4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
35 #define INPUT_DEVICES 256
37 static LIST_HEAD(input_dev_list
);
38 static LIST_HEAD(input_handler_list
);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex
);
48 static struct input_handler
*input_table
[8];
50 static inline int is_event_supported(unsigned int code
,
51 unsigned long *bm
, unsigned int max
)
53 return code
<= max
&& test_bit(code
, bm
);
56 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
59 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
62 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
63 return (old_val
* 3 + value
) / 4;
65 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
66 return (old_val
+ value
) / 2;
73 * Pass event first through all filters and then, if event has not been
74 * filtered out, through all open handles. This function is called with
75 * dev->event_lock held and interrupts disabled.
77 static void input_pass_event(struct input_dev
*dev
,
78 struct input_handler
*src_handler
,
79 unsigned int type
, unsigned int code
, int value
)
81 struct input_handler
*handler
;
82 struct input_handle
*handle
;
86 handle
= rcu_dereference(dev
->grab
);
88 handle
->handler
->event(handle
, type
, code
, value
);
90 bool filtered
= false;
92 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
) {
96 handler
= handle
->handler
;
99 * If this is the handler that injected this
100 * particular event we want to skip it to avoid
101 * filters firing again and again.
103 if (handler
== src_handler
)
106 if (!handler
->filter
) {
110 handler
->event(handle
, type
, code
, value
);
112 } else if (handler
->filter(handle
, type
, code
, value
))
121 * Generate software autorepeat event. Note that we take
122 * dev->event_lock here to avoid racing with input_event
123 * which may cause keys get "stuck".
125 static void input_repeat_key(unsigned long data
)
127 struct input_dev
*dev
= (void *) data
;
130 spin_lock_irqsave(&dev
->event_lock
, flags
);
132 if (test_bit(dev
->repeat_key
, dev
->key
) &&
133 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
135 input_pass_event(dev
, NULL
, EV_KEY
, dev
->repeat_key
, 2);
139 * Only send SYN_REPORT if we are not in a middle
140 * of driver parsing a new hardware packet.
141 * Otherwise assume that the driver will send
142 * SYN_REPORT once it's done.
144 input_pass_event(dev
, NULL
, EV_SYN
, SYN_REPORT
, 1);
147 if (dev
->rep
[REP_PERIOD
])
148 mod_timer(&dev
->timer
, jiffies
+
149 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
152 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
155 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
157 if (test_bit(EV_REP
, dev
->evbit
) &&
158 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
160 dev
->repeat_key
= code
;
161 mod_timer(&dev
->timer
,
162 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
166 static void input_stop_autorepeat(struct input_dev
*dev
)
168 del_timer(&dev
->timer
);
171 #define INPUT_IGNORE_EVENT 0
172 #define INPUT_PASS_TO_HANDLERS 1
173 #define INPUT_PASS_TO_DEVICE 2
174 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
176 static int input_handle_abs_event(struct input_dev
*dev
,
177 struct input_handler
*src_handler
,
178 unsigned int code
, int *pval
)
183 if (code
== ABS_MT_SLOT
) {
185 * "Stage" the event; we'll flush it later, when we
186 * get actual touch data.
188 if (*pval
>= 0 && *pval
< dev
->mtsize
)
191 return INPUT_IGNORE_EVENT
;
194 is_mt_event
= code
>= ABS_MT_FIRST
&& code
<= ABS_MT_LAST
;
197 pold
= &dev
->absinfo
[code
].value
;
198 } else if (dev
->mt
) {
199 struct input_mt_slot
*mtslot
= &dev
->mt
[dev
->slot
];
200 pold
= &mtslot
->abs
[code
- ABS_MT_FIRST
];
203 * Bypass filtering for multi-touch events when
204 * not employing slots.
210 *pval
= input_defuzz_abs_event(*pval
, *pold
,
211 dev
->absinfo
[code
].fuzz
);
213 return INPUT_IGNORE_EVENT
;
218 /* Flush pending "slot" event */
219 if (is_mt_event
&& dev
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
220 input_abs_set_val(dev
, ABS_MT_SLOT
, dev
->slot
);
221 input_pass_event(dev
, src_handler
,
222 EV_ABS
, ABS_MT_SLOT
, dev
->slot
);
225 return INPUT_PASS_TO_HANDLERS
;
228 static void input_handle_event(struct input_dev
*dev
,
229 struct input_handler
*src_handler
,
230 unsigned int type
, unsigned int code
, int value
)
232 int disposition
= INPUT_IGNORE_EVENT
;
239 disposition
= INPUT_PASS_TO_ALL
;
245 disposition
= INPUT_PASS_TO_HANDLERS
;
250 disposition
= INPUT_PASS_TO_HANDLERS
;
256 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
257 !!test_bit(code
, dev
->key
) != value
) {
260 __change_bit(code
, dev
->key
);
262 input_start_autorepeat(dev
, code
);
264 input_stop_autorepeat(dev
);
267 disposition
= INPUT_PASS_TO_HANDLERS
;
272 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
273 !!test_bit(code
, dev
->sw
) != value
) {
275 __change_bit(code
, dev
->sw
);
276 disposition
= INPUT_PASS_TO_HANDLERS
;
281 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
282 disposition
= input_handle_abs_event(dev
, src_handler
,
288 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
289 disposition
= INPUT_PASS_TO_HANDLERS
;
294 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
295 disposition
= INPUT_PASS_TO_ALL
;
300 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
301 !!test_bit(code
, dev
->led
) != value
) {
303 __change_bit(code
, dev
->led
);
304 disposition
= INPUT_PASS_TO_ALL
;
309 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
311 if (!!test_bit(code
, dev
->snd
) != !!value
)
312 __change_bit(code
, dev
->snd
);
313 disposition
= INPUT_PASS_TO_ALL
;
318 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
319 dev
->rep
[code
] = value
;
320 disposition
= INPUT_PASS_TO_ALL
;
326 disposition
= INPUT_PASS_TO_ALL
;
330 disposition
= INPUT_PASS_TO_ALL
;
334 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
337 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
338 dev
->event(dev
, type
, code
, value
);
340 if (disposition
& INPUT_PASS_TO_HANDLERS
)
341 input_pass_event(dev
, src_handler
, type
, code
, value
);
345 * input_event() - report new input event
346 * @dev: device that generated the event
347 * @type: type of the event
349 * @value: value of the event
351 * This function should be used by drivers implementing various input
352 * devices to report input events. See also input_inject_event().
354 * NOTE: input_event() may be safely used right after input device was
355 * allocated with input_allocate_device(), even before it is registered
356 * with input_register_device(), but the event will not reach any of the
357 * input handlers. Such early invocation of input_event() may be used
358 * to 'seed' initial state of a switch or initial position of absolute
361 void input_event(struct input_dev
*dev
,
362 unsigned int type
, unsigned int code
, int value
)
366 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
368 spin_lock_irqsave(&dev
->event_lock
, flags
);
369 add_input_randomness(type
, code
, value
);
370 input_handle_event(dev
, NULL
, type
, code
, value
);
371 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
374 EXPORT_SYMBOL(input_event
);
377 * input_inject_event() - send input event from input handler
378 * @handle: input handle to send event through
379 * @type: type of the event
381 * @value: value of the event
383 * Similar to input_event() but will ignore event if device is
384 * "grabbed" and handle injecting event is not the one that owns
387 void input_inject_event(struct input_handle
*handle
,
388 unsigned int type
, unsigned int code
, int value
)
390 struct input_dev
*dev
= handle
->dev
;
391 struct input_handle
*grab
;
394 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
395 spin_lock_irqsave(&dev
->event_lock
, flags
);
398 grab
= rcu_dereference(dev
->grab
);
399 if (!grab
|| grab
== handle
)
400 input_handle_event(dev
, handle
->handler
,
404 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
407 EXPORT_SYMBOL(input_inject_event
);
410 * input_alloc_absinfo - allocates array of input_absinfo structs
411 * @dev: the input device emitting absolute events
413 * If the absinfo struct the caller asked for is already allocated, this
414 * functions will not do anything.
416 void input_alloc_absinfo(struct input_dev
*dev
)
419 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(struct input_absinfo
),
422 WARN(!dev
->absinfo
, "%s(): kcalloc() failed?\n", __func__
);
424 EXPORT_SYMBOL(input_alloc_absinfo
);
426 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
427 int min
, int max
, int fuzz
, int flat
)
429 struct input_absinfo
*absinfo
;
431 input_alloc_absinfo(dev
);
435 absinfo
= &dev
->absinfo
[axis
];
436 absinfo
->minimum
= min
;
437 absinfo
->maximum
= max
;
438 absinfo
->fuzz
= fuzz
;
439 absinfo
->flat
= flat
;
441 dev
->absbit
[BIT_WORD(axis
)] |= BIT_MASK(axis
);
443 EXPORT_SYMBOL(input_set_abs_params
);
447 * input_grab_device - grabs device for exclusive use
448 * @handle: input handle that wants to own the device
450 * When a device is grabbed by an input handle all events generated by
451 * the device are delivered only to this handle. Also events injected
452 * by other input handles are ignored while device is grabbed.
454 int input_grab_device(struct input_handle
*handle
)
456 struct input_dev
*dev
= handle
->dev
;
459 retval
= mutex_lock_interruptible(&dev
->mutex
);
468 rcu_assign_pointer(dev
->grab
, handle
);
472 mutex_unlock(&dev
->mutex
);
475 EXPORT_SYMBOL(input_grab_device
);
477 static void __input_release_device(struct input_handle
*handle
)
479 struct input_dev
*dev
= handle
->dev
;
481 if (dev
->grab
== handle
) {
482 rcu_assign_pointer(dev
->grab
, NULL
);
483 /* Make sure input_pass_event() notices that grab is gone */
486 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
487 if (handle
->open
&& handle
->handler
->start
)
488 handle
->handler
->start(handle
);
493 * input_release_device - release previously grabbed device
494 * @handle: input handle that owns the device
496 * Releases previously grabbed device so that other input handles can
497 * start receiving input events. Upon release all handlers attached
498 * to the device have their start() method called so they have a change
499 * to synchronize device state with the rest of the system.
501 void input_release_device(struct input_handle
*handle
)
503 struct input_dev
*dev
= handle
->dev
;
505 mutex_lock(&dev
->mutex
);
506 __input_release_device(handle
);
507 mutex_unlock(&dev
->mutex
);
509 EXPORT_SYMBOL(input_release_device
);
512 * input_open_device - open input device
513 * @handle: handle through which device is being accessed
515 * This function should be called by input handlers when they
516 * want to start receive events from given input device.
518 int input_open_device(struct input_handle
*handle
)
520 struct input_dev
*dev
= handle
->dev
;
523 retval
= mutex_lock_interruptible(&dev
->mutex
);
527 if (dev
->going_away
) {
534 if (!dev
->users
++ && dev
->open
)
535 retval
= dev
->open(dev
);
539 if (!--handle
->open
) {
541 * Make sure we are not delivering any more events
542 * through this handle
549 mutex_unlock(&dev
->mutex
);
552 EXPORT_SYMBOL(input_open_device
);
554 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
556 struct input_dev
*dev
= handle
->dev
;
559 retval
= mutex_lock_interruptible(&dev
->mutex
);
564 retval
= dev
->flush(dev
, file
);
566 mutex_unlock(&dev
->mutex
);
569 EXPORT_SYMBOL(input_flush_device
);
572 * input_close_device - close input device
573 * @handle: handle through which device is being accessed
575 * This function should be called by input handlers when they
576 * want to stop receive events from given input device.
578 void input_close_device(struct input_handle
*handle
)
580 struct input_dev
*dev
= handle
->dev
;
582 mutex_lock(&dev
->mutex
);
584 __input_release_device(handle
);
586 if (!--dev
->users
&& dev
->close
)
589 if (!--handle
->open
) {
591 * synchronize_rcu() makes sure that input_pass_event()
592 * completed and that no more input events are delivered
593 * through this handle
598 mutex_unlock(&dev
->mutex
);
600 EXPORT_SYMBOL(input_close_device
);
603 * Simulate keyup events for all keys that are marked as pressed.
604 * The function must be called with dev->event_lock held.
606 static void input_dev_release_keys(struct input_dev
*dev
)
610 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
611 for (code
= 0; code
<= KEY_MAX
; code
++) {
612 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
613 __test_and_clear_bit(code
, dev
->key
)) {
614 input_pass_event(dev
, NULL
, EV_KEY
, code
, 0);
617 input_pass_event(dev
, NULL
, EV_SYN
, SYN_REPORT
, 1);
622 * Prepare device for unregistering
624 static void input_disconnect_device(struct input_dev
*dev
)
626 struct input_handle
*handle
;
629 * Mark device as going away. Note that we take dev->mutex here
630 * not to protect access to dev->going_away but rather to ensure
631 * that there are no threads in the middle of input_open_device()
633 mutex_lock(&dev
->mutex
);
634 dev
->going_away
= true;
635 mutex_unlock(&dev
->mutex
);
637 spin_lock_irq(&dev
->event_lock
);
640 * Simulate keyup events for all pressed keys so that handlers
641 * are not left with "stuck" keys. The driver may continue
642 * generate events even after we done here but they will not
643 * reach any handlers.
645 input_dev_release_keys(dev
);
647 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
650 spin_unlock_irq(&dev
->event_lock
);
654 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
655 * @ke: keymap entry containing scancode to be converted.
656 * @scancode: pointer to the location where converted scancode should
659 * This function is used to convert scancode stored in &struct keymap_entry
660 * into scalar form understood by legacy keymap handling methods. These
661 * methods expect scancodes to be represented as 'unsigned int'.
663 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
664 unsigned int *scancode
)
668 *scancode
= *((u8
*)ke
->scancode
);
672 *scancode
= *((u16
*)ke
->scancode
);
676 *scancode
= *((u32
*)ke
->scancode
);
685 EXPORT_SYMBOL(input_scancode_to_scalar
);
688 * Those routines handle the default case where no [gs]etkeycode() is
689 * defined. In this case, an array indexed by the scancode is used.
692 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
695 switch (dev
->keycodesize
) {
697 return ((u8
*)dev
->keycode
)[index
];
700 return ((u16
*)dev
->keycode
)[index
];
703 return ((u32
*)dev
->keycode
)[index
];
707 static int input_default_getkeycode(struct input_dev
*dev
,
708 struct input_keymap_entry
*ke
)
713 if (!dev
->keycodesize
)
716 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
719 error
= input_scancode_to_scalar(ke
, &index
);
724 if (index
>= dev
->keycodemax
)
727 ke
->keycode
= input_fetch_keycode(dev
, index
);
729 ke
->len
= sizeof(index
);
730 memcpy(ke
->scancode
, &index
, sizeof(index
));
735 static int input_default_setkeycode(struct input_dev
*dev
,
736 const struct input_keymap_entry
*ke
,
737 unsigned int *old_keycode
)
743 if (!dev
->keycodesize
)
746 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
749 error
= input_scancode_to_scalar(ke
, &index
);
754 if (index
>= dev
->keycodemax
)
757 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
758 (ke
->keycode
>> (dev
->keycodesize
* 8)))
761 switch (dev
->keycodesize
) {
763 u8
*k
= (u8
*)dev
->keycode
;
764 *old_keycode
= k
[index
];
765 k
[index
] = ke
->keycode
;
769 u16
*k
= (u16
*)dev
->keycode
;
770 *old_keycode
= k
[index
];
771 k
[index
] = ke
->keycode
;
775 u32
*k
= (u32
*)dev
->keycode
;
776 *old_keycode
= k
[index
];
777 k
[index
] = ke
->keycode
;
782 __clear_bit(*old_keycode
, dev
->keybit
);
783 __set_bit(ke
->keycode
, dev
->keybit
);
785 for (i
= 0; i
< dev
->keycodemax
; i
++) {
786 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
787 __set_bit(*old_keycode
, dev
->keybit
);
788 break; /* Setting the bit twice is useless, so break */
796 * input_get_keycode - retrieve keycode currently mapped to a given scancode
797 * @dev: input device which keymap is being queried
800 * This function should be called by anyone interested in retrieving current
801 * keymap. Presently evdev handlers use it.
803 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
808 spin_lock_irqsave(&dev
->event_lock
, flags
);
810 if (dev
->getkeycode
) {
812 * Support for legacy drivers, that don't implement the new
815 u32 scancode
= ke
->index
;
817 memcpy(ke
->scancode
, &scancode
, sizeof(scancode
));
818 ke
->len
= sizeof(scancode
);
819 retval
= dev
->getkeycode(dev
, scancode
, &ke
->keycode
);
821 retval
= dev
->getkeycode_new(dev
, ke
);
824 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
827 EXPORT_SYMBOL(input_get_keycode
);
830 * input_set_keycode - attribute a keycode to a given scancode
831 * @dev: input device which keymap is being updated
832 * @ke: new keymap entry
834 * This function should be called by anyone needing to update current
835 * keymap. Presently keyboard and evdev handlers use it.
837 int input_set_keycode(struct input_dev
*dev
,
838 const struct input_keymap_entry
*ke
)
841 unsigned int old_keycode
;
844 if (ke
->keycode
> KEY_MAX
)
847 spin_lock_irqsave(&dev
->event_lock
, flags
);
849 if (dev
->setkeycode
) {
851 * Support for legacy drivers, that don't implement the new
854 unsigned int scancode
;
856 retval
= input_scancode_to_scalar(ke
, &scancode
);
861 * We need to know the old scancode, in order to generate a
862 * keyup effect, if the set operation happens successfully
864 if (!dev
->getkeycode
) {
869 retval
= dev
->getkeycode(dev
, scancode
, &old_keycode
);
873 retval
= dev
->setkeycode(dev
, scancode
, ke
->keycode
);
875 retval
= dev
->setkeycode_new(dev
, ke
, &old_keycode
);
881 /* Make sure KEY_RESERVED did not get enabled. */
882 __clear_bit(KEY_RESERVED
, dev
->keybit
);
885 * Simulate keyup event if keycode is not present
886 * in the keymap anymore
888 if (test_bit(EV_KEY
, dev
->evbit
) &&
889 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
890 __test_and_clear_bit(old_keycode
, dev
->key
)) {
892 input_pass_event(dev
, NULL
, EV_KEY
, old_keycode
, 0);
894 input_pass_event(dev
, NULL
, EV_SYN
, SYN_REPORT
, 1);
898 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
902 EXPORT_SYMBOL(input_set_keycode
);
904 #define MATCH_BIT(bit, max) \
905 for (i = 0; i < BITS_TO_LONGS(max); i++) \
906 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
908 if (i != BITS_TO_LONGS(max)) \
911 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
912 struct input_dev
*dev
)
914 const struct input_device_id
*id
;
917 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
919 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
920 if (id
->bustype
!= dev
->id
.bustype
)
923 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
924 if (id
->vendor
!= dev
->id
.vendor
)
927 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
928 if (id
->product
!= dev
->id
.product
)
931 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
932 if (id
->version
!= dev
->id
.version
)
935 MATCH_BIT(evbit
, EV_MAX
);
936 MATCH_BIT(keybit
, KEY_MAX
);
937 MATCH_BIT(relbit
, REL_MAX
);
938 MATCH_BIT(absbit
, ABS_MAX
);
939 MATCH_BIT(mscbit
, MSC_MAX
);
940 MATCH_BIT(ledbit
, LED_MAX
);
941 MATCH_BIT(sndbit
, SND_MAX
);
942 MATCH_BIT(ffbit
, FF_MAX
);
943 MATCH_BIT(swbit
, SW_MAX
);
945 if (!handler
->match
|| handler
->match(handler
, dev
))
952 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
954 const struct input_device_id
*id
;
957 id
= input_match_device(handler
, dev
);
961 error
= handler
->connect(handler
, dev
, id
);
962 if (error
&& error
!= -ENODEV
)
963 pr_err("failed to attach handler %s to device %s, error: %d\n",
964 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
971 static int input_bits_to_string(char *buf
, int buf_size
,
972 unsigned long bits
, bool skip_empty
)
976 if (INPUT_COMPAT_TEST
) {
977 u32 dword
= bits
>> 32;
978 if (dword
|| !skip_empty
)
979 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
981 dword
= bits
& 0xffffffffUL
;
982 if (dword
|| !skip_empty
|| len
)
983 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
986 if (bits
|| !skip_empty
)
987 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
993 #else /* !CONFIG_COMPAT */
995 static int input_bits_to_string(char *buf
, int buf_size
,
996 unsigned long bits
, bool skip_empty
)
998 return bits
|| !skip_empty
?
999 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1004 #ifdef CONFIG_PROC_FS
1006 static struct proc_dir_entry
*proc_bus_input_dir
;
1007 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1008 static int input_devices_state
;
1010 static inline void input_wakeup_procfs_readers(void)
1012 input_devices_state
++;
1013 wake_up(&input_devices_poll_wait
);
1016 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1018 poll_wait(file
, &input_devices_poll_wait
, wait
);
1019 if (file
->f_version
!= input_devices_state
) {
1020 file
->f_version
= input_devices_state
;
1021 return POLLIN
| POLLRDNORM
;
1027 union input_seq_state
{
1030 bool mutex_acquired
;
1035 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1037 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1040 /* We need to fit into seq->private pointer */
1041 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1043 error
= mutex_lock_interruptible(&input_mutex
);
1045 state
->mutex_acquired
= false;
1046 return ERR_PTR(error
);
1049 state
->mutex_acquired
= true;
1051 return seq_list_start(&input_dev_list
, *pos
);
1054 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1056 return seq_list_next(v
, &input_dev_list
, pos
);
1059 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1061 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1063 if (state
->mutex_acquired
)
1064 mutex_unlock(&input_mutex
);
1067 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1068 unsigned long *bitmap
, int max
)
1071 bool skip_empty
= true;
1074 seq_printf(seq
, "B: %s=", name
);
1076 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1077 if (input_bits_to_string(buf
, sizeof(buf
),
1078 bitmap
[i
], skip_empty
)) {
1080 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1085 * If no output was produced print a single 0.
1090 seq_putc(seq
, '\n');
1093 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1095 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1096 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1097 struct input_handle
*handle
;
1099 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1100 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1102 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1103 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1104 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1105 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1106 seq_printf(seq
, "H: Handlers=");
1108 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1109 seq_printf(seq
, "%s ", handle
->name
);
1110 seq_putc(seq
, '\n');
1112 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1114 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1115 if (test_bit(EV_KEY
, dev
->evbit
))
1116 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1117 if (test_bit(EV_REL
, dev
->evbit
))
1118 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1119 if (test_bit(EV_ABS
, dev
->evbit
))
1120 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1121 if (test_bit(EV_MSC
, dev
->evbit
))
1122 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1123 if (test_bit(EV_LED
, dev
->evbit
))
1124 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1125 if (test_bit(EV_SND
, dev
->evbit
))
1126 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1127 if (test_bit(EV_FF
, dev
->evbit
))
1128 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1129 if (test_bit(EV_SW
, dev
->evbit
))
1130 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1132 seq_putc(seq
, '\n');
1138 static const struct seq_operations input_devices_seq_ops
= {
1139 .start
= input_devices_seq_start
,
1140 .next
= input_devices_seq_next
,
1141 .stop
= input_seq_stop
,
1142 .show
= input_devices_seq_show
,
1145 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1147 return seq_open(file
, &input_devices_seq_ops
);
1150 static const struct file_operations input_devices_fileops
= {
1151 .owner
= THIS_MODULE
,
1152 .open
= input_proc_devices_open
,
1153 .poll
= input_proc_devices_poll
,
1155 .llseek
= seq_lseek
,
1156 .release
= seq_release
,
1159 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1161 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1164 /* We need to fit into seq->private pointer */
1165 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1167 error
= mutex_lock_interruptible(&input_mutex
);
1169 state
->mutex_acquired
= false;
1170 return ERR_PTR(error
);
1173 state
->mutex_acquired
= true;
1176 return seq_list_start(&input_handler_list
, *pos
);
1179 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1181 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1183 state
->pos
= *pos
+ 1;
1184 return seq_list_next(v
, &input_handler_list
, pos
);
1187 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1189 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1190 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1192 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1193 if (handler
->filter
)
1194 seq_puts(seq
, " (filter)");
1196 seq_printf(seq
, " Minor=%d", handler
->minor
);
1197 seq_putc(seq
, '\n');
1202 static const struct seq_operations input_handlers_seq_ops
= {
1203 .start
= input_handlers_seq_start
,
1204 .next
= input_handlers_seq_next
,
1205 .stop
= input_seq_stop
,
1206 .show
= input_handlers_seq_show
,
1209 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1211 return seq_open(file
, &input_handlers_seq_ops
);
1214 static const struct file_operations input_handlers_fileops
= {
1215 .owner
= THIS_MODULE
,
1216 .open
= input_proc_handlers_open
,
1218 .llseek
= seq_lseek
,
1219 .release
= seq_release
,
1222 static int __init
input_proc_init(void)
1224 struct proc_dir_entry
*entry
;
1226 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1227 if (!proc_bus_input_dir
)
1230 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1231 &input_devices_fileops
);
1235 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1236 &input_handlers_fileops
);
1242 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1243 fail1
: remove_proc_entry("bus/input", NULL
);
1247 static void input_proc_exit(void)
1249 remove_proc_entry("devices", proc_bus_input_dir
);
1250 remove_proc_entry("handlers", proc_bus_input_dir
);
1251 remove_proc_entry("bus/input", NULL
);
1254 #else /* !CONFIG_PROC_FS */
1255 static inline void input_wakeup_procfs_readers(void) { }
1256 static inline int input_proc_init(void) { return 0; }
1257 static inline void input_proc_exit(void) { }
1260 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1261 static ssize_t input_dev_show_##name(struct device *dev, \
1262 struct device_attribute *attr, \
1265 struct input_dev *input_dev = to_input_dev(dev); \
1267 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1268 input_dev->name ? input_dev->name : ""); \
1270 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1272 INPUT_DEV_STRING_ATTR_SHOW(name
);
1273 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1274 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1276 static int input_print_modalias_bits(char *buf
, int size
,
1277 char name
, unsigned long *bm
,
1278 unsigned int min_bit
, unsigned int max_bit
)
1282 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1283 for (i
= min_bit
; i
< max_bit
; i
++)
1284 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1285 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1289 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1294 len
= snprintf(buf
, max(size
, 0),
1295 "input:b%04Xv%04Xp%04Xe%04X-",
1296 id
->id
.bustype
, id
->id
.vendor
,
1297 id
->id
.product
, id
->id
.version
);
1299 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1300 'e', id
->evbit
, 0, EV_MAX
);
1301 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1302 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1303 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1304 'r', id
->relbit
, 0, REL_MAX
);
1305 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1306 'a', id
->absbit
, 0, ABS_MAX
);
1307 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1308 'm', id
->mscbit
, 0, MSC_MAX
);
1309 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1310 'l', id
->ledbit
, 0, LED_MAX
);
1311 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1312 's', id
->sndbit
, 0, SND_MAX
);
1313 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1314 'f', id
->ffbit
, 0, FF_MAX
);
1315 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1316 'w', id
->swbit
, 0, SW_MAX
);
1319 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1324 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1325 struct device_attribute
*attr
,
1328 struct input_dev
*id
= to_input_dev(dev
);
1331 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1333 return min_t(int, len
, PAGE_SIZE
);
1335 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1337 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1338 int max
, int add_cr
);
1340 static ssize_t
input_dev_show_properties(struct device
*dev
,
1341 struct device_attribute
*attr
,
1344 struct input_dev
*input_dev
= to_input_dev(dev
);
1345 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1346 INPUT_PROP_MAX
, true);
1347 return min_t(int, len
, PAGE_SIZE
);
1349 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1351 static struct attribute
*input_dev_attrs
[] = {
1352 &dev_attr_name
.attr
,
1353 &dev_attr_phys
.attr
,
1354 &dev_attr_uniq
.attr
,
1355 &dev_attr_modalias
.attr
,
1356 &dev_attr_properties
.attr
,
1360 static struct attribute_group input_dev_attr_group
= {
1361 .attrs
= input_dev_attrs
,
1364 #define INPUT_DEV_ID_ATTR(name) \
1365 static ssize_t input_dev_show_id_##name(struct device *dev, \
1366 struct device_attribute *attr, \
1369 struct input_dev *input_dev = to_input_dev(dev); \
1370 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1372 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1374 INPUT_DEV_ID_ATTR(bustype
);
1375 INPUT_DEV_ID_ATTR(vendor
);
1376 INPUT_DEV_ID_ATTR(product
);
1377 INPUT_DEV_ID_ATTR(version
);
1379 static struct attribute
*input_dev_id_attrs
[] = {
1380 &dev_attr_bustype
.attr
,
1381 &dev_attr_vendor
.attr
,
1382 &dev_attr_product
.attr
,
1383 &dev_attr_version
.attr
,
1387 static struct attribute_group input_dev_id_attr_group
= {
1389 .attrs
= input_dev_id_attrs
,
1392 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1393 int max
, int add_cr
)
1397 bool skip_empty
= true;
1399 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1400 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1401 bitmap
[i
], skip_empty
);
1405 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1410 * If no output was produced print a single 0.
1413 len
= snprintf(buf
, buf_size
, "%d", 0);
1416 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1421 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1422 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1423 struct device_attribute *attr, \
1426 struct input_dev *input_dev = to_input_dev(dev); \
1427 int len = input_print_bitmap(buf, PAGE_SIZE, \
1428 input_dev->bm##bit, ev##_MAX, \
1430 return min_t(int, len, PAGE_SIZE); \
1432 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1434 INPUT_DEV_CAP_ATTR(EV
, ev
);
1435 INPUT_DEV_CAP_ATTR(KEY
, key
);
1436 INPUT_DEV_CAP_ATTR(REL
, rel
);
1437 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1438 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1439 INPUT_DEV_CAP_ATTR(LED
, led
);
1440 INPUT_DEV_CAP_ATTR(SND
, snd
);
1441 INPUT_DEV_CAP_ATTR(FF
, ff
);
1442 INPUT_DEV_CAP_ATTR(SW
, sw
);
1444 static struct attribute
*input_dev_caps_attrs
[] = {
1457 static struct attribute_group input_dev_caps_attr_group
= {
1458 .name
= "capabilities",
1459 .attrs
= input_dev_caps_attrs
,
1462 static const struct attribute_group
*input_dev_attr_groups
[] = {
1463 &input_dev_attr_group
,
1464 &input_dev_id_attr_group
,
1465 &input_dev_caps_attr_group
,
1469 static void input_dev_release(struct device
*device
)
1471 struct input_dev
*dev
= to_input_dev(device
);
1473 input_ff_destroy(dev
);
1474 input_mt_destroy_slots(dev
);
1475 kfree(dev
->absinfo
);
1478 module_put(THIS_MODULE
);
1482 * Input uevent interface - loading event handlers based on
1485 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1486 const char *name
, unsigned long *bitmap
, int max
)
1490 if (add_uevent_var(env
, "%s", name
))
1493 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1494 sizeof(env
->buf
) - env
->buflen
,
1495 bitmap
, max
, false);
1496 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1503 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1504 struct input_dev
*dev
)
1508 if (add_uevent_var(env
, "MODALIAS="))
1511 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1512 sizeof(env
->buf
) - env
->buflen
,
1514 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1521 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1523 int err = add_uevent_var(env, fmt, val); \
1528 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1530 int err = input_add_uevent_bm_var(env, name, bm, max); \
1535 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1537 int err = input_add_uevent_modalias_var(env, dev); \
1542 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1544 struct input_dev
*dev
= to_input_dev(device
);
1546 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1547 dev
->id
.bustype
, dev
->id
.vendor
,
1548 dev
->id
.product
, dev
->id
.version
);
1550 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1552 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1554 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1556 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1558 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1559 if (test_bit(EV_KEY
, dev
->evbit
))
1560 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1561 if (test_bit(EV_REL
, dev
->evbit
))
1562 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1563 if (test_bit(EV_ABS
, dev
->evbit
))
1564 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1565 if (test_bit(EV_MSC
, dev
->evbit
))
1566 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1567 if (test_bit(EV_LED
, dev
->evbit
))
1568 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1569 if (test_bit(EV_SND
, dev
->evbit
))
1570 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1571 if (test_bit(EV_FF
, dev
->evbit
))
1572 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1573 if (test_bit(EV_SW
, dev
->evbit
))
1574 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1576 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1581 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1586 if (!test_bit(EV_##type, dev->evbit)) \
1589 for (i = 0; i < type##_MAX; i++) { \
1590 if (!test_bit(i, dev->bits##bit)) \
1593 active = test_bit(i, dev->bits); \
1594 if (!active && !on) \
1597 dev->event(dev, EV_##type, i, on ? active : 0); \
1601 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1606 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1607 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1609 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1610 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1611 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1616 * input_reset_device() - reset/restore the state of input device
1617 * @dev: input device whose state needs to be reset
1619 * This function tries to reset the state of an opened input device and
1620 * bring internal state and state if the hardware in sync with each other.
1621 * We mark all keys as released, restore LED state, repeat rate, etc.
1623 void input_reset_device(struct input_dev
*dev
)
1625 mutex_lock(&dev
->mutex
);
1628 input_dev_toggle(dev
, true);
1631 * Keys that have been pressed at suspend time are unlikely
1632 * to be still pressed when we resume.
1634 spin_lock_irq(&dev
->event_lock
);
1635 input_dev_release_keys(dev
);
1636 spin_unlock_irq(&dev
->event_lock
);
1639 mutex_unlock(&dev
->mutex
);
1641 EXPORT_SYMBOL(input_reset_device
);
1644 static int input_dev_suspend(struct device
*dev
)
1646 struct input_dev
*input_dev
= to_input_dev(dev
);
1648 mutex_lock(&input_dev
->mutex
);
1650 if (input_dev
->users
)
1651 input_dev_toggle(input_dev
, false);
1653 mutex_unlock(&input_dev
->mutex
);
1658 static int input_dev_resume(struct device
*dev
)
1660 struct input_dev
*input_dev
= to_input_dev(dev
);
1662 input_reset_device(input_dev
);
1667 static const struct dev_pm_ops input_dev_pm_ops
= {
1668 .suspend
= input_dev_suspend
,
1669 .resume
= input_dev_resume
,
1670 .poweroff
= input_dev_suspend
,
1671 .restore
= input_dev_resume
,
1673 #endif /* CONFIG_PM */
1675 static struct device_type input_dev_type
= {
1676 .groups
= input_dev_attr_groups
,
1677 .release
= input_dev_release
,
1678 .uevent
= input_dev_uevent
,
1680 .pm
= &input_dev_pm_ops
,
1684 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1686 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1689 struct class input_class
= {
1691 .devnode
= input_devnode
,
1693 EXPORT_SYMBOL_GPL(input_class
);
1696 * input_allocate_device - allocate memory for new input device
1698 * Returns prepared struct input_dev or NULL.
1700 * NOTE: Use input_free_device() to free devices that have not been
1701 * registered; input_unregister_device() should be used for already
1702 * registered devices.
1704 struct input_dev
*input_allocate_device(void)
1706 struct input_dev
*dev
;
1708 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1710 dev
->dev
.type
= &input_dev_type
;
1711 dev
->dev
.class = &input_class
;
1712 device_initialize(&dev
->dev
);
1713 mutex_init(&dev
->mutex
);
1714 spin_lock_init(&dev
->event_lock
);
1715 INIT_LIST_HEAD(&dev
->h_list
);
1716 INIT_LIST_HEAD(&dev
->node
);
1718 __module_get(THIS_MODULE
);
1723 EXPORT_SYMBOL(input_allocate_device
);
1726 * input_free_device - free memory occupied by input_dev structure
1727 * @dev: input device to free
1729 * This function should only be used if input_register_device()
1730 * was not called yet or if it failed. Once device was registered
1731 * use input_unregister_device() and memory will be freed once last
1732 * reference to the device is dropped.
1734 * Device should be allocated by input_allocate_device().
1736 * NOTE: If there are references to the input device then memory
1737 * will not be freed until last reference is dropped.
1739 void input_free_device(struct input_dev
*dev
)
1742 input_put_device(dev
);
1744 EXPORT_SYMBOL(input_free_device
);
1747 * input_set_capability - mark device as capable of a certain event
1748 * @dev: device that is capable of emitting or accepting event
1749 * @type: type of the event (EV_KEY, EV_REL, etc...)
1752 * In addition to setting up corresponding bit in appropriate capability
1753 * bitmap the function also adjusts dev->evbit.
1755 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1759 __set_bit(code
, dev
->keybit
);
1763 __set_bit(code
, dev
->relbit
);
1767 __set_bit(code
, dev
->absbit
);
1771 __set_bit(code
, dev
->mscbit
);
1775 __set_bit(code
, dev
->swbit
);
1779 __set_bit(code
, dev
->ledbit
);
1783 __set_bit(code
, dev
->sndbit
);
1787 __set_bit(code
, dev
->ffbit
);
1795 pr_err("input_set_capability: unknown type %u (code %u)\n",
1801 __set_bit(type
, dev
->evbit
);
1803 EXPORT_SYMBOL(input_set_capability
);
1805 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1807 if (!test_bit(EV_##type, dev->evbit)) \
1808 memset(dev->bits##bit, 0, \
1809 sizeof(dev->bits##bit)); \
1812 static void input_cleanse_bitmasks(struct input_dev
*dev
)
1814 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
1815 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
1816 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
1817 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
1818 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
1819 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
1820 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
1821 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
1825 * input_register_device - register device with input core
1826 * @dev: device to be registered
1828 * This function registers device with input core. The device must be
1829 * allocated with input_allocate_device() and all it's capabilities
1830 * set up before registering.
1831 * If function fails the device must be freed with input_free_device().
1832 * Once device has been successfully registered it can be unregistered
1833 * with input_unregister_device(); input_free_device() should not be
1834 * called in this case.
1836 int input_register_device(struct input_dev
*dev
)
1838 static atomic_t input_no
= ATOMIC_INIT(0);
1839 struct input_handler
*handler
;
1843 /* Every input device generates EV_SYN/SYN_REPORT events. */
1844 __set_bit(EV_SYN
, dev
->evbit
);
1846 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1847 __clear_bit(KEY_RESERVED
, dev
->keybit
);
1849 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1850 input_cleanse_bitmasks(dev
);
1853 * If delay and period are pre-set by the driver, then autorepeating
1854 * is handled by the driver itself and we don't do it in input.c.
1856 init_timer(&dev
->timer
);
1857 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1858 dev
->timer
.data
= (long) dev
;
1859 dev
->timer
.function
= input_repeat_key
;
1860 dev
->rep
[REP_DELAY
] = 250;
1861 dev
->rep
[REP_PERIOD
] = 33;
1864 if (!dev
->getkeycode
&& !dev
->getkeycode_new
)
1865 dev
->getkeycode_new
= input_default_getkeycode
;
1867 if (!dev
->setkeycode
&& !dev
->setkeycode_new
)
1868 dev
->setkeycode_new
= input_default_setkeycode
;
1870 dev_set_name(&dev
->dev
, "input%ld",
1871 (unsigned long) atomic_inc_return(&input_no
) - 1);
1873 error
= device_add(&dev
->dev
);
1877 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1878 pr_info("%s as %s\n",
1879 dev
->name
? dev
->name
: "Unspecified device",
1880 path
? path
: "N/A");
1883 error
= mutex_lock_interruptible(&input_mutex
);
1885 device_del(&dev
->dev
);
1889 list_add_tail(&dev
->node
, &input_dev_list
);
1891 list_for_each_entry(handler
, &input_handler_list
, node
)
1892 input_attach_handler(dev
, handler
);
1894 input_wakeup_procfs_readers();
1896 mutex_unlock(&input_mutex
);
1900 EXPORT_SYMBOL(input_register_device
);
1903 * input_unregister_device - unregister previously registered device
1904 * @dev: device to be unregistered
1906 * This function unregisters an input device. Once device is unregistered
1907 * the caller should not try to access it as it may get freed at any moment.
1909 void input_unregister_device(struct input_dev
*dev
)
1911 struct input_handle
*handle
, *next
;
1913 input_disconnect_device(dev
);
1915 mutex_lock(&input_mutex
);
1917 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1918 handle
->handler
->disconnect(handle
);
1919 WARN_ON(!list_empty(&dev
->h_list
));
1921 del_timer_sync(&dev
->timer
);
1922 list_del_init(&dev
->node
);
1924 input_wakeup_procfs_readers();
1926 mutex_unlock(&input_mutex
);
1928 device_unregister(&dev
->dev
);
1930 EXPORT_SYMBOL(input_unregister_device
);
1933 * input_register_handler - register a new input handler
1934 * @handler: handler to be registered
1936 * This function registers a new input handler (interface) for input
1937 * devices in the system and attaches it to all input devices that
1938 * are compatible with the handler.
1940 int input_register_handler(struct input_handler
*handler
)
1942 struct input_dev
*dev
;
1945 retval
= mutex_lock_interruptible(&input_mutex
);
1949 INIT_LIST_HEAD(&handler
->h_list
);
1951 if (handler
->fops
!= NULL
) {
1952 if (input_table
[handler
->minor
>> 5]) {
1956 input_table
[handler
->minor
>> 5] = handler
;
1959 list_add_tail(&handler
->node
, &input_handler_list
);
1961 list_for_each_entry(dev
, &input_dev_list
, node
)
1962 input_attach_handler(dev
, handler
);
1964 input_wakeup_procfs_readers();
1967 mutex_unlock(&input_mutex
);
1970 EXPORT_SYMBOL(input_register_handler
);
1973 * input_unregister_handler - unregisters an input handler
1974 * @handler: handler to be unregistered
1976 * This function disconnects a handler from its input devices and
1977 * removes it from lists of known handlers.
1979 void input_unregister_handler(struct input_handler
*handler
)
1981 struct input_handle
*handle
, *next
;
1983 mutex_lock(&input_mutex
);
1985 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
1986 handler
->disconnect(handle
);
1987 WARN_ON(!list_empty(&handler
->h_list
));
1989 list_del_init(&handler
->node
);
1991 if (handler
->fops
!= NULL
)
1992 input_table
[handler
->minor
>> 5] = NULL
;
1994 input_wakeup_procfs_readers();
1996 mutex_unlock(&input_mutex
);
1998 EXPORT_SYMBOL(input_unregister_handler
);
2001 * input_handler_for_each_handle - handle iterator
2002 * @handler: input handler to iterate
2003 * @data: data for the callback
2004 * @fn: function to be called for each handle
2006 * Iterate over @bus's list of devices, and call @fn for each, passing
2007 * it @data and stop when @fn returns a non-zero value. The function is
2008 * using RCU to traverse the list and therefore may be usind in atonic
2009 * contexts. The @fn callback is invoked from RCU critical section and
2010 * thus must not sleep.
2012 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2013 int (*fn
)(struct input_handle
*, void *))
2015 struct input_handle
*handle
;
2020 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2021 retval
= fn(handle
, data
);
2030 EXPORT_SYMBOL(input_handler_for_each_handle
);
2033 * input_register_handle - register a new input handle
2034 * @handle: handle to register
2036 * This function puts a new input handle onto device's
2037 * and handler's lists so that events can flow through
2038 * it once it is opened using input_open_device().
2040 * This function is supposed to be called from handler's
2043 int input_register_handle(struct input_handle
*handle
)
2045 struct input_handler
*handler
= handle
->handler
;
2046 struct input_dev
*dev
= handle
->dev
;
2050 * We take dev->mutex here to prevent race with
2051 * input_release_device().
2053 error
= mutex_lock_interruptible(&dev
->mutex
);
2058 * Filters go to the head of the list, normal handlers
2061 if (handler
->filter
)
2062 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2064 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2066 mutex_unlock(&dev
->mutex
);
2069 * Since we are supposed to be called from ->connect()
2070 * which is mutually exclusive with ->disconnect()
2071 * we can't be racing with input_unregister_handle()
2072 * and so separate lock is not needed here.
2074 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2077 handler
->start(handle
);
2081 EXPORT_SYMBOL(input_register_handle
);
2084 * input_unregister_handle - unregister an input handle
2085 * @handle: handle to unregister
2087 * This function removes input handle from device's
2088 * and handler's lists.
2090 * This function is supposed to be called from handler's
2091 * disconnect() method.
2093 void input_unregister_handle(struct input_handle
*handle
)
2095 struct input_dev
*dev
= handle
->dev
;
2097 list_del_rcu(&handle
->h_node
);
2100 * Take dev->mutex to prevent race with input_release_device().
2102 mutex_lock(&dev
->mutex
);
2103 list_del_rcu(&handle
->d_node
);
2104 mutex_unlock(&dev
->mutex
);
2108 EXPORT_SYMBOL(input_unregister_handle
);
2110 static int input_open_file(struct inode
*inode
, struct file
*file
)
2112 struct input_handler
*handler
;
2113 const struct file_operations
*old_fops
, *new_fops
= NULL
;
2116 err
= mutex_lock_interruptible(&input_mutex
);
2120 /* No load-on-demand here? */
2121 handler
= input_table
[iminor(inode
) >> 5];
2123 new_fops
= fops_get(handler
->fops
);
2125 mutex_unlock(&input_mutex
);
2128 * That's _really_ odd. Usually NULL ->open means "nothing special",
2129 * not "no device". Oh, well...
2131 if (!new_fops
|| !new_fops
->open
) {
2137 old_fops
= file
->f_op
;
2138 file
->f_op
= new_fops
;
2140 err
= new_fops
->open(inode
, file
);
2142 fops_put(file
->f_op
);
2143 file
->f_op
= fops_get(old_fops
);
2150 static const struct file_operations input_fops
= {
2151 .owner
= THIS_MODULE
,
2152 .open
= input_open_file
,
2153 .llseek
= noop_llseek
,
2156 static int __init
input_init(void)
2160 err
= class_register(&input_class
);
2162 pr_err("unable to register input_dev class\n");
2166 err
= input_proc_init();
2170 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
2172 pr_err("unable to register char major %d", INPUT_MAJOR
);
2178 fail2
: input_proc_exit();
2179 fail1
: class_unregister(&input_class
);
2183 static void __exit
input_exit(void)
2186 unregister_chrdev(INPUT_MAJOR
, "input");
2187 class_unregister(&input_class
);
2190 subsys_initcall(input_init
);
2191 module_exit(input_exit
);