2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
74 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
76 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
77 return &conf
->stripe_hashtbl
[hash
];
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
89 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
91 int sectors
= bio
->bi_size
>> 9;
92 if (bio
->bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 static inline int raid5_bi_phys_segments(struct bio
*bio
)
104 return bio
->bi_phys_segments
& 0xffff;
107 static inline int raid5_bi_hw_segments(struct bio
*bio
)
109 return (bio
->bi_phys_segments
>> 16) & 0xffff;
112 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
114 --bio
->bi_phys_segments
;
115 return raid5_bi_phys_segments(bio
);
118 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
120 unsigned short val
= raid5_bi_hw_segments(bio
);
123 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
127 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
129 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) | (cnt
<< 16);
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head
*sh
)
136 /* ddf always start from first device */
138 /* md starts just after Q block */
139 if (sh
->qd_idx
== sh
->disks
- 1)
142 return sh
->qd_idx
+ 1;
144 static inline int raid6_next_disk(int disk
, int raid_disks
)
147 return (disk
< raid_disks
) ? disk
: 0;
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
155 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
156 int *count
, int syndrome_disks
)
162 if (idx
== sh
->pd_idx
)
163 return syndrome_disks
;
164 if (idx
== sh
->qd_idx
)
165 return syndrome_disks
+ 1;
171 static void return_io(struct bio
*return_bi
)
173 struct bio
*bi
= return_bi
;
176 return_bi
= bi
->bi_next
;
184 static void print_raid5_conf (struct r5conf
*conf
);
186 static int stripe_operations_active(struct stripe_head
*sh
)
188 return sh
->check_state
|| sh
->reconstruct_state
||
189 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
190 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
193 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
195 if (atomic_dec_and_test(&sh
->count
)) {
196 BUG_ON(!list_empty(&sh
->lru
));
197 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
198 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
199 if (test_bit(STRIPE_DELAYED
, &sh
->state
))
200 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
201 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
202 sh
->bm_seq
- conf
->seq_write
> 0)
203 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
205 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
206 list_add_tail(&sh
->lru
, &conf
->handle_list
);
208 md_wakeup_thread(conf
->mddev
->thread
);
210 BUG_ON(stripe_operations_active(sh
));
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
212 atomic_dec(&conf
->preread_active_stripes
);
213 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
214 md_wakeup_thread(conf
->mddev
->thread
);
216 atomic_dec(&conf
->active_stripes
);
217 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
218 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
219 wake_up(&conf
->wait_for_stripe
);
220 if (conf
->retry_read_aligned
)
221 md_wakeup_thread(conf
->mddev
->thread
);
227 static void release_stripe(struct stripe_head
*sh
)
229 struct r5conf
*conf
= sh
->raid_conf
;
232 spin_lock_irqsave(&conf
->device_lock
, flags
);
233 __release_stripe(conf
, sh
);
234 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
237 static inline void remove_hash(struct stripe_head
*sh
)
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh
->sector
);
242 hlist_del_init(&sh
->hash
);
245 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
247 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh
->sector
);
252 hlist_add_head(&sh
->hash
, hp
);
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
)
259 struct stripe_head
*sh
= NULL
;
260 struct list_head
*first
;
262 if (list_empty(&conf
->inactive_list
))
264 first
= conf
->inactive_list
.next
;
265 sh
= list_entry(first
, struct stripe_head
, lru
);
266 list_del_init(first
);
268 atomic_inc(&conf
->active_stripes
);
273 static void shrink_buffers(struct stripe_head
*sh
)
277 int num
= sh
->raid_conf
->pool_size
;
279 for (i
= 0; i
< num
; i
++) {
283 sh
->dev
[i
].page
= NULL
;
288 static int grow_buffers(struct stripe_head
*sh
)
291 int num
= sh
->raid_conf
->pool_size
;
293 for (i
= 0; i
< num
; i
++) {
296 if (!(page
= alloc_page(GFP_KERNEL
))) {
299 sh
->dev
[i
].page
= page
;
304 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
305 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
306 struct stripe_head
*sh
);
308 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
310 struct r5conf
*conf
= sh
->raid_conf
;
313 BUG_ON(atomic_read(&sh
->count
) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
315 BUG_ON(stripe_operations_active(sh
));
317 pr_debug("init_stripe called, stripe %llu\n",
318 (unsigned long long)sh
->sector
);
322 sh
->generation
= conf
->generation
- previous
;
323 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
325 stripe_set_idx(sector
, conf
, previous
, sh
);
329 for (i
= sh
->disks
; i
--; ) {
330 struct r5dev
*dev
= &sh
->dev
[i
];
332 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
333 test_bit(R5_LOCKED
, &dev
->flags
)) {
334 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
335 (unsigned long long)sh
->sector
, i
, dev
->toread
,
336 dev
->read
, dev
->towrite
, dev
->written
,
337 test_bit(R5_LOCKED
, &dev
->flags
));
341 raid5_build_block(sh
, i
, previous
);
343 insert_hash(conf
, sh
);
346 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
349 struct stripe_head
*sh
;
350 struct hlist_node
*hn
;
352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
353 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
354 if (sh
->sector
== sector
&& sh
->generation
== generation
)
356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
361 * Need to check if array has failed when deciding whether to:
363 * - remove non-faulty devices
366 * This determination is simple when no reshape is happening.
367 * However if there is a reshape, we need to carefully check
368 * both the before and after sections.
369 * This is because some failed devices may only affect one
370 * of the two sections, and some non-in_sync devices may
371 * be insync in the section most affected by failed devices.
373 static int has_failed(struct r5conf
*conf
)
377 if (conf
->mddev
->reshape_position
== MaxSector
)
378 return conf
->mddev
->degraded
> conf
->max_degraded
;
382 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
383 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
384 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
386 else if (test_bit(In_sync
, &rdev
->flags
))
389 /* not in-sync or faulty.
390 * If the reshape increases the number of devices,
391 * this is being recovered by the reshape, so
392 * this 'previous' section is not in_sync.
393 * If the number of devices is being reduced however,
394 * the device can only be part of the array if
395 * we are reverting a reshape, so this section will
398 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
402 if (degraded
> conf
->max_degraded
)
406 for (i
= 0; i
< conf
->raid_disks
; i
++) {
407 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
408 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
410 else if (test_bit(In_sync
, &rdev
->flags
))
413 /* not in-sync or faulty.
414 * If reshape increases the number of devices, this
415 * section has already been recovered, else it
416 * almost certainly hasn't.
418 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
422 if (degraded
> conf
->max_degraded
)
427 static struct stripe_head
*
428 get_active_stripe(struct r5conf
*conf
, sector_t sector
,
429 int previous
, int noblock
, int noquiesce
)
431 struct stripe_head
*sh
;
433 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
435 spin_lock_irq(&conf
->device_lock
);
438 wait_event_lock_irq(conf
->wait_for_stripe
,
439 conf
->quiesce
== 0 || noquiesce
,
440 conf
->device_lock
, /* nothing */);
441 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
443 if (!conf
->inactive_blocked
)
444 sh
= get_free_stripe(conf
);
445 if (noblock
&& sh
== NULL
)
448 conf
->inactive_blocked
= 1;
449 wait_event_lock_irq(conf
->wait_for_stripe
,
450 !list_empty(&conf
->inactive_list
) &&
451 (atomic_read(&conf
->active_stripes
)
452 < (conf
->max_nr_stripes
*3/4)
453 || !conf
->inactive_blocked
),
456 conf
->inactive_blocked
= 0;
458 init_stripe(sh
, sector
, previous
);
460 if (atomic_read(&sh
->count
)) {
461 BUG_ON(!list_empty(&sh
->lru
)
462 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
464 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
465 atomic_inc(&conf
->active_stripes
);
466 if (list_empty(&sh
->lru
) &&
467 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
469 list_del_init(&sh
->lru
);
472 } while (sh
== NULL
);
475 atomic_inc(&sh
->count
);
477 spin_unlock_irq(&conf
->device_lock
);
482 raid5_end_read_request(struct bio
*bi
, int error
);
484 raid5_end_write_request(struct bio
*bi
, int error
);
486 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
488 struct r5conf
*conf
= sh
->raid_conf
;
489 int i
, disks
= sh
->disks
;
493 for (i
= disks
; i
--; ) {
496 struct md_rdev
*rdev
;
497 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
498 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
502 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
507 bi
= &sh
->dev
[i
].req
;
511 bi
->bi_end_io
= raid5_end_write_request
;
513 bi
->bi_end_io
= raid5_end_read_request
;
516 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
517 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
520 atomic_inc(&rdev
->nr_pending
);
523 /* We have already checked bad blocks for reads. Now
524 * need to check for writes.
526 while ((rw
& WRITE
) && rdev
&&
527 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
530 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
531 &first_bad
, &bad_sectors
);
536 set_bit(BlockedBadBlocks
, &rdev
->flags
);
537 if (!conf
->mddev
->external
&&
538 conf
->mddev
->flags
) {
539 /* It is very unlikely, but we might
540 * still need to write out the
541 * bad block log - better give it
543 md_check_recovery(conf
->mddev
);
545 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
547 /* Acknowledged bad block - skip the write */
548 rdev_dec_pending(rdev
, conf
->mddev
);
554 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
555 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
557 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
559 bi
->bi_bdev
= rdev
->bdev
;
560 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
561 __func__
, (unsigned long long)sh
->sector
,
563 atomic_inc(&sh
->count
);
564 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
565 bi
->bi_flags
= 1 << BIO_UPTODATE
;
569 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
570 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
571 bi
->bi_io_vec
[0].bv_offset
= 0;
572 bi
->bi_size
= STRIPE_SIZE
;
574 generic_make_request(bi
);
577 set_bit(STRIPE_DEGRADED
, &sh
->state
);
578 pr_debug("skip op %ld on disc %d for sector %llu\n",
579 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
580 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
581 set_bit(STRIPE_HANDLE
, &sh
->state
);
586 static struct dma_async_tx_descriptor
*
587 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
588 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
591 struct page
*bio_page
;
594 struct async_submit_ctl submit
;
595 enum async_tx_flags flags
= 0;
597 if (bio
->bi_sector
>= sector
)
598 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
600 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
603 flags
|= ASYNC_TX_FENCE
;
604 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
606 bio_for_each_segment(bvl
, bio
, i
) {
607 int len
= bvl
->bv_len
;
611 if (page_offset
< 0) {
612 b_offset
= -page_offset
;
613 page_offset
+= b_offset
;
617 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
618 clen
= STRIPE_SIZE
- page_offset
;
623 b_offset
+= bvl
->bv_offset
;
624 bio_page
= bvl
->bv_page
;
626 tx
= async_memcpy(page
, bio_page
, page_offset
,
627 b_offset
, clen
, &submit
);
629 tx
= async_memcpy(bio_page
, page
, b_offset
,
630 page_offset
, clen
, &submit
);
632 /* chain the operations */
633 submit
.depend_tx
= tx
;
635 if (clen
< len
) /* hit end of page */
643 static void ops_complete_biofill(void *stripe_head_ref
)
645 struct stripe_head
*sh
= stripe_head_ref
;
646 struct bio
*return_bi
= NULL
;
647 struct r5conf
*conf
= sh
->raid_conf
;
650 pr_debug("%s: stripe %llu\n", __func__
,
651 (unsigned long long)sh
->sector
);
653 /* clear completed biofills */
654 spin_lock_irq(&conf
->device_lock
);
655 for (i
= sh
->disks
; i
--; ) {
656 struct r5dev
*dev
= &sh
->dev
[i
];
658 /* acknowledge completion of a biofill operation */
659 /* and check if we need to reply to a read request,
660 * new R5_Wantfill requests are held off until
661 * !STRIPE_BIOFILL_RUN
663 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
664 struct bio
*rbi
, *rbi2
;
669 while (rbi
&& rbi
->bi_sector
<
670 dev
->sector
+ STRIPE_SECTORS
) {
671 rbi2
= r5_next_bio(rbi
, dev
->sector
);
672 if (!raid5_dec_bi_phys_segments(rbi
)) {
673 rbi
->bi_next
= return_bi
;
680 spin_unlock_irq(&conf
->device_lock
);
681 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
683 return_io(return_bi
);
685 set_bit(STRIPE_HANDLE
, &sh
->state
);
689 static void ops_run_biofill(struct stripe_head
*sh
)
691 struct dma_async_tx_descriptor
*tx
= NULL
;
692 struct r5conf
*conf
= sh
->raid_conf
;
693 struct async_submit_ctl submit
;
696 pr_debug("%s: stripe %llu\n", __func__
,
697 (unsigned long long)sh
->sector
);
699 for (i
= sh
->disks
; i
--; ) {
700 struct r5dev
*dev
= &sh
->dev
[i
];
701 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
703 spin_lock_irq(&conf
->device_lock
);
704 dev
->read
= rbi
= dev
->toread
;
706 spin_unlock_irq(&conf
->device_lock
);
707 while (rbi
&& rbi
->bi_sector
<
708 dev
->sector
+ STRIPE_SECTORS
) {
709 tx
= async_copy_data(0, rbi
, dev
->page
,
711 rbi
= r5_next_bio(rbi
, dev
->sector
);
716 atomic_inc(&sh
->count
);
717 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
718 async_trigger_callback(&submit
);
721 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
728 tgt
= &sh
->dev
[target
];
729 set_bit(R5_UPTODATE
, &tgt
->flags
);
730 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
731 clear_bit(R5_Wantcompute
, &tgt
->flags
);
734 static void ops_complete_compute(void *stripe_head_ref
)
736 struct stripe_head
*sh
= stripe_head_ref
;
738 pr_debug("%s: stripe %llu\n", __func__
,
739 (unsigned long long)sh
->sector
);
741 /* mark the computed target(s) as uptodate */
742 mark_target_uptodate(sh
, sh
->ops
.target
);
743 mark_target_uptodate(sh
, sh
->ops
.target2
);
745 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
746 if (sh
->check_state
== check_state_compute_run
)
747 sh
->check_state
= check_state_compute_result
;
748 set_bit(STRIPE_HANDLE
, &sh
->state
);
752 /* return a pointer to the address conversion region of the scribble buffer */
753 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
754 struct raid5_percpu
*percpu
)
756 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
759 static struct dma_async_tx_descriptor
*
760 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
762 int disks
= sh
->disks
;
763 struct page
**xor_srcs
= percpu
->scribble
;
764 int target
= sh
->ops
.target
;
765 struct r5dev
*tgt
= &sh
->dev
[target
];
766 struct page
*xor_dest
= tgt
->page
;
768 struct dma_async_tx_descriptor
*tx
;
769 struct async_submit_ctl submit
;
772 pr_debug("%s: stripe %llu block: %d\n",
773 __func__
, (unsigned long long)sh
->sector
, target
);
774 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
776 for (i
= disks
; i
--; )
778 xor_srcs
[count
++] = sh
->dev
[i
].page
;
780 atomic_inc(&sh
->count
);
782 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
783 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
784 if (unlikely(count
== 1))
785 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
787 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
792 /* set_syndrome_sources - populate source buffers for gen_syndrome
793 * @srcs - (struct page *) array of size sh->disks
794 * @sh - stripe_head to parse
796 * Populates srcs in proper layout order for the stripe and returns the
797 * 'count' of sources to be used in a call to async_gen_syndrome. The P
798 * destination buffer is recorded in srcs[count] and the Q destination
799 * is recorded in srcs[count+1]].
801 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
803 int disks
= sh
->disks
;
804 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
805 int d0_idx
= raid6_d0(sh
);
809 for (i
= 0; i
< disks
; i
++)
815 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
817 srcs
[slot
] = sh
->dev
[i
].page
;
818 i
= raid6_next_disk(i
, disks
);
819 } while (i
!= d0_idx
);
821 return syndrome_disks
;
824 static struct dma_async_tx_descriptor
*
825 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
827 int disks
= sh
->disks
;
828 struct page
**blocks
= percpu
->scribble
;
830 int qd_idx
= sh
->qd_idx
;
831 struct dma_async_tx_descriptor
*tx
;
832 struct async_submit_ctl submit
;
838 if (sh
->ops
.target
< 0)
839 target
= sh
->ops
.target2
;
840 else if (sh
->ops
.target2
< 0)
841 target
= sh
->ops
.target
;
843 /* we should only have one valid target */
846 pr_debug("%s: stripe %llu block: %d\n",
847 __func__
, (unsigned long long)sh
->sector
, target
);
849 tgt
= &sh
->dev
[target
];
850 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
853 atomic_inc(&sh
->count
);
855 if (target
== qd_idx
) {
856 count
= set_syndrome_sources(blocks
, sh
);
857 blocks
[count
] = NULL
; /* regenerating p is not necessary */
858 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
859 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
860 ops_complete_compute
, sh
,
861 to_addr_conv(sh
, percpu
));
862 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
864 /* Compute any data- or p-drive using XOR */
866 for (i
= disks
; i
-- ; ) {
867 if (i
== target
|| i
== qd_idx
)
869 blocks
[count
++] = sh
->dev
[i
].page
;
872 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
873 NULL
, ops_complete_compute
, sh
,
874 to_addr_conv(sh
, percpu
));
875 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
881 static struct dma_async_tx_descriptor
*
882 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
884 int i
, count
, disks
= sh
->disks
;
885 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
886 int d0_idx
= raid6_d0(sh
);
887 int faila
= -1, failb
= -1;
888 int target
= sh
->ops
.target
;
889 int target2
= sh
->ops
.target2
;
890 struct r5dev
*tgt
= &sh
->dev
[target
];
891 struct r5dev
*tgt2
= &sh
->dev
[target2
];
892 struct dma_async_tx_descriptor
*tx
;
893 struct page
**blocks
= percpu
->scribble
;
894 struct async_submit_ctl submit
;
896 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
897 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
898 BUG_ON(target
< 0 || target2
< 0);
899 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
900 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
902 /* we need to open-code set_syndrome_sources to handle the
903 * slot number conversion for 'faila' and 'failb'
905 for (i
= 0; i
< disks
; i
++)
910 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
912 blocks
[slot
] = sh
->dev
[i
].page
;
918 i
= raid6_next_disk(i
, disks
);
919 } while (i
!= d0_idx
);
921 BUG_ON(faila
== failb
);
924 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
925 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
927 atomic_inc(&sh
->count
);
929 if (failb
== syndrome_disks
+1) {
930 /* Q disk is one of the missing disks */
931 if (faila
== syndrome_disks
) {
932 /* Missing P+Q, just recompute */
933 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
934 ops_complete_compute
, sh
,
935 to_addr_conv(sh
, percpu
));
936 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
937 STRIPE_SIZE
, &submit
);
941 int qd_idx
= sh
->qd_idx
;
943 /* Missing D+Q: recompute D from P, then recompute Q */
944 if (target
== qd_idx
)
945 data_target
= target2
;
947 data_target
= target
;
950 for (i
= disks
; i
-- ; ) {
951 if (i
== data_target
|| i
== qd_idx
)
953 blocks
[count
++] = sh
->dev
[i
].page
;
955 dest
= sh
->dev
[data_target
].page
;
956 init_async_submit(&submit
,
957 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
959 to_addr_conv(sh
, percpu
));
960 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
963 count
= set_syndrome_sources(blocks
, sh
);
964 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
965 ops_complete_compute
, sh
,
966 to_addr_conv(sh
, percpu
));
967 return async_gen_syndrome(blocks
, 0, count
+2,
968 STRIPE_SIZE
, &submit
);
971 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
972 ops_complete_compute
, sh
,
973 to_addr_conv(sh
, percpu
));
974 if (failb
== syndrome_disks
) {
975 /* We're missing D+P. */
976 return async_raid6_datap_recov(syndrome_disks
+2,
980 /* We're missing D+D. */
981 return async_raid6_2data_recov(syndrome_disks
+2,
982 STRIPE_SIZE
, faila
, failb
,
989 static void ops_complete_prexor(void *stripe_head_ref
)
991 struct stripe_head
*sh
= stripe_head_ref
;
993 pr_debug("%s: stripe %llu\n", __func__
,
994 (unsigned long long)sh
->sector
);
997 static struct dma_async_tx_descriptor
*
998 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
999 struct dma_async_tx_descriptor
*tx
)
1001 int disks
= sh
->disks
;
1002 struct page
**xor_srcs
= percpu
->scribble
;
1003 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1004 struct async_submit_ctl submit
;
1006 /* existing parity data subtracted */
1007 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1009 pr_debug("%s: stripe %llu\n", __func__
,
1010 (unsigned long long)sh
->sector
);
1012 for (i
= disks
; i
--; ) {
1013 struct r5dev
*dev
= &sh
->dev
[i
];
1014 /* Only process blocks that are known to be uptodate */
1015 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1016 xor_srcs
[count
++] = dev
->page
;
1019 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1020 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1021 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1026 static struct dma_async_tx_descriptor
*
1027 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1029 int disks
= sh
->disks
;
1032 pr_debug("%s: stripe %llu\n", __func__
,
1033 (unsigned long long)sh
->sector
);
1035 for (i
= disks
; i
--; ) {
1036 struct r5dev
*dev
= &sh
->dev
[i
];
1039 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1042 spin_lock_irq(&sh
->raid_conf
->device_lock
);
1043 chosen
= dev
->towrite
;
1044 dev
->towrite
= NULL
;
1045 BUG_ON(dev
->written
);
1046 wbi
= dev
->written
= chosen
;
1047 spin_unlock_irq(&sh
->raid_conf
->device_lock
);
1049 while (wbi
&& wbi
->bi_sector
<
1050 dev
->sector
+ STRIPE_SECTORS
) {
1051 if (wbi
->bi_rw
& REQ_FUA
)
1052 set_bit(R5_WantFUA
, &dev
->flags
);
1053 tx
= async_copy_data(1, wbi
, dev
->page
,
1055 wbi
= r5_next_bio(wbi
, dev
->sector
);
1063 static void ops_complete_reconstruct(void *stripe_head_ref
)
1065 struct stripe_head
*sh
= stripe_head_ref
;
1066 int disks
= sh
->disks
;
1067 int pd_idx
= sh
->pd_idx
;
1068 int qd_idx
= sh
->qd_idx
;
1072 pr_debug("%s: stripe %llu\n", __func__
,
1073 (unsigned long long)sh
->sector
);
1075 for (i
= disks
; i
--; )
1076 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1078 for (i
= disks
; i
--; ) {
1079 struct r5dev
*dev
= &sh
->dev
[i
];
1081 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1082 set_bit(R5_UPTODATE
, &dev
->flags
);
1084 set_bit(R5_WantFUA
, &dev
->flags
);
1088 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1089 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1090 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1091 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1093 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1094 sh
->reconstruct_state
= reconstruct_state_result
;
1097 set_bit(STRIPE_HANDLE
, &sh
->state
);
1102 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1103 struct dma_async_tx_descriptor
*tx
)
1105 int disks
= sh
->disks
;
1106 struct page
**xor_srcs
= percpu
->scribble
;
1107 struct async_submit_ctl submit
;
1108 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1109 struct page
*xor_dest
;
1111 unsigned long flags
;
1113 pr_debug("%s: stripe %llu\n", __func__
,
1114 (unsigned long long)sh
->sector
);
1116 /* check if prexor is active which means only process blocks
1117 * that are part of a read-modify-write (written)
1119 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1121 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1122 for (i
= disks
; i
--; ) {
1123 struct r5dev
*dev
= &sh
->dev
[i
];
1125 xor_srcs
[count
++] = dev
->page
;
1128 xor_dest
= sh
->dev
[pd_idx
].page
;
1129 for (i
= disks
; i
--; ) {
1130 struct r5dev
*dev
= &sh
->dev
[i
];
1132 xor_srcs
[count
++] = dev
->page
;
1136 /* 1/ if we prexor'd then the dest is reused as a source
1137 * 2/ if we did not prexor then we are redoing the parity
1138 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1139 * for the synchronous xor case
1141 flags
= ASYNC_TX_ACK
|
1142 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1144 atomic_inc(&sh
->count
);
1146 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1147 to_addr_conv(sh
, percpu
));
1148 if (unlikely(count
== 1))
1149 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1151 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1155 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1156 struct dma_async_tx_descriptor
*tx
)
1158 struct async_submit_ctl submit
;
1159 struct page
**blocks
= percpu
->scribble
;
1162 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1164 count
= set_syndrome_sources(blocks
, sh
);
1166 atomic_inc(&sh
->count
);
1168 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1169 sh
, to_addr_conv(sh
, percpu
));
1170 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1173 static void ops_complete_check(void *stripe_head_ref
)
1175 struct stripe_head
*sh
= stripe_head_ref
;
1177 pr_debug("%s: stripe %llu\n", __func__
,
1178 (unsigned long long)sh
->sector
);
1180 sh
->check_state
= check_state_check_result
;
1181 set_bit(STRIPE_HANDLE
, &sh
->state
);
1185 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1187 int disks
= sh
->disks
;
1188 int pd_idx
= sh
->pd_idx
;
1189 int qd_idx
= sh
->qd_idx
;
1190 struct page
*xor_dest
;
1191 struct page
**xor_srcs
= percpu
->scribble
;
1192 struct dma_async_tx_descriptor
*tx
;
1193 struct async_submit_ctl submit
;
1197 pr_debug("%s: stripe %llu\n", __func__
,
1198 (unsigned long long)sh
->sector
);
1201 xor_dest
= sh
->dev
[pd_idx
].page
;
1202 xor_srcs
[count
++] = xor_dest
;
1203 for (i
= disks
; i
--; ) {
1204 if (i
== pd_idx
|| i
== qd_idx
)
1206 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1209 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1210 to_addr_conv(sh
, percpu
));
1211 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1212 &sh
->ops
.zero_sum_result
, &submit
);
1214 atomic_inc(&sh
->count
);
1215 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1216 tx
= async_trigger_callback(&submit
);
1219 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1221 struct page
**srcs
= percpu
->scribble
;
1222 struct async_submit_ctl submit
;
1225 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1226 (unsigned long long)sh
->sector
, checkp
);
1228 count
= set_syndrome_sources(srcs
, sh
);
1232 atomic_inc(&sh
->count
);
1233 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1234 sh
, to_addr_conv(sh
, percpu
));
1235 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1236 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1239 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1241 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1242 struct dma_async_tx_descriptor
*tx
= NULL
;
1243 struct r5conf
*conf
= sh
->raid_conf
;
1244 int level
= conf
->level
;
1245 struct raid5_percpu
*percpu
;
1249 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1250 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1251 ops_run_biofill(sh
);
1255 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1257 tx
= ops_run_compute5(sh
, percpu
);
1259 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1260 tx
= ops_run_compute6_1(sh
, percpu
);
1262 tx
= ops_run_compute6_2(sh
, percpu
);
1264 /* terminate the chain if reconstruct is not set to be run */
1265 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1269 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1270 tx
= ops_run_prexor(sh
, percpu
, tx
);
1272 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1273 tx
= ops_run_biodrain(sh
, tx
);
1277 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1279 ops_run_reconstruct5(sh
, percpu
, tx
);
1281 ops_run_reconstruct6(sh
, percpu
, tx
);
1284 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1285 if (sh
->check_state
== check_state_run
)
1286 ops_run_check_p(sh
, percpu
);
1287 else if (sh
->check_state
== check_state_run_q
)
1288 ops_run_check_pq(sh
, percpu
, 0);
1289 else if (sh
->check_state
== check_state_run_pq
)
1290 ops_run_check_pq(sh
, percpu
, 1);
1296 for (i
= disks
; i
--; ) {
1297 struct r5dev
*dev
= &sh
->dev
[i
];
1298 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1299 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1304 #ifdef CONFIG_MULTICORE_RAID456
1305 static void async_run_ops(void *param
, async_cookie_t cookie
)
1307 struct stripe_head
*sh
= param
;
1308 unsigned long ops_request
= sh
->ops
.request
;
1310 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1311 wake_up(&sh
->ops
.wait_for_ops
);
1313 __raid_run_ops(sh
, ops_request
);
1317 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1319 /* since handle_stripe can be called outside of raid5d context
1320 * we need to ensure sh->ops.request is de-staged before another
1323 wait_event(sh
->ops
.wait_for_ops
,
1324 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1325 sh
->ops
.request
= ops_request
;
1327 atomic_inc(&sh
->count
);
1328 async_schedule(async_run_ops
, sh
);
1331 #define raid_run_ops __raid_run_ops
1334 static int grow_one_stripe(struct r5conf
*conf
)
1336 struct stripe_head
*sh
;
1337 sh
= kmem_cache_zalloc(conf
->slab_cache
, GFP_KERNEL
);
1341 sh
->raid_conf
= conf
;
1342 #ifdef CONFIG_MULTICORE_RAID456
1343 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1346 if (grow_buffers(sh
)) {
1348 kmem_cache_free(conf
->slab_cache
, sh
);
1351 /* we just created an active stripe so... */
1352 atomic_set(&sh
->count
, 1);
1353 atomic_inc(&conf
->active_stripes
);
1354 INIT_LIST_HEAD(&sh
->lru
);
1359 static int grow_stripes(struct r5conf
*conf
, int num
)
1361 struct kmem_cache
*sc
;
1362 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1364 if (conf
->mddev
->gendisk
)
1365 sprintf(conf
->cache_name
[0],
1366 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1368 sprintf(conf
->cache_name
[0],
1369 "raid%d-%p", conf
->level
, conf
->mddev
);
1370 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1372 conf
->active_name
= 0;
1373 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1374 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1378 conf
->slab_cache
= sc
;
1379 conf
->pool_size
= devs
;
1381 if (!grow_one_stripe(conf
))
1387 * scribble_len - return the required size of the scribble region
1388 * @num - total number of disks in the array
1390 * The size must be enough to contain:
1391 * 1/ a struct page pointer for each device in the array +2
1392 * 2/ room to convert each entry in (1) to its corresponding dma
1393 * (dma_map_page()) or page (page_address()) address.
1395 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1396 * calculate over all devices (not just the data blocks), using zeros in place
1397 * of the P and Q blocks.
1399 static size_t scribble_len(int num
)
1403 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1408 static int resize_stripes(struct r5conf
*conf
, int newsize
)
1410 /* Make all the stripes able to hold 'newsize' devices.
1411 * New slots in each stripe get 'page' set to a new page.
1413 * This happens in stages:
1414 * 1/ create a new kmem_cache and allocate the required number of
1416 * 2/ gather all the old stripe_heads and tranfer the pages across
1417 * to the new stripe_heads. This will have the side effect of
1418 * freezing the array as once all stripe_heads have been collected,
1419 * no IO will be possible. Old stripe heads are freed once their
1420 * pages have been transferred over, and the old kmem_cache is
1421 * freed when all stripes are done.
1422 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1423 * we simple return a failre status - no need to clean anything up.
1424 * 4/ allocate new pages for the new slots in the new stripe_heads.
1425 * If this fails, we don't bother trying the shrink the
1426 * stripe_heads down again, we just leave them as they are.
1427 * As each stripe_head is processed the new one is released into
1430 * Once step2 is started, we cannot afford to wait for a write,
1431 * so we use GFP_NOIO allocations.
1433 struct stripe_head
*osh
, *nsh
;
1434 LIST_HEAD(newstripes
);
1435 struct disk_info
*ndisks
;
1438 struct kmem_cache
*sc
;
1441 if (newsize
<= conf
->pool_size
)
1442 return 0; /* never bother to shrink */
1444 err
= md_allow_write(conf
->mddev
);
1449 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1450 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1455 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1456 nsh
= kmem_cache_zalloc(sc
, GFP_KERNEL
);
1460 nsh
->raid_conf
= conf
;
1461 #ifdef CONFIG_MULTICORE_RAID456
1462 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1465 list_add(&nsh
->lru
, &newstripes
);
1468 /* didn't get enough, give up */
1469 while (!list_empty(&newstripes
)) {
1470 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1471 list_del(&nsh
->lru
);
1472 kmem_cache_free(sc
, nsh
);
1474 kmem_cache_destroy(sc
);
1477 /* Step 2 - Must use GFP_NOIO now.
1478 * OK, we have enough stripes, start collecting inactive
1479 * stripes and copying them over
1481 list_for_each_entry(nsh
, &newstripes
, lru
) {
1482 spin_lock_irq(&conf
->device_lock
);
1483 wait_event_lock_irq(conf
->wait_for_stripe
,
1484 !list_empty(&conf
->inactive_list
),
1487 osh
= get_free_stripe(conf
);
1488 spin_unlock_irq(&conf
->device_lock
);
1489 atomic_set(&nsh
->count
, 1);
1490 for(i
=0; i
<conf
->pool_size
; i
++)
1491 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1492 for( ; i
<newsize
; i
++)
1493 nsh
->dev
[i
].page
= NULL
;
1494 kmem_cache_free(conf
->slab_cache
, osh
);
1496 kmem_cache_destroy(conf
->slab_cache
);
1499 * At this point, we are holding all the stripes so the array
1500 * is completely stalled, so now is a good time to resize
1501 * conf->disks and the scribble region
1503 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1505 for (i
=0; i
<conf
->raid_disks
; i
++)
1506 ndisks
[i
] = conf
->disks
[i
];
1508 conf
->disks
= ndisks
;
1513 conf
->scribble_len
= scribble_len(newsize
);
1514 for_each_present_cpu(cpu
) {
1515 struct raid5_percpu
*percpu
;
1518 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1519 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1522 kfree(percpu
->scribble
);
1523 percpu
->scribble
= scribble
;
1531 /* Step 4, return new stripes to service */
1532 while(!list_empty(&newstripes
)) {
1533 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1534 list_del_init(&nsh
->lru
);
1536 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1537 if (nsh
->dev
[i
].page
== NULL
) {
1538 struct page
*p
= alloc_page(GFP_NOIO
);
1539 nsh
->dev
[i
].page
= p
;
1543 release_stripe(nsh
);
1545 /* critical section pass, GFP_NOIO no longer needed */
1547 conf
->slab_cache
= sc
;
1548 conf
->active_name
= 1-conf
->active_name
;
1549 conf
->pool_size
= newsize
;
1553 static int drop_one_stripe(struct r5conf
*conf
)
1555 struct stripe_head
*sh
;
1557 spin_lock_irq(&conf
->device_lock
);
1558 sh
= get_free_stripe(conf
);
1559 spin_unlock_irq(&conf
->device_lock
);
1562 BUG_ON(atomic_read(&sh
->count
));
1564 kmem_cache_free(conf
->slab_cache
, sh
);
1565 atomic_dec(&conf
->active_stripes
);
1569 static void shrink_stripes(struct r5conf
*conf
)
1571 while (drop_one_stripe(conf
))
1574 if (conf
->slab_cache
)
1575 kmem_cache_destroy(conf
->slab_cache
);
1576 conf
->slab_cache
= NULL
;
1579 static void raid5_end_read_request(struct bio
* bi
, int error
)
1581 struct stripe_head
*sh
= bi
->bi_private
;
1582 struct r5conf
*conf
= sh
->raid_conf
;
1583 int disks
= sh
->disks
, i
;
1584 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1585 char b
[BDEVNAME_SIZE
];
1586 struct md_rdev
*rdev
;
1589 for (i
=0 ; i
<disks
; i
++)
1590 if (bi
== &sh
->dev
[i
].req
)
1593 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1594 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1602 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1603 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1604 rdev
= conf
->disks
[i
].rdev
;
1607 "md/raid:%s: read error corrected"
1608 " (%lu sectors at %llu on %s)\n",
1609 mdname(conf
->mddev
), STRIPE_SECTORS
,
1610 (unsigned long long)(sh
->sector
1611 + rdev
->data_offset
),
1612 bdevname(rdev
->bdev
, b
));
1613 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1614 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1615 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1617 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1618 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1620 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1622 rdev
= conf
->disks
[i
].rdev
;
1624 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1625 atomic_inc(&rdev
->read_errors
);
1626 if (conf
->mddev
->degraded
>= conf
->max_degraded
)
1629 "md/raid:%s: read error not correctable "
1630 "(sector %llu on %s).\n",
1631 mdname(conf
->mddev
),
1632 (unsigned long long)(sh
->sector
1633 + rdev
->data_offset
),
1635 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1639 "md/raid:%s: read error NOT corrected!! "
1640 "(sector %llu on %s).\n",
1641 mdname(conf
->mddev
),
1642 (unsigned long long)(sh
->sector
1643 + rdev
->data_offset
),
1645 else if (atomic_read(&rdev
->read_errors
)
1646 > conf
->max_nr_stripes
)
1648 "md/raid:%s: Too many read errors, failing device %s.\n",
1649 mdname(conf
->mddev
), bdn
);
1653 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1655 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1656 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1657 md_error(conf
->mddev
, rdev
);
1660 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1661 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1662 set_bit(STRIPE_HANDLE
, &sh
->state
);
1666 static void raid5_end_write_request(struct bio
*bi
, int error
)
1668 struct stripe_head
*sh
= bi
->bi_private
;
1669 struct r5conf
*conf
= sh
->raid_conf
;
1670 int disks
= sh
->disks
, i
;
1671 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1675 for (i
=0 ; i
<disks
; i
++)
1676 if (bi
== &sh
->dev
[i
].req
)
1679 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1680 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1688 set_bit(WriteErrorSeen
, &conf
->disks
[i
].rdev
->flags
);
1689 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
1690 } else if (is_badblock(conf
->disks
[i
].rdev
, sh
->sector
, STRIPE_SECTORS
,
1691 &first_bad
, &bad_sectors
))
1692 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
1694 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1696 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1697 set_bit(STRIPE_HANDLE
, &sh
->state
);
1702 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1704 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1706 struct r5dev
*dev
= &sh
->dev
[i
];
1708 bio_init(&dev
->req
);
1709 dev
->req
.bi_io_vec
= &dev
->vec
;
1711 dev
->req
.bi_max_vecs
++;
1712 dev
->vec
.bv_page
= dev
->page
;
1713 dev
->vec
.bv_len
= STRIPE_SIZE
;
1714 dev
->vec
.bv_offset
= 0;
1716 dev
->req
.bi_sector
= sh
->sector
;
1717 dev
->req
.bi_private
= sh
;
1720 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1723 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1725 char b
[BDEVNAME_SIZE
];
1726 struct r5conf
*conf
= mddev
->private;
1727 pr_debug("raid456: error called\n");
1729 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1730 unsigned long flags
;
1731 spin_lock_irqsave(&conf
->device_lock
, flags
);
1733 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1735 * if recovery was running, make sure it aborts.
1737 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1739 set_bit(Blocked
, &rdev
->flags
);
1740 set_bit(Faulty
, &rdev
->flags
);
1741 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1743 "md/raid:%s: Disk failure on %s, disabling device.\n"
1744 "md/raid:%s: Operation continuing on %d devices.\n",
1746 bdevname(rdev
->bdev
, b
),
1748 conf
->raid_disks
- mddev
->degraded
);
1752 * Input: a 'big' sector number,
1753 * Output: index of the data and parity disk, and the sector # in them.
1755 static sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
1756 int previous
, int *dd_idx
,
1757 struct stripe_head
*sh
)
1759 sector_t stripe
, stripe2
;
1760 sector_t chunk_number
;
1761 unsigned int chunk_offset
;
1764 sector_t new_sector
;
1765 int algorithm
= previous
? conf
->prev_algo
1767 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1768 : conf
->chunk_sectors
;
1769 int raid_disks
= previous
? conf
->previous_raid_disks
1771 int data_disks
= raid_disks
- conf
->max_degraded
;
1773 /* First compute the information on this sector */
1776 * Compute the chunk number and the sector offset inside the chunk
1778 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1779 chunk_number
= r_sector
;
1782 * Compute the stripe number
1784 stripe
= chunk_number
;
1785 *dd_idx
= sector_div(stripe
, data_disks
);
1788 * Select the parity disk based on the user selected algorithm.
1790 pd_idx
= qd_idx
= -1;
1791 switch(conf
->level
) {
1793 pd_idx
= data_disks
;
1796 switch (algorithm
) {
1797 case ALGORITHM_LEFT_ASYMMETRIC
:
1798 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1799 if (*dd_idx
>= pd_idx
)
1802 case ALGORITHM_RIGHT_ASYMMETRIC
:
1803 pd_idx
= sector_div(stripe2
, raid_disks
);
1804 if (*dd_idx
>= pd_idx
)
1807 case ALGORITHM_LEFT_SYMMETRIC
:
1808 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1809 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1811 case ALGORITHM_RIGHT_SYMMETRIC
:
1812 pd_idx
= sector_div(stripe2
, raid_disks
);
1813 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1815 case ALGORITHM_PARITY_0
:
1819 case ALGORITHM_PARITY_N
:
1820 pd_idx
= data_disks
;
1828 switch (algorithm
) {
1829 case ALGORITHM_LEFT_ASYMMETRIC
:
1830 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1831 qd_idx
= pd_idx
+ 1;
1832 if (pd_idx
== raid_disks
-1) {
1833 (*dd_idx
)++; /* Q D D D P */
1835 } else if (*dd_idx
>= pd_idx
)
1836 (*dd_idx
) += 2; /* D D P Q D */
1838 case ALGORITHM_RIGHT_ASYMMETRIC
:
1839 pd_idx
= sector_div(stripe2
, raid_disks
);
1840 qd_idx
= pd_idx
+ 1;
1841 if (pd_idx
== raid_disks
-1) {
1842 (*dd_idx
)++; /* Q D D D P */
1844 } else if (*dd_idx
>= pd_idx
)
1845 (*dd_idx
) += 2; /* D D P Q D */
1847 case ALGORITHM_LEFT_SYMMETRIC
:
1848 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1849 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1850 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1852 case ALGORITHM_RIGHT_SYMMETRIC
:
1853 pd_idx
= sector_div(stripe2
, raid_disks
);
1854 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1855 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1858 case ALGORITHM_PARITY_0
:
1863 case ALGORITHM_PARITY_N
:
1864 pd_idx
= data_disks
;
1865 qd_idx
= data_disks
+ 1;
1868 case ALGORITHM_ROTATING_ZERO_RESTART
:
1869 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1870 * of blocks for computing Q is different.
1872 pd_idx
= sector_div(stripe2
, raid_disks
);
1873 qd_idx
= pd_idx
+ 1;
1874 if (pd_idx
== raid_disks
-1) {
1875 (*dd_idx
)++; /* Q D D D P */
1877 } else if (*dd_idx
>= pd_idx
)
1878 (*dd_idx
) += 2; /* D D P Q D */
1882 case ALGORITHM_ROTATING_N_RESTART
:
1883 /* Same a left_asymmetric, by first stripe is
1884 * D D D P Q rather than
1888 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1889 qd_idx
= pd_idx
+ 1;
1890 if (pd_idx
== raid_disks
-1) {
1891 (*dd_idx
)++; /* Q D D D P */
1893 } else if (*dd_idx
>= pd_idx
)
1894 (*dd_idx
) += 2; /* D D P Q D */
1898 case ALGORITHM_ROTATING_N_CONTINUE
:
1899 /* Same as left_symmetric but Q is before P */
1900 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1901 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1902 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1906 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1907 /* RAID5 left_asymmetric, with Q on last device */
1908 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1909 if (*dd_idx
>= pd_idx
)
1911 qd_idx
= raid_disks
- 1;
1914 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1915 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1916 if (*dd_idx
>= pd_idx
)
1918 qd_idx
= raid_disks
- 1;
1921 case ALGORITHM_LEFT_SYMMETRIC_6
:
1922 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1923 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1924 qd_idx
= raid_disks
- 1;
1927 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1928 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1929 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1930 qd_idx
= raid_disks
- 1;
1933 case ALGORITHM_PARITY_0_6
:
1936 qd_idx
= raid_disks
- 1;
1946 sh
->pd_idx
= pd_idx
;
1947 sh
->qd_idx
= qd_idx
;
1948 sh
->ddf_layout
= ddf_layout
;
1951 * Finally, compute the new sector number
1953 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1958 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1960 struct r5conf
*conf
= sh
->raid_conf
;
1961 int raid_disks
= sh
->disks
;
1962 int data_disks
= raid_disks
- conf
->max_degraded
;
1963 sector_t new_sector
= sh
->sector
, check
;
1964 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1965 : conf
->chunk_sectors
;
1966 int algorithm
= previous
? conf
->prev_algo
1970 sector_t chunk_number
;
1971 int dummy1
, dd_idx
= i
;
1973 struct stripe_head sh2
;
1976 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1977 stripe
= new_sector
;
1979 if (i
== sh
->pd_idx
)
1981 switch(conf
->level
) {
1984 switch (algorithm
) {
1985 case ALGORITHM_LEFT_ASYMMETRIC
:
1986 case ALGORITHM_RIGHT_ASYMMETRIC
:
1990 case ALGORITHM_LEFT_SYMMETRIC
:
1991 case ALGORITHM_RIGHT_SYMMETRIC
:
1994 i
-= (sh
->pd_idx
+ 1);
1996 case ALGORITHM_PARITY_0
:
1999 case ALGORITHM_PARITY_N
:
2006 if (i
== sh
->qd_idx
)
2007 return 0; /* It is the Q disk */
2008 switch (algorithm
) {
2009 case ALGORITHM_LEFT_ASYMMETRIC
:
2010 case ALGORITHM_RIGHT_ASYMMETRIC
:
2011 case ALGORITHM_ROTATING_ZERO_RESTART
:
2012 case ALGORITHM_ROTATING_N_RESTART
:
2013 if (sh
->pd_idx
== raid_disks
-1)
2014 i
--; /* Q D D D P */
2015 else if (i
> sh
->pd_idx
)
2016 i
-= 2; /* D D P Q D */
2018 case ALGORITHM_LEFT_SYMMETRIC
:
2019 case ALGORITHM_RIGHT_SYMMETRIC
:
2020 if (sh
->pd_idx
== raid_disks
-1)
2021 i
--; /* Q D D D P */
2026 i
-= (sh
->pd_idx
+ 2);
2029 case ALGORITHM_PARITY_0
:
2032 case ALGORITHM_PARITY_N
:
2034 case ALGORITHM_ROTATING_N_CONTINUE
:
2035 /* Like left_symmetric, but P is before Q */
2036 if (sh
->pd_idx
== 0)
2037 i
--; /* P D D D Q */
2042 i
-= (sh
->pd_idx
+ 1);
2045 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2046 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2050 case ALGORITHM_LEFT_SYMMETRIC_6
:
2051 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2053 i
+= data_disks
+ 1;
2054 i
-= (sh
->pd_idx
+ 1);
2056 case ALGORITHM_PARITY_0_6
:
2065 chunk_number
= stripe
* data_disks
+ i
;
2066 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2068 check
= raid5_compute_sector(conf
, r_sector
,
2069 previous
, &dummy1
, &sh2
);
2070 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2071 || sh2
.qd_idx
!= sh
->qd_idx
) {
2072 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2073 mdname(conf
->mddev
));
2081 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2082 int rcw
, int expand
)
2084 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2085 struct r5conf
*conf
= sh
->raid_conf
;
2086 int level
= conf
->level
;
2089 /* if we are not expanding this is a proper write request, and
2090 * there will be bios with new data to be drained into the
2094 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2095 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2097 sh
->reconstruct_state
= reconstruct_state_run
;
2099 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2101 for (i
= disks
; i
--; ) {
2102 struct r5dev
*dev
= &sh
->dev
[i
];
2105 set_bit(R5_LOCKED
, &dev
->flags
);
2106 set_bit(R5_Wantdrain
, &dev
->flags
);
2108 clear_bit(R5_UPTODATE
, &dev
->flags
);
2112 if (s
->locked
+ conf
->max_degraded
== disks
)
2113 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2114 atomic_inc(&conf
->pending_full_writes
);
2117 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2118 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2120 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2121 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2122 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2123 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2125 for (i
= disks
; i
--; ) {
2126 struct r5dev
*dev
= &sh
->dev
[i
];
2131 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2132 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2133 set_bit(R5_Wantdrain
, &dev
->flags
);
2134 set_bit(R5_LOCKED
, &dev
->flags
);
2135 clear_bit(R5_UPTODATE
, &dev
->flags
);
2141 /* keep the parity disk(s) locked while asynchronous operations
2144 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2145 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2149 int qd_idx
= sh
->qd_idx
;
2150 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2152 set_bit(R5_LOCKED
, &dev
->flags
);
2153 clear_bit(R5_UPTODATE
, &dev
->flags
);
2157 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2158 __func__
, (unsigned long long)sh
->sector
,
2159 s
->locked
, s
->ops_request
);
2163 * Each stripe/dev can have one or more bion attached.
2164 * toread/towrite point to the first in a chain.
2165 * The bi_next chain must be in order.
2167 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2170 struct r5conf
*conf
= sh
->raid_conf
;
2173 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2174 (unsigned long long)bi
->bi_sector
,
2175 (unsigned long long)sh
->sector
);
2178 spin_lock_irq(&conf
->device_lock
);
2180 bip
= &sh
->dev
[dd_idx
].towrite
;
2181 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2184 bip
= &sh
->dev
[dd_idx
].toread
;
2185 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2186 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2188 bip
= & (*bip
)->bi_next
;
2190 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2193 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2197 bi
->bi_phys_segments
++;
2200 /* check if page is covered */
2201 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2202 for (bi
=sh
->dev
[dd_idx
].towrite
;
2203 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2204 bi
&& bi
->bi_sector
<= sector
;
2205 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2206 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2207 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2209 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2210 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2212 spin_unlock_irq(&conf
->device_lock
);
2214 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2215 (unsigned long long)(*bip
)->bi_sector
,
2216 (unsigned long long)sh
->sector
, dd_idx
);
2218 if (conf
->mddev
->bitmap
&& firstwrite
) {
2219 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2221 sh
->bm_seq
= conf
->seq_flush
+1;
2222 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2227 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2228 spin_unlock_irq(&conf
->device_lock
);
2232 static void end_reshape(struct r5conf
*conf
);
2234 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
2235 struct stripe_head
*sh
)
2237 int sectors_per_chunk
=
2238 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2240 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2241 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2243 raid5_compute_sector(conf
,
2244 stripe
* (disks
- conf
->max_degraded
)
2245 *sectors_per_chunk
+ chunk_offset
,
2251 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
2252 struct stripe_head_state
*s
, int disks
,
2253 struct bio
**return_bi
)
2256 for (i
= disks
; i
--; ) {
2260 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2261 struct md_rdev
*rdev
;
2263 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2264 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2265 atomic_inc(&rdev
->nr_pending
);
2270 if (!rdev_set_badblocks(
2274 md_error(conf
->mddev
, rdev
);
2275 rdev_dec_pending(rdev
, conf
->mddev
);
2278 spin_lock_irq(&conf
->device_lock
);
2279 /* fail all writes first */
2280 bi
= sh
->dev
[i
].towrite
;
2281 sh
->dev
[i
].towrite
= NULL
;
2287 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2288 wake_up(&conf
->wait_for_overlap
);
2290 while (bi
&& bi
->bi_sector
<
2291 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2292 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2293 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2294 if (!raid5_dec_bi_phys_segments(bi
)) {
2295 md_write_end(conf
->mddev
);
2296 bi
->bi_next
= *return_bi
;
2301 /* and fail all 'written' */
2302 bi
= sh
->dev
[i
].written
;
2303 sh
->dev
[i
].written
= NULL
;
2304 if (bi
) bitmap_end
= 1;
2305 while (bi
&& bi
->bi_sector
<
2306 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2307 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2308 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2309 if (!raid5_dec_bi_phys_segments(bi
)) {
2310 md_write_end(conf
->mddev
);
2311 bi
->bi_next
= *return_bi
;
2317 /* fail any reads if this device is non-operational and
2318 * the data has not reached the cache yet.
2320 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2321 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2322 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2323 bi
= sh
->dev
[i
].toread
;
2324 sh
->dev
[i
].toread
= NULL
;
2325 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2326 wake_up(&conf
->wait_for_overlap
);
2327 if (bi
) s
->to_read
--;
2328 while (bi
&& bi
->bi_sector
<
2329 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2330 struct bio
*nextbi
=
2331 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2332 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2333 if (!raid5_dec_bi_phys_segments(bi
)) {
2334 bi
->bi_next
= *return_bi
;
2340 spin_unlock_irq(&conf
->device_lock
);
2342 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2343 STRIPE_SECTORS
, 0, 0);
2344 /* If we were in the middle of a write the parity block might
2345 * still be locked - so just clear all R5_LOCKED flags
2347 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2350 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2351 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2352 md_wakeup_thread(conf
->mddev
->thread
);
2356 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
2357 struct stripe_head_state
*s
)
2362 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 0);
2363 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2365 /* There is nothing more to do for sync/check/repair.
2366 * For recover we need to record a bad block on all
2367 * non-sync devices, or abort the recovery
2369 if (!test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
))
2371 /* During recovery devices cannot be removed, so locking and
2372 * refcounting of rdevs is not needed
2374 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2375 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
2377 || test_bit(Faulty
, &rdev
->flags
)
2378 || test_bit(In_sync
, &rdev
->flags
))
2380 if (!rdev_set_badblocks(rdev
, sh
->sector
,
2385 conf
->recovery_disabled
= conf
->mddev
->recovery_disabled
;
2386 set_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
);
2390 /* fetch_block - checks the given member device to see if its data needs
2391 * to be read or computed to satisfy a request.
2393 * Returns 1 when no more member devices need to be checked, otherwise returns
2394 * 0 to tell the loop in handle_stripe_fill to continue
2396 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2397 int disk_idx
, int disks
)
2399 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2400 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
2401 &sh
->dev
[s
->failed_num
[1]] };
2403 /* is the data in this block needed, and can we get it? */
2404 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2405 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2407 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2408 s
->syncing
|| s
->expanding
||
2409 (s
->failed
>= 1 && fdev
[0]->toread
) ||
2410 (s
->failed
>= 2 && fdev
[1]->toread
) ||
2411 (sh
->raid_conf
->level
<= 5 && s
->failed
&& fdev
[0]->towrite
&&
2412 !test_bit(R5_OVERWRITE
, &fdev
[0]->flags
)) ||
2413 (sh
->raid_conf
->level
== 6 && s
->failed
&& s
->to_write
))) {
2414 /* we would like to get this block, possibly by computing it,
2415 * otherwise read it if the backing disk is insync
2417 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2418 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2419 if ((s
->uptodate
== disks
- 1) &&
2420 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
2421 disk_idx
== s
->failed_num
[1]))) {
2422 /* have disk failed, and we're requested to fetch it;
2425 pr_debug("Computing stripe %llu block %d\n",
2426 (unsigned long long)sh
->sector
, disk_idx
);
2427 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2428 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2429 set_bit(R5_Wantcompute
, &dev
->flags
);
2430 sh
->ops
.target
= disk_idx
;
2431 sh
->ops
.target2
= -1; /* no 2nd target */
2433 /* Careful: from this point on 'uptodate' is in the eye
2434 * of raid_run_ops which services 'compute' operations
2435 * before writes. R5_Wantcompute flags a block that will
2436 * be R5_UPTODATE by the time it is needed for a
2437 * subsequent operation.
2441 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2442 /* Computing 2-failure is *very* expensive; only
2443 * do it if failed >= 2
2446 for (other
= disks
; other
--; ) {
2447 if (other
== disk_idx
)
2449 if (!test_bit(R5_UPTODATE
,
2450 &sh
->dev
[other
].flags
))
2454 pr_debug("Computing stripe %llu blocks %d,%d\n",
2455 (unsigned long long)sh
->sector
,
2457 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2458 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2459 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2460 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2461 sh
->ops
.target
= disk_idx
;
2462 sh
->ops
.target2
= other
;
2466 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2467 set_bit(R5_LOCKED
, &dev
->flags
);
2468 set_bit(R5_Wantread
, &dev
->flags
);
2470 pr_debug("Reading block %d (sync=%d)\n",
2471 disk_idx
, s
->syncing
);
2479 * handle_stripe_fill - read or compute data to satisfy pending requests.
2481 static void handle_stripe_fill(struct stripe_head
*sh
,
2482 struct stripe_head_state
*s
,
2487 /* look for blocks to read/compute, skip this if a compute
2488 * is already in flight, or if the stripe contents are in the
2489 * midst of changing due to a write
2491 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2492 !sh
->reconstruct_state
)
2493 for (i
= disks
; i
--; )
2494 if (fetch_block(sh
, s
, i
, disks
))
2496 set_bit(STRIPE_HANDLE
, &sh
->state
);
2500 /* handle_stripe_clean_event
2501 * any written block on an uptodate or failed drive can be returned.
2502 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2503 * never LOCKED, so we don't need to test 'failed' directly.
2505 static void handle_stripe_clean_event(struct r5conf
*conf
,
2506 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2511 for (i
= disks
; i
--; )
2512 if (sh
->dev
[i
].written
) {
2514 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2515 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2516 /* We can return any write requests */
2517 struct bio
*wbi
, *wbi2
;
2519 pr_debug("Return write for disc %d\n", i
);
2520 spin_lock_irq(&conf
->device_lock
);
2522 dev
->written
= NULL
;
2523 while (wbi
&& wbi
->bi_sector
<
2524 dev
->sector
+ STRIPE_SECTORS
) {
2525 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2526 if (!raid5_dec_bi_phys_segments(wbi
)) {
2527 md_write_end(conf
->mddev
);
2528 wbi
->bi_next
= *return_bi
;
2533 if (dev
->towrite
== NULL
)
2535 spin_unlock_irq(&conf
->device_lock
);
2537 bitmap_endwrite(conf
->mddev
->bitmap
,
2540 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2545 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2546 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2547 md_wakeup_thread(conf
->mddev
->thread
);
2550 static void handle_stripe_dirtying(struct r5conf
*conf
,
2551 struct stripe_head
*sh
,
2552 struct stripe_head_state
*s
,
2555 int rmw
= 0, rcw
= 0, i
;
2556 if (conf
->max_degraded
== 2) {
2557 /* RAID6 requires 'rcw' in current implementation
2558 * Calculate the real rcw later - for now fake it
2559 * look like rcw is cheaper
2562 } else for (i
= disks
; i
--; ) {
2563 /* would I have to read this buffer for read_modify_write */
2564 struct r5dev
*dev
= &sh
->dev
[i
];
2565 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2566 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2567 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2568 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2569 if (test_bit(R5_Insync
, &dev
->flags
))
2572 rmw
+= 2*disks
; /* cannot read it */
2574 /* Would I have to read this buffer for reconstruct_write */
2575 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2576 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2577 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2578 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2579 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2584 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2585 (unsigned long long)sh
->sector
, rmw
, rcw
);
2586 set_bit(STRIPE_HANDLE
, &sh
->state
);
2587 if (rmw
< rcw
&& rmw
> 0)
2588 /* prefer read-modify-write, but need to get some data */
2589 for (i
= disks
; i
--; ) {
2590 struct r5dev
*dev
= &sh
->dev
[i
];
2591 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2592 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2593 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2594 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2595 test_bit(R5_Insync
, &dev
->flags
)) {
2597 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2598 pr_debug("Read_old block "
2599 "%d for r-m-w\n", i
);
2600 set_bit(R5_LOCKED
, &dev
->flags
);
2601 set_bit(R5_Wantread
, &dev
->flags
);
2604 set_bit(STRIPE_DELAYED
, &sh
->state
);
2605 set_bit(STRIPE_HANDLE
, &sh
->state
);
2609 if (rcw
<= rmw
&& rcw
> 0) {
2610 /* want reconstruct write, but need to get some data */
2612 for (i
= disks
; i
--; ) {
2613 struct r5dev
*dev
= &sh
->dev
[i
];
2614 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2615 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
2616 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2617 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2618 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2620 if (!test_bit(R5_Insync
, &dev
->flags
))
2621 continue; /* it's a failed drive */
2623 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2624 pr_debug("Read_old block "
2625 "%d for Reconstruct\n", i
);
2626 set_bit(R5_LOCKED
, &dev
->flags
);
2627 set_bit(R5_Wantread
, &dev
->flags
);
2630 set_bit(STRIPE_DELAYED
, &sh
->state
);
2631 set_bit(STRIPE_HANDLE
, &sh
->state
);
2636 /* now if nothing is locked, and if we have enough data,
2637 * we can start a write request
2639 /* since handle_stripe can be called at any time we need to handle the
2640 * case where a compute block operation has been submitted and then a
2641 * subsequent call wants to start a write request. raid_run_ops only
2642 * handles the case where compute block and reconstruct are requested
2643 * simultaneously. If this is not the case then new writes need to be
2644 * held off until the compute completes.
2646 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2647 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2648 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2649 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2652 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
2653 struct stripe_head_state
*s
, int disks
)
2655 struct r5dev
*dev
= NULL
;
2657 set_bit(STRIPE_HANDLE
, &sh
->state
);
2659 switch (sh
->check_state
) {
2660 case check_state_idle
:
2661 /* start a new check operation if there are no failures */
2662 if (s
->failed
== 0) {
2663 BUG_ON(s
->uptodate
!= disks
);
2664 sh
->check_state
= check_state_run
;
2665 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2666 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2670 dev
= &sh
->dev
[s
->failed_num
[0]];
2672 case check_state_compute_result
:
2673 sh
->check_state
= check_state_idle
;
2675 dev
= &sh
->dev
[sh
->pd_idx
];
2677 /* check that a write has not made the stripe insync */
2678 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2681 /* either failed parity check, or recovery is happening */
2682 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2683 BUG_ON(s
->uptodate
!= disks
);
2685 set_bit(R5_LOCKED
, &dev
->flags
);
2687 set_bit(R5_Wantwrite
, &dev
->flags
);
2689 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2690 set_bit(STRIPE_INSYNC
, &sh
->state
);
2692 case check_state_run
:
2693 break; /* we will be called again upon completion */
2694 case check_state_check_result
:
2695 sh
->check_state
= check_state_idle
;
2697 /* if a failure occurred during the check operation, leave
2698 * STRIPE_INSYNC not set and let the stripe be handled again
2703 /* handle a successful check operation, if parity is correct
2704 * we are done. Otherwise update the mismatch count and repair
2705 * parity if !MD_RECOVERY_CHECK
2707 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2708 /* parity is correct (on disc,
2709 * not in buffer any more)
2711 set_bit(STRIPE_INSYNC
, &sh
->state
);
2713 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2714 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2715 /* don't try to repair!! */
2716 set_bit(STRIPE_INSYNC
, &sh
->state
);
2718 sh
->check_state
= check_state_compute_run
;
2719 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2720 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2721 set_bit(R5_Wantcompute
,
2722 &sh
->dev
[sh
->pd_idx
].flags
);
2723 sh
->ops
.target
= sh
->pd_idx
;
2724 sh
->ops
.target2
= -1;
2729 case check_state_compute_run
:
2732 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2733 __func__
, sh
->check_state
,
2734 (unsigned long long) sh
->sector
);
2740 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
2741 struct stripe_head_state
*s
,
2744 int pd_idx
= sh
->pd_idx
;
2745 int qd_idx
= sh
->qd_idx
;
2748 set_bit(STRIPE_HANDLE
, &sh
->state
);
2750 BUG_ON(s
->failed
> 2);
2752 /* Want to check and possibly repair P and Q.
2753 * However there could be one 'failed' device, in which
2754 * case we can only check one of them, possibly using the
2755 * other to generate missing data
2758 switch (sh
->check_state
) {
2759 case check_state_idle
:
2760 /* start a new check operation if there are < 2 failures */
2761 if (s
->failed
== s
->q_failed
) {
2762 /* The only possible failed device holds Q, so it
2763 * makes sense to check P (If anything else were failed,
2764 * we would have used P to recreate it).
2766 sh
->check_state
= check_state_run
;
2768 if (!s
->q_failed
&& s
->failed
< 2) {
2769 /* Q is not failed, and we didn't use it to generate
2770 * anything, so it makes sense to check it
2772 if (sh
->check_state
== check_state_run
)
2773 sh
->check_state
= check_state_run_pq
;
2775 sh
->check_state
= check_state_run_q
;
2778 /* discard potentially stale zero_sum_result */
2779 sh
->ops
.zero_sum_result
= 0;
2781 if (sh
->check_state
== check_state_run
) {
2782 /* async_xor_zero_sum destroys the contents of P */
2783 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2786 if (sh
->check_state
>= check_state_run
&&
2787 sh
->check_state
<= check_state_run_pq
) {
2788 /* async_syndrome_zero_sum preserves P and Q, so
2789 * no need to mark them !uptodate here
2791 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2795 /* we have 2-disk failure */
2796 BUG_ON(s
->failed
!= 2);
2798 case check_state_compute_result
:
2799 sh
->check_state
= check_state_idle
;
2801 /* check that a write has not made the stripe insync */
2802 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2805 /* now write out any block on a failed drive,
2806 * or P or Q if they were recomputed
2808 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2809 if (s
->failed
== 2) {
2810 dev
= &sh
->dev
[s
->failed_num
[1]];
2812 set_bit(R5_LOCKED
, &dev
->flags
);
2813 set_bit(R5_Wantwrite
, &dev
->flags
);
2815 if (s
->failed
>= 1) {
2816 dev
= &sh
->dev
[s
->failed_num
[0]];
2818 set_bit(R5_LOCKED
, &dev
->flags
);
2819 set_bit(R5_Wantwrite
, &dev
->flags
);
2821 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2822 dev
= &sh
->dev
[pd_idx
];
2824 set_bit(R5_LOCKED
, &dev
->flags
);
2825 set_bit(R5_Wantwrite
, &dev
->flags
);
2827 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2828 dev
= &sh
->dev
[qd_idx
];
2830 set_bit(R5_LOCKED
, &dev
->flags
);
2831 set_bit(R5_Wantwrite
, &dev
->flags
);
2833 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2835 set_bit(STRIPE_INSYNC
, &sh
->state
);
2837 case check_state_run
:
2838 case check_state_run_q
:
2839 case check_state_run_pq
:
2840 break; /* we will be called again upon completion */
2841 case check_state_check_result
:
2842 sh
->check_state
= check_state_idle
;
2844 /* handle a successful check operation, if parity is correct
2845 * we are done. Otherwise update the mismatch count and repair
2846 * parity if !MD_RECOVERY_CHECK
2848 if (sh
->ops
.zero_sum_result
== 0) {
2849 /* both parities are correct */
2851 set_bit(STRIPE_INSYNC
, &sh
->state
);
2853 /* in contrast to the raid5 case we can validate
2854 * parity, but still have a failure to write
2857 sh
->check_state
= check_state_compute_result
;
2858 /* Returning at this point means that we may go
2859 * off and bring p and/or q uptodate again so
2860 * we make sure to check zero_sum_result again
2861 * to verify if p or q need writeback
2865 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2866 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2867 /* don't try to repair!! */
2868 set_bit(STRIPE_INSYNC
, &sh
->state
);
2870 int *target
= &sh
->ops
.target
;
2872 sh
->ops
.target
= -1;
2873 sh
->ops
.target2
= -1;
2874 sh
->check_state
= check_state_compute_run
;
2875 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2876 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2877 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2878 set_bit(R5_Wantcompute
,
2879 &sh
->dev
[pd_idx
].flags
);
2881 target
= &sh
->ops
.target2
;
2884 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2885 set_bit(R5_Wantcompute
,
2886 &sh
->dev
[qd_idx
].flags
);
2893 case check_state_compute_run
:
2896 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2897 __func__
, sh
->check_state
,
2898 (unsigned long long) sh
->sector
);
2903 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
2907 /* We have read all the blocks in this stripe and now we need to
2908 * copy some of them into a target stripe for expand.
2910 struct dma_async_tx_descriptor
*tx
= NULL
;
2911 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2912 for (i
= 0; i
< sh
->disks
; i
++)
2913 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2915 struct stripe_head
*sh2
;
2916 struct async_submit_ctl submit
;
2918 sector_t bn
= compute_blocknr(sh
, i
, 1);
2919 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2921 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2923 /* so far only the early blocks of this stripe
2924 * have been requested. When later blocks
2925 * get requested, we will try again
2928 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2929 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2930 /* must have already done this block */
2931 release_stripe(sh2
);
2935 /* place all the copies on one channel */
2936 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2937 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2938 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2941 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2942 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2943 for (j
= 0; j
< conf
->raid_disks
; j
++)
2944 if (j
!= sh2
->pd_idx
&&
2946 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2948 if (j
== conf
->raid_disks
) {
2949 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2950 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2952 release_stripe(sh2
);
2955 /* done submitting copies, wait for them to complete */
2958 dma_wait_for_async_tx(tx
);
2964 * handle_stripe - do things to a stripe.
2966 * We lock the stripe and then examine the state of various bits
2967 * to see what needs to be done.
2969 * return some read request which now have data
2970 * return some write requests which are safely on disc
2971 * schedule a read on some buffers
2972 * schedule a write of some buffers
2973 * return confirmation of parity correctness
2975 * buffers are taken off read_list or write_list, and bh_cache buffers
2976 * get BH_Lock set before the stripe lock is released.
2980 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
2982 struct r5conf
*conf
= sh
->raid_conf
;
2983 int disks
= sh
->disks
;
2987 memset(s
, 0, sizeof(*s
));
2989 s
->syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2990 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2991 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2992 s
->failed_num
[0] = -1;
2993 s
->failed_num
[1] = -1;
2995 /* Now to look around and see what can be done */
2997 spin_lock_irq(&conf
->device_lock
);
2998 for (i
=disks
; i
--; ) {
2999 struct md_rdev
*rdev
;
3006 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3007 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3008 /* maybe we can reply to a read
3010 * new wantfill requests are only permitted while
3011 * ops_complete_biofill is guaranteed to be inactive
3013 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3014 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3015 set_bit(R5_Wantfill
, &dev
->flags
);
3017 /* now count some things */
3018 if (test_bit(R5_LOCKED
, &dev
->flags
))
3020 if (test_bit(R5_UPTODATE
, &dev
->flags
))
3022 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3024 BUG_ON(s
->compute
> 2);
3027 if (test_bit(R5_Wantfill
, &dev
->flags
))
3029 else if (dev
->toread
)
3033 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3038 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3039 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3042 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3043 &first_bad
, &bad_sectors
);
3044 if (s
->blocked_rdev
== NULL
3045 && (test_bit(Blocked
, &rdev
->flags
)
3048 set_bit(BlockedBadBlocks
,
3050 s
->blocked_rdev
= rdev
;
3051 atomic_inc(&rdev
->nr_pending
);
3054 clear_bit(R5_Insync
, &dev
->flags
);
3058 /* also not in-sync */
3059 if (!test_bit(WriteErrorSeen
, &rdev
->flags
)) {
3060 /* treat as in-sync, but with a read error
3061 * which we can now try to correct
3063 set_bit(R5_Insync
, &dev
->flags
);
3064 set_bit(R5_ReadError
, &dev
->flags
);
3066 } else if (test_bit(In_sync
, &rdev
->flags
))
3067 set_bit(R5_Insync
, &dev
->flags
);
3068 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3069 /* in sync if before recovery_offset */
3070 set_bit(R5_Insync
, &dev
->flags
);
3071 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
3072 test_bit(R5_Expanded
, &dev
->flags
))
3073 /* If we've reshaped into here, we assume it is Insync.
3074 * We will shortly update recovery_offset to make
3077 set_bit(R5_Insync
, &dev
->flags
);
3079 if (rdev
&& test_bit(R5_WriteError
, &dev
->flags
)) {
3080 clear_bit(R5_Insync
, &dev
->flags
);
3081 if (!test_bit(Faulty
, &rdev
->flags
)) {
3082 s
->handle_bad_blocks
= 1;
3083 atomic_inc(&rdev
->nr_pending
);
3085 clear_bit(R5_WriteError
, &dev
->flags
);
3087 if (rdev
&& test_bit(R5_MadeGood
, &dev
->flags
)) {
3088 if (!test_bit(Faulty
, &rdev
->flags
)) {
3089 s
->handle_bad_blocks
= 1;
3090 atomic_inc(&rdev
->nr_pending
);
3092 clear_bit(R5_MadeGood
, &dev
->flags
);
3094 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3095 /* The ReadError flag will just be confusing now */
3096 clear_bit(R5_ReadError
, &dev
->flags
);
3097 clear_bit(R5_ReWrite
, &dev
->flags
);
3099 if (test_bit(R5_ReadError
, &dev
->flags
))
3100 clear_bit(R5_Insync
, &dev
->flags
);
3101 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3103 s
->failed_num
[s
->failed
] = i
;
3107 spin_unlock_irq(&conf
->device_lock
);
3111 static void handle_stripe(struct stripe_head
*sh
)
3113 struct stripe_head_state s
;
3114 struct r5conf
*conf
= sh
->raid_conf
;
3117 int disks
= sh
->disks
;
3118 struct r5dev
*pdev
, *qdev
;
3120 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3121 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
3122 /* already being handled, ensure it gets handled
3123 * again when current action finishes */
3124 set_bit(STRIPE_HANDLE
, &sh
->state
);
3128 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3129 set_bit(STRIPE_SYNCING
, &sh
->state
);
3130 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3132 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3134 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3135 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3136 (unsigned long long)sh
->sector
, sh
->state
,
3137 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
3138 sh
->check_state
, sh
->reconstruct_state
);
3140 analyse_stripe(sh
, &s
);
3142 if (s
.handle_bad_blocks
) {
3143 set_bit(STRIPE_HANDLE
, &sh
->state
);
3147 if (unlikely(s
.blocked_rdev
)) {
3148 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3149 s
.to_write
|| s
.written
) {
3150 set_bit(STRIPE_HANDLE
, &sh
->state
);
3153 /* There is nothing for the blocked_rdev to block */
3154 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
3155 s
.blocked_rdev
= NULL
;
3158 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3159 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3160 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3163 pr_debug("locked=%d uptodate=%d to_read=%d"
3164 " to_write=%d failed=%d failed_num=%d,%d\n",
3165 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3166 s
.failed_num
[0], s
.failed_num
[1]);
3167 /* check if the array has lost more than max_degraded devices and,
3168 * if so, some requests might need to be failed.
3170 if (s
.failed
> conf
->max_degraded
) {
3171 sh
->check_state
= 0;
3172 sh
->reconstruct_state
= 0;
3173 if (s
.to_read
+s
.to_write
+s
.written
)
3174 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
3176 handle_failed_sync(conf
, sh
, &s
);
3180 * might be able to return some write requests if the parity blocks
3181 * are safe, or on a failed drive
3183 pdev
= &sh
->dev
[sh
->pd_idx
];
3184 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
3185 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
3186 qdev
= &sh
->dev
[sh
->qd_idx
];
3187 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
3188 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
3192 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3193 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3194 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3195 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3196 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3197 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3198 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
3200 /* Now we might consider reading some blocks, either to check/generate
3201 * parity, or to satisfy requests
3202 * or to load a block that is being partially written.
3204 if (s
.to_read
|| s
.non_overwrite
3205 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
3206 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3207 handle_stripe_fill(sh
, &s
, disks
);
3209 /* Now we check to see if any write operations have recently
3213 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3215 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3216 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3217 sh
->reconstruct_state
= reconstruct_state_idle
;
3219 /* All the 'written' buffers and the parity block are ready to
3220 * be written back to disk
3222 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3223 BUG_ON(sh
->qd_idx
>= 0 &&
3224 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
));
3225 for (i
= disks
; i
--; ) {
3226 struct r5dev
*dev
= &sh
->dev
[i
];
3227 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3228 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3230 pr_debug("Writing block %d\n", i
);
3231 set_bit(R5_Wantwrite
, &dev
->flags
);
3234 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3235 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3237 set_bit(STRIPE_INSYNC
, &sh
->state
);
3240 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3241 s
.dec_preread_active
= 1;
3244 /* Now to consider new write requests and what else, if anything
3245 * should be read. We do not handle new writes when:
3246 * 1/ A 'write' operation (copy+xor) is already in flight.
3247 * 2/ A 'check' operation is in flight, as it may clobber the parity
3250 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3251 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
3253 /* maybe we need to check and possibly fix the parity for this stripe
3254 * Any reads will already have been scheduled, so we just see if enough
3255 * data is available. The parity check is held off while parity
3256 * dependent operations are in flight.
3258 if (sh
->check_state
||
3259 (s
.syncing
&& s
.locked
== 0 &&
3260 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3261 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
3262 if (conf
->level
== 6)
3263 handle_parity_checks6(conf
, sh
, &s
, disks
);
3265 handle_parity_checks5(conf
, sh
, &s
, disks
);
3268 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3269 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3270 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3273 /* If the failed drives are just a ReadError, then we might need
3274 * to progress the repair/check process
3276 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
3277 for (i
= 0; i
< s
.failed
; i
++) {
3278 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
3279 if (test_bit(R5_ReadError
, &dev
->flags
)
3280 && !test_bit(R5_LOCKED
, &dev
->flags
)
3281 && test_bit(R5_UPTODATE
, &dev
->flags
)
3283 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3284 set_bit(R5_Wantwrite
, &dev
->flags
);
3285 set_bit(R5_ReWrite
, &dev
->flags
);
3286 set_bit(R5_LOCKED
, &dev
->flags
);
3289 /* let's read it back */
3290 set_bit(R5_Wantread
, &dev
->flags
);
3291 set_bit(R5_LOCKED
, &dev
->flags
);
3298 /* Finish reconstruct operations initiated by the expansion process */
3299 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3300 struct stripe_head
*sh_src
3301 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3302 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
3303 /* sh cannot be written until sh_src has been read.
3304 * so arrange for sh to be delayed a little
3306 set_bit(STRIPE_DELAYED
, &sh
->state
);
3307 set_bit(STRIPE_HANDLE
, &sh
->state
);
3308 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3310 atomic_inc(&conf
->preread_active_stripes
);
3311 release_stripe(sh_src
);
3315 release_stripe(sh_src
);
3317 sh
->reconstruct_state
= reconstruct_state_idle
;
3318 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3319 for (i
= conf
->raid_disks
; i
--; ) {
3320 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3321 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3326 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3327 !sh
->reconstruct_state
) {
3328 /* Need to write out all blocks after computing parity */
3329 sh
->disks
= conf
->raid_disks
;
3330 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3331 schedule_reconstruction(sh
, &s
, 1, 1);
3332 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3333 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3334 atomic_dec(&conf
->reshape_stripes
);
3335 wake_up(&conf
->wait_for_overlap
);
3336 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3339 if (s
.expanding
&& s
.locked
== 0 &&
3340 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3341 handle_stripe_expansion(conf
, sh
);
3344 /* wait for this device to become unblocked */
3345 if (conf
->mddev
->external
&& unlikely(s
.blocked_rdev
))
3346 md_wait_for_blocked_rdev(s
.blocked_rdev
, conf
->mddev
);
3348 if (s
.handle_bad_blocks
)
3349 for (i
= disks
; i
--; ) {
3350 struct md_rdev
*rdev
;
3351 struct r5dev
*dev
= &sh
->dev
[i
];
3352 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
3353 /* We own a safe reference to the rdev */
3354 rdev
= conf
->disks
[i
].rdev
;
3355 if (!rdev_set_badblocks(rdev
, sh
->sector
,
3357 md_error(conf
->mddev
, rdev
);
3358 rdev_dec_pending(rdev
, conf
->mddev
);
3360 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
3361 rdev
= conf
->disks
[i
].rdev
;
3362 rdev_clear_badblocks(rdev
, sh
->sector
,
3364 rdev_dec_pending(rdev
, conf
->mddev
);
3369 raid_run_ops(sh
, s
.ops_request
);
3373 if (s
.dec_preread_active
) {
3374 /* We delay this until after ops_run_io so that if make_request
3375 * is waiting on a flush, it won't continue until the writes
3376 * have actually been submitted.
3378 atomic_dec(&conf
->preread_active_stripes
);
3379 if (atomic_read(&conf
->preread_active_stripes
) <
3381 md_wakeup_thread(conf
->mddev
->thread
);
3384 return_io(s
.return_bi
);
3386 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
3389 static void raid5_activate_delayed(struct r5conf
*conf
)
3391 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3392 while (!list_empty(&conf
->delayed_list
)) {
3393 struct list_head
*l
= conf
->delayed_list
.next
;
3394 struct stripe_head
*sh
;
3395 sh
= list_entry(l
, struct stripe_head
, lru
);
3397 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3398 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3399 atomic_inc(&conf
->preread_active_stripes
);
3400 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3405 static void activate_bit_delay(struct r5conf
*conf
)
3407 /* device_lock is held */
3408 struct list_head head
;
3409 list_add(&head
, &conf
->bitmap_list
);
3410 list_del_init(&conf
->bitmap_list
);
3411 while (!list_empty(&head
)) {
3412 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3413 list_del_init(&sh
->lru
);
3414 atomic_inc(&sh
->count
);
3415 __release_stripe(conf
, sh
);
3419 int md_raid5_congested(struct mddev
*mddev
, int bits
)
3421 struct r5conf
*conf
= mddev
->private;
3423 /* No difference between reads and writes. Just check
3424 * how busy the stripe_cache is
3427 if (conf
->inactive_blocked
)
3431 if (list_empty_careful(&conf
->inactive_list
))
3436 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3438 static int raid5_congested(void *data
, int bits
)
3440 struct mddev
*mddev
= data
;
3442 return mddev_congested(mddev
, bits
) ||
3443 md_raid5_congested(mddev
, bits
);
3446 /* We want read requests to align with chunks where possible,
3447 * but write requests don't need to.
3449 static int raid5_mergeable_bvec(struct request_queue
*q
,
3450 struct bvec_merge_data
*bvm
,
3451 struct bio_vec
*biovec
)
3453 struct mddev
*mddev
= q
->queuedata
;
3454 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3456 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3457 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3459 if ((bvm
->bi_rw
& 1) == WRITE
)
3460 return biovec
->bv_len
; /* always allow writes to be mergeable */
3462 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3463 chunk_sectors
= mddev
->new_chunk_sectors
;
3464 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3465 if (max
< 0) max
= 0;
3466 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3467 return biovec
->bv_len
;
3473 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
3475 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3476 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3477 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3479 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3480 chunk_sectors
= mddev
->new_chunk_sectors
;
3481 return chunk_sectors
>=
3482 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3486 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3487 * later sampled by raid5d.
3489 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
3491 unsigned long flags
;
3493 spin_lock_irqsave(&conf
->device_lock
, flags
);
3495 bi
->bi_next
= conf
->retry_read_aligned_list
;
3496 conf
->retry_read_aligned_list
= bi
;
3498 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3499 md_wakeup_thread(conf
->mddev
->thread
);
3503 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
3507 bi
= conf
->retry_read_aligned
;
3509 conf
->retry_read_aligned
= NULL
;
3512 bi
= conf
->retry_read_aligned_list
;
3514 conf
->retry_read_aligned_list
= bi
->bi_next
;
3517 * this sets the active strip count to 1 and the processed
3518 * strip count to zero (upper 8 bits)
3520 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3528 * The "raid5_align_endio" should check if the read succeeded and if it
3529 * did, call bio_endio on the original bio (having bio_put the new bio
3531 * If the read failed..
3533 static void raid5_align_endio(struct bio
*bi
, int error
)
3535 struct bio
* raid_bi
= bi
->bi_private
;
3536 struct mddev
*mddev
;
3537 struct r5conf
*conf
;
3538 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3539 struct md_rdev
*rdev
;
3543 rdev
= (void*)raid_bi
->bi_next
;
3544 raid_bi
->bi_next
= NULL
;
3545 mddev
= rdev
->mddev
;
3546 conf
= mddev
->private;
3548 rdev_dec_pending(rdev
, conf
->mddev
);
3550 if (!error
&& uptodate
) {
3551 bio_endio(raid_bi
, 0);
3552 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3553 wake_up(&conf
->wait_for_stripe
);
3558 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3560 add_bio_to_retry(raid_bi
, conf
);
3563 static int bio_fits_rdev(struct bio
*bi
)
3565 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3567 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3569 blk_recount_segments(q
, bi
);
3570 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3573 if (q
->merge_bvec_fn
)
3574 /* it's too hard to apply the merge_bvec_fn at this stage,
3583 static int chunk_aligned_read(struct mddev
*mddev
, struct bio
* raid_bio
)
3585 struct r5conf
*conf
= mddev
->private;
3587 struct bio
* align_bi
;
3588 struct md_rdev
*rdev
;
3590 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3591 pr_debug("chunk_aligned_read : non aligned\n");
3595 * use bio_clone_mddev to make a copy of the bio
3597 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
3601 * set bi_end_io to a new function, and set bi_private to the
3604 align_bi
->bi_end_io
= raid5_align_endio
;
3605 align_bi
->bi_private
= raid_bio
;
3609 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3614 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3615 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3619 atomic_inc(&rdev
->nr_pending
);
3621 raid_bio
->bi_next
= (void*)rdev
;
3622 align_bi
->bi_bdev
= rdev
->bdev
;
3623 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3624 align_bi
->bi_sector
+= rdev
->data_offset
;
3626 if (!bio_fits_rdev(align_bi
) ||
3627 is_badblock(rdev
, align_bi
->bi_sector
, align_bi
->bi_size
>>9,
3628 &first_bad
, &bad_sectors
)) {
3629 /* too big in some way, or has a known bad block */
3631 rdev_dec_pending(rdev
, mddev
);
3635 spin_lock_irq(&conf
->device_lock
);
3636 wait_event_lock_irq(conf
->wait_for_stripe
,
3638 conf
->device_lock
, /* nothing */);
3639 atomic_inc(&conf
->active_aligned_reads
);
3640 spin_unlock_irq(&conf
->device_lock
);
3642 generic_make_request(align_bi
);
3651 /* __get_priority_stripe - get the next stripe to process
3653 * Full stripe writes are allowed to pass preread active stripes up until
3654 * the bypass_threshold is exceeded. In general the bypass_count
3655 * increments when the handle_list is handled before the hold_list; however, it
3656 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3657 * stripe with in flight i/o. The bypass_count will be reset when the
3658 * head of the hold_list has changed, i.e. the head was promoted to the
3661 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
)
3663 struct stripe_head
*sh
;
3665 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3667 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3668 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3669 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3671 if (!list_empty(&conf
->handle_list
)) {
3672 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3674 if (list_empty(&conf
->hold_list
))
3675 conf
->bypass_count
= 0;
3676 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3677 if (conf
->hold_list
.next
== conf
->last_hold
)
3678 conf
->bypass_count
++;
3680 conf
->last_hold
= conf
->hold_list
.next
;
3681 conf
->bypass_count
-= conf
->bypass_threshold
;
3682 if (conf
->bypass_count
< 0)
3683 conf
->bypass_count
= 0;
3686 } else if (!list_empty(&conf
->hold_list
) &&
3687 ((conf
->bypass_threshold
&&
3688 conf
->bypass_count
> conf
->bypass_threshold
) ||
3689 atomic_read(&conf
->pending_full_writes
) == 0)) {
3690 sh
= list_entry(conf
->hold_list
.next
,
3692 conf
->bypass_count
-= conf
->bypass_threshold
;
3693 if (conf
->bypass_count
< 0)
3694 conf
->bypass_count
= 0;
3698 list_del_init(&sh
->lru
);
3699 atomic_inc(&sh
->count
);
3700 BUG_ON(atomic_read(&sh
->count
) != 1);
3704 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
3706 struct r5conf
*conf
= mddev
->private;
3708 sector_t new_sector
;
3709 sector_t logical_sector
, last_sector
;
3710 struct stripe_head
*sh
;
3711 const int rw
= bio_data_dir(bi
);
3715 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
3716 md_flush_request(mddev
, bi
);
3720 md_write_start(mddev
, bi
);
3723 mddev
->reshape_position
== MaxSector
&&
3724 chunk_aligned_read(mddev
,bi
))
3727 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3728 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3730 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3732 plugged
= mddev_check_plugged(mddev
);
3733 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3735 int disks
, data_disks
;
3740 disks
= conf
->raid_disks
;
3741 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3742 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3743 /* spinlock is needed as reshape_progress may be
3744 * 64bit on a 32bit platform, and so it might be
3745 * possible to see a half-updated value
3746 * Of course reshape_progress could change after
3747 * the lock is dropped, so once we get a reference
3748 * to the stripe that we think it is, we will have
3751 spin_lock_irq(&conf
->device_lock
);
3752 if (mddev
->delta_disks
< 0
3753 ? logical_sector
< conf
->reshape_progress
3754 : logical_sector
>= conf
->reshape_progress
) {
3755 disks
= conf
->previous_raid_disks
;
3758 if (mddev
->delta_disks
< 0
3759 ? logical_sector
< conf
->reshape_safe
3760 : logical_sector
>= conf
->reshape_safe
) {
3761 spin_unlock_irq(&conf
->device_lock
);
3766 spin_unlock_irq(&conf
->device_lock
);
3768 data_disks
= disks
- conf
->max_degraded
;
3770 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3773 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3774 (unsigned long long)new_sector
,
3775 (unsigned long long)logical_sector
);
3777 sh
= get_active_stripe(conf
, new_sector
, previous
,
3778 (bi
->bi_rw
&RWA_MASK
), 0);
3780 if (unlikely(previous
)) {
3781 /* expansion might have moved on while waiting for a
3782 * stripe, so we must do the range check again.
3783 * Expansion could still move past after this
3784 * test, but as we are holding a reference to
3785 * 'sh', we know that if that happens,
3786 * STRIPE_EXPANDING will get set and the expansion
3787 * won't proceed until we finish with the stripe.
3790 spin_lock_irq(&conf
->device_lock
);
3791 if (mddev
->delta_disks
< 0
3792 ? logical_sector
>= conf
->reshape_progress
3793 : logical_sector
< conf
->reshape_progress
)
3794 /* mismatch, need to try again */
3796 spin_unlock_irq(&conf
->device_lock
);
3805 logical_sector
>= mddev
->suspend_lo
&&
3806 logical_sector
< mddev
->suspend_hi
) {
3808 /* As the suspend_* range is controlled by
3809 * userspace, we want an interruptible
3812 flush_signals(current
);
3813 prepare_to_wait(&conf
->wait_for_overlap
,
3814 &w
, TASK_INTERRUPTIBLE
);
3815 if (logical_sector
>= mddev
->suspend_lo
&&
3816 logical_sector
< mddev
->suspend_hi
)
3821 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3822 !add_stripe_bio(sh
, bi
, dd_idx
, rw
)) {
3823 /* Stripe is busy expanding or
3824 * add failed due to overlap. Flush everything
3827 md_wakeup_thread(mddev
->thread
);
3832 finish_wait(&conf
->wait_for_overlap
, &w
);
3833 set_bit(STRIPE_HANDLE
, &sh
->state
);
3834 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3835 if ((bi
->bi_rw
& REQ_SYNC
) &&
3836 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3837 atomic_inc(&conf
->preread_active_stripes
);
3840 /* cannot get stripe for read-ahead, just give-up */
3841 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3842 finish_wait(&conf
->wait_for_overlap
, &w
);
3848 md_wakeup_thread(mddev
->thread
);
3850 spin_lock_irq(&conf
->device_lock
);
3851 remaining
= raid5_dec_bi_phys_segments(bi
);
3852 spin_unlock_irq(&conf
->device_lock
);
3853 if (remaining
== 0) {
3856 md_write_end(mddev
);
3862 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
3864 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
3866 /* reshaping is quite different to recovery/resync so it is
3867 * handled quite separately ... here.
3869 * On each call to sync_request, we gather one chunk worth of
3870 * destination stripes and flag them as expanding.
3871 * Then we find all the source stripes and request reads.
3872 * As the reads complete, handle_stripe will copy the data
3873 * into the destination stripe and release that stripe.
3875 struct r5conf
*conf
= mddev
->private;
3876 struct stripe_head
*sh
;
3877 sector_t first_sector
, last_sector
;
3878 int raid_disks
= conf
->previous_raid_disks
;
3879 int data_disks
= raid_disks
- conf
->max_degraded
;
3880 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3883 sector_t writepos
, readpos
, safepos
;
3884 sector_t stripe_addr
;
3885 int reshape_sectors
;
3886 struct list_head stripes
;
3888 if (sector_nr
== 0) {
3889 /* If restarting in the middle, skip the initial sectors */
3890 if (mddev
->delta_disks
< 0 &&
3891 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
3892 sector_nr
= raid5_size(mddev
, 0, 0)
3893 - conf
->reshape_progress
;
3894 } else if (mddev
->delta_disks
>= 0 &&
3895 conf
->reshape_progress
> 0)
3896 sector_nr
= conf
->reshape_progress
;
3897 sector_div(sector_nr
, new_data_disks
);
3899 mddev
->curr_resync_completed
= sector_nr
;
3900 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3906 /* We need to process a full chunk at a time.
3907 * If old and new chunk sizes differ, we need to process the
3910 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
3911 reshape_sectors
= mddev
->new_chunk_sectors
;
3913 reshape_sectors
= mddev
->chunk_sectors
;
3915 /* we update the metadata when there is more than 3Meg
3916 * in the block range (that is rather arbitrary, should
3917 * probably be time based) or when the data about to be
3918 * copied would over-write the source of the data at
3919 * the front of the range.
3920 * i.e. one new_stripe along from reshape_progress new_maps
3921 * to after where reshape_safe old_maps to
3923 writepos
= conf
->reshape_progress
;
3924 sector_div(writepos
, new_data_disks
);
3925 readpos
= conf
->reshape_progress
;
3926 sector_div(readpos
, data_disks
);
3927 safepos
= conf
->reshape_safe
;
3928 sector_div(safepos
, data_disks
);
3929 if (mddev
->delta_disks
< 0) {
3930 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
3931 readpos
+= reshape_sectors
;
3932 safepos
+= reshape_sectors
;
3934 writepos
+= reshape_sectors
;
3935 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
3936 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
3939 /* 'writepos' is the most advanced device address we might write.
3940 * 'readpos' is the least advanced device address we might read.
3941 * 'safepos' is the least address recorded in the metadata as having
3943 * If 'readpos' is behind 'writepos', then there is no way that we can
3944 * ensure safety in the face of a crash - that must be done by userspace
3945 * making a backup of the data. So in that case there is no particular
3946 * rush to update metadata.
3947 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3948 * update the metadata to advance 'safepos' to match 'readpos' so that
3949 * we can be safe in the event of a crash.
3950 * So we insist on updating metadata if safepos is behind writepos and
3951 * readpos is beyond writepos.
3952 * In any case, update the metadata every 10 seconds.
3953 * Maybe that number should be configurable, but I'm not sure it is
3954 * worth it.... maybe it could be a multiple of safemode_delay???
3956 if ((mddev
->delta_disks
< 0
3957 ? (safepos
> writepos
&& readpos
< writepos
)
3958 : (safepos
< writepos
&& readpos
> writepos
)) ||
3959 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
3960 /* Cannot proceed until we've updated the superblock... */
3961 wait_event(conf
->wait_for_overlap
,
3962 atomic_read(&conf
->reshape_stripes
)==0);
3963 mddev
->reshape_position
= conf
->reshape_progress
;
3964 mddev
->curr_resync_completed
= sector_nr
;
3965 conf
->reshape_checkpoint
= jiffies
;
3966 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3967 md_wakeup_thread(mddev
->thread
);
3968 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3969 kthread_should_stop());
3970 spin_lock_irq(&conf
->device_lock
);
3971 conf
->reshape_safe
= mddev
->reshape_position
;
3972 spin_unlock_irq(&conf
->device_lock
);
3973 wake_up(&conf
->wait_for_overlap
);
3974 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3977 if (mddev
->delta_disks
< 0) {
3978 BUG_ON(conf
->reshape_progress
== 0);
3979 stripe_addr
= writepos
;
3980 BUG_ON((mddev
->dev_sectors
&
3981 ~((sector_t
)reshape_sectors
- 1))
3982 - reshape_sectors
- stripe_addr
3985 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
3986 stripe_addr
= sector_nr
;
3988 INIT_LIST_HEAD(&stripes
);
3989 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
3991 int skipped_disk
= 0;
3992 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
3993 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3994 atomic_inc(&conf
->reshape_stripes
);
3995 /* If any of this stripe is beyond the end of the old
3996 * array, then we need to zero those blocks
3998 for (j
=sh
->disks
; j
--;) {
4000 if (j
== sh
->pd_idx
)
4002 if (conf
->level
== 6 &&
4005 s
= compute_blocknr(sh
, j
, 0);
4006 if (s
< raid5_size(mddev
, 0, 0)) {
4010 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4011 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4012 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4014 if (!skipped_disk
) {
4015 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4016 set_bit(STRIPE_HANDLE
, &sh
->state
);
4018 list_add(&sh
->lru
, &stripes
);
4020 spin_lock_irq(&conf
->device_lock
);
4021 if (mddev
->delta_disks
< 0)
4022 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4024 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4025 spin_unlock_irq(&conf
->device_lock
);
4026 /* Ok, those stripe are ready. We can start scheduling
4027 * reads on the source stripes.
4028 * The source stripes are determined by mapping the first and last
4029 * block on the destination stripes.
4032 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4035 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4036 * new_data_disks
- 1),
4038 if (last_sector
>= mddev
->dev_sectors
)
4039 last_sector
= mddev
->dev_sectors
- 1;
4040 while (first_sector
<= last_sector
) {
4041 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4042 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4043 set_bit(STRIPE_HANDLE
, &sh
->state
);
4045 first_sector
+= STRIPE_SECTORS
;
4047 /* Now that the sources are clearly marked, we can release
4048 * the destination stripes
4050 while (!list_empty(&stripes
)) {
4051 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4052 list_del_init(&sh
->lru
);
4055 /* If this takes us to the resync_max point where we have to pause,
4056 * then we need to write out the superblock.
4058 sector_nr
+= reshape_sectors
;
4059 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4060 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4061 /* Cannot proceed until we've updated the superblock... */
4062 wait_event(conf
->wait_for_overlap
,
4063 atomic_read(&conf
->reshape_stripes
) == 0);
4064 mddev
->reshape_position
= conf
->reshape_progress
;
4065 mddev
->curr_resync_completed
= sector_nr
;
4066 conf
->reshape_checkpoint
= jiffies
;
4067 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4068 md_wakeup_thread(mddev
->thread
);
4069 wait_event(mddev
->sb_wait
,
4070 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4071 || kthread_should_stop());
4072 spin_lock_irq(&conf
->device_lock
);
4073 conf
->reshape_safe
= mddev
->reshape_position
;
4074 spin_unlock_irq(&conf
->device_lock
);
4075 wake_up(&conf
->wait_for_overlap
);
4076 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4078 return reshape_sectors
;
4081 /* FIXME go_faster isn't used */
4082 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4084 struct r5conf
*conf
= mddev
->private;
4085 struct stripe_head
*sh
;
4086 sector_t max_sector
= mddev
->dev_sectors
;
4087 sector_t sync_blocks
;
4088 int still_degraded
= 0;
4091 if (sector_nr
>= max_sector
) {
4092 /* just being told to finish up .. nothing much to do */
4094 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4099 if (mddev
->curr_resync
< max_sector
) /* aborted */
4100 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4102 else /* completed sync */
4104 bitmap_close_sync(mddev
->bitmap
);
4109 /* Allow raid5_quiesce to complete */
4110 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4112 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4113 return reshape_request(mddev
, sector_nr
, skipped
);
4115 /* No need to check resync_max as we never do more than one
4116 * stripe, and as resync_max will always be on a chunk boundary,
4117 * if the check in md_do_sync didn't fire, there is no chance
4118 * of overstepping resync_max here
4121 /* if there is too many failed drives and we are trying
4122 * to resync, then assert that we are finished, because there is
4123 * nothing we can do.
4125 if (mddev
->degraded
>= conf
->max_degraded
&&
4126 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4127 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4131 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4132 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4133 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4134 /* we can skip this block, and probably more */
4135 sync_blocks
/= STRIPE_SECTORS
;
4137 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4141 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4143 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4145 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4146 /* make sure we don't swamp the stripe cache if someone else
4147 * is trying to get access
4149 schedule_timeout_uninterruptible(1);
4151 /* Need to check if array will still be degraded after recovery/resync
4152 * We don't need to check the 'failed' flag as when that gets set,
4155 for (i
= 0; i
< conf
->raid_disks
; i
++)
4156 if (conf
->disks
[i
].rdev
== NULL
)
4159 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4161 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
4166 return STRIPE_SECTORS
;
4169 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
4171 /* We may not be able to submit a whole bio at once as there
4172 * may not be enough stripe_heads available.
4173 * We cannot pre-allocate enough stripe_heads as we may need
4174 * more than exist in the cache (if we allow ever large chunks).
4175 * So we do one stripe head at a time and record in
4176 * ->bi_hw_segments how many have been done.
4178 * We *know* that this entire raid_bio is in one chunk, so
4179 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4181 struct stripe_head
*sh
;
4183 sector_t sector
, logical_sector
, last_sector
;
4188 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4189 sector
= raid5_compute_sector(conf
, logical_sector
,
4191 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4193 for (; logical_sector
< last_sector
;
4194 logical_sector
+= STRIPE_SECTORS
,
4195 sector
+= STRIPE_SECTORS
,
4198 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4199 /* already done this stripe */
4202 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4205 /* failed to get a stripe - must wait */
4206 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4207 conf
->retry_read_aligned
= raid_bio
;
4211 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4212 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4214 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4215 conf
->retry_read_aligned
= raid_bio
;
4223 spin_lock_irq(&conf
->device_lock
);
4224 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4225 spin_unlock_irq(&conf
->device_lock
);
4227 bio_endio(raid_bio
, 0);
4228 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4229 wake_up(&conf
->wait_for_stripe
);
4235 * This is our raid5 kernel thread.
4237 * We scan the hash table for stripes which can be handled now.
4238 * During the scan, completed stripes are saved for us by the interrupt
4239 * handler, so that they will not have to wait for our next wakeup.
4241 static void raid5d(struct mddev
*mddev
)
4243 struct stripe_head
*sh
;
4244 struct r5conf
*conf
= mddev
->private;
4246 struct blk_plug plug
;
4248 pr_debug("+++ raid5d active\n");
4250 md_check_recovery(mddev
);
4252 blk_start_plug(&plug
);
4254 spin_lock_irq(&conf
->device_lock
);
4258 if (atomic_read(&mddev
->plug_cnt
) == 0 &&
4259 !list_empty(&conf
->bitmap_list
)) {
4260 /* Now is a good time to flush some bitmap updates */
4262 spin_unlock_irq(&conf
->device_lock
);
4263 bitmap_unplug(mddev
->bitmap
);
4264 spin_lock_irq(&conf
->device_lock
);
4265 conf
->seq_write
= conf
->seq_flush
;
4266 activate_bit_delay(conf
);
4268 if (atomic_read(&mddev
->plug_cnt
) == 0)
4269 raid5_activate_delayed(conf
);
4271 while ((bio
= remove_bio_from_retry(conf
))) {
4273 spin_unlock_irq(&conf
->device_lock
);
4274 ok
= retry_aligned_read(conf
, bio
);
4275 spin_lock_irq(&conf
->device_lock
);
4281 sh
= __get_priority_stripe(conf
);
4285 spin_unlock_irq(&conf
->device_lock
);
4292 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
4293 md_check_recovery(mddev
);
4295 spin_lock_irq(&conf
->device_lock
);
4297 pr_debug("%d stripes handled\n", handled
);
4299 spin_unlock_irq(&conf
->device_lock
);
4301 async_tx_issue_pending_all();
4302 blk_finish_plug(&plug
);
4304 pr_debug("--- raid5d inactive\n");
4308 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
4310 struct r5conf
*conf
= mddev
->private;
4312 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4318 raid5_set_cache_size(struct mddev
*mddev
, int size
)
4320 struct r5conf
*conf
= mddev
->private;
4323 if (size
<= 16 || size
> 32768)
4325 while (size
< conf
->max_nr_stripes
) {
4326 if (drop_one_stripe(conf
))
4327 conf
->max_nr_stripes
--;
4331 err
= md_allow_write(mddev
);
4334 while (size
> conf
->max_nr_stripes
) {
4335 if (grow_one_stripe(conf
))
4336 conf
->max_nr_stripes
++;
4341 EXPORT_SYMBOL(raid5_set_cache_size
);
4344 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
4346 struct r5conf
*conf
= mddev
->private;
4350 if (len
>= PAGE_SIZE
)
4355 if (strict_strtoul(page
, 10, &new))
4357 err
= raid5_set_cache_size(mddev
, new);
4363 static struct md_sysfs_entry
4364 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4365 raid5_show_stripe_cache_size
,
4366 raid5_store_stripe_cache_size
);
4369 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
4371 struct r5conf
*conf
= mddev
->private;
4373 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4379 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
4381 struct r5conf
*conf
= mddev
->private;
4383 if (len
>= PAGE_SIZE
)
4388 if (strict_strtoul(page
, 10, &new))
4390 if (new > conf
->max_nr_stripes
)
4392 conf
->bypass_threshold
= new;
4396 static struct md_sysfs_entry
4397 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4399 raid5_show_preread_threshold
,
4400 raid5_store_preread_threshold
);
4403 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
4405 struct r5conf
*conf
= mddev
->private;
4407 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4412 static struct md_sysfs_entry
4413 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4415 static struct attribute
*raid5_attrs
[] = {
4416 &raid5_stripecache_size
.attr
,
4417 &raid5_stripecache_active
.attr
,
4418 &raid5_preread_bypass_threshold
.attr
,
4421 static struct attribute_group raid5_attrs_group
= {
4423 .attrs
= raid5_attrs
,
4427 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
4429 struct r5conf
*conf
= mddev
->private;
4432 sectors
= mddev
->dev_sectors
;
4434 /* size is defined by the smallest of previous and new size */
4435 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4437 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4438 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4439 return sectors
* (raid_disks
- conf
->max_degraded
);
4442 static void raid5_free_percpu(struct r5conf
*conf
)
4444 struct raid5_percpu
*percpu
;
4451 for_each_possible_cpu(cpu
) {
4452 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4453 safe_put_page(percpu
->spare_page
);
4454 kfree(percpu
->scribble
);
4456 #ifdef CONFIG_HOTPLUG_CPU
4457 unregister_cpu_notifier(&conf
->cpu_notify
);
4461 free_percpu(conf
->percpu
);
4464 static void free_conf(struct r5conf
*conf
)
4466 shrink_stripes(conf
);
4467 raid5_free_percpu(conf
);
4469 kfree(conf
->stripe_hashtbl
);
4473 #ifdef CONFIG_HOTPLUG_CPU
4474 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4477 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
4478 long cpu
= (long)hcpu
;
4479 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4482 case CPU_UP_PREPARE
:
4483 case CPU_UP_PREPARE_FROZEN
:
4484 if (conf
->level
== 6 && !percpu
->spare_page
)
4485 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4486 if (!percpu
->scribble
)
4487 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4489 if (!percpu
->scribble
||
4490 (conf
->level
== 6 && !percpu
->spare_page
)) {
4491 safe_put_page(percpu
->spare_page
);
4492 kfree(percpu
->scribble
);
4493 pr_err("%s: failed memory allocation for cpu%ld\n",
4495 return notifier_from_errno(-ENOMEM
);
4499 case CPU_DEAD_FROZEN
:
4500 safe_put_page(percpu
->spare_page
);
4501 kfree(percpu
->scribble
);
4502 percpu
->spare_page
= NULL
;
4503 percpu
->scribble
= NULL
;
4512 static int raid5_alloc_percpu(struct r5conf
*conf
)
4515 struct page
*spare_page
;
4516 struct raid5_percpu __percpu
*allcpus
;
4520 allcpus
= alloc_percpu(struct raid5_percpu
);
4523 conf
->percpu
= allcpus
;
4527 for_each_present_cpu(cpu
) {
4528 if (conf
->level
== 6) {
4529 spare_page
= alloc_page(GFP_KERNEL
);
4534 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4536 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4541 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4543 #ifdef CONFIG_HOTPLUG_CPU
4544 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4545 conf
->cpu_notify
.priority
= 0;
4547 err
= register_cpu_notifier(&conf
->cpu_notify
);
4554 static struct r5conf
*setup_conf(struct mddev
*mddev
)
4556 struct r5conf
*conf
;
4557 int raid_disk
, memory
, max_disks
;
4558 struct md_rdev
*rdev
;
4559 struct disk_info
*disk
;
4561 if (mddev
->new_level
!= 5
4562 && mddev
->new_level
!= 4
4563 && mddev
->new_level
!= 6) {
4564 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4565 mdname(mddev
), mddev
->new_level
);
4566 return ERR_PTR(-EIO
);
4568 if ((mddev
->new_level
== 5
4569 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4570 (mddev
->new_level
== 6
4571 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4572 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
4573 mdname(mddev
), mddev
->new_layout
);
4574 return ERR_PTR(-EIO
);
4576 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4577 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4578 mdname(mddev
), mddev
->raid_disks
);
4579 return ERR_PTR(-EINVAL
);
4582 if (!mddev
->new_chunk_sectors
||
4583 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4584 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4585 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
4586 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
4587 return ERR_PTR(-EINVAL
);
4590 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
4593 spin_lock_init(&conf
->device_lock
);
4594 init_waitqueue_head(&conf
->wait_for_stripe
);
4595 init_waitqueue_head(&conf
->wait_for_overlap
);
4596 INIT_LIST_HEAD(&conf
->handle_list
);
4597 INIT_LIST_HEAD(&conf
->hold_list
);
4598 INIT_LIST_HEAD(&conf
->delayed_list
);
4599 INIT_LIST_HEAD(&conf
->bitmap_list
);
4600 INIT_LIST_HEAD(&conf
->inactive_list
);
4601 atomic_set(&conf
->active_stripes
, 0);
4602 atomic_set(&conf
->preread_active_stripes
, 0);
4603 atomic_set(&conf
->active_aligned_reads
, 0);
4604 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4605 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
4607 conf
->raid_disks
= mddev
->raid_disks
;
4608 if (mddev
->reshape_position
== MaxSector
)
4609 conf
->previous_raid_disks
= mddev
->raid_disks
;
4611 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4612 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4613 conf
->scribble_len
= scribble_len(max_disks
);
4615 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4620 conf
->mddev
= mddev
;
4622 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4625 conf
->level
= mddev
->new_level
;
4626 if (raid5_alloc_percpu(conf
) != 0)
4629 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
4631 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4632 raid_disk
= rdev
->raid_disk
;
4633 if (raid_disk
>= max_disks
4636 disk
= conf
->disks
+ raid_disk
;
4640 if (test_bit(In_sync
, &rdev
->flags
)) {
4641 char b
[BDEVNAME_SIZE
];
4642 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
4644 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
4645 } else if (rdev
->saved_raid_disk
!= raid_disk
)
4646 /* Cannot rely on bitmap to complete recovery */
4650 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4651 conf
->level
= mddev
->new_level
;
4652 if (conf
->level
== 6)
4653 conf
->max_degraded
= 2;
4655 conf
->max_degraded
= 1;
4656 conf
->algorithm
= mddev
->new_layout
;
4657 conf
->max_nr_stripes
= NR_STRIPES
;
4658 conf
->reshape_progress
= mddev
->reshape_position
;
4659 if (conf
->reshape_progress
!= MaxSector
) {
4660 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4661 conf
->prev_algo
= mddev
->layout
;
4664 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4665 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4666 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4668 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4669 mdname(mddev
), memory
);
4672 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
4673 mdname(mddev
), memory
);
4675 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4676 if (!conf
->thread
) {
4678 "md/raid:%s: couldn't allocate thread.\n",
4688 return ERR_PTR(-EIO
);
4690 return ERR_PTR(-ENOMEM
);
4694 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4697 case ALGORITHM_PARITY_0
:
4698 if (raid_disk
< max_degraded
)
4701 case ALGORITHM_PARITY_N
:
4702 if (raid_disk
>= raid_disks
- max_degraded
)
4705 case ALGORITHM_PARITY_0_6
:
4706 if (raid_disk
== 0 ||
4707 raid_disk
== raid_disks
- 1)
4710 case ALGORITHM_LEFT_ASYMMETRIC_6
:
4711 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
4712 case ALGORITHM_LEFT_SYMMETRIC_6
:
4713 case ALGORITHM_RIGHT_SYMMETRIC_6
:
4714 if (raid_disk
== raid_disks
- 1)
4720 static int run(struct mddev
*mddev
)
4722 struct r5conf
*conf
;
4723 int working_disks
= 0;
4724 int dirty_parity_disks
= 0;
4725 struct md_rdev
*rdev
;
4726 sector_t reshape_offset
= 0;
4728 if (mddev
->recovery_cp
!= MaxSector
)
4729 printk(KERN_NOTICE
"md/raid:%s: not clean"
4730 " -- starting background reconstruction\n",
4732 if (mddev
->reshape_position
!= MaxSector
) {
4733 /* Check that we can continue the reshape.
4734 * Currently only disks can change, it must
4735 * increase, and we must be past the point where
4736 * a stripe over-writes itself
4738 sector_t here_new
, here_old
;
4740 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4742 if (mddev
->new_level
!= mddev
->level
) {
4743 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
4744 "required - aborting.\n",
4748 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4749 /* reshape_position must be on a new-stripe boundary, and one
4750 * further up in new geometry must map after here in old
4753 here_new
= mddev
->reshape_position
;
4754 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4755 (mddev
->raid_disks
- max_degraded
))) {
4756 printk(KERN_ERR
"md/raid:%s: reshape_position not "
4757 "on a stripe boundary\n", mdname(mddev
));
4760 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
4761 /* here_new is the stripe we will write to */
4762 here_old
= mddev
->reshape_position
;
4763 sector_div(here_old
, mddev
->chunk_sectors
*
4764 (old_disks
-max_degraded
));
4765 /* here_old is the first stripe that we might need to read
4767 if (mddev
->delta_disks
== 0) {
4768 /* We cannot be sure it is safe to start an in-place
4769 * reshape. It is only safe if user-space if monitoring
4770 * and taking constant backups.
4771 * mdadm always starts a situation like this in
4772 * readonly mode so it can take control before
4773 * allowing any writes. So just check for that.
4775 if ((here_new
* mddev
->new_chunk_sectors
!=
4776 here_old
* mddev
->chunk_sectors
) ||
4778 printk(KERN_ERR
"md/raid:%s: in-place reshape must be started"
4779 " in read-only mode - aborting\n",
4783 } else if (mddev
->delta_disks
< 0
4784 ? (here_new
* mddev
->new_chunk_sectors
<=
4785 here_old
* mddev
->chunk_sectors
)
4786 : (here_new
* mddev
->new_chunk_sectors
>=
4787 here_old
* mddev
->chunk_sectors
)) {
4788 /* Reading from the same stripe as writing to - bad */
4789 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
4790 "auto-recovery - aborting.\n",
4794 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
4796 /* OK, we should be able to continue; */
4798 BUG_ON(mddev
->level
!= mddev
->new_level
);
4799 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4800 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4801 BUG_ON(mddev
->delta_disks
!= 0);
4804 if (mddev
->private == NULL
)
4805 conf
= setup_conf(mddev
);
4807 conf
= mddev
->private;
4810 return PTR_ERR(conf
);
4812 mddev
->thread
= conf
->thread
;
4813 conf
->thread
= NULL
;
4814 mddev
->private = conf
;
4817 * 0 for a fully functional array, 1 or 2 for a degraded array.
4819 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4820 if (rdev
->raid_disk
< 0)
4822 if (test_bit(In_sync
, &rdev
->flags
)) {
4826 /* This disc is not fully in-sync. However if it
4827 * just stored parity (beyond the recovery_offset),
4828 * when we don't need to be concerned about the
4829 * array being dirty.
4830 * When reshape goes 'backwards', we never have
4831 * partially completed devices, so we only need
4832 * to worry about reshape going forwards.
4834 /* Hack because v0.91 doesn't store recovery_offset properly. */
4835 if (mddev
->major_version
== 0 &&
4836 mddev
->minor_version
> 90)
4837 rdev
->recovery_offset
= reshape_offset
;
4839 if (rdev
->recovery_offset
< reshape_offset
) {
4840 /* We need to check old and new layout */
4841 if (!only_parity(rdev
->raid_disk
,
4844 conf
->max_degraded
))
4847 if (!only_parity(rdev
->raid_disk
,
4849 conf
->previous_raid_disks
,
4850 conf
->max_degraded
))
4852 dirty_parity_disks
++;
4855 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
4858 if (has_failed(conf
)) {
4859 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
4860 " (%d/%d failed)\n",
4861 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4865 /* device size must be a multiple of chunk size */
4866 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
4867 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4869 if (mddev
->degraded
> dirty_parity_disks
&&
4870 mddev
->recovery_cp
!= MaxSector
) {
4871 if (mddev
->ok_start_degraded
)
4873 "md/raid:%s: starting dirty degraded array"
4874 " - data corruption possible.\n",
4878 "md/raid:%s: cannot start dirty degraded array.\n",
4884 if (mddev
->degraded
== 0)
4885 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
4886 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
4887 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4890 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
4891 " out of %d devices, algorithm %d\n",
4892 mdname(mddev
), conf
->level
,
4893 mddev
->raid_disks
- mddev
->degraded
,
4894 mddev
->raid_disks
, mddev
->new_layout
);
4896 print_raid5_conf(conf
);
4898 if (conf
->reshape_progress
!= MaxSector
) {
4899 conf
->reshape_safe
= conf
->reshape_progress
;
4900 atomic_set(&conf
->reshape_stripes
, 0);
4901 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4902 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4903 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4904 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4905 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4910 /* Ok, everything is just fine now */
4911 if (mddev
->to_remove
== &raid5_attrs_group
)
4912 mddev
->to_remove
= NULL
;
4913 else if (mddev
->kobj
.sd
&&
4914 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4916 "raid5: failed to create sysfs attributes for %s\n",
4918 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
4922 /* read-ahead size must cover two whole stripes, which
4923 * is 2 * (datadisks) * chunksize where 'n' is the
4924 * number of raid devices
4926 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4927 int stripe
= data_disks
*
4928 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4929 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4930 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4932 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4934 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4935 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4937 chunk_size
= mddev
->chunk_sectors
<< 9;
4938 blk_queue_io_min(mddev
->queue
, chunk_size
);
4939 blk_queue_io_opt(mddev
->queue
, chunk_size
*
4940 (conf
->raid_disks
- conf
->max_degraded
));
4942 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4943 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
4944 rdev
->data_offset
<< 9);
4949 md_unregister_thread(&mddev
->thread
);
4950 print_raid5_conf(conf
);
4952 mddev
->private = NULL
;
4953 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
4957 static int stop(struct mddev
*mddev
)
4959 struct r5conf
*conf
= mddev
->private;
4961 md_unregister_thread(&mddev
->thread
);
4963 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4965 mddev
->private = NULL
;
4966 mddev
->to_remove
= &raid5_attrs_group
;
4970 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
4972 struct r5conf
*conf
= mddev
->private;
4975 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
4976 mddev
->chunk_sectors
/ 2, mddev
->layout
);
4977 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4978 for (i
= 0; i
< conf
->raid_disks
; i
++)
4979 seq_printf (seq
, "%s",
4980 conf
->disks
[i
].rdev
&&
4981 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4982 seq_printf (seq
, "]");
4985 static void print_raid5_conf (struct r5conf
*conf
)
4988 struct disk_info
*tmp
;
4990 printk(KERN_DEBUG
"RAID conf printout:\n");
4992 printk("(conf==NULL)\n");
4995 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
4997 conf
->raid_disks
- conf
->mddev
->degraded
);
4999 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5000 char b
[BDEVNAME_SIZE
];
5001 tmp
= conf
->disks
+ i
;
5003 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
5004 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5005 bdevname(tmp
->rdev
->bdev
, b
));
5009 static int raid5_spare_active(struct mddev
*mddev
)
5012 struct r5conf
*conf
= mddev
->private;
5013 struct disk_info
*tmp
;
5015 unsigned long flags
;
5017 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5018 tmp
= conf
->disks
+ i
;
5020 && tmp
->rdev
->recovery_offset
== MaxSector
5021 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5022 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5024 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
5027 spin_lock_irqsave(&conf
->device_lock
, flags
);
5028 mddev
->degraded
-= count
;
5029 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5030 print_raid5_conf(conf
);
5034 static int raid5_remove_disk(struct mddev
*mddev
, int number
)
5036 struct r5conf
*conf
= mddev
->private;
5038 struct md_rdev
*rdev
;
5039 struct disk_info
*p
= conf
->disks
+ number
;
5041 print_raid5_conf(conf
);
5044 if (number
>= conf
->raid_disks
&&
5045 conf
->reshape_progress
== MaxSector
)
5046 clear_bit(In_sync
, &rdev
->flags
);
5048 if (test_bit(In_sync
, &rdev
->flags
) ||
5049 atomic_read(&rdev
->nr_pending
)) {
5053 /* Only remove non-faulty devices if recovery
5056 if (!test_bit(Faulty
, &rdev
->flags
) &&
5057 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
5058 !has_failed(conf
) &&
5059 number
< conf
->raid_disks
) {
5065 if (atomic_read(&rdev
->nr_pending
)) {
5066 /* lost the race, try later */
5073 print_raid5_conf(conf
);
5077 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
5079 struct r5conf
*conf
= mddev
->private;
5082 struct disk_info
*p
;
5084 int last
= conf
->raid_disks
- 1;
5086 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
5089 if (has_failed(conf
))
5090 /* no point adding a device */
5093 if (rdev
->raid_disk
>= 0)
5094 first
= last
= rdev
->raid_disk
;
5097 * find the disk ... but prefer rdev->saved_raid_disk
5100 if (rdev
->saved_raid_disk
>= 0 &&
5101 rdev
->saved_raid_disk
>= first
&&
5102 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5103 disk
= rdev
->saved_raid_disk
;
5106 for ( ; disk
<= last
; disk
++)
5107 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5108 clear_bit(In_sync
, &rdev
->flags
);
5109 rdev
->raid_disk
= disk
;
5111 if (rdev
->saved_raid_disk
!= disk
)
5113 rcu_assign_pointer(p
->rdev
, rdev
);
5116 print_raid5_conf(conf
);
5120 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
5122 /* no resync is happening, and there is enough space
5123 * on all devices, so we can resize.
5124 * We need to make sure resync covers any new space.
5125 * If the array is shrinking we should possibly wait until
5126 * any io in the removed space completes, but it hardly seems
5129 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5130 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5131 mddev
->raid_disks
));
5132 if (mddev
->array_sectors
>
5133 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5135 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5136 revalidate_disk(mddev
->gendisk
);
5137 if (sectors
> mddev
->dev_sectors
&&
5138 mddev
->recovery_cp
> mddev
->dev_sectors
) {
5139 mddev
->recovery_cp
= mddev
->dev_sectors
;
5140 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5142 mddev
->dev_sectors
= sectors
;
5143 mddev
->resync_max_sectors
= sectors
;
5147 static int check_stripe_cache(struct mddev
*mddev
)
5149 /* Can only proceed if there are plenty of stripe_heads.
5150 * We need a minimum of one full stripe,, and for sensible progress
5151 * it is best to have about 4 times that.
5152 * If we require 4 times, then the default 256 4K stripe_heads will
5153 * allow for chunk sizes up to 256K, which is probably OK.
5154 * If the chunk size is greater, user-space should request more
5155 * stripe_heads first.
5157 struct r5conf
*conf
= mddev
->private;
5158 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5159 > conf
->max_nr_stripes
||
5160 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5161 > conf
->max_nr_stripes
) {
5162 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5164 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5171 static int check_reshape(struct mddev
*mddev
)
5173 struct r5conf
*conf
= mddev
->private;
5175 if (mddev
->delta_disks
== 0 &&
5176 mddev
->new_layout
== mddev
->layout
&&
5177 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5178 return 0; /* nothing to do */
5180 /* Cannot grow a bitmap yet */
5182 if (has_failed(conf
))
5184 if (mddev
->delta_disks
< 0) {
5185 /* We might be able to shrink, but the devices must
5186 * be made bigger first.
5187 * For raid6, 4 is the minimum size.
5188 * Otherwise 2 is the minimum
5191 if (mddev
->level
== 6)
5193 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5197 if (!check_stripe_cache(mddev
))
5200 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5203 static int raid5_start_reshape(struct mddev
*mddev
)
5205 struct r5conf
*conf
= mddev
->private;
5206 struct md_rdev
*rdev
;
5208 unsigned long flags
;
5210 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5213 if (!check_stripe_cache(mddev
))
5216 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5217 if (!test_bit(In_sync
, &rdev
->flags
)
5218 && !test_bit(Faulty
, &rdev
->flags
))
5221 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5222 /* Not enough devices even to make a degraded array
5227 /* Refuse to reduce size of the array. Any reductions in
5228 * array size must be through explicit setting of array_size
5231 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5232 < mddev
->array_sectors
) {
5233 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
5234 "before number of disks\n", mdname(mddev
));
5238 atomic_set(&conf
->reshape_stripes
, 0);
5239 spin_lock_irq(&conf
->device_lock
);
5240 conf
->previous_raid_disks
= conf
->raid_disks
;
5241 conf
->raid_disks
+= mddev
->delta_disks
;
5242 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5243 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5244 conf
->prev_algo
= conf
->algorithm
;
5245 conf
->algorithm
= mddev
->new_layout
;
5246 if (mddev
->delta_disks
< 0)
5247 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5249 conf
->reshape_progress
= 0;
5250 conf
->reshape_safe
= conf
->reshape_progress
;
5252 spin_unlock_irq(&conf
->device_lock
);
5254 /* Add some new drives, as many as will fit.
5255 * We know there are enough to make the newly sized array work.
5256 * Don't add devices if we are reducing the number of
5257 * devices in the array. This is because it is not possible
5258 * to correctly record the "partially reconstructed" state of
5259 * such devices during the reshape and confusion could result.
5261 if (mddev
->delta_disks
>= 0) {
5262 int added_devices
= 0;
5263 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5264 if (rdev
->raid_disk
< 0 &&
5265 !test_bit(Faulty
, &rdev
->flags
)) {
5266 if (raid5_add_disk(mddev
, rdev
) == 0) {
5268 >= conf
->previous_raid_disks
) {
5269 set_bit(In_sync
, &rdev
->flags
);
5272 rdev
->recovery_offset
= 0;
5274 if (sysfs_link_rdev(mddev
, rdev
))
5275 /* Failure here is OK */;
5277 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
5278 && !test_bit(Faulty
, &rdev
->flags
)) {
5279 /* This is a spare that was manually added */
5280 set_bit(In_sync
, &rdev
->flags
);
5284 /* When a reshape changes the number of devices,
5285 * ->degraded is measured against the larger of the
5286 * pre and post number of devices.
5288 spin_lock_irqsave(&conf
->device_lock
, flags
);
5289 mddev
->degraded
+= (conf
->raid_disks
- conf
->previous_raid_disks
)
5291 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5293 mddev
->raid_disks
= conf
->raid_disks
;
5294 mddev
->reshape_position
= conf
->reshape_progress
;
5295 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5297 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5298 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5299 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5300 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5301 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5303 if (!mddev
->sync_thread
) {
5304 mddev
->recovery
= 0;
5305 spin_lock_irq(&conf
->device_lock
);
5306 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5307 conf
->reshape_progress
= MaxSector
;
5308 spin_unlock_irq(&conf
->device_lock
);
5311 conf
->reshape_checkpoint
= jiffies
;
5312 md_wakeup_thread(mddev
->sync_thread
);
5313 md_new_event(mddev
);
5317 /* This is called from the reshape thread and should make any
5318 * changes needed in 'conf'
5320 static void end_reshape(struct r5conf
*conf
)
5323 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5325 spin_lock_irq(&conf
->device_lock
);
5326 conf
->previous_raid_disks
= conf
->raid_disks
;
5327 conf
->reshape_progress
= MaxSector
;
5328 spin_unlock_irq(&conf
->device_lock
);
5329 wake_up(&conf
->wait_for_overlap
);
5331 /* read-ahead size must cover two whole stripes, which is
5332 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5334 if (conf
->mddev
->queue
) {
5335 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5336 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5338 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5339 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5344 /* This is called from the raid5d thread with mddev_lock held.
5345 * It makes config changes to the device.
5347 static void raid5_finish_reshape(struct mddev
*mddev
)
5349 struct r5conf
*conf
= mddev
->private;
5351 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5353 if (mddev
->delta_disks
> 0) {
5354 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5355 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5356 revalidate_disk(mddev
->gendisk
);
5359 mddev
->degraded
= conf
->raid_disks
;
5360 for (d
= 0; d
< conf
->raid_disks
; d
++)
5361 if (conf
->disks
[d
].rdev
&&
5363 &conf
->disks
[d
].rdev
->flags
))
5365 for (d
= conf
->raid_disks
;
5366 d
< conf
->raid_disks
- mddev
->delta_disks
;
5368 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
5369 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5370 sysfs_unlink_rdev(mddev
, rdev
);
5371 rdev
->raid_disk
= -1;
5375 mddev
->layout
= conf
->algorithm
;
5376 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5377 mddev
->reshape_position
= MaxSector
;
5378 mddev
->delta_disks
= 0;
5382 static void raid5_quiesce(struct mddev
*mddev
, int state
)
5384 struct r5conf
*conf
= mddev
->private;
5387 case 2: /* resume for a suspend */
5388 wake_up(&conf
->wait_for_overlap
);
5391 case 1: /* stop all writes */
5392 spin_lock_irq(&conf
->device_lock
);
5393 /* '2' tells resync/reshape to pause so that all
5394 * active stripes can drain
5397 wait_event_lock_irq(conf
->wait_for_stripe
,
5398 atomic_read(&conf
->active_stripes
) == 0 &&
5399 atomic_read(&conf
->active_aligned_reads
) == 0,
5400 conf
->device_lock
, /* nothing */);
5402 spin_unlock_irq(&conf
->device_lock
);
5403 /* allow reshape to continue */
5404 wake_up(&conf
->wait_for_overlap
);
5407 case 0: /* re-enable writes */
5408 spin_lock_irq(&conf
->device_lock
);
5410 wake_up(&conf
->wait_for_stripe
);
5411 wake_up(&conf
->wait_for_overlap
);
5412 spin_unlock_irq(&conf
->device_lock
);
5418 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
5420 struct r0conf
*raid0_conf
= mddev
->private;
5423 /* for raid0 takeover only one zone is supported */
5424 if (raid0_conf
->nr_strip_zones
> 1) {
5425 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5427 return ERR_PTR(-EINVAL
);
5430 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
5431 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
5432 mddev
->dev_sectors
= sectors
;
5433 mddev
->new_level
= level
;
5434 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5435 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5436 mddev
->raid_disks
+= 1;
5437 mddev
->delta_disks
= 1;
5438 /* make sure it will be not marked as dirty */
5439 mddev
->recovery_cp
= MaxSector
;
5441 return setup_conf(mddev
);
5445 static void *raid5_takeover_raid1(struct mddev
*mddev
)
5449 if (mddev
->raid_disks
!= 2 ||
5450 mddev
->degraded
> 1)
5451 return ERR_PTR(-EINVAL
);
5453 /* Should check if there are write-behind devices? */
5455 chunksect
= 64*2; /* 64K by default */
5457 /* The array must be an exact multiple of chunksize */
5458 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5461 if ((chunksect
<<9) < STRIPE_SIZE
)
5462 /* array size does not allow a suitable chunk size */
5463 return ERR_PTR(-EINVAL
);
5465 mddev
->new_level
= 5;
5466 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5467 mddev
->new_chunk_sectors
= chunksect
;
5469 return setup_conf(mddev
);
5472 static void *raid5_takeover_raid6(struct mddev
*mddev
)
5476 switch (mddev
->layout
) {
5477 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5478 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5480 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5481 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5483 case ALGORITHM_LEFT_SYMMETRIC_6
:
5484 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5486 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5487 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5489 case ALGORITHM_PARITY_0_6
:
5490 new_layout
= ALGORITHM_PARITY_0
;
5492 case ALGORITHM_PARITY_N
:
5493 new_layout
= ALGORITHM_PARITY_N
;
5496 return ERR_PTR(-EINVAL
);
5498 mddev
->new_level
= 5;
5499 mddev
->new_layout
= new_layout
;
5500 mddev
->delta_disks
= -1;
5501 mddev
->raid_disks
-= 1;
5502 return setup_conf(mddev
);
5506 static int raid5_check_reshape(struct mddev
*mddev
)
5508 /* For a 2-drive array, the layout and chunk size can be changed
5509 * immediately as not restriping is needed.
5510 * For larger arrays we record the new value - after validation
5511 * to be used by a reshape pass.
5513 struct r5conf
*conf
= mddev
->private;
5514 int new_chunk
= mddev
->new_chunk_sectors
;
5516 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5518 if (new_chunk
> 0) {
5519 if (!is_power_of_2(new_chunk
))
5521 if (new_chunk
< (PAGE_SIZE
>>9))
5523 if (mddev
->array_sectors
& (new_chunk
-1))
5524 /* not factor of array size */
5528 /* They look valid */
5530 if (mddev
->raid_disks
== 2) {
5531 /* can make the change immediately */
5532 if (mddev
->new_layout
>= 0) {
5533 conf
->algorithm
= mddev
->new_layout
;
5534 mddev
->layout
= mddev
->new_layout
;
5536 if (new_chunk
> 0) {
5537 conf
->chunk_sectors
= new_chunk
;
5538 mddev
->chunk_sectors
= new_chunk
;
5540 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5541 md_wakeup_thread(mddev
->thread
);
5543 return check_reshape(mddev
);
5546 static int raid6_check_reshape(struct mddev
*mddev
)
5548 int new_chunk
= mddev
->new_chunk_sectors
;
5550 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5552 if (new_chunk
> 0) {
5553 if (!is_power_of_2(new_chunk
))
5555 if (new_chunk
< (PAGE_SIZE
>> 9))
5557 if (mddev
->array_sectors
& (new_chunk
-1))
5558 /* not factor of array size */
5562 /* They look valid */
5563 return check_reshape(mddev
);
5566 static void *raid5_takeover(struct mddev
*mddev
)
5568 /* raid5 can take over:
5569 * raid0 - if there is only one strip zone - make it a raid4 layout
5570 * raid1 - if there are two drives. We need to know the chunk size
5571 * raid4 - trivial - just use a raid4 layout.
5572 * raid6 - Providing it is a *_6 layout
5574 if (mddev
->level
== 0)
5575 return raid45_takeover_raid0(mddev
, 5);
5576 if (mddev
->level
== 1)
5577 return raid5_takeover_raid1(mddev
);
5578 if (mddev
->level
== 4) {
5579 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5580 mddev
->new_level
= 5;
5581 return setup_conf(mddev
);
5583 if (mddev
->level
== 6)
5584 return raid5_takeover_raid6(mddev
);
5586 return ERR_PTR(-EINVAL
);
5589 static void *raid4_takeover(struct mddev
*mddev
)
5591 /* raid4 can take over:
5592 * raid0 - if there is only one strip zone
5593 * raid5 - if layout is right
5595 if (mddev
->level
== 0)
5596 return raid45_takeover_raid0(mddev
, 4);
5597 if (mddev
->level
== 5 &&
5598 mddev
->layout
== ALGORITHM_PARITY_N
) {
5599 mddev
->new_layout
= 0;
5600 mddev
->new_level
= 4;
5601 return setup_conf(mddev
);
5603 return ERR_PTR(-EINVAL
);
5606 static struct md_personality raid5_personality
;
5608 static void *raid6_takeover(struct mddev
*mddev
)
5610 /* Currently can only take over a raid5. We map the
5611 * personality to an equivalent raid6 personality
5612 * with the Q block at the end.
5616 if (mddev
->pers
!= &raid5_personality
)
5617 return ERR_PTR(-EINVAL
);
5618 if (mddev
->degraded
> 1)
5619 return ERR_PTR(-EINVAL
);
5620 if (mddev
->raid_disks
> 253)
5621 return ERR_PTR(-EINVAL
);
5622 if (mddev
->raid_disks
< 3)
5623 return ERR_PTR(-EINVAL
);
5625 switch (mddev
->layout
) {
5626 case ALGORITHM_LEFT_ASYMMETRIC
:
5627 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5629 case ALGORITHM_RIGHT_ASYMMETRIC
:
5630 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5632 case ALGORITHM_LEFT_SYMMETRIC
:
5633 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5635 case ALGORITHM_RIGHT_SYMMETRIC
:
5636 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5638 case ALGORITHM_PARITY_0
:
5639 new_layout
= ALGORITHM_PARITY_0_6
;
5641 case ALGORITHM_PARITY_N
:
5642 new_layout
= ALGORITHM_PARITY_N
;
5645 return ERR_PTR(-EINVAL
);
5647 mddev
->new_level
= 6;
5648 mddev
->new_layout
= new_layout
;
5649 mddev
->delta_disks
= 1;
5650 mddev
->raid_disks
+= 1;
5651 return setup_conf(mddev
);
5655 static struct md_personality raid6_personality
=
5659 .owner
= THIS_MODULE
,
5660 .make_request
= make_request
,
5664 .error_handler
= error
,
5665 .hot_add_disk
= raid5_add_disk
,
5666 .hot_remove_disk
= raid5_remove_disk
,
5667 .spare_active
= raid5_spare_active
,
5668 .sync_request
= sync_request
,
5669 .resize
= raid5_resize
,
5671 .check_reshape
= raid6_check_reshape
,
5672 .start_reshape
= raid5_start_reshape
,
5673 .finish_reshape
= raid5_finish_reshape
,
5674 .quiesce
= raid5_quiesce
,
5675 .takeover
= raid6_takeover
,
5677 static struct md_personality raid5_personality
=
5681 .owner
= THIS_MODULE
,
5682 .make_request
= make_request
,
5686 .error_handler
= error
,
5687 .hot_add_disk
= raid5_add_disk
,
5688 .hot_remove_disk
= raid5_remove_disk
,
5689 .spare_active
= raid5_spare_active
,
5690 .sync_request
= sync_request
,
5691 .resize
= raid5_resize
,
5693 .check_reshape
= raid5_check_reshape
,
5694 .start_reshape
= raid5_start_reshape
,
5695 .finish_reshape
= raid5_finish_reshape
,
5696 .quiesce
= raid5_quiesce
,
5697 .takeover
= raid5_takeover
,
5700 static struct md_personality raid4_personality
=
5704 .owner
= THIS_MODULE
,
5705 .make_request
= make_request
,
5709 .error_handler
= error
,
5710 .hot_add_disk
= raid5_add_disk
,
5711 .hot_remove_disk
= raid5_remove_disk
,
5712 .spare_active
= raid5_spare_active
,
5713 .sync_request
= sync_request
,
5714 .resize
= raid5_resize
,
5716 .check_reshape
= raid5_check_reshape
,
5717 .start_reshape
= raid5_start_reshape
,
5718 .finish_reshape
= raid5_finish_reshape
,
5719 .quiesce
= raid5_quiesce
,
5720 .takeover
= raid4_takeover
,
5723 static int __init
raid5_init(void)
5725 register_md_personality(&raid6_personality
);
5726 register_md_personality(&raid5_personality
);
5727 register_md_personality(&raid4_personality
);
5731 static void raid5_exit(void)
5733 unregister_md_personality(&raid6_personality
);
5734 unregister_md_personality(&raid5_personality
);
5735 unregister_md_personality(&raid4_personality
);
5738 module_init(raid5_init
);
5739 module_exit(raid5_exit
);
5740 MODULE_LICENSE("GPL");
5741 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5742 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5743 MODULE_ALIAS("md-raid5");
5744 MODULE_ALIAS("md-raid4");
5745 MODULE_ALIAS("md-level-5");
5746 MODULE_ALIAS("md-level-4");
5747 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5748 MODULE_ALIAS("md-raid6");
5749 MODULE_ALIAS("md-level-6");
5751 /* This used to be two separate modules, they were: */
5752 MODULE_ALIAS("raid5");
5753 MODULE_ALIAS("raid6");