drm/nouveau: fix __nouveau_fence_wait performance
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / input / input.c
blob7985114beac72a7fe07ab58dc5f34e3489903fa8
1 /*
2 * The input core
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
35 #define INPUT_DEVICES 256
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
46 static DEFINE_MUTEX(input_mutex);
48 static struct input_handler *input_table[8];
50 static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
53 return code <= max && test_bit(code, bm);
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
69 return value;
73 * Pass event first through all filters and then, if event has not been
74 * filtered out, through all open handles. This function is called with
75 * dev->event_lock held and interrupts disabled.
77 static void input_pass_event(struct input_dev *dev,
78 struct input_handler *src_handler,
79 unsigned int type, unsigned int code, int value)
81 struct input_handler *handler;
82 struct input_handle *handle;
84 rcu_read_lock();
86 handle = rcu_dereference(dev->grab);
87 if (handle)
88 handle->handler->event(handle, type, code, value);
89 else {
90 bool filtered = false;
92 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
93 if (!handle->open)
94 continue;
96 handler = handle->handler;
99 * If this is the handler that injected this
100 * particular event we want to skip it to avoid
101 * filters firing again and again.
103 if (handler == src_handler)
104 continue;
106 if (!handler->filter) {
107 if (filtered)
108 break;
110 handler->event(handle, type, code, value);
112 } else if (handler->filter(handle, type, code, value))
113 filtered = true;
117 rcu_read_unlock();
121 * Generate software autorepeat event. Note that we take
122 * dev->event_lock here to avoid racing with input_event
123 * which may cause keys get "stuck".
125 static void input_repeat_key(unsigned long data)
127 struct input_dev *dev = (void *) data;
128 unsigned long flags;
130 spin_lock_irqsave(&dev->event_lock, flags);
132 if (test_bit(dev->repeat_key, dev->key) &&
133 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
135 input_pass_event(dev, NULL, EV_KEY, dev->repeat_key, 2);
137 if (dev->sync) {
139 * Only send SYN_REPORT if we are not in a middle
140 * of driver parsing a new hardware packet.
141 * Otherwise assume that the driver will send
142 * SYN_REPORT once it's done.
144 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
147 if (dev->rep[REP_PERIOD])
148 mod_timer(&dev->timer, jiffies +
149 msecs_to_jiffies(dev->rep[REP_PERIOD]));
152 spin_unlock_irqrestore(&dev->event_lock, flags);
155 static void input_start_autorepeat(struct input_dev *dev, int code)
157 if (test_bit(EV_REP, dev->evbit) &&
158 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
159 dev->timer.data) {
160 dev->repeat_key = code;
161 mod_timer(&dev->timer,
162 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
166 static void input_stop_autorepeat(struct input_dev *dev)
168 del_timer(&dev->timer);
171 #define INPUT_IGNORE_EVENT 0
172 #define INPUT_PASS_TO_HANDLERS 1
173 #define INPUT_PASS_TO_DEVICE 2
174 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
176 static int input_handle_abs_event(struct input_dev *dev,
177 struct input_handler *src_handler,
178 unsigned int code, int *pval)
180 bool is_mt_event;
181 int *pold;
183 if (code == ABS_MT_SLOT) {
185 * "Stage" the event; we'll flush it later, when we
186 * get actual touch data.
188 if (*pval >= 0 && *pval < dev->mtsize)
189 dev->slot = *pval;
191 return INPUT_IGNORE_EVENT;
194 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
196 if (!is_mt_event) {
197 pold = &dev->absinfo[code].value;
198 } else if (dev->mt) {
199 struct input_mt_slot *mtslot = &dev->mt[dev->slot];
200 pold = &mtslot->abs[code - ABS_MT_FIRST];
201 } else {
203 * Bypass filtering for multi-touch events when
204 * not employing slots.
206 pold = NULL;
209 if (pold) {
210 *pval = input_defuzz_abs_event(*pval, *pold,
211 dev->absinfo[code].fuzz);
212 if (*pold == *pval)
213 return INPUT_IGNORE_EVENT;
215 *pold = *pval;
218 /* Flush pending "slot" event */
219 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
220 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
221 input_pass_event(dev, src_handler,
222 EV_ABS, ABS_MT_SLOT, dev->slot);
225 return INPUT_PASS_TO_HANDLERS;
228 static void input_handle_event(struct input_dev *dev,
229 struct input_handler *src_handler,
230 unsigned int type, unsigned int code, int value)
232 int disposition = INPUT_IGNORE_EVENT;
234 switch (type) {
236 case EV_SYN:
237 switch (code) {
238 case SYN_CONFIG:
239 disposition = INPUT_PASS_TO_ALL;
240 break;
242 case SYN_REPORT:
243 if (!dev->sync) {
244 dev->sync = true;
245 disposition = INPUT_PASS_TO_HANDLERS;
247 break;
248 case SYN_MT_REPORT:
249 dev->sync = false;
250 disposition = INPUT_PASS_TO_HANDLERS;
251 break;
253 break;
255 case EV_KEY:
256 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
257 !!test_bit(code, dev->key) != value) {
259 if (value != 2) {
260 __change_bit(code, dev->key);
261 if (value)
262 input_start_autorepeat(dev, code);
263 else
264 input_stop_autorepeat(dev);
267 disposition = INPUT_PASS_TO_HANDLERS;
269 break;
271 case EV_SW:
272 if (is_event_supported(code, dev->swbit, SW_MAX) &&
273 !!test_bit(code, dev->sw) != value) {
275 __change_bit(code, dev->sw);
276 disposition = INPUT_PASS_TO_HANDLERS;
278 break;
280 case EV_ABS:
281 if (is_event_supported(code, dev->absbit, ABS_MAX))
282 disposition = input_handle_abs_event(dev, src_handler,
283 code, &value);
285 break;
287 case EV_REL:
288 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
289 disposition = INPUT_PASS_TO_HANDLERS;
291 break;
293 case EV_MSC:
294 if (is_event_supported(code, dev->mscbit, MSC_MAX))
295 disposition = INPUT_PASS_TO_ALL;
297 break;
299 case EV_LED:
300 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
301 !!test_bit(code, dev->led) != value) {
303 __change_bit(code, dev->led);
304 disposition = INPUT_PASS_TO_ALL;
306 break;
308 case EV_SND:
309 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
311 if (!!test_bit(code, dev->snd) != !!value)
312 __change_bit(code, dev->snd);
313 disposition = INPUT_PASS_TO_ALL;
315 break;
317 case EV_REP:
318 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
319 dev->rep[code] = value;
320 disposition = INPUT_PASS_TO_ALL;
322 break;
324 case EV_FF:
325 if (value >= 0)
326 disposition = INPUT_PASS_TO_ALL;
327 break;
329 case EV_PWR:
330 disposition = INPUT_PASS_TO_ALL;
331 break;
334 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
335 dev->sync = false;
337 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
338 dev->event(dev, type, code, value);
340 if (disposition & INPUT_PASS_TO_HANDLERS)
341 input_pass_event(dev, src_handler, type, code, value);
345 * input_event() - report new input event
346 * @dev: device that generated the event
347 * @type: type of the event
348 * @code: event code
349 * @value: value of the event
351 * This function should be used by drivers implementing various input
352 * devices to report input events. See also input_inject_event().
354 * NOTE: input_event() may be safely used right after input device was
355 * allocated with input_allocate_device(), even before it is registered
356 * with input_register_device(), but the event will not reach any of the
357 * input handlers. Such early invocation of input_event() may be used
358 * to 'seed' initial state of a switch or initial position of absolute
359 * axis, etc.
361 void input_event(struct input_dev *dev,
362 unsigned int type, unsigned int code, int value)
364 unsigned long flags;
366 if (is_event_supported(type, dev->evbit, EV_MAX)) {
368 spin_lock_irqsave(&dev->event_lock, flags);
369 add_input_randomness(type, code, value);
370 input_handle_event(dev, NULL, type, code, value);
371 spin_unlock_irqrestore(&dev->event_lock, flags);
374 EXPORT_SYMBOL(input_event);
377 * input_inject_event() - send input event from input handler
378 * @handle: input handle to send event through
379 * @type: type of the event
380 * @code: event code
381 * @value: value of the event
383 * Similar to input_event() but will ignore event if device is
384 * "grabbed" and handle injecting event is not the one that owns
385 * the device.
387 void input_inject_event(struct input_handle *handle,
388 unsigned int type, unsigned int code, int value)
390 struct input_dev *dev = handle->dev;
391 struct input_handle *grab;
392 unsigned long flags;
394 if (is_event_supported(type, dev->evbit, EV_MAX)) {
395 spin_lock_irqsave(&dev->event_lock, flags);
397 rcu_read_lock();
398 grab = rcu_dereference(dev->grab);
399 if (!grab || grab == handle)
400 input_handle_event(dev, handle->handler,
401 type, code, value);
402 rcu_read_unlock();
404 spin_unlock_irqrestore(&dev->event_lock, flags);
407 EXPORT_SYMBOL(input_inject_event);
410 * input_alloc_absinfo - allocates array of input_absinfo structs
411 * @dev: the input device emitting absolute events
413 * If the absinfo struct the caller asked for is already allocated, this
414 * functions will not do anything.
416 void input_alloc_absinfo(struct input_dev *dev)
418 if (!dev->absinfo)
419 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
420 GFP_KERNEL);
422 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
424 EXPORT_SYMBOL(input_alloc_absinfo);
426 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
427 int min, int max, int fuzz, int flat)
429 struct input_absinfo *absinfo;
431 input_alloc_absinfo(dev);
432 if (!dev->absinfo)
433 return;
435 absinfo = &dev->absinfo[axis];
436 absinfo->minimum = min;
437 absinfo->maximum = max;
438 absinfo->fuzz = fuzz;
439 absinfo->flat = flat;
441 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
443 EXPORT_SYMBOL(input_set_abs_params);
447 * input_grab_device - grabs device for exclusive use
448 * @handle: input handle that wants to own the device
450 * When a device is grabbed by an input handle all events generated by
451 * the device are delivered only to this handle. Also events injected
452 * by other input handles are ignored while device is grabbed.
454 int input_grab_device(struct input_handle *handle)
456 struct input_dev *dev = handle->dev;
457 int retval;
459 retval = mutex_lock_interruptible(&dev->mutex);
460 if (retval)
461 return retval;
463 if (dev->grab) {
464 retval = -EBUSY;
465 goto out;
468 rcu_assign_pointer(dev->grab, handle);
469 synchronize_rcu();
471 out:
472 mutex_unlock(&dev->mutex);
473 return retval;
475 EXPORT_SYMBOL(input_grab_device);
477 static void __input_release_device(struct input_handle *handle)
479 struct input_dev *dev = handle->dev;
481 if (dev->grab == handle) {
482 rcu_assign_pointer(dev->grab, NULL);
483 /* Make sure input_pass_event() notices that grab is gone */
484 synchronize_rcu();
486 list_for_each_entry(handle, &dev->h_list, d_node)
487 if (handle->open && handle->handler->start)
488 handle->handler->start(handle);
493 * input_release_device - release previously grabbed device
494 * @handle: input handle that owns the device
496 * Releases previously grabbed device so that other input handles can
497 * start receiving input events. Upon release all handlers attached
498 * to the device have their start() method called so they have a change
499 * to synchronize device state with the rest of the system.
501 void input_release_device(struct input_handle *handle)
503 struct input_dev *dev = handle->dev;
505 mutex_lock(&dev->mutex);
506 __input_release_device(handle);
507 mutex_unlock(&dev->mutex);
509 EXPORT_SYMBOL(input_release_device);
512 * input_open_device - open input device
513 * @handle: handle through which device is being accessed
515 * This function should be called by input handlers when they
516 * want to start receive events from given input device.
518 int input_open_device(struct input_handle *handle)
520 struct input_dev *dev = handle->dev;
521 int retval;
523 retval = mutex_lock_interruptible(&dev->mutex);
524 if (retval)
525 return retval;
527 if (dev->going_away) {
528 retval = -ENODEV;
529 goto out;
532 handle->open++;
534 if (!dev->users++ && dev->open)
535 retval = dev->open(dev);
537 if (retval) {
538 dev->users--;
539 if (!--handle->open) {
541 * Make sure we are not delivering any more events
542 * through this handle
544 synchronize_rcu();
548 out:
549 mutex_unlock(&dev->mutex);
550 return retval;
552 EXPORT_SYMBOL(input_open_device);
554 int input_flush_device(struct input_handle *handle, struct file *file)
556 struct input_dev *dev = handle->dev;
557 int retval;
559 retval = mutex_lock_interruptible(&dev->mutex);
560 if (retval)
561 return retval;
563 if (dev->flush)
564 retval = dev->flush(dev, file);
566 mutex_unlock(&dev->mutex);
567 return retval;
569 EXPORT_SYMBOL(input_flush_device);
572 * input_close_device - close input device
573 * @handle: handle through which device is being accessed
575 * This function should be called by input handlers when they
576 * want to stop receive events from given input device.
578 void input_close_device(struct input_handle *handle)
580 struct input_dev *dev = handle->dev;
582 mutex_lock(&dev->mutex);
584 __input_release_device(handle);
586 if (!--dev->users && dev->close)
587 dev->close(dev);
589 if (!--handle->open) {
591 * synchronize_rcu() makes sure that input_pass_event()
592 * completed and that no more input events are delivered
593 * through this handle
595 synchronize_rcu();
598 mutex_unlock(&dev->mutex);
600 EXPORT_SYMBOL(input_close_device);
603 * Simulate keyup events for all keys that are marked as pressed.
604 * The function must be called with dev->event_lock held.
606 static void input_dev_release_keys(struct input_dev *dev)
608 int code;
610 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
611 for (code = 0; code <= KEY_MAX; code++) {
612 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
613 __test_and_clear_bit(code, dev->key)) {
614 input_pass_event(dev, NULL, EV_KEY, code, 0);
617 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
622 * Prepare device for unregistering
624 static void input_disconnect_device(struct input_dev *dev)
626 struct input_handle *handle;
629 * Mark device as going away. Note that we take dev->mutex here
630 * not to protect access to dev->going_away but rather to ensure
631 * that there are no threads in the middle of input_open_device()
633 mutex_lock(&dev->mutex);
634 dev->going_away = true;
635 mutex_unlock(&dev->mutex);
637 spin_lock_irq(&dev->event_lock);
640 * Simulate keyup events for all pressed keys so that handlers
641 * are not left with "stuck" keys. The driver may continue
642 * generate events even after we done here but they will not
643 * reach any handlers.
645 input_dev_release_keys(dev);
647 list_for_each_entry(handle, &dev->h_list, d_node)
648 handle->open = 0;
650 spin_unlock_irq(&dev->event_lock);
654 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
655 * @ke: keymap entry containing scancode to be converted.
656 * @scancode: pointer to the location where converted scancode should
657 * be stored.
659 * This function is used to convert scancode stored in &struct keymap_entry
660 * into scalar form understood by legacy keymap handling methods. These
661 * methods expect scancodes to be represented as 'unsigned int'.
663 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
664 unsigned int *scancode)
666 switch (ke->len) {
667 case 1:
668 *scancode = *((u8 *)ke->scancode);
669 break;
671 case 2:
672 *scancode = *((u16 *)ke->scancode);
673 break;
675 case 4:
676 *scancode = *((u32 *)ke->scancode);
677 break;
679 default:
680 return -EINVAL;
683 return 0;
685 EXPORT_SYMBOL(input_scancode_to_scalar);
688 * Those routines handle the default case where no [gs]etkeycode() is
689 * defined. In this case, an array indexed by the scancode is used.
692 static unsigned int input_fetch_keycode(struct input_dev *dev,
693 unsigned int index)
695 switch (dev->keycodesize) {
696 case 1:
697 return ((u8 *)dev->keycode)[index];
699 case 2:
700 return ((u16 *)dev->keycode)[index];
702 default:
703 return ((u32 *)dev->keycode)[index];
707 static int input_default_getkeycode(struct input_dev *dev,
708 struct input_keymap_entry *ke)
710 unsigned int index;
711 int error;
713 if (!dev->keycodesize)
714 return -EINVAL;
716 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
717 index = ke->index;
718 else {
719 error = input_scancode_to_scalar(ke, &index);
720 if (error)
721 return error;
724 if (index >= dev->keycodemax)
725 return -EINVAL;
727 ke->keycode = input_fetch_keycode(dev, index);
728 ke->index = index;
729 ke->len = sizeof(index);
730 memcpy(ke->scancode, &index, sizeof(index));
732 return 0;
735 static int input_default_setkeycode(struct input_dev *dev,
736 const struct input_keymap_entry *ke,
737 unsigned int *old_keycode)
739 unsigned int index;
740 int error;
741 int i;
743 if (!dev->keycodesize)
744 return -EINVAL;
746 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
747 index = ke->index;
748 } else {
749 error = input_scancode_to_scalar(ke, &index);
750 if (error)
751 return error;
754 if (index >= dev->keycodemax)
755 return -EINVAL;
757 if (dev->keycodesize < sizeof(ke->keycode) &&
758 (ke->keycode >> (dev->keycodesize * 8)))
759 return -EINVAL;
761 switch (dev->keycodesize) {
762 case 1: {
763 u8 *k = (u8 *)dev->keycode;
764 *old_keycode = k[index];
765 k[index] = ke->keycode;
766 break;
768 case 2: {
769 u16 *k = (u16 *)dev->keycode;
770 *old_keycode = k[index];
771 k[index] = ke->keycode;
772 break;
774 default: {
775 u32 *k = (u32 *)dev->keycode;
776 *old_keycode = k[index];
777 k[index] = ke->keycode;
778 break;
782 __clear_bit(*old_keycode, dev->keybit);
783 __set_bit(ke->keycode, dev->keybit);
785 for (i = 0; i < dev->keycodemax; i++) {
786 if (input_fetch_keycode(dev, i) == *old_keycode) {
787 __set_bit(*old_keycode, dev->keybit);
788 break; /* Setting the bit twice is useless, so break */
792 return 0;
796 * input_get_keycode - retrieve keycode currently mapped to a given scancode
797 * @dev: input device which keymap is being queried
798 * @ke: keymap entry
800 * This function should be called by anyone interested in retrieving current
801 * keymap. Presently evdev handlers use it.
803 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
805 unsigned long flags;
806 int retval;
808 spin_lock_irqsave(&dev->event_lock, flags);
810 if (dev->getkeycode) {
812 * Support for legacy drivers, that don't implement the new
813 * ioctls
815 u32 scancode = ke->index;
817 memcpy(ke->scancode, &scancode, sizeof(scancode));
818 ke->len = sizeof(scancode);
819 retval = dev->getkeycode(dev, scancode, &ke->keycode);
820 } else {
821 retval = dev->getkeycode_new(dev, ke);
824 spin_unlock_irqrestore(&dev->event_lock, flags);
825 return retval;
827 EXPORT_SYMBOL(input_get_keycode);
830 * input_set_keycode - attribute a keycode to a given scancode
831 * @dev: input device which keymap is being updated
832 * @ke: new keymap entry
834 * This function should be called by anyone needing to update current
835 * keymap. Presently keyboard and evdev handlers use it.
837 int input_set_keycode(struct input_dev *dev,
838 const struct input_keymap_entry *ke)
840 unsigned long flags;
841 unsigned int old_keycode;
842 int retval;
844 if (ke->keycode > KEY_MAX)
845 return -EINVAL;
847 spin_lock_irqsave(&dev->event_lock, flags);
849 if (dev->setkeycode) {
851 * Support for legacy drivers, that don't implement the new
852 * ioctls
854 unsigned int scancode;
856 retval = input_scancode_to_scalar(ke, &scancode);
857 if (retval)
858 goto out;
861 * We need to know the old scancode, in order to generate a
862 * keyup effect, if the set operation happens successfully
864 if (!dev->getkeycode) {
865 retval = -EINVAL;
866 goto out;
869 retval = dev->getkeycode(dev, scancode, &old_keycode);
870 if (retval)
871 goto out;
873 retval = dev->setkeycode(dev, scancode, ke->keycode);
874 } else {
875 retval = dev->setkeycode_new(dev, ke, &old_keycode);
878 if (retval)
879 goto out;
881 /* Make sure KEY_RESERVED did not get enabled. */
882 __clear_bit(KEY_RESERVED, dev->keybit);
885 * Simulate keyup event if keycode is not present
886 * in the keymap anymore
888 if (test_bit(EV_KEY, dev->evbit) &&
889 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
890 __test_and_clear_bit(old_keycode, dev->key)) {
892 input_pass_event(dev, NULL, EV_KEY, old_keycode, 0);
893 if (dev->sync)
894 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
897 out:
898 spin_unlock_irqrestore(&dev->event_lock, flags);
900 return retval;
902 EXPORT_SYMBOL(input_set_keycode);
904 #define MATCH_BIT(bit, max) \
905 for (i = 0; i < BITS_TO_LONGS(max); i++) \
906 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
907 break; \
908 if (i != BITS_TO_LONGS(max)) \
909 continue;
911 static const struct input_device_id *input_match_device(struct input_handler *handler,
912 struct input_dev *dev)
914 const struct input_device_id *id;
915 int i;
917 for (id = handler->id_table; id->flags || id->driver_info; id++) {
919 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
920 if (id->bustype != dev->id.bustype)
921 continue;
923 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
924 if (id->vendor != dev->id.vendor)
925 continue;
927 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
928 if (id->product != dev->id.product)
929 continue;
931 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
932 if (id->version != dev->id.version)
933 continue;
935 MATCH_BIT(evbit, EV_MAX);
936 MATCH_BIT(keybit, KEY_MAX);
937 MATCH_BIT(relbit, REL_MAX);
938 MATCH_BIT(absbit, ABS_MAX);
939 MATCH_BIT(mscbit, MSC_MAX);
940 MATCH_BIT(ledbit, LED_MAX);
941 MATCH_BIT(sndbit, SND_MAX);
942 MATCH_BIT(ffbit, FF_MAX);
943 MATCH_BIT(swbit, SW_MAX);
945 if (!handler->match || handler->match(handler, dev))
946 return id;
949 return NULL;
952 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
954 const struct input_device_id *id;
955 int error;
957 id = input_match_device(handler, dev);
958 if (!id)
959 return -ENODEV;
961 error = handler->connect(handler, dev, id);
962 if (error && error != -ENODEV)
963 pr_err("failed to attach handler %s to device %s, error: %d\n",
964 handler->name, kobject_name(&dev->dev.kobj), error);
966 return error;
969 #ifdef CONFIG_COMPAT
971 static int input_bits_to_string(char *buf, int buf_size,
972 unsigned long bits, bool skip_empty)
974 int len = 0;
976 if (INPUT_COMPAT_TEST) {
977 u32 dword = bits >> 32;
978 if (dword || !skip_empty)
979 len += snprintf(buf, buf_size, "%x ", dword);
981 dword = bits & 0xffffffffUL;
982 if (dword || !skip_empty || len)
983 len += snprintf(buf + len, max(buf_size - len, 0),
984 "%x", dword);
985 } else {
986 if (bits || !skip_empty)
987 len += snprintf(buf, buf_size, "%lx", bits);
990 return len;
993 #else /* !CONFIG_COMPAT */
995 static int input_bits_to_string(char *buf, int buf_size,
996 unsigned long bits, bool skip_empty)
998 return bits || !skip_empty ?
999 snprintf(buf, buf_size, "%lx", bits) : 0;
1002 #endif
1004 #ifdef CONFIG_PROC_FS
1006 static struct proc_dir_entry *proc_bus_input_dir;
1007 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1008 static int input_devices_state;
1010 static inline void input_wakeup_procfs_readers(void)
1012 input_devices_state++;
1013 wake_up(&input_devices_poll_wait);
1016 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1018 poll_wait(file, &input_devices_poll_wait, wait);
1019 if (file->f_version != input_devices_state) {
1020 file->f_version = input_devices_state;
1021 return POLLIN | POLLRDNORM;
1024 return 0;
1027 union input_seq_state {
1028 struct {
1029 unsigned short pos;
1030 bool mutex_acquired;
1032 void *p;
1035 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1037 union input_seq_state *state = (union input_seq_state *)&seq->private;
1038 int error;
1040 /* We need to fit into seq->private pointer */
1041 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1043 error = mutex_lock_interruptible(&input_mutex);
1044 if (error) {
1045 state->mutex_acquired = false;
1046 return ERR_PTR(error);
1049 state->mutex_acquired = true;
1051 return seq_list_start(&input_dev_list, *pos);
1054 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1056 return seq_list_next(v, &input_dev_list, pos);
1059 static void input_seq_stop(struct seq_file *seq, void *v)
1061 union input_seq_state *state = (union input_seq_state *)&seq->private;
1063 if (state->mutex_acquired)
1064 mutex_unlock(&input_mutex);
1067 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1068 unsigned long *bitmap, int max)
1070 int i;
1071 bool skip_empty = true;
1072 char buf[18];
1074 seq_printf(seq, "B: %s=", name);
1076 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1077 if (input_bits_to_string(buf, sizeof(buf),
1078 bitmap[i], skip_empty)) {
1079 skip_empty = false;
1080 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1085 * If no output was produced print a single 0.
1087 if (skip_empty)
1088 seq_puts(seq, "0");
1090 seq_putc(seq, '\n');
1093 static int input_devices_seq_show(struct seq_file *seq, void *v)
1095 struct input_dev *dev = container_of(v, struct input_dev, node);
1096 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1097 struct input_handle *handle;
1099 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1100 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1102 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1103 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1104 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1105 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1106 seq_printf(seq, "H: Handlers=");
1108 list_for_each_entry(handle, &dev->h_list, d_node)
1109 seq_printf(seq, "%s ", handle->name);
1110 seq_putc(seq, '\n');
1112 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1114 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1115 if (test_bit(EV_KEY, dev->evbit))
1116 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1117 if (test_bit(EV_REL, dev->evbit))
1118 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1119 if (test_bit(EV_ABS, dev->evbit))
1120 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1121 if (test_bit(EV_MSC, dev->evbit))
1122 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1123 if (test_bit(EV_LED, dev->evbit))
1124 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1125 if (test_bit(EV_SND, dev->evbit))
1126 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1127 if (test_bit(EV_FF, dev->evbit))
1128 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1129 if (test_bit(EV_SW, dev->evbit))
1130 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1132 seq_putc(seq, '\n');
1134 kfree(path);
1135 return 0;
1138 static const struct seq_operations input_devices_seq_ops = {
1139 .start = input_devices_seq_start,
1140 .next = input_devices_seq_next,
1141 .stop = input_seq_stop,
1142 .show = input_devices_seq_show,
1145 static int input_proc_devices_open(struct inode *inode, struct file *file)
1147 return seq_open(file, &input_devices_seq_ops);
1150 static const struct file_operations input_devices_fileops = {
1151 .owner = THIS_MODULE,
1152 .open = input_proc_devices_open,
1153 .poll = input_proc_devices_poll,
1154 .read = seq_read,
1155 .llseek = seq_lseek,
1156 .release = seq_release,
1159 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1161 union input_seq_state *state = (union input_seq_state *)&seq->private;
1162 int error;
1164 /* We need to fit into seq->private pointer */
1165 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1167 error = mutex_lock_interruptible(&input_mutex);
1168 if (error) {
1169 state->mutex_acquired = false;
1170 return ERR_PTR(error);
1173 state->mutex_acquired = true;
1174 state->pos = *pos;
1176 return seq_list_start(&input_handler_list, *pos);
1179 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1181 union input_seq_state *state = (union input_seq_state *)&seq->private;
1183 state->pos = *pos + 1;
1184 return seq_list_next(v, &input_handler_list, pos);
1187 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1189 struct input_handler *handler = container_of(v, struct input_handler, node);
1190 union input_seq_state *state = (union input_seq_state *)&seq->private;
1192 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1193 if (handler->filter)
1194 seq_puts(seq, " (filter)");
1195 if (handler->fops)
1196 seq_printf(seq, " Minor=%d", handler->minor);
1197 seq_putc(seq, '\n');
1199 return 0;
1202 static const struct seq_operations input_handlers_seq_ops = {
1203 .start = input_handlers_seq_start,
1204 .next = input_handlers_seq_next,
1205 .stop = input_seq_stop,
1206 .show = input_handlers_seq_show,
1209 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1211 return seq_open(file, &input_handlers_seq_ops);
1214 static const struct file_operations input_handlers_fileops = {
1215 .owner = THIS_MODULE,
1216 .open = input_proc_handlers_open,
1217 .read = seq_read,
1218 .llseek = seq_lseek,
1219 .release = seq_release,
1222 static int __init input_proc_init(void)
1224 struct proc_dir_entry *entry;
1226 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1227 if (!proc_bus_input_dir)
1228 return -ENOMEM;
1230 entry = proc_create("devices", 0, proc_bus_input_dir,
1231 &input_devices_fileops);
1232 if (!entry)
1233 goto fail1;
1235 entry = proc_create("handlers", 0, proc_bus_input_dir,
1236 &input_handlers_fileops);
1237 if (!entry)
1238 goto fail2;
1240 return 0;
1242 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1243 fail1: remove_proc_entry("bus/input", NULL);
1244 return -ENOMEM;
1247 static void input_proc_exit(void)
1249 remove_proc_entry("devices", proc_bus_input_dir);
1250 remove_proc_entry("handlers", proc_bus_input_dir);
1251 remove_proc_entry("bus/input", NULL);
1254 #else /* !CONFIG_PROC_FS */
1255 static inline void input_wakeup_procfs_readers(void) { }
1256 static inline int input_proc_init(void) { return 0; }
1257 static inline void input_proc_exit(void) { }
1258 #endif
1260 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1261 static ssize_t input_dev_show_##name(struct device *dev, \
1262 struct device_attribute *attr, \
1263 char *buf) \
1265 struct input_dev *input_dev = to_input_dev(dev); \
1267 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1268 input_dev->name ? input_dev->name : ""); \
1270 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1272 INPUT_DEV_STRING_ATTR_SHOW(name);
1273 INPUT_DEV_STRING_ATTR_SHOW(phys);
1274 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1276 static int input_print_modalias_bits(char *buf, int size,
1277 char name, unsigned long *bm,
1278 unsigned int min_bit, unsigned int max_bit)
1280 int len = 0, i;
1282 len += snprintf(buf, max(size, 0), "%c", name);
1283 for (i = min_bit; i < max_bit; i++)
1284 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1285 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1286 return len;
1289 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1290 int add_cr)
1292 int len;
1294 len = snprintf(buf, max(size, 0),
1295 "input:b%04Xv%04Xp%04Xe%04X-",
1296 id->id.bustype, id->id.vendor,
1297 id->id.product, id->id.version);
1299 len += input_print_modalias_bits(buf + len, size - len,
1300 'e', id->evbit, 0, EV_MAX);
1301 len += input_print_modalias_bits(buf + len, size - len,
1302 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1303 len += input_print_modalias_bits(buf + len, size - len,
1304 'r', id->relbit, 0, REL_MAX);
1305 len += input_print_modalias_bits(buf + len, size - len,
1306 'a', id->absbit, 0, ABS_MAX);
1307 len += input_print_modalias_bits(buf + len, size - len,
1308 'm', id->mscbit, 0, MSC_MAX);
1309 len += input_print_modalias_bits(buf + len, size - len,
1310 'l', id->ledbit, 0, LED_MAX);
1311 len += input_print_modalias_bits(buf + len, size - len,
1312 's', id->sndbit, 0, SND_MAX);
1313 len += input_print_modalias_bits(buf + len, size - len,
1314 'f', id->ffbit, 0, FF_MAX);
1315 len += input_print_modalias_bits(buf + len, size - len,
1316 'w', id->swbit, 0, SW_MAX);
1318 if (add_cr)
1319 len += snprintf(buf + len, max(size - len, 0), "\n");
1321 return len;
1324 static ssize_t input_dev_show_modalias(struct device *dev,
1325 struct device_attribute *attr,
1326 char *buf)
1328 struct input_dev *id = to_input_dev(dev);
1329 ssize_t len;
1331 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1333 return min_t(int, len, PAGE_SIZE);
1335 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1337 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1338 int max, int add_cr);
1340 static ssize_t input_dev_show_properties(struct device *dev,
1341 struct device_attribute *attr,
1342 char *buf)
1344 struct input_dev *input_dev = to_input_dev(dev);
1345 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1346 INPUT_PROP_MAX, true);
1347 return min_t(int, len, PAGE_SIZE);
1349 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1351 static struct attribute *input_dev_attrs[] = {
1352 &dev_attr_name.attr,
1353 &dev_attr_phys.attr,
1354 &dev_attr_uniq.attr,
1355 &dev_attr_modalias.attr,
1356 &dev_attr_properties.attr,
1357 NULL
1360 static struct attribute_group input_dev_attr_group = {
1361 .attrs = input_dev_attrs,
1364 #define INPUT_DEV_ID_ATTR(name) \
1365 static ssize_t input_dev_show_id_##name(struct device *dev, \
1366 struct device_attribute *attr, \
1367 char *buf) \
1369 struct input_dev *input_dev = to_input_dev(dev); \
1370 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1372 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1374 INPUT_DEV_ID_ATTR(bustype);
1375 INPUT_DEV_ID_ATTR(vendor);
1376 INPUT_DEV_ID_ATTR(product);
1377 INPUT_DEV_ID_ATTR(version);
1379 static struct attribute *input_dev_id_attrs[] = {
1380 &dev_attr_bustype.attr,
1381 &dev_attr_vendor.attr,
1382 &dev_attr_product.attr,
1383 &dev_attr_version.attr,
1384 NULL
1387 static struct attribute_group input_dev_id_attr_group = {
1388 .name = "id",
1389 .attrs = input_dev_id_attrs,
1392 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1393 int max, int add_cr)
1395 int i;
1396 int len = 0;
1397 bool skip_empty = true;
1399 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1400 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1401 bitmap[i], skip_empty);
1402 if (len) {
1403 skip_empty = false;
1404 if (i > 0)
1405 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1410 * If no output was produced print a single 0.
1412 if (len == 0)
1413 len = snprintf(buf, buf_size, "%d", 0);
1415 if (add_cr)
1416 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1418 return len;
1421 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1422 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1423 struct device_attribute *attr, \
1424 char *buf) \
1426 struct input_dev *input_dev = to_input_dev(dev); \
1427 int len = input_print_bitmap(buf, PAGE_SIZE, \
1428 input_dev->bm##bit, ev##_MAX, \
1429 true); \
1430 return min_t(int, len, PAGE_SIZE); \
1432 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1434 INPUT_DEV_CAP_ATTR(EV, ev);
1435 INPUT_DEV_CAP_ATTR(KEY, key);
1436 INPUT_DEV_CAP_ATTR(REL, rel);
1437 INPUT_DEV_CAP_ATTR(ABS, abs);
1438 INPUT_DEV_CAP_ATTR(MSC, msc);
1439 INPUT_DEV_CAP_ATTR(LED, led);
1440 INPUT_DEV_CAP_ATTR(SND, snd);
1441 INPUT_DEV_CAP_ATTR(FF, ff);
1442 INPUT_DEV_CAP_ATTR(SW, sw);
1444 static struct attribute *input_dev_caps_attrs[] = {
1445 &dev_attr_ev.attr,
1446 &dev_attr_key.attr,
1447 &dev_attr_rel.attr,
1448 &dev_attr_abs.attr,
1449 &dev_attr_msc.attr,
1450 &dev_attr_led.attr,
1451 &dev_attr_snd.attr,
1452 &dev_attr_ff.attr,
1453 &dev_attr_sw.attr,
1454 NULL
1457 static struct attribute_group input_dev_caps_attr_group = {
1458 .name = "capabilities",
1459 .attrs = input_dev_caps_attrs,
1462 static const struct attribute_group *input_dev_attr_groups[] = {
1463 &input_dev_attr_group,
1464 &input_dev_id_attr_group,
1465 &input_dev_caps_attr_group,
1466 NULL
1469 static void input_dev_release(struct device *device)
1471 struct input_dev *dev = to_input_dev(device);
1473 input_ff_destroy(dev);
1474 input_mt_destroy_slots(dev);
1475 kfree(dev->absinfo);
1476 kfree(dev);
1478 module_put(THIS_MODULE);
1482 * Input uevent interface - loading event handlers based on
1483 * device bitfields.
1485 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1486 const char *name, unsigned long *bitmap, int max)
1488 int len;
1490 if (add_uevent_var(env, "%s", name))
1491 return -ENOMEM;
1493 len = input_print_bitmap(&env->buf[env->buflen - 1],
1494 sizeof(env->buf) - env->buflen,
1495 bitmap, max, false);
1496 if (len >= (sizeof(env->buf) - env->buflen))
1497 return -ENOMEM;
1499 env->buflen += len;
1500 return 0;
1503 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1504 struct input_dev *dev)
1506 int len;
1508 if (add_uevent_var(env, "MODALIAS="))
1509 return -ENOMEM;
1511 len = input_print_modalias(&env->buf[env->buflen - 1],
1512 sizeof(env->buf) - env->buflen,
1513 dev, 0);
1514 if (len >= (sizeof(env->buf) - env->buflen))
1515 return -ENOMEM;
1517 env->buflen += len;
1518 return 0;
1521 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1522 do { \
1523 int err = add_uevent_var(env, fmt, val); \
1524 if (err) \
1525 return err; \
1526 } while (0)
1528 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1529 do { \
1530 int err = input_add_uevent_bm_var(env, name, bm, max); \
1531 if (err) \
1532 return err; \
1533 } while (0)
1535 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1536 do { \
1537 int err = input_add_uevent_modalias_var(env, dev); \
1538 if (err) \
1539 return err; \
1540 } while (0)
1542 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1544 struct input_dev *dev = to_input_dev(device);
1546 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1547 dev->id.bustype, dev->id.vendor,
1548 dev->id.product, dev->id.version);
1549 if (dev->name)
1550 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1551 if (dev->phys)
1552 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1553 if (dev->uniq)
1554 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1556 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1558 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1559 if (test_bit(EV_KEY, dev->evbit))
1560 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1561 if (test_bit(EV_REL, dev->evbit))
1562 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1563 if (test_bit(EV_ABS, dev->evbit))
1564 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1565 if (test_bit(EV_MSC, dev->evbit))
1566 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1567 if (test_bit(EV_LED, dev->evbit))
1568 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1569 if (test_bit(EV_SND, dev->evbit))
1570 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1571 if (test_bit(EV_FF, dev->evbit))
1572 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1573 if (test_bit(EV_SW, dev->evbit))
1574 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1576 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1578 return 0;
1581 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1582 do { \
1583 int i; \
1584 bool active; \
1586 if (!test_bit(EV_##type, dev->evbit)) \
1587 break; \
1589 for (i = 0; i < type##_MAX; i++) { \
1590 if (!test_bit(i, dev->bits##bit)) \
1591 continue; \
1593 active = test_bit(i, dev->bits); \
1594 if (!active && !on) \
1595 continue; \
1597 dev->event(dev, EV_##type, i, on ? active : 0); \
1599 } while (0)
1601 static void input_dev_toggle(struct input_dev *dev, bool activate)
1603 if (!dev->event)
1604 return;
1606 INPUT_DO_TOGGLE(dev, LED, led, activate);
1607 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1609 if (activate && test_bit(EV_REP, dev->evbit)) {
1610 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1611 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1616 * input_reset_device() - reset/restore the state of input device
1617 * @dev: input device whose state needs to be reset
1619 * This function tries to reset the state of an opened input device and
1620 * bring internal state and state if the hardware in sync with each other.
1621 * We mark all keys as released, restore LED state, repeat rate, etc.
1623 void input_reset_device(struct input_dev *dev)
1625 mutex_lock(&dev->mutex);
1627 if (dev->users) {
1628 input_dev_toggle(dev, true);
1631 * Keys that have been pressed at suspend time are unlikely
1632 * to be still pressed when we resume.
1634 spin_lock_irq(&dev->event_lock);
1635 input_dev_release_keys(dev);
1636 spin_unlock_irq(&dev->event_lock);
1639 mutex_unlock(&dev->mutex);
1641 EXPORT_SYMBOL(input_reset_device);
1643 #ifdef CONFIG_PM
1644 static int input_dev_suspend(struct device *dev)
1646 struct input_dev *input_dev = to_input_dev(dev);
1648 mutex_lock(&input_dev->mutex);
1650 if (input_dev->users)
1651 input_dev_toggle(input_dev, false);
1653 mutex_unlock(&input_dev->mutex);
1655 return 0;
1658 static int input_dev_resume(struct device *dev)
1660 struct input_dev *input_dev = to_input_dev(dev);
1662 input_reset_device(input_dev);
1664 return 0;
1667 static const struct dev_pm_ops input_dev_pm_ops = {
1668 .suspend = input_dev_suspend,
1669 .resume = input_dev_resume,
1670 .poweroff = input_dev_suspend,
1671 .restore = input_dev_resume,
1673 #endif /* CONFIG_PM */
1675 static struct device_type input_dev_type = {
1676 .groups = input_dev_attr_groups,
1677 .release = input_dev_release,
1678 .uevent = input_dev_uevent,
1679 #ifdef CONFIG_PM
1680 .pm = &input_dev_pm_ops,
1681 #endif
1684 static char *input_devnode(struct device *dev, mode_t *mode)
1686 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1689 struct class input_class = {
1690 .name = "input",
1691 .devnode = input_devnode,
1693 EXPORT_SYMBOL_GPL(input_class);
1696 * input_allocate_device - allocate memory for new input device
1698 * Returns prepared struct input_dev or NULL.
1700 * NOTE: Use input_free_device() to free devices that have not been
1701 * registered; input_unregister_device() should be used for already
1702 * registered devices.
1704 struct input_dev *input_allocate_device(void)
1706 struct input_dev *dev;
1708 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1709 if (dev) {
1710 dev->dev.type = &input_dev_type;
1711 dev->dev.class = &input_class;
1712 device_initialize(&dev->dev);
1713 mutex_init(&dev->mutex);
1714 spin_lock_init(&dev->event_lock);
1715 INIT_LIST_HEAD(&dev->h_list);
1716 INIT_LIST_HEAD(&dev->node);
1718 __module_get(THIS_MODULE);
1721 return dev;
1723 EXPORT_SYMBOL(input_allocate_device);
1726 * input_free_device - free memory occupied by input_dev structure
1727 * @dev: input device to free
1729 * This function should only be used if input_register_device()
1730 * was not called yet or if it failed. Once device was registered
1731 * use input_unregister_device() and memory will be freed once last
1732 * reference to the device is dropped.
1734 * Device should be allocated by input_allocate_device().
1736 * NOTE: If there are references to the input device then memory
1737 * will not be freed until last reference is dropped.
1739 void input_free_device(struct input_dev *dev)
1741 if (dev)
1742 input_put_device(dev);
1744 EXPORT_SYMBOL(input_free_device);
1747 * input_set_capability - mark device as capable of a certain event
1748 * @dev: device that is capable of emitting or accepting event
1749 * @type: type of the event (EV_KEY, EV_REL, etc...)
1750 * @code: event code
1752 * In addition to setting up corresponding bit in appropriate capability
1753 * bitmap the function also adjusts dev->evbit.
1755 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1757 switch (type) {
1758 case EV_KEY:
1759 __set_bit(code, dev->keybit);
1760 break;
1762 case EV_REL:
1763 __set_bit(code, dev->relbit);
1764 break;
1766 case EV_ABS:
1767 __set_bit(code, dev->absbit);
1768 break;
1770 case EV_MSC:
1771 __set_bit(code, dev->mscbit);
1772 break;
1774 case EV_SW:
1775 __set_bit(code, dev->swbit);
1776 break;
1778 case EV_LED:
1779 __set_bit(code, dev->ledbit);
1780 break;
1782 case EV_SND:
1783 __set_bit(code, dev->sndbit);
1784 break;
1786 case EV_FF:
1787 __set_bit(code, dev->ffbit);
1788 break;
1790 case EV_PWR:
1791 /* do nothing */
1792 break;
1794 default:
1795 pr_err("input_set_capability: unknown type %u (code %u)\n",
1796 type, code);
1797 dump_stack();
1798 return;
1801 __set_bit(type, dev->evbit);
1803 EXPORT_SYMBOL(input_set_capability);
1805 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1806 do { \
1807 if (!test_bit(EV_##type, dev->evbit)) \
1808 memset(dev->bits##bit, 0, \
1809 sizeof(dev->bits##bit)); \
1810 } while (0)
1812 static void input_cleanse_bitmasks(struct input_dev *dev)
1814 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1815 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1816 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1817 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1818 INPUT_CLEANSE_BITMASK(dev, LED, led);
1819 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1820 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1821 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1825 * input_register_device - register device with input core
1826 * @dev: device to be registered
1828 * This function registers device with input core. The device must be
1829 * allocated with input_allocate_device() and all it's capabilities
1830 * set up before registering.
1831 * If function fails the device must be freed with input_free_device().
1832 * Once device has been successfully registered it can be unregistered
1833 * with input_unregister_device(); input_free_device() should not be
1834 * called in this case.
1836 int input_register_device(struct input_dev *dev)
1838 static atomic_t input_no = ATOMIC_INIT(0);
1839 struct input_handler *handler;
1840 const char *path;
1841 int error;
1843 /* Every input device generates EV_SYN/SYN_REPORT events. */
1844 __set_bit(EV_SYN, dev->evbit);
1846 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1847 __clear_bit(KEY_RESERVED, dev->keybit);
1849 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1850 input_cleanse_bitmasks(dev);
1853 * If delay and period are pre-set by the driver, then autorepeating
1854 * is handled by the driver itself and we don't do it in input.c.
1856 init_timer(&dev->timer);
1857 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1858 dev->timer.data = (long) dev;
1859 dev->timer.function = input_repeat_key;
1860 dev->rep[REP_DELAY] = 250;
1861 dev->rep[REP_PERIOD] = 33;
1864 if (!dev->getkeycode && !dev->getkeycode_new)
1865 dev->getkeycode_new = input_default_getkeycode;
1867 if (!dev->setkeycode && !dev->setkeycode_new)
1868 dev->setkeycode_new = input_default_setkeycode;
1870 dev_set_name(&dev->dev, "input%ld",
1871 (unsigned long) atomic_inc_return(&input_no) - 1);
1873 error = device_add(&dev->dev);
1874 if (error)
1875 return error;
1877 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1878 pr_info("%s as %s\n",
1879 dev->name ? dev->name : "Unspecified device",
1880 path ? path : "N/A");
1881 kfree(path);
1883 error = mutex_lock_interruptible(&input_mutex);
1884 if (error) {
1885 device_del(&dev->dev);
1886 return error;
1889 list_add_tail(&dev->node, &input_dev_list);
1891 list_for_each_entry(handler, &input_handler_list, node)
1892 input_attach_handler(dev, handler);
1894 input_wakeup_procfs_readers();
1896 mutex_unlock(&input_mutex);
1898 return 0;
1900 EXPORT_SYMBOL(input_register_device);
1903 * input_unregister_device - unregister previously registered device
1904 * @dev: device to be unregistered
1906 * This function unregisters an input device. Once device is unregistered
1907 * the caller should not try to access it as it may get freed at any moment.
1909 void input_unregister_device(struct input_dev *dev)
1911 struct input_handle *handle, *next;
1913 input_disconnect_device(dev);
1915 mutex_lock(&input_mutex);
1917 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1918 handle->handler->disconnect(handle);
1919 WARN_ON(!list_empty(&dev->h_list));
1921 del_timer_sync(&dev->timer);
1922 list_del_init(&dev->node);
1924 input_wakeup_procfs_readers();
1926 mutex_unlock(&input_mutex);
1928 device_unregister(&dev->dev);
1930 EXPORT_SYMBOL(input_unregister_device);
1933 * input_register_handler - register a new input handler
1934 * @handler: handler to be registered
1936 * This function registers a new input handler (interface) for input
1937 * devices in the system and attaches it to all input devices that
1938 * are compatible with the handler.
1940 int input_register_handler(struct input_handler *handler)
1942 struct input_dev *dev;
1943 int retval;
1945 retval = mutex_lock_interruptible(&input_mutex);
1946 if (retval)
1947 return retval;
1949 INIT_LIST_HEAD(&handler->h_list);
1951 if (handler->fops != NULL) {
1952 if (input_table[handler->minor >> 5]) {
1953 retval = -EBUSY;
1954 goto out;
1956 input_table[handler->minor >> 5] = handler;
1959 list_add_tail(&handler->node, &input_handler_list);
1961 list_for_each_entry(dev, &input_dev_list, node)
1962 input_attach_handler(dev, handler);
1964 input_wakeup_procfs_readers();
1966 out:
1967 mutex_unlock(&input_mutex);
1968 return retval;
1970 EXPORT_SYMBOL(input_register_handler);
1973 * input_unregister_handler - unregisters an input handler
1974 * @handler: handler to be unregistered
1976 * This function disconnects a handler from its input devices and
1977 * removes it from lists of known handlers.
1979 void input_unregister_handler(struct input_handler *handler)
1981 struct input_handle *handle, *next;
1983 mutex_lock(&input_mutex);
1985 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1986 handler->disconnect(handle);
1987 WARN_ON(!list_empty(&handler->h_list));
1989 list_del_init(&handler->node);
1991 if (handler->fops != NULL)
1992 input_table[handler->minor >> 5] = NULL;
1994 input_wakeup_procfs_readers();
1996 mutex_unlock(&input_mutex);
1998 EXPORT_SYMBOL(input_unregister_handler);
2001 * input_handler_for_each_handle - handle iterator
2002 * @handler: input handler to iterate
2003 * @data: data for the callback
2004 * @fn: function to be called for each handle
2006 * Iterate over @bus's list of devices, and call @fn for each, passing
2007 * it @data and stop when @fn returns a non-zero value. The function is
2008 * using RCU to traverse the list and therefore may be usind in atonic
2009 * contexts. The @fn callback is invoked from RCU critical section and
2010 * thus must not sleep.
2012 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2013 int (*fn)(struct input_handle *, void *))
2015 struct input_handle *handle;
2016 int retval = 0;
2018 rcu_read_lock();
2020 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2021 retval = fn(handle, data);
2022 if (retval)
2023 break;
2026 rcu_read_unlock();
2028 return retval;
2030 EXPORT_SYMBOL(input_handler_for_each_handle);
2033 * input_register_handle - register a new input handle
2034 * @handle: handle to register
2036 * This function puts a new input handle onto device's
2037 * and handler's lists so that events can flow through
2038 * it once it is opened using input_open_device().
2040 * This function is supposed to be called from handler's
2041 * connect() method.
2043 int input_register_handle(struct input_handle *handle)
2045 struct input_handler *handler = handle->handler;
2046 struct input_dev *dev = handle->dev;
2047 int error;
2050 * We take dev->mutex here to prevent race with
2051 * input_release_device().
2053 error = mutex_lock_interruptible(&dev->mutex);
2054 if (error)
2055 return error;
2058 * Filters go to the head of the list, normal handlers
2059 * to the tail.
2061 if (handler->filter)
2062 list_add_rcu(&handle->d_node, &dev->h_list);
2063 else
2064 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2066 mutex_unlock(&dev->mutex);
2069 * Since we are supposed to be called from ->connect()
2070 * which is mutually exclusive with ->disconnect()
2071 * we can't be racing with input_unregister_handle()
2072 * and so separate lock is not needed here.
2074 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2076 if (handler->start)
2077 handler->start(handle);
2079 return 0;
2081 EXPORT_SYMBOL(input_register_handle);
2084 * input_unregister_handle - unregister an input handle
2085 * @handle: handle to unregister
2087 * This function removes input handle from device's
2088 * and handler's lists.
2090 * This function is supposed to be called from handler's
2091 * disconnect() method.
2093 void input_unregister_handle(struct input_handle *handle)
2095 struct input_dev *dev = handle->dev;
2097 list_del_rcu(&handle->h_node);
2100 * Take dev->mutex to prevent race with input_release_device().
2102 mutex_lock(&dev->mutex);
2103 list_del_rcu(&handle->d_node);
2104 mutex_unlock(&dev->mutex);
2106 synchronize_rcu();
2108 EXPORT_SYMBOL(input_unregister_handle);
2110 static int input_open_file(struct inode *inode, struct file *file)
2112 struct input_handler *handler;
2113 const struct file_operations *old_fops, *new_fops = NULL;
2114 int err;
2116 err = mutex_lock_interruptible(&input_mutex);
2117 if (err)
2118 return err;
2120 /* No load-on-demand here? */
2121 handler = input_table[iminor(inode) >> 5];
2122 if (handler)
2123 new_fops = fops_get(handler->fops);
2125 mutex_unlock(&input_mutex);
2128 * That's _really_ odd. Usually NULL ->open means "nothing special",
2129 * not "no device". Oh, well...
2131 if (!new_fops || !new_fops->open) {
2132 fops_put(new_fops);
2133 err = -ENODEV;
2134 goto out;
2137 old_fops = file->f_op;
2138 file->f_op = new_fops;
2140 err = new_fops->open(inode, file);
2141 if (err) {
2142 fops_put(file->f_op);
2143 file->f_op = fops_get(old_fops);
2145 fops_put(old_fops);
2146 out:
2147 return err;
2150 static const struct file_operations input_fops = {
2151 .owner = THIS_MODULE,
2152 .open = input_open_file,
2153 .llseek = noop_llseek,
2156 static int __init input_init(void)
2158 int err;
2160 err = class_register(&input_class);
2161 if (err) {
2162 pr_err("unable to register input_dev class\n");
2163 return err;
2166 err = input_proc_init();
2167 if (err)
2168 goto fail1;
2170 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2171 if (err) {
2172 pr_err("unable to register char major %d", INPUT_MAJOR);
2173 goto fail2;
2176 return 0;
2178 fail2: input_proc_exit();
2179 fail1: class_unregister(&input_class);
2180 return err;
2183 static void __exit input_exit(void)
2185 input_proc_exit();
2186 unregister_chrdev(INPUT_MAJOR, "input");
2187 class_unregister(&input_class);
2190 subsys_initcall(input_init);
2191 module_exit(input_exit);