 2;
1980 if (atomic_read(&root->log_commit[index1])) {
1981 wait_log_commit(trans, root, root->log_transid);
1982 mutex_unlock(&root->log_mutex);
1983 return 0;
1985 atomic_set(&root->log_commit[index1], 1);
1987 /* wait for previous tree log sync to complete */
1988 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1989 wait_log_commit(trans, root, root->log_transid - 1);
1991 while (1) {
1992 unsigned long batch = root->log_batch;
1993 if (root->log_multiple_pids) {
1994 mutex_unlock(&root->log_mutex);
1995 schedule_timeout_uninterruptible(1);
1996 mutex_lock(&root->log_mutex);
1998 wait_for_writer(trans, root);
1999 if (batch == root->log_batch)
2000 break;
2003 /* bail out if we need to do a full commit */
2004 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2005 ret = -EAGAIN;
2006 mutex_unlock(&root->log_mutex);
2007 goto out;
2010 log_transid = root->log_transid;
2011 if (log_transid % 2 == 0)
2012 mark = EXTENT_DIRTY;
2013 else
2014 mark = EXTENT_NEW;
2016 /* we start IO on all the marked extents here, but we don't actually
2017 * wait for them until later.
2019 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2020 BUG_ON(ret);
2022 btrfs_set_root_node(&log->root_item, log->node);
2024 root->log_batch = 0;
2025 root->log_transid++;
2026 log->log_transid = root->log_transid;
2027 root->log_start_pid = 0;
2028 smp_mb();
2030 * IO has been started, blocks of the log tree have WRITTEN flag set
2031 * in their headers. new modifications of the log will be written to
2032 * new positions. so it's safe to allow log writers to go in.
2034 mutex_unlock(&root->log_mutex);
2036 mutex_lock(&log_root_tree->log_mutex);
2037 log_root_tree->log_batch++;
2038 atomic_inc(&log_root_tree->log_writers);
2039 mutex_unlock(&log_root_tree->log_mutex);
2041 ret = update_log_root(trans, log);
2043 mutex_lock(&log_root_tree->log_mutex);
2044 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2045 smp_mb();
2046 if (waitqueue_active(&log_root_tree->log_writer_wait))
2047 wake_up(&log_root_tree->log_writer_wait);
2050 if (ret) {
2051 BUG_ON(ret != -ENOSPC);
2052 root->fs_info->last_trans_log_full_commit = trans->transid;
2053 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2054 mutex_unlock(&log_root_tree->log_mutex);
2055 ret = -EAGAIN;
2056 goto out;
2059 index2 = log_root_tree->log_transid % 2;
2060 if (atomic_read(&log_root_tree->log_commit[index2])) {
2061 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2062 wait_log_commit(trans, log_root_tree,
2063 log_root_tree->log_transid);
2064 mutex_unlock(&log_root_tree->log_mutex);
2065 ret = 0;
2066 goto out;
2068 atomic_set(&log_root_tree->log_commit[index2], 1);
2070 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2071 wait_log_commit(trans, log_root_tree,
2072 log_root_tree->log_transid - 1);
2075 wait_for_writer(trans, log_root_tree);
2078 * now that we've moved on to the tree of log tree roots,
2079 * check the full commit flag again
2081 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2082 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2083 mutex_unlock(&log_root_tree->log_mutex);
2084 ret = -EAGAIN;
2085 goto out_wake_log_root;
2088 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2089 &log_root_tree->dirty_log_pages,
2090 EXTENT_DIRTY | EXTENT_NEW);
2091 BUG_ON(ret);
2092 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2094 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2095 log_root_tree->node->start);
2096 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2097 btrfs_header_level(log_root_tree->node));
2099 log_root_tree->log_batch = 0;
2100 log_root_tree->log_transid++;
2101 smp_mb();
2103 mutex_unlock(&log_root_tree->log_mutex);
2106 * nobody else is going to jump in and write the the ctree
2107 * super here because the log_commit atomic below is protecting
2108 * us. We must be called with a transaction handle pinning
2109 * the running transaction open, so a full commit can't hop
2110 * in and cause problems either.
2112 btrfs_scrub_pause_super(root);
2113 write_ctree_super(trans, root->fs_info->tree_root, 1);
2114 btrfs_scrub_continue_super(root);
2115 ret = 0;
2117 mutex_lock(&root->log_mutex);
2118 if (root->last_log_commit < log_transid)
2119 root->last_log_commit = log_transid;
2120 mutex_unlock(&root->log_mutex);
2122 out_wake_log_root:
2123 atomic_set(&log_root_tree->log_commit[index2], 0);
2124 smp_mb();
2125 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2126 wake_up(&log_root_tree->log_commit_wait[index2]);
2127 out:
2128 atomic_set(&root->log_commit[index1], 0);
2129 smp_mb();
2130 if (waitqueue_active(&root->log_commit_wait[index1]))
2131 wake_up(&root->log_commit_wait[index1]);
2132 return ret;
2135 static void free_log_tree(struct btrfs_trans_handle *trans,
2136 struct btrfs_root *log)
2138 int ret;
2139 u64 start;
2140 u64 end;
2141 struct walk_control wc = {
2142 .free = 1,
2143 .process_func = process_one_buffer
2146 ret = walk_log_tree(trans, log, &wc);
2147 BUG_ON(ret);
2149 while (1) {
2150 ret = find_first_extent_bit(&log->dirty_log_pages,
2151 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2152 if (ret)
2153 break;
2155 clear_extent_bits(&log->dirty_log_pages, start, end,
2156 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2159 free_extent_buffer(log->node);
2160 kfree(log);
2164 * free all the extents used by the tree log. This should be called
2165 * at commit time of the full transaction
2167 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2169 if (root->log_root) {
2170 free_log_tree(trans, root->log_root);
2171 root->log_root = NULL;
2173 return 0;
2176 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2177 struct btrfs_fs_info *fs_info)
2179 if (fs_info->log_root_tree) {
2180 free_log_tree(trans, fs_info->log_root_tree);
2181 fs_info->log_root_tree = NULL;
2183 return 0;
2187 * If both a file and directory are logged, and unlinks or renames are
2188 * mixed in, we have a few interesting corners:
2190 * create file X in dir Y
2191 * link file X to X.link in dir Y
2192 * fsync file X
2193 * unlink file X but leave X.link
2194 * fsync dir Y
2196 * After a crash we would expect only X.link to exist. But file X
2197 * didn't get fsync'd again so the log has back refs for X and X.link.
2199 * We solve this by removing directory entries and inode backrefs from the
2200 * log when a file that was logged in the current transaction is
2201 * unlinked. Any later fsync will include the updated log entries, and
2202 * we'll be able to reconstruct the proper directory items from backrefs.
2204 * This optimizations allows us to avoid relogging the entire inode
2205 * or the entire directory.
2207 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2208 struct btrfs_root *root,
2209 const char *name, int name_len,
2210 struct inode *dir, u64 index)
2212 struct btrfs_root *log;
2213 struct btrfs_dir_item *di;
2214 struct btrfs_path *path;
2215 int ret;
2216 int err = 0;
2217 int bytes_del = 0;
2218 u64 dir_ino = btrfs_ino(dir);
2220 if (BTRFS_I(dir)->logged_trans < trans->transid)
2221 return 0;
2223 ret = join_running_log_trans(root);
2224 if (ret)
2225 return 0;
2227 mutex_lock(&BTRFS_I(dir)->log_mutex);
2229 log = root->log_root;
2230 path = btrfs_alloc_path();
2231 if (!path) {
2232 err = -ENOMEM;
2233 goto out_unlock;
2236 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2237 name, name_len, -1);
2238 if (IS_ERR(di)) {
2239 err = PTR_ERR(di);
2240 goto fail;
2242 if (di) {
2243 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2244 bytes_del += name_len;
2245 BUG_ON(ret);
2247 btrfs_release_path(path);
2248 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2249 index, name, name_len, -1);
2250 if (IS_ERR(di)) {
2251 err = PTR_ERR(di);
2252 goto fail;
2254 if (di) {
2255 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2256 bytes_del += name_len;
2257 BUG_ON(ret);
2260 /* update the directory size in the log to reflect the names
2261 * we have removed
2263 if (bytes_del) {
2264 struct btrfs_key key;
2266 key.objectid = dir_ino;
2267 key.offset = 0;
2268 key.type = BTRFS_INODE_ITEM_KEY;
2269 btrfs_release_path(path);
2271 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2272 if (ret < 0) {
2273 err = ret;
2274 goto fail;
2276 if (ret == 0) {
2277 struct btrfs_inode_item *item;
2278 u64 i_size;
2280 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2281 struct btrfs_inode_item);
2282 i_size = btrfs_inode_size(path->nodes[0], item);
2283 if (i_size > bytes_del)
2284 i_size -= bytes_del;
2285 else
2286 i_size = 0;
2287 btrfs_set_inode_size(path->nodes[0], item, i_size);
2288 btrfs_mark_buffer_dirty(path->nodes[0]);
2289 } else
2290 ret = 0;
2291 btrfs_release_path(path);
2293 fail:
2294 btrfs_free_path(path);
2295 out_unlock:
2296 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2297 if (ret == -ENOSPC) {
2298 root->fs_info->last_trans_log_full_commit = trans->transid;
2299 ret = 0;
2301 btrfs_end_log_trans(root);
2303 return err;
2306 /* see comments for btrfs_del_dir_entries_in_log */
2307 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2308 struct btrfs_root *root,
2309 const char *name, int name_len,
2310 struct inode *inode, u64 dirid)
2312 struct btrfs_root *log;
2313 u64 index;
2314 int ret;
2316 if (BTRFS_I(inode)->logged_trans < trans->transid)
2317 return 0;
2319 ret = join_running_log_trans(root);
2320 if (ret)
2321 return 0;
2322 log = root->log_root;
2323 mutex_lock(&BTRFS_I(inode)->log_mutex);
2325 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2326 dirid, &index);
2327 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2328 if (ret == -ENOSPC) {
2329 root->fs_info->last_trans_log_full_commit = trans->transid;
2330 ret = 0;
2332 btrfs_end_log_trans(root);
2334 return ret;
2338 * creates a range item in the log for 'dirid'. first_offset and
2339 * last_offset tell us which parts of the key space the log should
2340 * be considered authoritative for.
2342 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2343 struct btrfs_root *log,
2344 struct btrfs_path *path,
2345 int key_type, u64 dirid,
2346 u64 first_offset, u64 last_offset)
2348 int ret;
2349 struct btrfs_key key;
2350 struct btrfs_dir_log_item *item;
2352 key.objectid = dirid;
2353 key.offset = first_offset;
2354 if (key_type == BTRFS_DIR_ITEM_KEY)
2355 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2356 else
2357 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2358 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2359 if (ret)
2360 return ret;
2362 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2363 struct btrfs_dir_log_item);
2364 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2365 btrfs_mark_buffer_dirty(path->nodes[0]);
2366 btrfs_release_path(path);
2367 return 0;
2371 * log all the items included in the current transaction for a given
2372 * directory. This also creates the range items in the log tree required
2373 * to replay anything deleted before the fsync
2375 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2376 struct btrfs_root *root, struct inode *inode,
2377 struct btrfs_path *path,
2378 struct btrfs_path *dst_path, int key_type,
2379 u64 min_offset, u64 *last_offset_ret)
2381 struct btrfs_key min_key;
2382 struct btrfs_key max_key;
2383 struct btrfs_root *log = root->log_root;
2384 struct extent_buffer *src;
2385 int err = 0;
2386 int ret;
2387 int i;
2388 int nritems;
2389 u64 first_offset = min_offset;
2390 u64 last_offset = (u64)-1;
2391 u64 ino = btrfs_ino(inode);
2393 log = root->log_root;
2394 max_key.objectid = ino;
2395 max_key.offset = (u64)-1;
2396 max_key.type = key_type;
2398 min_key.objectid = ino;
2399 min_key.type = key_type;
2400 min_key.offset = min_offset;
2402 path->keep_locks = 1;
2404 ret = btrfs_search_forward(root, &min_key, &max_key,
2405 path, 0, trans->transid);
2408 * we didn't find anything from this transaction, see if there
2409 * is anything at all
2411 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2412 min_key.objectid = ino;
2413 min_key.type = key_type;
2414 min_key.offset = (u64)-1;
2415 btrfs_release_path(path);
2416 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2417 if (ret < 0) {
2418 btrfs_release_path(path);
2419 return ret;
2421 ret = btrfs_previous_item(root, path, ino, key_type);
2423 /* if ret == 0 there are items for this type,
2424 * create a range to tell us the last key of this type.
2425 * otherwise, there are no items in this directory after
2426 * *min_offset, and we create a range to indicate that.
2428 if (ret == 0) {
2429 struct btrfs_key tmp;
2430 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2431 path->slots[0]);
2432 if (key_type == tmp.type)
2433 first_offset = max(min_offset, tmp.offset) + 1;
2435 goto done;
2438 /* go backward to find any previous key */
2439 ret = btrfs_previous_item(root, path, ino, key_type);
2440 if (ret == 0) {
2441 struct btrfs_key tmp;
2442 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2443 if (key_type == tmp.type) {
2444 first_offset = tmp.offset;
2445 ret = overwrite_item(trans, log, dst_path,
2446 path->nodes[0], path->slots[0],
2447 &tmp);
2448 if (ret) {
2449 err = ret;
2450 goto done;
2454 btrfs_release_path(path);
2456 /* find the first key from this transaction again */
2457 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2458 if (ret != 0) {
2459 WARN_ON(1);
2460 goto done;
2464 * we have a block from this transaction, log every item in it
2465 * from our directory
2467 while (1) {
2468 struct btrfs_key tmp;
2469 src = path->nodes[0];
2470 nritems = btrfs_header_nritems(src);
2471 for (i = path->slots[0]; i < nritems; i++) {
2472 btrfs_item_key_to_cpu(src, &min_key, i);
2474 if (min_key.objectid != ino || min_key.type != key_type)
2475 goto done;
2476 ret = overwrite_item(trans, log, dst_path, src, i,
2477 &min_key);
2478 if (ret) {
2479 err = ret;
2480 goto done;
2483 path->slots[0] = nritems;
2486 * look ahead to the next item and see if it is also
2487 * from this directory and from this transaction
2489 ret = btrfs_next_leaf(root, path);
2490 if (ret == 1) {
2491 last_offset = (u64)-1;
2492 goto done;
2494 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2495 if (tmp.objectid != ino || tmp.type != key_type) {
2496 last_offset = (u64)-1;
2497 goto done;
2499 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2500 ret = overwrite_item(trans, log, dst_path,
2501 path->nodes[0], path->slots[0],
2502 &tmp);
2503 if (ret)
2504 err = ret;
2505 else
2506 last_offset = tmp.offset;
2507 goto done;
2510 done:
2511 btrfs_release_path(path);
2512 btrfs_release_path(dst_path);
2514 if (err == 0) {
2515 *last_offset_ret = last_offset;
2517 * insert the log range keys to indicate where the log
2518 * is valid
2520 ret = insert_dir_log_key(trans, log, path, key_type,
2521 ino, first_offset, last_offset);
2522 if (ret)
2523 err = ret;
2525 return err;
2529 * logging directories is very similar to logging inodes, We find all the items
2530 * from the current transaction and write them to the log.
2532 * The recovery code scans the directory in the subvolume, and if it finds a
2533 * key in the range logged that is not present in the log tree, then it means
2534 * that dir entry was unlinked during the transaction.
2536 * In order for that scan to work, we must include one key smaller than
2537 * the smallest logged by this transaction and one key larger than the largest
2538 * key logged by this transaction.
2540 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2541 struct btrfs_root *root, struct inode *inode,
2542 struct btrfs_path *path,
2543 struct btrfs_path *dst_path)
2545 u64 min_key;
2546 u64 max_key;
2547 int ret;
2548 int key_type = BTRFS_DIR_ITEM_KEY;
2550 again:
2551 min_key = 0;
2552 max_key = 0;
2553 while (1) {
2554 ret = log_dir_items(trans, root, inode, path,
2555 dst_path, key_type, min_key,
2556 &max_key);
2557 if (ret)
2558 return ret;
2559 if (max_key == (u64)-1)
2560 break;
2561 min_key = max_key + 1;
2564 if (key_type == BTRFS_DIR_ITEM_KEY) {
2565 key_type = BTRFS_DIR_INDEX_KEY;
2566 goto again;
2568 return 0;
2572 * a helper function to drop items from the log before we relog an
2573 * inode. max_key_type indicates the highest item type to remove.
2574 * This cannot be run for file data extents because it does not
2575 * free the extents they point to.
2577 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2578 struct btrfs_root *log,
2579 struct btrfs_path *path,
2580 u64 objectid, int max_key_type)
2582 int ret;
2583 struct btrfs_key key;
2584 struct btrfs_key found_key;
2586 key.objectid = objectid;
2587 key.type = max_key_type;
2588 key.offset = (u64)-1;
2590 while (1) {
2591 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2592 BUG_ON(ret == 0);
2593 if (ret < 0)
2594 break;
2596 if (path->slots[0] == 0)
2597 break;
2599 path->slots[0]--;
2600 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2601 path->slots[0]);
2603 if (found_key.objectid != objectid)
2604 break;
2606 ret = btrfs_del_item(trans, log, path);
2607 if (ret)
2608 break;
2609 btrfs_release_path(path);
2611 btrfs_release_path(path);
2612 return ret;
2615 static noinline int copy_items(struct btrfs_trans_handle *trans,
2616 struct btrfs_root *log,
2617 struct btrfs_path *dst_path,
2618 struct extent_buffer *src,
2619 int start_slot, int nr, int inode_only)
2621 unsigned long src_offset;
2622 unsigned long dst_offset;
2623 struct btrfs_file_extent_item *extent;
2624 struct btrfs_inode_item *inode_item;
2625 int ret;
2626 struct btrfs_key *ins_keys;
2627 u32 *ins_sizes;
2628 char *ins_data;
2629 int i;
2630 struct list_head ordered_sums;
2632 INIT_LIST_HEAD(&ordered_sums);
2634 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2635 nr * sizeof(u32), GFP_NOFS);
2636 if (!ins_data)
2637 return -ENOMEM;
2639 ins_sizes = (u32 *)ins_data;
2640 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2642 for (i = 0; i < nr; i++) {
2643 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2644 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2646 ret = btrfs_insert_empty_items(trans, log, dst_path,
2647 ins_keys, ins_sizes, nr);
2648 if (ret) {
2649 kfree(ins_data);
2650 return ret;
2653 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2654 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2655 dst_path->slots[0]);
2657 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2659 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2660 src_offset, ins_sizes[i]);
2662 if (inode_only == LOG_INODE_EXISTS &&
2663 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2664 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2665 dst_path->slots[0],
2666 struct btrfs_inode_item);
2667 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2669 /* set the generation to zero so the recover code
2670 * can tell the difference between an logging
2671 * just to say 'this inode exists' and a logging
2672 * to say 'update this inode with these values'
2674 btrfs_set_inode_generation(dst_path->nodes[0],
2675 inode_item, 0);
2677 /* take a reference on file data extents so that truncates
2678 * or deletes of this inode don't have to relog the inode
2679 * again
2681 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2682 int found_type;
2683 extent = btrfs_item_ptr(src, start_slot + i,
2684 struct btrfs_file_extent_item);
2686 if (btrfs_file_extent_generation(src, extent) < trans->transid)
2687 continue;
2689 found_type = btrfs_file_extent_type(src, extent);
2690 if (found_type == BTRFS_FILE_EXTENT_REG ||
2691 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2692 u64 ds, dl, cs, cl;
2693 ds = btrfs_file_extent_disk_bytenr(src,
2694 extent);
2695 /* ds == 0 is a hole */
2696 if (ds == 0)
2697 continue;
2699 dl = btrfs_file_extent_disk_num_bytes(src,
2700 extent);
2701 cs = btrfs_file_extent_offset(src, extent);
2702 cl = btrfs_file_extent_num_bytes(src,
2703 extent);
2704 if (btrfs_file_extent_compression(src,
2705 extent)) {
2706 cs = 0;
2707 cl = dl;
2710 ret = btrfs_lookup_csums_range(
2711 log->fs_info->csum_root,
2712 ds + cs, ds + cs + cl - 1,
2713 &ordered_sums, 0);
2714 BUG_ON(ret);
2719 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2720 btrfs_release_path(dst_path);
2721 kfree(ins_data);
2724 * we have to do this after the loop above to avoid changing the
2725 * log tree while trying to change the log tree.
2727 ret = 0;
2728 while (!list_empty(&ordered_sums)) {
2729 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2730 struct btrfs_ordered_sum,
2731 list);
2732 if (!ret)
2733 ret = btrfs_csum_file_blocks(trans, log, sums);
2734 list_del(&sums->list);
2735 kfree(sums);
2737 return ret;
2740 /* log a single inode in the tree log.
2741 * At least one parent directory for this inode must exist in the tree
2742 * or be logged already.
2744 * Any items from this inode changed by the current transaction are copied
2745 * to the log tree. An extra reference is taken on any extents in this
2746 * file, allowing us to avoid a whole pile of corner cases around logging
2747 * blocks that have been removed from the tree.
2749 * See LOG_INODE_ALL and related defines for a description of what inode_only
2750 * does.
2752 * This handles both files and directories.
2754 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2755 struct btrfs_root *root, struct inode *inode,
2756 int inode_only)
2758 struct btrfs_path *path;
2759 struct btrfs_path *dst_path;
2760 struct btrfs_key min_key;
2761 struct btrfs_key max_key;
2762 struct btrfs_root *log = root->log_root;
2763 struct extent_buffer *src = NULL;
2764 int err = 0;
2765 int ret;
2766 int nritems;
2767 int ins_start_slot = 0;
2768 int ins_nr;
2769 u64 ino = btrfs_ino(inode);
2771 log = root->log_root;
2773 path = btrfs_alloc_path();
2774 if (!path)
2775 return -ENOMEM;
2776 dst_path = btrfs_alloc_path();
2777 if (!dst_path) {
2778 btrfs_free_path(path);
2779 return -ENOMEM;
2782 min_key.objectid = ino;
2783 min_key.type = BTRFS_INODE_ITEM_KEY;
2784 min_key.offset = 0;
2786 max_key.objectid = ino;
2788 /* today the code can only do partial logging of directories */
2789 if (!S_ISDIR(inode->i_mode))
2790 inode_only = LOG_INODE_ALL;
2792 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2793 max_key.type = BTRFS_XATTR_ITEM_KEY;
2794 else
2795 max_key.type = (u8)-1;
2796 max_key.offset = (u64)-1;
2798 ret = btrfs_commit_inode_delayed_items(trans, inode);
2799 if (ret) {
2800 btrfs_free_path(path);
2801 btrfs_free_path(dst_path);
2802 return ret;
2805 mutex_lock(&BTRFS_I(inode)->log_mutex);
2808 * a brute force approach to making sure we get the most uptodate
2809 * copies of everything.
2811 if (S_ISDIR(inode->i_mode)) {
2812 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2814 if (inode_only == LOG_INODE_EXISTS)
2815 max_key_type = BTRFS_XATTR_ITEM_KEY;
2816 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2817 } else {
2818 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2820 if (ret) {
2821 err = ret;
2822 goto out_unlock;
2824 path->keep_locks = 1;
2826 while (1) {
2827 ins_nr = 0;
2828 ret = btrfs_search_forward(root, &min_key, &max_key,
2829 path, 0, trans->transid);
2830 if (ret != 0)
2831 break;
2832 again:
2833 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2834 if (min_key.objectid != ino)
2835 break;
2836 if (min_key.type > max_key.type)
2837 break;
2839 src = path->nodes[0];
2840 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2841 ins_nr++;
2842 goto next_slot;
2843 } else if (!ins_nr) {
2844 ins_start_slot = path->slots[0];
2845 ins_nr = 1;
2846 goto next_slot;
2849 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2850 ins_nr, inode_only);
2851 if (ret) {
2852 err = ret;
2853 goto out_unlock;
2855 ins_nr = 1;
2856 ins_start_slot = path->slots[0];
2857 next_slot:
2859 nritems = btrfs_header_nritems(path->nodes[0]);
2860 path->slots[0]++;
2861 if (path->slots[0] < nritems) {
2862 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2863 path->slots[0]);
2864 goto again;
2866 if (ins_nr) {
2867 ret = copy_items(trans, log, dst_path, src,
2868 ins_start_slot,
2869 ins_nr, inode_only);
2870 if (ret) {
2871 err = ret;
2872 goto out_unlock;
2874 ins_nr = 0;
2876 btrfs_release_path(path);
2878 if (min_key.offset < (u64)-1)
2879 min_key.offset++;
2880 else if (min_key.type < (u8)-1)
2881 min_key.type++;
2882 else if (min_key.objectid < (u64)-1)
2883 min_key.objectid++;
2884 else
2885 break;
2887 if (ins_nr) {
2888 ret = copy_items(trans, log, dst_path, src,
2889 ins_start_slot,
2890 ins_nr, inode_only);
2891 if (ret) {
2892 err = ret;
2893 goto out_unlock;
2895 ins_nr = 0;
2897 WARN_ON(ins_nr);
2898 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2899 btrfs_release_path(path);
2900 btrfs_release_path(dst_path);
2901 ret = log_directory_changes(trans, root, inode, path, dst_path);
2902 if (ret) {
2903 err = ret;
2904 goto out_unlock;
2907 BTRFS_I(inode)->logged_trans = trans->transid;
2908 out_unlock:
2909 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2911 btrfs_free_path(path);
2912 btrfs_free_path(dst_path);
2913 return err;
2917 * follow the dentry parent pointers up the chain and see if any
2918 * of the directories in it require a full commit before they can
2919 * be logged. Returns zero if nothing special needs to be done or 1 if
2920 * a full commit is required.
2922 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2923 struct inode *inode,
2924 struct dentry *parent,
2925 struct super_block *sb,
2926 u64 last_committed)
2928 int ret = 0;
2929 struct btrfs_root *root;
2930 struct dentry *old_parent = NULL;
2933 * for regular files, if its inode is already on disk, we don't
2934 * have to worry about the parents at all. This is because
2935 * we can use the last_unlink_trans field to record renames
2936 * and other fun in this file.
2938 if (S_ISREG(inode->i_mode) &&
2939 BTRFS_I(inode)->generation <= last_committed &&
2940 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2941 goto out;
2943 if (!S_ISDIR(inode->i_mode)) {
2944 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2945 goto out;
2946 inode = parent->d_inode;
2949 while (1) {
2950 BTRFS_I(inode)->logged_trans = trans->transid;
2951 smp_mb();
2953 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2954 root = BTRFS_I(inode)->root;
2957 * make sure any commits to the log are forced
2958 * to be full commits
2960 root->fs_info->last_trans_log_full_commit =
2961 trans->transid;
2962 ret = 1;
2963 break;
2966 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2967 break;
2969 if (IS_ROOT(parent))
2970 break;
2972 parent = dget_parent(parent);
2973 dput(old_parent);
2974 old_parent = parent;
2975 inode = parent->d_inode;
2978 dput(old_parent);
2979 out:
2980 return ret;
2983 static int inode_in_log(struct btrfs_trans_handle *trans,
2984 struct inode *inode)
2986 struct btrfs_root *root = BTRFS_I(inode)->root;
2987 int ret = 0;
2989 mutex_lock(&root->log_mutex);
2990 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2991 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2992 ret = 1;
2993 mutex_unlock(&root->log_mutex);
2994 return ret;
2999 * helper function around btrfs_log_inode to make sure newly created
3000 * parent directories also end up in the log. A minimal inode and backref
3001 * only logging is done of any parent directories that are older than
3002 * the last committed transaction
3004 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3005 struct btrfs_root *root, struct inode *inode,
3006 struct dentry *parent, int exists_only)
3008 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3009 struct super_block *sb;
3010 struct dentry *old_parent = NULL;
3011 int ret = 0;
3012 u64 last_committed = root->fs_info->last_trans_committed;
3014 sb = inode->i_sb;
3016 if (btrfs_test_opt(root, NOTREELOG)) {
3017 ret = 1;
3018 goto end_no_trans;
3021 if (root->fs_info->last_trans_log_full_commit >
3022 root->fs_info->last_trans_committed) {
3023 ret = 1;
3024 goto end_no_trans;
3027 if (root != BTRFS_I(inode)->root ||
3028 btrfs_root_refs(&root->root_item) == 0) {
3029 ret = 1;
3030 goto end_no_trans;
3033 ret = check_parent_dirs_for_sync(trans, inode, parent,
3034 sb, last_committed);
3035 if (ret)
3036 goto end_no_trans;
3038 if (inode_in_log(trans, inode)) {
3039 ret = BTRFS_NO_LOG_SYNC;
3040 goto end_no_trans;
3043 ret = start_log_trans(trans, root);
3044 if (ret)
3045 goto end_trans;
3047 ret = btrfs_log_inode(trans, root, inode, inode_only);
3048 if (ret)
3049 goto end_trans;
3052 * for regular files, if its inode is already on disk, we don't
3053 * have to worry about the parents at all. This is because
3054 * we can use the last_unlink_trans field to record renames
3055 * and other fun in this file.
3057 if (S_ISREG(inode->i_mode) &&
3058 BTRFS_I(inode)->generation <= last_committed &&
3059 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3060 ret = 0;
3061 goto end_trans;
3064 inode_only = LOG_INODE_EXISTS;
3065 while (1) {
3066 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3067 break;
3069 inode = parent->d_inode;
3070 if (root != BTRFS_I(inode)->root)
3071 break;
3073 if (BTRFS_I(inode)->generation >
3074 root->fs_info->last_trans_committed) {
3075 ret = btrfs_log_inode(trans, root, inode, inode_only);
3076 if (ret)
3077 goto end_trans;
3079 if (IS_ROOT(parent))
3080 break;
3082 parent = dget_parent(parent);
3083 dput(old_parent);
3084 old_parent = parent;
3086 ret = 0;
3087 end_trans:
3088 dput(old_parent);
3089 if (ret < 0) {
3090 BUG_ON(ret != -ENOSPC);
3091 root->fs_info->last_trans_log_full_commit = trans->transid;
3092 ret = 1;
3094 btrfs_end_log_trans(root);
3095 end_no_trans:
3096 return ret;
3100 * it is not safe to log dentry if the chunk root has added new
3101 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3102 * If this returns 1, you must commit the transaction to safely get your
3103 * data on disk.
3105 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3106 struct btrfs_root *root, struct dentry *dentry)
3108 struct dentry *parent = dget_parent(dentry);
3109 int ret;
3111 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3112 dput(parent);
3114 return ret;
3118 * should be called during mount to recover any replay any log trees
3119 * from the FS
3121 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3123 int ret;
3124 struct btrfs_path *path;
3125 struct btrfs_trans_handle *trans;
3126 struct btrfs_key key;
3127 struct btrfs_key found_key;
3128 struct btrfs_key tmp_key;
3129 struct btrfs_root *log;
3130 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3131 struct walk_control wc = {
3132 .process_func = process_one_buffer,
3133 .stage = 0,
3136 path = btrfs_alloc_path();
3137 if (!path)
3138 return -ENOMEM;
3140 fs_info->log_root_recovering = 1;
3142 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3143 BUG_ON(IS_ERR(trans));
3145 wc.trans = trans;
3146 wc.pin = 1;
3148 ret = walk_log_tree(trans, log_root_tree, &wc);
3149 BUG_ON(ret);
3151 again:
3152 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3153 key.offset = (u64)-1;
3154 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3156 while (1) {
3157 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3158 if (ret < 0)
3159 break;
3160 if (ret > 0) {
3161 if (path->slots[0] == 0)
3162 break;
3163 path->slots[0]--;
3165 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3166 path->slots[0]);
3167 btrfs_release_path(path);
3168 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3169 break;
3171 log = btrfs_read_fs_root_no_radix(log_root_tree,
3172 &found_key);
3173 BUG_ON(IS_ERR(log));
3175 tmp_key.objectid = found_key.offset;
3176 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3177 tmp_key.offset = (u64)-1;
3179 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3180 BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3182 wc.replay_dest->log_root = log;
3183 btrfs_record_root_in_trans(trans, wc.replay_dest);
3184 ret = walk_log_tree(trans, log, &wc);
3185 BUG_ON(ret);
3187 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3188 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3189 path);
3190 BUG_ON(ret);
3193 key.offset = found_key.offset - 1;
3194 wc.replay_dest->log_root = NULL;
3195 free_extent_buffer(log->node);
3196 free_extent_buffer(log->commit_root);
3197 kfree(log);
3199 if (found_key.offset == 0)
3200 break;
3202 btrfs_release_path(path);
3204 /* step one is to pin it all, step two is to replay just inodes */
3205 if (wc.pin) {
3206 wc.pin = 0;
3207 wc.process_func = replay_one_buffer;
3208 wc.stage = LOG_WALK_REPLAY_INODES;
3209 goto again;
3211 /* step three is to replay everything */
3212 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3213 wc.stage++;
3214 goto again;
3217 btrfs_free_path(path);
3219 free_extent_buffer(log_root_tree->node);
3220 log_root_tree->log_root = NULL;
3221 fs_info->log_root_recovering = 0;
3223 /* step 4: commit the transaction, which also unpins the blocks */
3224 btrfs_commit_transaction(trans, fs_info->tree_root);
3226 kfree(log_root_tree);
3227 return 0;
3231 * there are some corner cases where we want to force a full
3232 * commit instead of allowing a directory to be logged.
3234 * They revolve around files there were unlinked from the directory, and
3235 * this function updates the parent directory so that a full commit is
3236 * properly done if it is fsync'd later after the unlinks are done.
3238 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3239 struct inode *dir, struct inode *inode,
3240 int for_rename)
3243 * when we're logging a file, if it hasn't been renamed
3244 * or unlinked, and its inode is fully committed on disk,
3245 * we don't have to worry about walking up the directory chain
3246 * to log its parents.
3248 * So, we use the last_unlink_trans field to put this transid
3249 * into the file. When the file is logged we check it and
3250 * don't log the parents if the file is fully on disk.
3252 if (S_ISREG(inode->i_mode))
3253 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3256 * if this directory was already logged any new
3257 * names for this file/dir will get recorded
3259 smp_mb();
3260 if (BTRFS_I(dir)->logged_trans == trans->transid)
3261 return;
3264 * if the inode we're about to unlink was logged,
3265 * the log will be properly updated for any new names
3267 if (BTRFS_I(inode)->logged_trans == trans->transid)
3268 return;
3271 * when renaming files across directories, if the directory
3272 * there we're unlinking from gets fsync'd later on, there's
3273 * no way to find the destination directory later and fsync it
3274 * properly. So, we have to be conservative and force commits
3275 * so the new name gets discovered.
3277 if (for_rename)
3278 goto record;
3280 /* we can safely do the unlink without any special recording */
3281 return;
3283 record:
3284 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3288 * Call this after adding a new name for a file and it will properly
3289 * update the log to reflect the new name.
3291 * It will return zero if all goes well, and it will return 1 if a
3292 * full transaction commit is required.
3294 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3295 struct inode *inode, struct inode *old_dir,
3296 struct dentry *parent)
3298 struct btrfs_root * root = BTRFS_I(inode)->root;
3301 * this will force the logging code to walk the dentry chain
3302 * up for the file
3304 if (S_ISREG(inode->i_mode))
3305 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3308 * if this inode hasn't been logged and directory we're renaming it
3309 * from hasn't been logged, we don't need to log it
3311 if (BTRFS_I(inode)->logged_trans <=
3312 root->fs_info->last_trans_committed &&
3313 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3314 root->fs_info->last_trans_committed))
3315 return 0;
3317 return btrfs_log_inode_parent(trans, root, inode, parent, 1);