1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <asm/uaccess.h>
56 #include <trace/events/vmscan.h>
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly
;
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata
= 1;
70 static int really_do_swap_account __initdata
= 0;
74 #define do_swap_account (0)
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index
{
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS
,
94 enum mem_cgroup_events_index
{
95 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT
, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS
,
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
108 enum mem_cgroup_events_target
{
109 MEM_CGROUP_TARGET_THRESH
,
110 MEM_CGROUP_TARGET_SOFTLIMIT
,
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 struct mem_cgroup_stat_cpu
{
117 long count
[MEM_CGROUP_STAT_NSTATS
];
118 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
119 unsigned long targets
[MEM_CGROUP_NTARGETS
];
123 * per-zone information in memory controller.
125 struct mem_cgroup_per_zone
{
127 * spin_lock to protect the per cgroup LRU
129 struct list_head lists
[NR_LRU_LISTS
];
130 unsigned long count
[NR_LRU_LISTS
];
132 struct zone_reclaim_stat reclaim_stat
;
133 struct rb_node tree_node
; /* RB tree node */
134 unsigned long long usage_in_excess
;/* Set to the value by which */
135 /* the soft limit is exceeded*/
137 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
138 /* use container_of */
140 /* Macro for accessing counter */
141 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143 struct mem_cgroup_per_node
{
144 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
147 struct mem_cgroup_lru_info
{
148 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
152 * Cgroups above their limits are maintained in a RB-Tree, independent of
153 * their hierarchy representation
156 struct mem_cgroup_tree_per_zone
{
157 struct rb_root rb_root
;
161 struct mem_cgroup_tree_per_node
{
162 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
165 struct mem_cgroup_tree
{
166 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
169 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
171 struct mem_cgroup_threshold
{
172 struct eventfd_ctx
*eventfd
;
177 struct mem_cgroup_threshold_ary
{
178 /* An array index points to threshold just below usage. */
179 int current_threshold
;
180 /* Size of entries[] */
182 /* Array of thresholds */
183 struct mem_cgroup_threshold entries
[0];
186 struct mem_cgroup_thresholds
{
187 /* Primary thresholds array */
188 struct mem_cgroup_threshold_ary
*primary
;
190 * Spare threshold array.
191 * This is needed to make mem_cgroup_unregister_event() "never fail".
192 * It must be able to store at least primary->size - 1 entries.
194 struct mem_cgroup_threshold_ary
*spare
;
198 struct mem_cgroup_eventfd_list
{
199 struct list_head list
;
200 struct eventfd_ctx
*eventfd
;
203 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
204 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
207 * The memory controller data structure. The memory controller controls both
208 * page cache and RSS per cgroup. We would eventually like to provide
209 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210 * to help the administrator determine what knobs to tune.
212 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 * we hit the water mark. May be even add a low water mark, such that
214 * no reclaim occurs from a cgroup at it's low water mark, this is
215 * a feature that will be implemented much later in the future.
218 struct cgroup_subsys_state css
;
220 * the counter to account for memory usage
222 struct res_counter res
;
224 * the counter to account for mem+swap usage.
226 struct res_counter memsw
;
228 * Per cgroup active and inactive list, similar to the
229 * per zone LRU lists.
231 struct mem_cgroup_lru_info info
;
233 * While reclaiming in a hierarchy, we cache the last child we
236 int last_scanned_child
;
237 int last_scanned_node
;
239 nodemask_t scan_nodes
;
240 unsigned long next_scan_node_update
;
243 * Should the accounting and control be hierarchical, per subtree?
249 unsigned int swappiness
;
250 /* OOM-Killer disable */
251 int oom_kill_disable
;
253 /* set when res.limit == memsw.limit */
254 bool memsw_is_minimum
;
256 /* protect arrays of thresholds */
257 struct mutex thresholds_lock
;
259 /* thresholds for memory usage. RCU-protected */
260 struct mem_cgroup_thresholds thresholds
;
262 /* thresholds for mem+swap usage. RCU-protected */
263 struct mem_cgroup_thresholds memsw_thresholds
;
265 /* For oom notifier event fd */
266 struct list_head oom_notify
;
269 * Should we move charges of a task when a task is moved into this
270 * mem_cgroup ? And what type of charges should we move ?
272 unsigned long move_charge_at_immigrate
;
276 struct mem_cgroup_stat_cpu
*stat
;
278 * used when a cpu is offlined or other synchronizations
279 * See mem_cgroup_read_stat().
281 struct mem_cgroup_stat_cpu nocpu_base
;
282 spinlock_t pcp_counter_lock
;
285 /* Stuffs for move charges at task migration. */
287 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
288 * left-shifted bitmap of these types.
291 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
292 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
296 /* "mc" and its members are protected by cgroup_mutex */
297 static struct move_charge_struct
{
298 spinlock_t lock
; /* for from, to */
299 struct mem_cgroup
*from
;
300 struct mem_cgroup
*to
;
301 unsigned long precharge
;
302 unsigned long moved_charge
;
303 unsigned long moved_swap
;
304 struct task_struct
*moving_task
; /* a task moving charges */
305 wait_queue_head_t waitq
; /* a waitq for other context */
307 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
308 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
311 static bool move_anon(void)
313 return test_bit(MOVE_CHARGE_TYPE_ANON
,
314 &mc
.to
->move_charge_at_immigrate
);
317 static bool move_file(void)
319 return test_bit(MOVE_CHARGE_TYPE_FILE
,
320 &mc
.to
->move_charge_at_immigrate
);
324 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
325 * limit reclaim to prevent infinite loops, if they ever occur.
327 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
328 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
331 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
332 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
333 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
334 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
335 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
336 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
340 /* for encoding cft->private value on file */
343 #define _OOM_TYPE (2)
344 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
345 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
346 #define MEMFILE_ATTR(val) ((val) & 0xffff)
347 /* Used for OOM nofiier */
348 #define OOM_CONTROL (0)
351 * Reclaim flags for mem_cgroup_hierarchical_reclaim
353 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
354 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
355 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
356 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
357 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
358 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
360 static void mem_cgroup_get(struct mem_cgroup
*mem
);
361 static void mem_cgroup_put(struct mem_cgroup
*mem
);
362 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
363 static void drain_all_stock_async(struct mem_cgroup
*mem
);
365 static struct mem_cgroup_per_zone
*
366 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
368 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
371 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
376 static struct mem_cgroup_per_zone
*
377 page_cgroup_zoneinfo(struct mem_cgroup
*mem
, struct page
*page
)
379 int nid
= page_to_nid(page
);
380 int zid
= page_zonenum(page
);
382 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
385 static struct mem_cgroup_tree_per_zone
*
386 soft_limit_tree_node_zone(int nid
, int zid
)
388 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
391 static struct mem_cgroup_tree_per_zone
*
392 soft_limit_tree_from_page(struct page
*page
)
394 int nid
= page_to_nid(page
);
395 int zid
= page_zonenum(page
);
397 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
401 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
402 struct mem_cgroup_per_zone
*mz
,
403 struct mem_cgroup_tree_per_zone
*mctz
,
404 unsigned long long new_usage_in_excess
)
406 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
407 struct rb_node
*parent
= NULL
;
408 struct mem_cgroup_per_zone
*mz_node
;
413 mz
->usage_in_excess
= new_usage_in_excess
;
414 if (!mz
->usage_in_excess
)
418 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
420 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
423 * We can't avoid mem cgroups that are over their soft
424 * limit by the same amount
426 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
429 rb_link_node(&mz
->tree_node
, parent
, p
);
430 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
435 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
436 struct mem_cgroup_per_zone
*mz
,
437 struct mem_cgroup_tree_per_zone
*mctz
)
441 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
446 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
447 struct mem_cgroup_per_zone
*mz
,
448 struct mem_cgroup_tree_per_zone
*mctz
)
450 spin_lock(&mctz
->lock
);
451 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
452 spin_unlock(&mctz
->lock
);
456 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
458 unsigned long long excess
;
459 struct mem_cgroup_per_zone
*mz
;
460 struct mem_cgroup_tree_per_zone
*mctz
;
461 int nid
= page_to_nid(page
);
462 int zid
= page_zonenum(page
);
463 mctz
= soft_limit_tree_from_page(page
);
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
469 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
470 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
471 excess
= res_counter_soft_limit_excess(&mem
->res
);
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
476 if (excess
|| mz
->on_tree
) {
477 spin_lock(&mctz
->lock
);
478 /* if on-tree, remove it */
480 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
482 * Insert again. mz->usage_in_excess will be updated.
483 * If excess is 0, no tree ops.
485 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
486 spin_unlock(&mctz
->lock
);
491 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
494 struct mem_cgroup_per_zone
*mz
;
495 struct mem_cgroup_tree_per_zone
*mctz
;
497 for_each_node_state(node
, N_POSSIBLE
) {
498 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
499 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
500 mctz
= soft_limit_tree_node_zone(node
, zone
);
501 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
506 static struct mem_cgroup_per_zone
*
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
509 struct rb_node
*rightmost
= NULL
;
510 struct mem_cgroup_per_zone
*mz
;
514 rightmost
= rb_last(&mctz
->rb_root
);
516 goto done
; /* Nothing to reclaim from */
518 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
524 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
525 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
526 !css_tryget(&mz
->mem
->css
))
532 static struct mem_cgroup_per_zone
*
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
535 struct mem_cgroup_per_zone
*mz
;
537 spin_lock(&mctz
->lock
);
538 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
539 spin_unlock(&mctz
->lock
);
544 * Implementation Note: reading percpu statistics for memcg.
546 * Both of vmstat[] and percpu_counter has threshold and do periodic
547 * synchronization to implement "quick" read. There are trade-off between
548 * reading cost and precision of value. Then, we may have a chance to implement
549 * a periodic synchronizion of counter in memcg's counter.
551 * But this _read() function is used for user interface now. The user accounts
552 * memory usage by memory cgroup and he _always_ requires exact value because
553 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
554 * have to visit all online cpus and make sum. So, for now, unnecessary
555 * synchronization is not implemented. (just implemented for cpu hotplug)
557 * If there are kernel internal actions which can make use of some not-exact
558 * value, and reading all cpu value can be performance bottleneck in some
559 * common workload, threashold and synchonization as vmstat[] should be
562 static long mem_cgroup_read_stat(struct mem_cgroup
*mem
,
563 enum mem_cgroup_stat_index idx
)
569 for_each_online_cpu(cpu
)
570 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
571 #ifdef CONFIG_HOTPLUG_CPU
572 spin_lock(&mem
->pcp_counter_lock
);
573 val
+= mem
->nocpu_base
.count
[idx
];
574 spin_unlock(&mem
->pcp_counter_lock
);
580 static long mem_cgroup_local_usage(struct mem_cgroup
*mem
)
584 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
585 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
589 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
592 int val
= (charge
) ? 1 : -1;
593 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
596 void mem_cgroup_pgfault(struct mem_cgroup
*mem
, int val
)
598 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
], val
);
601 void mem_cgroup_pgmajfault(struct mem_cgroup
*mem
, int val
)
603 this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
], val
);
606 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*mem
,
607 enum mem_cgroup_events_index idx
)
609 unsigned long val
= 0;
612 for_each_online_cpu(cpu
)
613 val
+= per_cpu(mem
->stat
->events
[idx
], cpu
);
614 #ifdef CONFIG_HOTPLUG_CPU
615 spin_lock(&mem
->pcp_counter_lock
);
616 val
+= mem
->nocpu_base
.events
[idx
];
617 spin_unlock(&mem
->pcp_counter_lock
);
622 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
623 bool file
, int nr_pages
)
628 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_pages
);
630 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_pages
);
632 /* pagein of a big page is an event. So, ignore page size */
634 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
636 __this_cpu_inc(mem
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
637 nr_pages
= -nr_pages
; /* for event */
640 __this_cpu_add(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
], nr_pages
);
646 mem_cgroup_get_zonestat_node(struct mem_cgroup
*mem
, int nid
, enum lru_list idx
)
648 struct mem_cgroup_per_zone
*mz
;
652 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
653 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
654 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
658 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
664 for_each_online_node(nid
)
665 total
+= mem_cgroup_get_zonestat_node(mem
, nid
, idx
);
669 static bool __memcg_event_check(struct mem_cgroup
*mem
, int target
)
671 unsigned long val
, next
;
673 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
674 next
= this_cpu_read(mem
->stat
->targets
[target
]);
675 /* from time_after() in jiffies.h */
676 return ((long)next
- (long)val
< 0);
679 static void __mem_cgroup_target_update(struct mem_cgroup
*mem
, int target
)
681 unsigned long val
, next
;
683 val
= this_cpu_read(mem
->stat
->events
[MEM_CGROUP_EVENTS_COUNT
]);
686 case MEM_CGROUP_TARGET_THRESH
:
687 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
689 case MEM_CGROUP_TARGET_SOFTLIMIT
:
690 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
696 this_cpu_write(mem
->stat
->targets
[target
], next
);
700 * Check events in order.
703 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
705 /* threshold event is triggered in finer grain than soft limit */
706 if (unlikely(__memcg_event_check(mem
, MEM_CGROUP_TARGET_THRESH
))) {
707 mem_cgroup_threshold(mem
);
708 __mem_cgroup_target_update(mem
, MEM_CGROUP_TARGET_THRESH
);
709 if (unlikely(__memcg_event_check(mem
,
710 MEM_CGROUP_TARGET_SOFTLIMIT
))){
711 mem_cgroup_update_tree(mem
, page
);
712 __mem_cgroup_target_update(mem
,
713 MEM_CGROUP_TARGET_SOFTLIMIT
);
718 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
720 return container_of(cgroup_subsys_state(cont
,
721 mem_cgroup_subsys_id
), struct mem_cgroup
,
725 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
728 * mm_update_next_owner() may clear mm->owner to NULL
729 * if it races with swapoff, page migration, etc.
730 * So this can be called with p == NULL.
735 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
736 struct mem_cgroup
, css
);
739 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
741 struct mem_cgroup
*mem
= NULL
;
746 * Because we have no locks, mm->owner's may be being moved to other
747 * cgroup. We use css_tryget() here even if this looks
748 * pessimistic (rather than adding locks here).
752 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
755 } while (!css_tryget(&mem
->css
));
760 /* The caller has to guarantee "mem" exists before calling this */
761 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
763 struct cgroup_subsys_state
*css
;
766 if (!mem
) /* ROOT cgroup has the smallest ID */
767 return root_mem_cgroup
; /*css_put/get against root is ignored*/
768 if (!mem
->use_hierarchy
) {
769 if (css_tryget(&mem
->css
))
775 * searching a memory cgroup which has the smallest ID under given
776 * ROOT cgroup. (ID >= 1)
778 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
779 if (css
&& css_tryget(css
))
780 mem
= container_of(css
, struct mem_cgroup
, css
);
787 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
788 struct mem_cgroup
*root
,
791 int nextid
= css_id(&iter
->css
) + 1;
794 struct cgroup_subsys_state
*css
;
796 hierarchy_used
= iter
->use_hierarchy
;
799 /* If no ROOT, walk all, ignore hierarchy */
800 if (!cond
|| (root
&& !hierarchy_used
))
804 root
= root_mem_cgroup
;
810 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
812 if (css
&& css_tryget(css
))
813 iter
= container_of(css
, struct mem_cgroup
, css
);
815 /* If css is NULL, no more cgroups will be found */
817 } while (css
&& !iter
);
822 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
823 * be careful that "break" loop is not allowed. We have reference count.
824 * Instead of that modify "cond" to be false and "continue" to exit the loop.
826 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
827 for (iter = mem_cgroup_start_loop(root);\
829 iter = mem_cgroup_get_next(iter, root, cond))
831 #define for_each_mem_cgroup_tree(iter, root) \
832 for_each_mem_cgroup_tree_cond(iter, root, true)
834 #define for_each_mem_cgroup_all(iter) \
835 for_each_mem_cgroup_tree_cond(iter, NULL, true)
838 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
840 return (mem
== root_mem_cgroup
);
843 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
845 struct mem_cgroup
*mem
;
851 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
857 mem_cgroup_pgmajfault(mem
, 1);
860 mem_cgroup_pgfault(mem
, 1);
868 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
871 * Following LRU functions are allowed to be used without PCG_LOCK.
872 * Operations are called by routine of global LRU independently from memcg.
873 * What we have to take care of here is validness of pc->mem_cgroup.
875 * Changes to pc->mem_cgroup happens when
878 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
879 * It is added to LRU before charge.
880 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
881 * When moving account, the page is not on LRU. It's isolated.
884 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
886 struct page_cgroup
*pc
;
887 struct mem_cgroup_per_zone
*mz
;
889 if (mem_cgroup_disabled())
891 pc
= lookup_page_cgroup(page
);
892 /* can happen while we handle swapcache. */
893 if (!TestClearPageCgroupAcctLRU(pc
))
895 VM_BUG_ON(!pc
->mem_cgroup
);
897 * We don't check PCG_USED bit. It's cleared when the "page" is finally
898 * removed from global LRU.
900 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
901 /* huge page split is done under lru_lock. so, we have no races. */
902 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
903 if (mem_cgroup_is_root(pc
->mem_cgroup
))
905 VM_BUG_ON(list_empty(&pc
->lru
));
906 list_del_init(&pc
->lru
);
909 void mem_cgroup_del_lru(struct page
*page
)
911 mem_cgroup_del_lru_list(page
, page_lru(page
));
915 * Writeback is about to end against a page which has been marked for immediate
916 * reclaim. If it still appears to be reclaimable, move it to the tail of the
919 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
921 struct mem_cgroup_per_zone
*mz
;
922 struct page_cgroup
*pc
;
923 enum lru_list lru
= page_lru(page
);
925 if (mem_cgroup_disabled())
928 pc
= lookup_page_cgroup(page
);
929 /* unused or root page is not rotated. */
930 if (!PageCgroupUsed(pc
))
932 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
934 if (mem_cgroup_is_root(pc
->mem_cgroup
))
936 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
937 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
940 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
942 struct mem_cgroup_per_zone
*mz
;
943 struct page_cgroup
*pc
;
945 if (mem_cgroup_disabled())
948 pc
= lookup_page_cgroup(page
);
949 /* unused or root page is not rotated. */
950 if (!PageCgroupUsed(pc
))
952 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
954 if (mem_cgroup_is_root(pc
->mem_cgroup
))
956 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
957 list_move(&pc
->lru
, &mz
->lists
[lru
]);
960 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
962 struct page_cgroup
*pc
;
963 struct mem_cgroup_per_zone
*mz
;
965 if (mem_cgroup_disabled())
967 pc
= lookup_page_cgroup(page
);
968 VM_BUG_ON(PageCgroupAcctLRU(pc
));
969 if (!PageCgroupUsed(pc
))
971 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
973 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
974 /* huge page split is done under lru_lock. so, we have no races. */
975 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
976 SetPageCgroupAcctLRU(pc
);
977 if (mem_cgroup_is_root(pc
->mem_cgroup
))
979 list_add(&pc
->lru
, &mz
->lists
[lru
]);
983 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
984 * while it's linked to lru because the page may be reused after it's fully
985 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
986 * It's done under lock_page and expected that zone->lru_lock isnever held.
988 static void mem_cgroup_lru_del_before_commit(struct page
*page
)
991 struct zone
*zone
= page_zone(page
);
992 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
995 * Doing this check without taking ->lru_lock seems wrong but this
996 * is safe. Because if page_cgroup's USED bit is unset, the page
997 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
998 * set, the commit after this will fail, anyway.
999 * This all charge/uncharge is done under some mutual execustion.
1000 * So, we don't need to taking care of changes in USED bit.
1002 if (likely(!PageLRU(page
)))
1005 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1007 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1008 * is guarded by lock_page() because the page is SwapCache.
1010 if (!PageCgroupUsed(pc
))
1011 mem_cgroup_del_lru_list(page
, page_lru(page
));
1012 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1015 static void mem_cgroup_lru_add_after_commit(struct page
*page
)
1017 unsigned long flags
;
1018 struct zone
*zone
= page_zone(page
);
1019 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1021 /* taking care of that the page is added to LRU while we commit it */
1022 if (likely(!PageLRU(page
)))
1024 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1025 /* link when the page is linked to LRU but page_cgroup isn't */
1026 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
1027 mem_cgroup_add_lru_list(page
, page_lru(page
));
1028 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1032 void mem_cgroup_move_lists(struct page
*page
,
1033 enum lru_list from
, enum lru_list to
)
1035 if (mem_cgroup_disabled())
1037 mem_cgroup_del_lru_list(page
, from
);
1038 mem_cgroup_add_lru_list(page
, to
);
1041 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
1044 struct mem_cgroup
*curr
= NULL
;
1045 struct task_struct
*p
;
1047 p
= find_lock_task_mm(task
);
1050 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1055 * We should check use_hierarchy of "mem" not "curr". Because checking
1056 * use_hierarchy of "curr" here make this function true if hierarchy is
1057 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1058 * hierarchy(even if use_hierarchy is disabled in "mem").
1060 if (mem
->use_hierarchy
)
1061 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
1063 ret
= (curr
== mem
);
1064 css_put(&curr
->css
);
1068 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
1070 unsigned long active
;
1071 unsigned long inactive
;
1073 unsigned long inactive_ratio
;
1075 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
1076 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
1078 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1080 inactive_ratio
= int_sqrt(10 * gb
);
1084 if (present_pages
) {
1085 present_pages
[0] = inactive
;
1086 present_pages
[1] = active
;
1089 return inactive_ratio
;
1092 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
1094 unsigned long active
;
1095 unsigned long inactive
;
1096 unsigned long present_pages
[2];
1097 unsigned long inactive_ratio
;
1099 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
1101 inactive
= present_pages
[0];
1102 active
= present_pages
[1];
1104 if (inactive
* inactive_ratio
< active
)
1110 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
1112 unsigned long active
;
1113 unsigned long inactive
;
1115 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
1116 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1118 return (active
> inactive
);
1121 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
,
1125 int nid
= zone_to_nid(zone
);
1126 int zid
= zone_idx(zone
);
1127 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1129 return MEM_CGROUP_ZSTAT(mz
, lru
);
1133 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup
*memcg
,
1138 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_FILE
) +
1139 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_FILE
);
1144 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup
*memcg
)
1149 for_each_node_state(nid
, N_HIGH_MEMORY
)
1150 total
+= mem_cgroup_node_nr_file_lru_pages(memcg
, nid
);
1155 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup
*memcg
,
1160 ret
= mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_INACTIVE_ANON
) +
1161 mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_ACTIVE_ANON
);
1166 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup
*memcg
)
1171 for_each_node_state(nid
, N_HIGH_MEMORY
)
1172 total
+= mem_cgroup_node_nr_anon_lru_pages(memcg
, nid
);
1177 static unsigned long
1178 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
, int nid
)
1180 return mem_cgroup_get_zonestat_node(memcg
, nid
, LRU_UNEVICTABLE
);
1183 static unsigned long
1184 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup
*memcg
)
1189 for_each_node_state(nid
, N_HIGH_MEMORY
)
1190 total
+= mem_cgroup_node_nr_unevictable_lru_pages(memcg
, nid
);
1195 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
1202 total
+= mem_cgroup_get_zonestat_node(memcg
, nid
, l
);
1207 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
)
1212 for_each_node_state(nid
, N_HIGH_MEMORY
)
1213 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
);
1217 #endif /* CONFIG_NUMA */
1219 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1222 int nid
= zone_to_nid(zone
);
1223 int zid
= zone_idx(zone
);
1224 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1226 return &mz
->reclaim_stat
;
1229 struct zone_reclaim_stat
*
1230 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1232 struct page_cgroup
*pc
;
1233 struct mem_cgroup_per_zone
*mz
;
1235 if (mem_cgroup_disabled())
1238 pc
= lookup_page_cgroup(page
);
1239 if (!PageCgroupUsed(pc
))
1241 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1243 mz
= page_cgroup_zoneinfo(pc
->mem_cgroup
, page
);
1244 return &mz
->reclaim_stat
;
1247 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1248 struct list_head
*dst
,
1249 unsigned long *scanned
, int order
,
1250 int mode
, struct zone
*z
,
1251 struct mem_cgroup
*mem_cont
,
1252 int active
, int file
)
1254 unsigned long nr_taken
= 0;
1258 struct list_head
*src
;
1259 struct page_cgroup
*pc
, *tmp
;
1260 int nid
= zone_to_nid(z
);
1261 int zid
= zone_idx(z
);
1262 struct mem_cgroup_per_zone
*mz
;
1263 int lru
= LRU_FILE
* file
+ active
;
1267 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1268 src
= &mz
->lists
[lru
];
1271 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1272 if (scan
>= nr_to_scan
)
1275 if (unlikely(!PageCgroupUsed(pc
)))
1278 page
= lookup_cgroup_page(pc
);
1280 if (unlikely(!PageLRU(page
)))
1284 ret
= __isolate_lru_page(page
, mode
, file
);
1287 list_move(&page
->lru
, dst
);
1288 mem_cgroup_del_lru(page
);
1289 nr_taken
+= hpage_nr_pages(page
);
1292 /* we don't affect global LRU but rotate in our LRU */
1293 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1302 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1308 #define mem_cgroup_from_res_counter(counter, member) \
1309 container_of(counter, struct mem_cgroup, member)
1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313 * @mem: the memory cgroup
1315 * Returns the maximum amount of memory @mem can be charged with, in
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup
*mem
)
1320 unsigned long long margin
;
1322 margin
= res_counter_margin(&mem
->res
);
1323 if (do_swap_account
)
1324 margin
= min(margin
, res_counter_margin(&mem
->memsw
));
1325 return margin
>> PAGE_SHIFT
;
1328 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1330 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1333 if (cgrp
->parent
== NULL
)
1334 return vm_swappiness
;
1336 return memcg
->swappiness
;
1339 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1344 spin_lock(&mem
->pcp_counter_lock
);
1345 for_each_online_cpu(cpu
)
1346 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1347 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1348 spin_unlock(&mem
->pcp_counter_lock
);
1354 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1361 spin_lock(&mem
->pcp_counter_lock
);
1362 for_each_online_cpu(cpu
)
1363 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1364 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1365 spin_unlock(&mem
->pcp_counter_lock
);
1369 * 2 routines for checking "mem" is under move_account() or not.
1371 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1372 * for avoiding race in accounting. If true,
1373 * pc->mem_cgroup may be overwritten.
1375 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1376 * under hierarchy of moving cgroups. This is for
1377 * waiting at hith-memory prressure caused by "move".
1380 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1382 VM_BUG_ON(!rcu_read_lock_held());
1383 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1386 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1388 struct mem_cgroup
*from
;
1389 struct mem_cgroup
*to
;
1392 * Unlike task_move routines, we access mc.to, mc.from not under
1393 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1395 spin_lock(&mc
.lock
);
1400 if (from
== mem
|| to
== mem
1401 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1402 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1405 spin_unlock(&mc
.lock
);
1409 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1411 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1412 if (mem_cgroup_under_move(mem
)) {
1414 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1415 /* moving charge context might have finished. */
1418 finish_wait(&mc
.waitq
, &wait
);
1426 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1427 * @memcg: The memory cgroup that went over limit
1428 * @p: Task that is going to be killed
1430 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1433 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1435 struct cgroup
*task_cgrp
;
1436 struct cgroup
*mem_cgrp
;
1438 * Need a buffer in BSS, can't rely on allocations. The code relies
1439 * on the assumption that OOM is serialized for memory controller.
1440 * If this assumption is broken, revisit this code.
1442 static char memcg_name
[PATH_MAX
];
1451 mem_cgrp
= memcg
->css
.cgroup
;
1452 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1454 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1457 * Unfortunately, we are unable to convert to a useful name
1458 * But we'll still print out the usage information
1465 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1468 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1476 * Continues from above, so we don't need an KERN_ level
1478 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1481 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1482 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1483 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1484 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1485 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1487 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1488 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1489 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1493 * This function returns the number of memcg under hierarchy tree. Returns
1494 * 1(self count) if no children.
1496 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1499 struct mem_cgroup
*iter
;
1501 for_each_mem_cgroup_tree(iter
, mem
)
1507 * Return the memory (and swap, if configured) limit for a memcg.
1509 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1514 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1515 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1517 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1519 * If memsw is finite and limits the amount of swap space available
1520 * to this memcg, return that limit.
1522 return min(limit
, memsw
);
1526 * Visit the first child (need not be the first child as per the ordering
1527 * of the cgroup list, since we track last_scanned_child) of @mem and use
1528 * that to reclaim free pages from.
1530 static struct mem_cgroup
*
1531 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1533 struct mem_cgroup
*ret
= NULL
;
1534 struct cgroup_subsys_state
*css
;
1537 if (!root_mem
->use_hierarchy
) {
1538 css_get(&root_mem
->css
);
1544 nextid
= root_mem
->last_scanned_child
+ 1;
1545 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1547 if (css
&& css_tryget(css
))
1548 ret
= container_of(css
, struct mem_cgroup
, css
);
1551 /* Updates scanning parameter */
1553 /* this means start scan from ID:1 */
1554 root_mem
->last_scanned_child
= 0;
1556 root_mem
->last_scanned_child
= found
;
1562 #if MAX_NUMNODES > 1
1565 * Always updating the nodemask is not very good - even if we have an empty
1566 * list or the wrong list here, we can start from some node and traverse all
1567 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1570 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*mem
)
1574 if (time_after(mem
->next_scan_node_update
, jiffies
))
1577 mem
->next_scan_node_update
= jiffies
+ 10*HZ
;
1578 /* make a nodemask where this memcg uses memory from */
1579 mem
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1581 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1583 if (mem_cgroup_get_zonestat_node(mem
, nid
, LRU_INACTIVE_FILE
) ||
1584 mem_cgroup_get_zonestat_node(mem
, nid
, LRU_ACTIVE_FILE
))
1587 if (total_swap_pages
&&
1588 (mem_cgroup_get_zonestat_node(mem
, nid
, LRU_INACTIVE_ANON
) ||
1589 mem_cgroup_get_zonestat_node(mem
, nid
, LRU_ACTIVE_ANON
)))
1591 node_clear(nid
, mem
->scan_nodes
);
1596 * Selecting a node where we start reclaim from. Because what we need is just
1597 * reducing usage counter, start from anywhere is O,K. Considering
1598 * memory reclaim from current node, there are pros. and cons.
1600 * Freeing memory from current node means freeing memory from a node which
1601 * we'll use or we've used. So, it may make LRU bad. And if several threads
1602 * hit limits, it will see a contention on a node. But freeing from remote
1603 * node means more costs for memory reclaim because of memory latency.
1605 * Now, we use round-robin. Better algorithm is welcomed.
1607 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1611 mem_cgroup_may_update_nodemask(mem
);
1612 node
= mem
->last_scanned_node
;
1614 node
= next_node(node
, mem
->scan_nodes
);
1615 if (node
== MAX_NUMNODES
)
1616 node
= first_node(mem
->scan_nodes
);
1618 * We call this when we hit limit, not when pages are added to LRU.
1619 * No LRU may hold pages because all pages are UNEVICTABLE or
1620 * memcg is too small and all pages are not on LRU. In that case,
1621 * we use curret node.
1623 if (unlikely(node
== MAX_NUMNODES
))
1624 node
= numa_node_id();
1626 mem
->last_scanned_node
= node
;
1631 int mem_cgroup_select_victim_node(struct mem_cgroup
*mem
)
1638 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1639 * we reclaimed from, so that we don't end up penalizing one child extensively
1640 * based on its position in the children list.
1642 * root_mem is the original ancestor that we've been reclaim from.
1644 * We give up and return to the caller when we visit root_mem twice.
1645 * (other groups can be removed while we're walking....)
1647 * If shrink==true, for avoiding to free too much, this returns immedieately.
1649 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1652 unsigned long reclaim_options
,
1653 unsigned long *total_scanned
)
1655 struct mem_cgroup
*victim
;
1658 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1659 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1660 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1661 unsigned long excess
;
1662 unsigned long nr_scanned
;
1664 excess
= res_counter_soft_limit_excess(&root_mem
->res
) >> PAGE_SHIFT
;
1666 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1667 if (!check_soft
&& root_mem
->memsw_is_minimum
)
1671 victim
= mem_cgroup_select_victim(root_mem
);
1672 if (victim
== root_mem
) {
1675 * We are not draining per cpu cached charges during
1676 * soft limit reclaim because global reclaim doesn't
1677 * care about charges. It tries to free some memory and
1678 * charges will not give any.
1680 if (!check_soft
&& loop
>= 1)
1681 drain_all_stock_async(root_mem
);
1684 * If we have not been able to reclaim
1685 * anything, it might because there are
1686 * no reclaimable pages under this hierarchy
1688 if (!check_soft
|| !total
) {
1689 css_put(&victim
->css
);
1693 * We want to do more targeted reclaim.
1694 * excess >> 2 is not to excessive so as to
1695 * reclaim too much, nor too less that we keep
1696 * coming back to reclaim from this cgroup
1698 if (total
>= (excess
>> 2) ||
1699 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1700 css_put(&victim
->css
);
1705 if (!mem_cgroup_local_usage(victim
)) {
1706 /* this cgroup's local usage == 0 */
1707 css_put(&victim
->css
);
1710 /* we use swappiness of local cgroup */
1712 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1713 noswap
, get_swappiness(victim
), zone
,
1715 *total_scanned
+= nr_scanned
;
1717 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1718 noswap
, get_swappiness(victim
));
1719 css_put(&victim
->css
);
1721 * At shrinking usage, we can't check we should stop here or
1722 * reclaim more. It's depends on callers. last_scanned_child
1723 * will work enough for keeping fairness under tree.
1729 if (!res_counter_soft_limit_excess(&root_mem
->res
))
1731 } else if (mem_cgroup_margin(root_mem
))
1738 * Check OOM-Killer is already running under our hierarchy.
1739 * If someone is running, return false.
1741 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1743 int x
, lock_count
= 0;
1744 struct mem_cgroup
*iter
;
1746 for_each_mem_cgroup_tree(iter
, mem
) {
1747 x
= atomic_inc_return(&iter
->oom_lock
);
1748 lock_count
= max(x
, lock_count
);
1751 if (lock_count
== 1)
1756 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1758 struct mem_cgroup
*iter
;
1761 * When a new child is created while the hierarchy is under oom,
1762 * mem_cgroup_oom_lock() may not be called. We have to use
1763 * atomic_add_unless() here.
1765 for_each_mem_cgroup_tree(iter
, mem
)
1766 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1771 static DEFINE_MUTEX(memcg_oom_mutex
);
1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1774 struct oom_wait_info
{
1775 struct mem_cgroup
*mem
;
1779 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1780 unsigned mode
, int sync
, void *arg
)
1782 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1783 struct oom_wait_info
*oom_wait_info
;
1785 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1787 if (oom_wait_info
->mem
== wake_mem
)
1789 /* if no hierarchy, no match */
1790 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1793 * Both of oom_wait_info->mem and wake_mem are stable under us.
1794 * Then we can use css_is_ancestor without taking care of RCU.
1796 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1797 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1801 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1804 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1806 /* for filtering, pass "mem" as argument. */
1807 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1810 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1812 if (mem
&& atomic_read(&mem
->oom_lock
))
1813 memcg_wakeup_oom(mem
);
1817 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1819 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1821 struct oom_wait_info owait
;
1822 bool locked
, need_to_kill
;
1825 owait
.wait
.flags
= 0;
1826 owait
.wait
.func
= memcg_oom_wake_function
;
1827 owait
.wait
.private = current
;
1828 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1829 need_to_kill
= true;
1830 /* At first, try to OOM lock hierarchy under mem.*/
1831 mutex_lock(&memcg_oom_mutex
);
1832 locked
= mem_cgroup_oom_lock(mem
);
1834 * Even if signal_pending(), we can't quit charge() loop without
1835 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1836 * under OOM is always welcomed, use TASK_KILLABLE here.
1838 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1839 if (!locked
|| mem
->oom_kill_disable
)
1840 need_to_kill
= false;
1842 mem_cgroup_oom_notify(mem
);
1843 mutex_unlock(&memcg_oom_mutex
);
1846 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1847 mem_cgroup_out_of_memory(mem
, mask
);
1850 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1852 mutex_lock(&memcg_oom_mutex
);
1853 mem_cgroup_oom_unlock(mem
);
1854 memcg_wakeup_oom(mem
);
1855 mutex_unlock(&memcg_oom_mutex
);
1857 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1859 /* Give chance to dying process */
1860 schedule_timeout(1);
1865 * Currently used to update mapped file statistics, but the routine can be
1866 * generalized to update other statistics as well.
1868 * Notes: Race condition
1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1871 * it tends to be costly. But considering some conditions, we doesn't need
1872 * to do so _always_.
1874 * Considering "charge", lock_page_cgroup() is not required because all
1875 * file-stat operations happen after a page is attached to radix-tree. There
1876 * are no race with "charge".
1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1880 * if there are race with "uncharge". Statistics itself is properly handled
1883 * Considering "move", this is an only case we see a race. To make the race
1884 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1885 * possibility of race condition. If there is, we take a lock.
1888 void mem_cgroup_update_page_stat(struct page
*page
,
1889 enum mem_cgroup_page_stat_item idx
, int val
)
1891 struct mem_cgroup
*mem
;
1892 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1893 bool need_unlock
= false;
1894 unsigned long uninitialized_var(flags
);
1900 mem
= pc
->mem_cgroup
;
1901 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1903 /* pc->mem_cgroup is unstable ? */
1904 if (unlikely(mem_cgroup_stealed(mem
)) || PageTransHuge(page
)) {
1905 /* take a lock against to access pc->mem_cgroup */
1906 move_lock_page_cgroup(pc
, &flags
);
1908 mem
= pc
->mem_cgroup
;
1909 if (!mem
|| !PageCgroupUsed(pc
))
1914 case MEMCG_NR_FILE_MAPPED
:
1916 SetPageCgroupFileMapped(pc
);
1917 else if (!page_mapped(page
))
1918 ClearPageCgroupFileMapped(pc
);
1919 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1925 this_cpu_add(mem
->stat
->count
[idx
], val
);
1928 if (unlikely(need_unlock
))
1929 move_unlock_page_cgroup(pc
, &flags
);
1933 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1936 * size of first charge trial. "32" comes from vmscan.c's magic value.
1937 * TODO: maybe necessary to use big numbers in big irons.
1939 #define CHARGE_BATCH 32U
1940 struct memcg_stock_pcp
{
1941 struct mem_cgroup
*cached
; /* this never be root cgroup */
1942 unsigned int nr_pages
;
1943 struct work_struct work
;
1944 unsigned long flags
;
1945 #define FLUSHING_CACHED_CHARGE (0)
1947 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1948 static DEFINE_MUTEX(percpu_charge_mutex
);
1951 * Try to consume stocked charge on this cpu. If success, one page is consumed
1952 * from local stock and true is returned. If the stock is 0 or charges from a
1953 * cgroup which is not current target, returns false. This stock will be
1956 static bool consume_stock(struct mem_cgroup
*mem
)
1958 struct memcg_stock_pcp
*stock
;
1961 stock
= &get_cpu_var(memcg_stock
);
1962 if (mem
== stock
->cached
&& stock
->nr_pages
)
1964 else /* need to call res_counter_charge */
1966 put_cpu_var(memcg_stock
);
1971 * Returns stocks cached in percpu to res_counter and reset cached information.
1973 static void drain_stock(struct memcg_stock_pcp
*stock
)
1975 struct mem_cgroup
*old
= stock
->cached
;
1977 if (stock
->nr_pages
) {
1978 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
1980 res_counter_uncharge(&old
->res
, bytes
);
1981 if (do_swap_account
)
1982 res_counter_uncharge(&old
->memsw
, bytes
);
1983 stock
->nr_pages
= 0;
1985 stock
->cached
= NULL
;
1989 * This must be called under preempt disabled or must be called by
1990 * a thread which is pinned to local cpu.
1992 static void drain_local_stock(struct work_struct
*dummy
)
1994 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1996 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2000 * Cache charges(val) which is from res_counter, to local per_cpu area.
2001 * This will be consumed by consume_stock() function, later.
2003 static void refill_stock(struct mem_cgroup
*mem
, unsigned int nr_pages
)
2005 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2007 if (stock
->cached
!= mem
) { /* reset if necessary */
2009 stock
->cached
= mem
;
2011 stock
->nr_pages
+= nr_pages
;
2012 put_cpu_var(memcg_stock
);
2016 * Tries to drain stocked charges in other cpus. This function is asynchronous
2017 * and just put a work per cpu for draining localy on each cpu. Caller can
2018 * expects some charges will be back to res_counter later but cannot wait for
2021 static void drain_all_stock_async(struct mem_cgroup
*root_mem
)
2025 * If someone calls draining, avoid adding more kworker runs.
2027 if (!mutex_trylock(&percpu_charge_mutex
))
2029 /* Notify other cpus that system-wide "drain" is running */
2032 * Get a hint for avoiding draining charges on the current cpu,
2033 * which must be exhausted by our charging. It is not required that
2034 * this be a precise check, so we use raw_smp_processor_id() instead of
2035 * getcpu()/putcpu().
2037 curcpu
= raw_smp_processor_id();
2038 for_each_online_cpu(cpu
) {
2039 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2040 struct mem_cgroup
*mem
;
2045 mem
= stock
->cached
;
2048 if (mem
!= root_mem
) {
2049 if (!root_mem
->use_hierarchy
)
2051 /* check whether "mem" is under tree of "root_mem" */
2052 if (!css_is_ancestor(&mem
->css
, &root_mem
->css
))
2055 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2056 schedule_work_on(cpu
, &stock
->work
);
2059 mutex_unlock(&percpu_charge_mutex
);
2060 /* We don't wait for flush_work */
2063 /* This is a synchronous drain interface. */
2064 static void drain_all_stock_sync(void)
2066 /* called when force_empty is called */
2067 mutex_lock(&percpu_charge_mutex
);
2068 schedule_on_each_cpu(drain_local_stock
);
2069 mutex_unlock(&percpu_charge_mutex
);
2073 * This function drains percpu counter value from DEAD cpu and
2074 * move it to local cpu. Note that this function can be preempted.
2076 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
2080 spin_lock(&mem
->pcp_counter_lock
);
2081 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
2082 long x
= per_cpu(mem
->stat
->count
[i
], cpu
);
2084 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
2085 mem
->nocpu_base
.count
[i
] += x
;
2087 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2088 unsigned long x
= per_cpu(mem
->stat
->events
[i
], cpu
);
2090 per_cpu(mem
->stat
->events
[i
], cpu
) = 0;
2091 mem
->nocpu_base
.events
[i
] += x
;
2093 /* need to clear ON_MOVE value, works as a kind of lock. */
2094 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
2095 spin_unlock(&mem
->pcp_counter_lock
);
2098 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
2100 int idx
= MEM_CGROUP_ON_MOVE
;
2102 spin_lock(&mem
->pcp_counter_lock
);
2103 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
2104 spin_unlock(&mem
->pcp_counter_lock
);
2107 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2108 unsigned long action
,
2111 int cpu
= (unsigned long)hcpu
;
2112 struct memcg_stock_pcp
*stock
;
2113 struct mem_cgroup
*iter
;
2115 if ((action
== CPU_ONLINE
)) {
2116 for_each_mem_cgroup_all(iter
)
2117 synchronize_mem_cgroup_on_move(iter
, cpu
);
2121 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
2124 for_each_mem_cgroup_all(iter
)
2125 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2127 stock
= &per_cpu(memcg_stock
, cpu
);
2133 /* See __mem_cgroup_try_charge() for details */
2135 CHARGE_OK
, /* success */
2136 CHARGE_RETRY
, /* need to retry but retry is not bad */
2137 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2138 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2139 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2142 static int mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
2143 unsigned int nr_pages
, bool oom_check
)
2145 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2146 struct mem_cgroup
*mem_over_limit
;
2147 struct res_counter
*fail_res
;
2148 unsigned long flags
= 0;
2151 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
2154 if (!do_swap_account
)
2156 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
2160 res_counter_uncharge(&mem
->res
, csize
);
2161 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2162 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2164 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2166 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2167 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2169 * Never reclaim on behalf of optional batching, retry with a
2170 * single page instead.
2172 if (nr_pages
== CHARGE_BATCH
)
2173 return CHARGE_RETRY
;
2175 if (!(gfp_mask
& __GFP_WAIT
))
2176 return CHARGE_WOULDBLOCK
;
2178 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
2179 gfp_mask
, flags
, NULL
);
2180 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2181 return CHARGE_RETRY
;
2183 * Even though the limit is exceeded at this point, reclaim
2184 * may have been able to free some pages. Retry the charge
2185 * before killing the task.
2187 * Only for regular pages, though: huge pages are rather
2188 * unlikely to succeed so close to the limit, and we fall back
2189 * to regular pages anyway in case of failure.
2191 if (nr_pages
== 1 && ret
)
2192 return CHARGE_RETRY
;
2195 * At task move, charge accounts can be doubly counted. So, it's
2196 * better to wait until the end of task_move if something is going on.
2198 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2199 return CHARGE_RETRY
;
2201 /* If we don't need to call oom-killer at el, return immediately */
2203 return CHARGE_NOMEM
;
2205 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
2206 return CHARGE_OOM_DIE
;
2208 return CHARGE_RETRY
;
2212 * Unlike exported interface, "oom" parameter is added. if oom==true,
2213 * oom-killer can be invoked.
2215 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2217 unsigned int nr_pages
,
2218 struct mem_cgroup
**memcg
,
2221 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2222 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2223 struct mem_cgroup
*mem
= NULL
;
2227 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2228 * in system level. So, allow to go ahead dying process in addition to
2231 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2232 || fatal_signal_pending(current
)))
2236 * We always charge the cgroup the mm_struct belongs to.
2237 * The mm_struct's mem_cgroup changes on task migration if the
2238 * thread group leader migrates. It's possible that mm is not
2239 * set, if so charge the init_mm (happens for pagecache usage).
2244 if (*memcg
) { /* css should be a valid one */
2246 VM_BUG_ON(css_is_removed(&mem
->css
));
2247 if (mem_cgroup_is_root(mem
))
2249 if (nr_pages
== 1 && consume_stock(mem
))
2253 struct task_struct
*p
;
2256 p
= rcu_dereference(mm
->owner
);
2258 * Because we don't have task_lock(), "p" can exit.
2259 * In that case, "mem" can point to root or p can be NULL with
2260 * race with swapoff. Then, we have small risk of mis-accouning.
2261 * But such kind of mis-account by race always happens because
2262 * we don't have cgroup_mutex(). It's overkill and we allo that
2264 * (*) swapoff at el will charge against mm-struct not against
2265 * task-struct. So, mm->owner can be NULL.
2267 mem
= mem_cgroup_from_task(p
);
2268 if (!mem
|| mem_cgroup_is_root(mem
)) {
2272 if (nr_pages
== 1 && consume_stock(mem
)) {
2274 * It seems dagerous to access memcg without css_get().
2275 * But considering how consume_stok works, it's not
2276 * necessary. If consume_stock success, some charges
2277 * from this memcg are cached on this cpu. So, we
2278 * don't need to call css_get()/css_tryget() before
2279 * calling consume_stock().
2284 /* after here, we may be blocked. we need to get refcnt */
2285 if (!css_tryget(&mem
->css
)) {
2295 /* If killed, bypass charge */
2296 if (fatal_signal_pending(current
)) {
2302 if (oom
&& !nr_oom_retries
) {
2304 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2307 ret
= mem_cgroup_do_charge(mem
, gfp_mask
, batch
, oom_check
);
2311 case CHARGE_RETRY
: /* not in OOM situation but retry */
2316 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2319 case CHARGE_NOMEM
: /* OOM routine works */
2324 /* If oom, we never return -ENOMEM */
2327 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2331 } while (ret
!= CHARGE_OK
);
2333 if (batch
> nr_pages
)
2334 refill_stock(mem
, batch
- nr_pages
);
2348 * Somemtimes we have to undo a charge we got by try_charge().
2349 * This function is for that and do uncharge, put css's refcnt.
2350 * gotten by try_charge().
2352 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2353 unsigned int nr_pages
)
2355 if (!mem_cgroup_is_root(mem
)) {
2356 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2358 res_counter_uncharge(&mem
->res
, bytes
);
2359 if (do_swap_account
)
2360 res_counter_uncharge(&mem
->memsw
, bytes
);
2365 * A helper function to get mem_cgroup from ID. must be called under
2366 * rcu_read_lock(). The caller must check css_is_removed() or some if
2367 * it's concern. (dropping refcnt from swap can be called against removed
2370 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2372 struct cgroup_subsys_state
*css
;
2374 /* ID 0 is unused ID */
2377 css
= css_lookup(&mem_cgroup_subsys
, id
);
2380 return container_of(css
, struct mem_cgroup
, css
);
2383 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2385 struct mem_cgroup
*mem
= NULL
;
2386 struct page_cgroup
*pc
;
2390 VM_BUG_ON(!PageLocked(page
));
2392 pc
= lookup_page_cgroup(page
);
2393 lock_page_cgroup(pc
);
2394 if (PageCgroupUsed(pc
)) {
2395 mem
= pc
->mem_cgroup
;
2396 if (mem
&& !css_tryget(&mem
->css
))
2398 } else if (PageSwapCache(page
)) {
2399 ent
.val
= page_private(page
);
2400 id
= lookup_swap_cgroup(ent
);
2402 mem
= mem_cgroup_lookup(id
);
2403 if (mem
&& !css_tryget(&mem
->css
))
2407 unlock_page_cgroup(pc
);
2411 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2413 unsigned int nr_pages
,
2414 struct page_cgroup
*pc
,
2415 enum charge_type ctype
)
2417 lock_page_cgroup(pc
);
2418 if (unlikely(PageCgroupUsed(pc
))) {
2419 unlock_page_cgroup(pc
);
2420 __mem_cgroup_cancel_charge(mem
, nr_pages
);
2424 * we don't need page_cgroup_lock about tail pages, becase they are not
2425 * accessed by any other context at this point.
2427 pc
->mem_cgroup
= mem
;
2429 * We access a page_cgroup asynchronously without lock_page_cgroup().
2430 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2431 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2432 * before USED bit, we need memory barrier here.
2433 * See mem_cgroup_add_lru_list(), etc.
2437 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2438 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2439 SetPageCgroupCache(pc
);
2440 SetPageCgroupUsed(pc
);
2442 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2443 ClearPageCgroupCache(pc
);
2444 SetPageCgroupUsed(pc
);
2450 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), nr_pages
);
2451 unlock_page_cgroup(pc
);
2453 * "charge_statistics" updated event counter. Then, check it.
2454 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2455 * if they exceeds softlimit.
2457 memcg_check_events(mem
, page
);
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2462 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2463 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2465 * Because tail pages are not marked as "used", set it. We're under
2466 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2468 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2470 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2471 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2472 unsigned long flags
;
2474 if (mem_cgroup_disabled())
2477 * We have no races with charge/uncharge but will have races with
2478 * page state accounting.
2480 move_lock_page_cgroup(head_pc
, &flags
);
2482 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2483 smp_wmb(); /* see __commit_charge() */
2484 if (PageCgroupAcctLRU(head_pc
)) {
2486 struct mem_cgroup_per_zone
*mz
;
2489 * LRU flags cannot be copied because we need to add tail
2490 *.page to LRU by generic call and our hook will be called.
2491 * We hold lru_lock, then, reduce counter directly.
2493 lru
= page_lru(head
);
2494 mz
= page_cgroup_zoneinfo(head_pc
->mem_cgroup
, head
);
2495 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2497 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2498 move_unlock_page_cgroup(head_pc
, &flags
);
2503 * mem_cgroup_move_account - move account of the page
2505 * @nr_pages: number of regular pages (>1 for huge pages)
2506 * @pc: page_cgroup of the page.
2507 * @from: mem_cgroup which the page is moved from.
2508 * @to: mem_cgroup which the page is moved to. @from != @to.
2509 * @uncharge: whether we should call uncharge and css_put against @from.
2511 * The caller must confirm following.
2512 * - page is not on LRU (isolate_page() is useful.)
2513 * - compound_lock is held when nr_pages > 1
2515 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2516 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2517 * true, this function does "uncharge" from old cgroup, but it doesn't if
2518 * @uncharge is false, so a caller should do "uncharge".
2520 static int mem_cgroup_move_account(struct page
*page
,
2521 unsigned int nr_pages
,
2522 struct page_cgroup
*pc
,
2523 struct mem_cgroup
*from
,
2524 struct mem_cgroup
*to
,
2527 unsigned long flags
;
2530 VM_BUG_ON(from
== to
);
2531 VM_BUG_ON(PageLRU(page
));
2533 * The page is isolated from LRU. So, collapse function
2534 * will not handle this page. But page splitting can happen.
2535 * Do this check under compound_page_lock(). The caller should
2539 if (nr_pages
> 1 && !PageTransHuge(page
))
2542 lock_page_cgroup(pc
);
2545 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2548 move_lock_page_cgroup(pc
, &flags
);
2550 if (PageCgroupFileMapped(pc
)) {
2551 /* Update mapped_file data for mem_cgroup */
2553 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2554 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2557 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2559 /* This is not "cancel", but cancel_charge does all we need. */
2560 __mem_cgroup_cancel_charge(from
, nr_pages
);
2562 /* caller should have done css_get */
2563 pc
->mem_cgroup
= to
;
2564 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2566 * We charges against "to" which may not have any tasks. Then, "to"
2567 * can be under rmdir(). But in current implementation, caller of
2568 * this function is just force_empty() and move charge, so it's
2569 * guaranteed that "to" is never removed. So, we don't check rmdir
2572 move_unlock_page_cgroup(pc
, &flags
);
2575 unlock_page_cgroup(pc
);
2579 memcg_check_events(to
, page
);
2580 memcg_check_events(from
, page
);
2586 * move charges to its parent.
2589 static int mem_cgroup_move_parent(struct page
*page
,
2590 struct page_cgroup
*pc
,
2591 struct mem_cgroup
*child
,
2594 struct cgroup
*cg
= child
->css
.cgroup
;
2595 struct cgroup
*pcg
= cg
->parent
;
2596 struct mem_cgroup
*parent
;
2597 unsigned int nr_pages
;
2598 unsigned long uninitialized_var(flags
);
2606 if (!get_page_unless_zero(page
))
2608 if (isolate_lru_page(page
))
2611 nr_pages
= hpage_nr_pages(page
);
2613 parent
= mem_cgroup_from_cont(pcg
);
2614 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, nr_pages
, &parent
, false);
2619 flags
= compound_lock_irqsave(page
);
2621 ret
= mem_cgroup_move_account(page
, nr_pages
, pc
, child
, parent
, true);
2623 __mem_cgroup_cancel_charge(parent
, nr_pages
);
2626 compound_unlock_irqrestore(page
, flags
);
2628 putback_lru_page(page
);
2636 * Charge the memory controller for page usage.
2638 * 0 if the charge was successful
2639 * < 0 if the cgroup is over its limit
2641 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2642 gfp_t gfp_mask
, enum charge_type ctype
)
2644 struct mem_cgroup
*mem
= NULL
;
2645 unsigned int nr_pages
= 1;
2646 struct page_cgroup
*pc
;
2650 if (PageTransHuge(page
)) {
2651 nr_pages
<<= compound_order(page
);
2652 VM_BUG_ON(!PageTransHuge(page
));
2654 * Never OOM-kill a process for a huge page. The
2655 * fault handler will fall back to regular pages.
2660 pc
= lookup_page_cgroup(page
);
2661 BUG_ON(!pc
); /* XXX: remove this and move pc lookup into commit */
2663 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &mem
, oom
);
2667 __mem_cgroup_commit_charge(mem
, page
, nr_pages
, pc
, ctype
);
2671 int mem_cgroup_newpage_charge(struct page
*page
,
2672 struct mm_struct
*mm
, gfp_t gfp_mask
)
2674 if (mem_cgroup_disabled())
2677 * If already mapped, we don't have to account.
2678 * If page cache, page->mapping has address_space.
2679 * But page->mapping may have out-of-use anon_vma pointer,
2680 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2683 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2687 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2688 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2692 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2693 enum charge_type ctype
);
2696 __mem_cgroup_commit_charge_lrucare(struct page
*page
, struct mem_cgroup
*mem
,
2697 enum charge_type ctype
)
2699 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2701 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2702 * is already on LRU. It means the page may on some other page_cgroup's
2703 * LRU. Take care of it.
2705 mem_cgroup_lru_del_before_commit(page
);
2706 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
2707 mem_cgroup_lru_add_after_commit(page
);
2711 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2714 struct mem_cgroup
*mem
= NULL
;
2717 if (mem_cgroup_disabled())
2719 if (PageCompound(page
))
2722 * Corner case handling. This is called from add_to_page_cache()
2723 * in usual. But some FS (shmem) precharges this page before calling it
2724 * and call add_to_page_cache() with GFP_NOWAIT.
2726 * For GFP_NOWAIT case, the page may be pre-charged before calling
2727 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2728 * charge twice. (It works but has to pay a bit larger cost.)
2729 * And when the page is SwapCache, it should take swap information
2730 * into account. This is under lock_page() now.
2732 if (!(gfp_mask
& __GFP_WAIT
)) {
2733 struct page_cgroup
*pc
;
2735 pc
= lookup_page_cgroup(page
);
2738 lock_page_cgroup(pc
);
2739 if (PageCgroupUsed(pc
)) {
2740 unlock_page_cgroup(pc
);
2743 unlock_page_cgroup(pc
);
2749 if (page_is_file_cache(page
)) {
2750 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, &mem
, true);
2755 * FUSE reuses pages without going through the final
2756 * put that would remove them from the LRU list, make
2757 * sure that they get relinked properly.
2759 __mem_cgroup_commit_charge_lrucare(page
, mem
,
2760 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2764 if (PageSwapCache(page
)) {
2765 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2767 __mem_cgroup_commit_charge_swapin(page
, mem
,
2768 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2770 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2771 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2777 * While swap-in, try_charge -> commit or cancel, the page is locked.
2778 * And when try_charge() successfully returns, one refcnt to memcg without
2779 * struct page_cgroup is acquired. This refcnt will be consumed by
2780 * "commit()" or removed by "cancel()"
2782 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2784 gfp_t mask
, struct mem_cgroup
**ptr
)
2786 struct mem_cgroup
*mem
;
2791 if (mem_cgroup_disabled())
2794 if (!do_swap_account
)
2797 * A racing thread's fault, or swapoff, may have already updated
2798 * the pte, and even removed page from swap cache: in those cases
2799 * do_swap_page()'s pte_same() test will fail; but there's also a
2800 * KSM case which does need to charge the page.
2802 if (!PageSwapCache(page
))
2804 mem
= try_get_mem_cgroup_from_page(page
);
2808 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, ptr
, true);
2814 return __mem_cgroup_try_charge(mm
, mask
, 1, ptr
, true);
2818 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2819 enum charge_type ctype
)
2821 if (mem_cgroup_disabled())
2825 cgroup_exclude_rmdir(&ptr
->css
);
2827 __mem_cgroup_commit_charge_lrucare(page
, ptr
, ctype
);
2829 * Now swap is on-memory. This means this page may be
2830 * counted both as mem and swap....double count.
2831 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2832 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2833 * may call delete_from_swap_cache() before reach here.
2835 if (do_swap_account
&& PageSwapCache(page
)) {
2836 swp_entry_t ent
= {.val
= page_private(page
)};
2838 struct mem_cgroup
*memcg
;
2840 id
= swap_cgroup_record(ent
, 0);
2842 memcg
= mem_cgroup_lookup(id
);
2845 * This recorded memcg can be obsolete one. So, avoid
2846 * calling css_tryget
2848 if (!mem_cgroup_is_root(memcg
))
2849 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2850 mem_cgroup_swap_statistics(memcg
, false);
2851 mem_cgroup_put(memcg
);
2856 * At swapin, we may charge account against cgroup which has no tasks.
2857 * So, rmdir()->pre_destroy() can be called while we do this charge.
2858 * In that case, we need to call pre_destroy() again. check it here.
2860 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2863 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2865 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2866 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2869 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2871 if (mem_cgroup_disabled())
2875 __mem_cgroup_cancel_charge(mem
, 1);
2878 static void mem_cgroup_do_uncharge(struct mem_cgroup
*mem
,
2879 unsigned int nr_pages
,
2880 const enum charge_type ctype
)
2882 struct memcg_batch_info
*batch
= NULL
;
2883 bool uncharge_memsw
= true;
2885 /* If swapout, usage of swap doesn't decrease */
2886 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2887 uncharge_memsw
= false;
2889 batch
= ¤t
->memcg_batch
;
2891 * In usual, we do css_get() when we remember memcg pointer.
2892 * But in this case, we keep res->usage until end of a series of
2893 * uncharges. Then, it's ok to ignore memcg's refcnt.
2898 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2899 * In those cases, all pages freed continuously can be expected to be in
2900 * the same cgroup and we have chance to coalesce uncharges.
2901 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2902 * because we want to do uncharge as soon as possible.
2905 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2906 goto direct_uncharge
;
2909 goto direct_uncharge
;
2912 * In typical case, batch->memcg == mem. This means we can
2913 * merge a series of uncharges to an uncharge of res_counter.
2914 * If not, we uncharge res_counter ony by one.
2916 if (batch
->memcg
!= mem
)
2917 goto direct_uncharge
;
2918 /* remember freed charge and uncharge it later */
2921 batch
->memsw_nr_pages
++;
2924 res_counter_uncharge(&mem
->res
, nr_pages
* PAGE_SIZE
);
2926 res_counter_uncharge(&mem
->memsw
, nr_pages
* PAGE_SIZE
);
2927 if (unlikely(batch
->memcg
!= mem
))
2928 memcg_oom_recover(mem
);
2933 * uncharge if !page_mapped(page)
2935 static struct mem_cgroup
*
2936 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2938 struct mem_cgroup
*mem
= NULL
;
2939 unsigned int nr_pages
= 1;
2940 struct page_cgroup
*pc
;
2942 if (mem_cgroup_disabled())
2945 if (PageSwapCache(page
))
2948 if (PageTransHuge(page
)) {
2949 nr_pages
<<= compound_order(page
);
2950 VM_BUG_ON(!PageTransHuge(page
));
2953 * Check if our page_cgroup is valid
2955 pc
= lookup_page_cgroup(page
);
2956 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2959 lock_page_cgroup(pc
);
2961 mem
= pc
->mem_cgroup
;
2963 if (!PageCgroupUsed(pc
))
2967 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2968 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2969 /* See mem_cgroup_prepare_migration() */
2970 if (page_mapped(page
) || PageCgroupMigration(pc
))
2973 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2974 if (!PageAnon(page
)) { /* Shared memory */
2975 if (page
->mapping
&& !page_is_file_cache(page
))
2977 } else if (page_mapped(page
)) /* Anon */
2984 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), -nr_pages
);
2986 ClearPageCgroupUsed(pc
);
2988 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2989 * freed from LRU. This is safe because uncharged page is expected not
2990 * to be reused (freed soon). Exception is SwapCache, it's handled by
2991 * special functions.
2994 unlock_page_cgroup(pc
);
2996 * even after unlock, we have mem->res.usage here and this memcg
2997 * will never be freed.
2999 memcg_check_events(mem
, page
);
3000 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3001 mem_cgroup_swap_statistics(mem
, true);
3002 mem_cgroup_get(mem
);
3004 if (!mem_cgroup_is_root(mem
))
3005 mem_cgroup_do_uncharge(mem
, nr_pages
, ctype
);
3010 unlock_page_cgroup(pc
);
3014 void mem_cgroup_uncharge_page(struct page
*page
)
3017 if (page_mapped(page
))
3019 if (page
->mapping
&& !PageAnon(page
))
3021 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
3024 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3026 VM_BUG_ON(page_mapped(page
));
3027 VM_BUG_ON(page
->mapping
);
3028 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3032 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3033 * In that cases, pages are freed continuously and we can expect pages
3034 * are in the same memcg. All these calls itself limits the number of
3035 * pages freed at once, then uncharge_start/end() is called properly.
3036 * This may be called prural(2) times in a context,
3039 void mem_cgroup_uncharge_start(void)
3041 current
->memcg_batch
.do_batch
++;
3042 /* We can do nest. */
3043 if (current
->memcg_batch
.do_batch
== 1) {
3044 current
->memcg_batch
.memcg
= NULL
;
3045 current
->memcg_batch
.nr_pages
= 0;
3046 current
->memcg_batch
.memsw_nr_pages
= 0;
3050 void mem_cgroup_uncharge_end(void)
3052 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3054 if (!batch
->do_batch
)
3058 if (batch
->do_batch
) /* If stacked, do nothing. */
3064 * This "batch->memcg" is valid without any css_get/put etc...
3065 * bacause we hide charges behind us.
3067 if (batch
->nr_pages
)
3068 res_counter_uncharge(&batch
->memcg
->res
,
3069 batch
->nr_pages
* PAGE_SIZE
);
3070 if (batch
->memsw_nr_pages
)
3071 res_counter_uncharge(&batch
->memcg
->memsw
,
3072 batch
->memsw_nr_pages
* PAGE_SIZE
);
3073 memcg_oom_recover(batch
->memcg
);
3074 /* forget this pointer (for sanity check) */
3075 batch
->memcg
= NULL
;
3080 * called after __delete_from_swap_cache() and drop "page" account.
3081 * memcg information is recorded to swap_cgroup of "ent"
3084 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3086 struct mem_cgroup
*memcg
;
3087 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3089 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3090 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3092 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3095 * record memcg information, if swapout && memcg != NULL,
3096 * mem_cgroup_get() was called in uncharge().
3098 if (do_swap_account
&& swapout
&& memcg
)
3099 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3103 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3105 * called from swap_entry_free(). remove record in swap_cgroup and
3106 * uncharge "memsw" account.
3108 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3110 struct mem_cgroup
*memcg
;
3113 if (!do_swap_account
)
3116 id
= swap_cgroup_record(ent
, 0);
3118 memcg
= mem_cgroup_lookup(id
);
3121 * We uncharge this because swap is freed.
3122 * This memcg can be obsolete one. We avoid calling css_tryget
3124 if (!mem_cgroup_is_root(memcg
))
3125 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3126 mem_cgroup_swap_statistics(memcg
, false);
3127 mem_cgroup_put(memcg
);
3133 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3134 * @entry: swap entry to be moved
3135 * @from: mem_cgroup which the entry is moved from
3136 * @to: mem_cgroup which the entry is moved to
3137 * @need_fixup: whether we should fixup res_counters and refcounts.
3139 * It succeeds only when the swap_cgroup's record for this entry is the same
3140 * as the mem_cgroup's id of @from.
3142 * Returns 0 on success, -EINVAL on failure.
3144 * The caller must have charged to @to, IOW, called res_counter_charge() about
3145 * both res and memsw, and called css_get().
3147 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3148 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3150 unsigned short old_id
, new_id
;
3152 old_id
= css_id(&from
->css
);
3153 new_id
= css_id(&to
->css
);
3155 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3156 mem_cgroup_swap_statistics(from
, false);
3157 mem_cgroup_swap_statistics(to
, true);
3159 * This function is only called from task migration context now.
3160 * It postpones res_counter and refcount handling till the end
3161 * of task migration(mem_cgroup_clear_mc()) for performance
3162 * improvement. But we cannot postpone mem_cgroup_get(to)
3163 * because if the process that has been moved to @to does
3164 * swap-in, the refcount of @to might be decreased to 0.
3168 if (!mem_cgroup_is_root(from
))
3169 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
3170 mem_cgroup_put(from
);
3172 * we charged both to->res and to->memsw, so we should
3175 if (!mem_cgroup_is_root(to
))
3176 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
3183 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3184 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
3191 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3194 int mem_cgroup_prepare_migration(struct page
*page
,
3195 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
3197 struct mem_cgroup
*mem
= NULL
;
3198 struct page_cgroup
*pc
;
3199 enum charge_type ctype
;
3204 VM_BUG_ON(PageTransHuge(page
));
3205 if (mem_cgroup_disabled())
3208 pc
= lookup_page_cgroup(page
);
3209 lock_page_cgroup(pc
);
3210 if (PageCgroupUsed(pc
)) {
3211 mem
= pc
->mem_cgroup
;
3214 * At migrating an anonymous page, its mapcount goes down
3215 * to 0 and uncharge() will be called. But, even if it's fully
3216 * unmapped, migration may fail and this page has to be
3217 * charged again. We set MIGRATION flag here and delay uncharge
3218 * until end_migration() is called
3220 * Corner Case Thinking
3222 * When the old page was mapped as Anon and it's unmap-and-freed
3223 * while migration was ongoing.
3224 * If unmap finds the old page, uncharge() of it will be delayed
3225 * until end_migration(). If unmap finds a new page, it's
3226 * uncharged when it make mapcount to be 1->0. If unmap code
3227 * finds swap_migration_entry, the new page will not be mapped
3228 * and end_migration() will find it(mapcount==0).
3231 * When the old page was mapped but migraion fails, the kernel
3232 * remaps it. A charge for it is kept by MIGRATION flag even
3233 * if mapcount goes down to 0. We can do remap successfully
3234 * without charging it again.
3237 * The "old" page is under lock_page() until the end of
3238 * migration, so, the old page itself will not be swapped-out.
3239 * If the new page is swapped out before end_migraton, our
3240 * hook to usual swap-out path will catch the event.
3243 SetPageCgroupMigration(pc
);
3245 unlock_page_cgroup(pc
);
3247 * If the page is not charged at this point,
3254 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, ptr
, false);
3255 css_put(&mem
->css
);/* drop extra refcnt */
3256 if (ret
|| *ptr
== NULL
) {
3257 if (PageAnon(page
)) {
3258 lock_page_cgroup(pc
);
3259 ClearPageCgroupMigration(pc
);
3260 unlock_page_cgroup(pc
);
3262 * The old page may be fully unmapped while we kept it.
3264 mem_cgroup_uncharge_page(page
);
3269 * We charge new page before it's used/mapped. So, even if unlock_page()
3270 * is called before end_migration, we can catch all events on this new
3271 * page. In the case new page is migrated but not remapped, new page's
3272 * mapcount will be finally 0 and we call uncharge in end_migration().
3274 pc
= lookup_page_cgroup(newpage
);
3276 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
3277 else if (page_is_file_cache(page
))
3278 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3280 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3281 __mem_cgroup_commit_charge(mem
, page
, 1, pc
, ctype
);
3285 /* remove redundant charge if migration failed*/
3286 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
3287 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3289 struct page
*used
, *unused
;
3290 struct page_cgroup
*pc
;
3294 /* blocks rmdir() */
3295 cgroup_exclude_rmdir(&mem
->css
);
3296 if (!migration_ok
) {
3304 * We disallowed uncharge of pages under migration because mapcount
3305 * of the page goes down to zero, temporarly.
3306 * Clear the flag and check the page should be charged.
3308 pc
= lookup_page_cgroup(oldpage
);
3309 lock_page_cgroup(pc
);
3310 ClearPageCgroupMigration(pc
);
3311 unlock_page_cgroup(pc
);
3313 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3316 * If a page is a file cache, radix-tree replacement is very atomic
3317 * and we can skip this check. When it was an Anon page, its mapcount
3318 * goes down to 0. But because we added MIGRATION flage, it's not
3319 * uncharged yet. There are several case but page->mapcount check
3320 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3321 * check. (see prepare_charge() also)
3324 mem_cgroup_uncharge_page(used
);
3326 * At migration, we may charge account against cgroup which has no
3328 * So, rmdir()->pre_destroy() can be called while we do this charge.
3329 * In that case, we need to call pre_destroy() again. check it here.
3331 cgroup_release_and_wakeup_rmdir(&mem
->css
);
3335 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3336 * Calling hierarchical_reclaim is not enough because we should update
3337 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3338 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3339 * not from the memcg which this page would be charged to.
3340 * try_charge_swapin does all of these works properly.
3342 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
3343 struct mm_struct
*mm
,
3346 struct mem_cgroup
*mem
;
3349 if (mem_cgroup_disabled())
3352 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
3354 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
3359 #ifdef CONFIG_DEBUG_VM
3360 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3362 struct page_cgroup
*pc
;
3364 pc
= lookup_page_cgroup(page
);
3365 if (likely(pc
) && PageCgroupUsed(pc
))
3370 bool mem_cgroup_bad_page_check(struct page
*page
)
3372 if (mem_cgroup_disabled())
3375 return lookup_page_cgroup_used(page
) != NULL
;
3378 void mem_cgroup_print_bad_page(struct page
*page
)
3380 struct page_cgroup
*pc
;
3382 pc
= lookup_page_cgroup_used(page
);
3387 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3388 pc
, pc
->flags
, pc
->mem_cgroup
);
3390 path
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3393 ret
= cgroup_path(pc
->mem_cgroup
->css
.cgroup
,
3398 printk(KERN_CONT
"(%s)\n",
3399 (ret
< 0) ? "cannot get the path" : path
);
3405 static DEFINE_MUTEX(set_limit_mutex
);
3407 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3408 unsigned long long val
)
3411 u64 memswlimit
, memlimit
;
3413 int children
= mem_cgroup_count_children(memcg
);
3414 u64 curusage
, oldusage
;
3418 * For keeping hierarchical_reclaim simple, how long we should retry
3419 * is depends on callers. We set our retry-count to be function
3420 * of # of children which we should visit in this loop.
3422 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3424 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3427 while (retry_count
) {
3428 if (signal_pending(current
)) {
3433 * Rather than hide all in some function, I do this in
3434 * open coded manner. You see what this really does.
3435 * We have to guarantee mem->res.limit < mem->memsw.limit.
3437 mutex_lock(&set_limit_mutex
);
3438 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3439 if (memswlimit
< val
) {
3441 mutex_unlock(&set_limit_mutex
);
3445 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3449 ret
= res_counter_set_limit(&memcg
->res
, val
);
3451 if (memswlimit
== val
)
3452 memcg
->memsw_is_minimum
= true;
3454 memcg
->memsw_is_minimum
= false;
3456 mutex_unlock(&set_limit_mutex
);
3461 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3462 MEM_CGROUP_RECLAIM_SHRINK
,
3464 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3465 /* Usage is reduced ? */
3466 if (curusage
>= oldusage
)
3469 oldusage
= curusage
;
3471 if (!ret
&& enlarge
)
3472 memcg_oom_recover(memcg
);
3477 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3478 unsigned long long val
)
3481 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3482 int children
= mem_cgroup_count_children(memcg
);
3486 /* see mem_cgroup_resize_res_limit */
3487 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3488 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3489 while (retry_count
) {
3490 if (signal_pending(current
)) {
3495 * Rather than hide all in some function, I do this in
3496 * open coded manner. You see what this really does.
3497 * We have to guarantee mem->res.limit < mem->memsw.limit.
3499 mutex_lock(&set_limit_mutex
);
3500 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3501 if (memlimit
> val
) {
3503 mutex_unlock(&set_limit_mutex
);
3506 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3507 if (memswlimit
< val
)
3509 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3511 if (memlimit
== val
)
3512 memcg
->memsw_is_minimum
= true;
3514 memcg
->memsw_is_minimum
= false;
3516 mutex_unlock(&set_limit_mutex
);
3521 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3522 MEM_CGROUP_RECLAIM_NOSWAP
|
3523 MEM_CGROUP_RECLAIM_SHRINK
,
3525 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3526 /* Usage is reduced ? */
3527 if (curusage
>= oldusage
)
3530 oldusage
= curusage
;
3532 if (!ret
&& enlarge
)
3533 memcg_oom_recover(memcg
);
3537 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3539 unsigned long *total_scanned
)
3541 unsigned long nr_reclaimed
= 0;
3542 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3543 unsigned long reclaimed
;
3545 struct mem_cgroup_tree_per_zone
*mctz
;
3546 unsigned long long excess
;
3547 unsigned long nr_scanned
;
3552 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3554 * This loop can run a while, specially if mem_cgroup's continuously
3555 * keep exceeding their soft limit and putting the system under
3562 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3567 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3569 MEM_CGROUP_RECLAIM_SOFT
,
3571 nr_reclaimed
+= reclaimed
;
3572 *total_scanned
+= nr_scanned
;
3573 spin_lock(&mctz
->lock
);
3576 * If we failed to reclaim anything from this memory cgroup
3577 * it is time to move on to the next cgroup
3583 * Loop until we find yet another one.
3585 * By the time we get the soft_limit lock
3586 * again, someone might have aded the
3587 * group back on the RB tree. Iterate to
3588 * make sure we get a different mem.
3589 * mem_cgroup_largest_soft_limit_node returns
3590 * NULL if no other cgroup is present on
3594 __mem_cgroup_largest_soft_limit_node(mctz
);
3596 css_put(&next_mz
->mem
->css
);
3597 else /* next_mz == NULL or other memcg */
3601 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3602 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3604 * One school of thought says that we should not add
3605 * back the node to the tree if reclaim returns 0.
3606 * But our reclaim could return 0, simply because due
3607 * to priority we are exposing a smaller subset of
3608 * memory to reclaim from. Consider this as a longer
3611 /* If excess == 0, no tree ops */
3612 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3613 spin_unlock(&mctz
->lock
);
3614 css_put(&mz
->mem
->css
);
3617 * Could not reclaim anything and there are no more
3618 * mem cgroups to try or we seem to be looping without
3619 * reclaiming anything.
3621 if (!nr_reclaimed
&&
3623 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3625 } while (!nr_reclaimed
);
3627 css_put(&next_mz
->mem
->css
);
3628 return nr_reclaimed
;
3632 * This routine traverse page_cgroup in given list and drop them all.
3633 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3635 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3636 int node
, int zid
, enum lru_list lru
)
3639 struct mem_cgroup_per_zone
*mz
;
3640 struct page_cgroup
*pc
, *busy
;
3641 unsigned long flags
, loop
;
3642 struct list_head
*list
;
3645 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3646 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3647 list
= &mz
->lists
[lru
];
3649 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3650 /* give some margin against EBUSY etc...*/
3657 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3658 if (list_empty(list
)) {
3659 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3662 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3664 list_move(&pc
->lru
, list
);
3666 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3669 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3671 page
= lookup_cgroup_page(pc
);
3673 ret
= mem_cgroup_move_parent(page
, pc
, mem
, GFP_KERNEL
);
3677 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3678 /* found lock contention or "pc" is obsolete. */
3685 if (!ret
&& !list_empty(list
))
3691 * make mem_cgroup's charge to be 0 if there is no task.
3692 * This enables deleting this mem_cgroup.
3694 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3697 int node
, zid
, shrink
;
3698 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3699 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3704 /* should free all ? */
3710 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3713 if (signal_pending(current
))
3715 /* This is for making all *used* pages to be on LRU. */
3716 lru_add_drain_all();
3717 drain_all_stock_sync();
3719 mem_cgroup_start_move(mem
);
3720 for_each_node_state(node
, N_HIGH_MEMORY
) {
3721 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3724 ret
= mem_cgroup_force_empty_list(mem
,
3733 mem_cgroup_end_move(mem
);
3734 memcg_oom_recover(mem
);
3735 /* it seems parent cgroup doesn't have enough mem */
3739 /* "ret" should also be checked to ensure all lists are empty. */
3740 } while (mem
->res
.usage
> 0 || ret
);
3746 /* returns EBUSY if there is a task or if we come here twice. */
3747 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3751 /* we call try-to-free pages for make this cgroup empty */
3752 lru_add_drain_all();
3753 /* try to free all pages in this cgroup */
3755 while (nr_retries
&& mem
->res
.usage
> 0) {
3758 if (signal_pending(current
)) {
3762 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3763 false, get_swappiness(mem
));
3766 /* maybe some writeback is necessary */
3767 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3772 /* try move_account...there may be some *locked* pages. */
3776 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3778 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3782 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3784 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3787 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3791 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3792 struct cgroup
*parent
= cont
->parent
;
3793 struct mem_cgroup
*parent_mem
= NULL
;
3796 parent_mem
= mem_cgroup_from_cont(parent
);
3800 * If parent's use_hierarchy is set, we can't make any modifications
3801 * in the child subtrees. If it is unset, then the change can
3802 * occur, provided the current cgroup has no children.
3804 * For the root cgroup, parent_mem is NULL, we allow value to be
3805 * set if there are no children.
3807 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3808 (val
== 1 || val
== 0)) {
3809 if (list_empty(&cont
->children
))
3810 mem
->use_hierarchy
= val
;
3821 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*mem
,
3822 enum mem_cgroup_stat_index idx
)
3824 struct mem_cgroup
*iter
;
3827 /* Per-cpu values can be negative, use a signed accumulator */
3828 for_each_mem_cgroup_tree(iter
, mem
)
3829 val
+= mem_cgroup_read_stat(iter
, idx
);
3831 if (val
< 0) /* race ? */
3836 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3840 if (!mem_cgroup_is_root(mem
)) {
3842 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3844 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3847 val
= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3848 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_RSS
);
3851 val
+= mem_cgroup_recursive_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3853 return val
<< PAGE_SHIFT
;
3856 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3858 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3862 type
= MEMFILE_TYPE(cft
->private);
3863 name
= MEMFILE_ATTR(cft
->private);
3866 if (name
== RES_USAGE
)
3867 val
= mem_cgroup_usage(mem
, false);
3869 val
= res_counter_read_u64(&mem
->res
, name
);
3872 if (name
== RES_USAGE
)
3873 val
= mem_cgroup_usage(mem
, true);
3875 val
= res_counter_read_u64(&mem
->memsw
, name
);
3884 * The user of this function is...
3887 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3890 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3892 unsigned long long val
;
3895 type
= MEMFILE_TYPE(cft
->private);
3896 name
= MEMFILE_ATTR(cft
->private);
3899 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3903 /* This function does all necessary parse...reuse it */
3904 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3908 ret
= mem_cgroup_resize_limit(memcg
, val
);
3910 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3912 case RES_SOFT_LIMIT
:
3913 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3917 * For memsw, soft limits are hard to implement in terms
3918 * of semantics, for now, we support soft limits for
3919 * control without swap
3922 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3927 ret
= -EINVAL
; /* should be BUG() ? */
3933 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3934 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3936 struct cgroup
*cgroup
;
3937 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3939 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3940 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3941 cgroup
= memcg
->css
.cgroup
;
3942 if (!memcg
->use_hierarchy
)
3945 while (cgroup
->parent
) {
3946 cgroup
= cgroup
->parent
;
3947 memcg
= mem_cgroup_from_cont(cgroup
);
3948 if (!memcg
->use_hierarchy
)
3950 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3951 min_limit
= min(min_limit
, tmp
);
3952 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3953 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3956 *mem_limit
= min_limit
;
3957 *memsw_limit
= min_memsw_limit
;
3961 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3963 struct mem_cgroup
*mem
;
3966 mem
= mem_cgroup_from_cont(cont
);
3967 type
= MEMFILE_TYPE(event
);
3968 name
= MEMFILE_ATTR(event
);
3972 res_counter_reset_max(&mem
->res
);
3974 res_counter_reset_max(&mem
->memsw
);
3978 res_counter_reset_failcnt(&mem
->res
);
3980 res_counter_reset_failcnt(&mem
->memsw
);
3987 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3990 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3994 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3995 struct cftype
*cft
, u64 val
)
3997 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3999 if (val
>= (1 << NR_MOVE_TYPE
))
4002 * We check this value several times in both in can_attach() and
4003 * attach(), so we need cgroup lock to prevent this value from being
4007 mem
->move_charge_at_immigrate
= val
;
4013 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4014 struct cftype
*cft
, u64 val
)
4021 /* For read statistics */
4039 struct mcs_total_stat
{
4040 s64 stat
[NR_MCS_STAT
];
4046 } memcg_stat_strings
[NR_MCS_STAT
] = {
4047 {"cache", "total_cache"},
4048 {"rss", "total_rss"},
4049 {"mapped_file", "total_mapped_file"},
4050 {"pgpgin", "total_pgpgin"},
4051 {"pgpgout", "total_pgpgout"},
4052 {"swap", "total_swap"},
4053 {"pgfault", "total_pgfault"},
4054 {"pgmajfault", "total_pgmajfault"},
4055 {"inactive_anon", "total_inactive_anon"},
4056 {"active_anon", "total_active_anon"},
4057 {"inactive_file", "total_inactive_file"},
4058 {"active_file", "total_active_file"},
4059 {"unevictable", "total_unevictable"}
4064 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4069 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
4070 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
4071 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
4072 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
4073 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
4074 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
4075 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGIN
);
4076 s
->stat
[MCS_PGPGIN
] += val
;
4077 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGPGOUT
);
4078 s
->stat
[MCS_PGPGOUT
] += val
;
4079 if (do_swap_account
) {
4080 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
4081 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
4083 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGFAULT
);
4084 s
->stat
[MCS_PGFAULT
] += val
;
4085 val
= mem_cgroup_read_events(mem
, MEM_CGROUP_EVENTS_PGMAJFAULT
);
4086 s
->stat
[MCS_PGMAJFAULT
] += val
;
4089 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
4090 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
4091 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
4092 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
4093 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
4094 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
4095 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
4096 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
4097 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
4098 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
4102 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
4104 struct mem_cgroup
*iter
;
4106 for_each_mem_cgroup_tree(iter
, mem
)
4107 mem_cgroup_get_local_stat(iter
, s
);
4111 static int mem_control_numa_stat_show(struct seq_file
*m
, void *arg
)
4114 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4115 unsigned long node_nr
;
4116 struct cgroup
*cont
= m
->private;
4117 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4119 total_nr
= mem_cgroup_nr_lru_pages(mem_cont
);
4120 seq_printf(m
, "total=%lu", total_nr
);
4121 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4122 node_nr
= mem_cgroup_node_nr_lru_pages(mem_cont
, nid
);
4123 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4127 file_nr
= mem_cgroup_nr_file_lru_pages(mem_cont
);
4128 seq_printf(m
, "file=%lu", file_nr
);
4129 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4130 node_nr
= mem_cgroup_node_nr_file_lru_pages(mem_cont
, nid
);
4131 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4135 anon_nr
= mem_cgroup_nr_anon_lru_pages(mem_cont
);
4136 seq_printf(m
, "anon=%lu", anon_nr
);
4137 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4138 node_nr
= mem_cgroup_node_nr_anon_lru_pages(mem_cont
, nid
);
4139 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4143 unevictable_nr
= mem_cgroup_nr_unevictable_lru_pages(mem_cont
);
4144 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4145 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4146 node_nr
= mem_cgroup_node_nr_unevictable_lru_pages(mem_cont
,
4148 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4153 #endif /* CONFIG_NUMA */
4155 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4156 struct cgroup_map_cb
*cb
)
4158 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
4159 struct mcs_total_stat mystat
;
4162 memset(&mystat
, 0, sizeof(mystat
));
4163 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
4166 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4167 if (i
== MCS_SWAP
&& !do_swap_account
)
4169 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
4172 /* Hierarchical information */
4174 unsigned long long limit
, memsw_limit
;
4175 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
4176 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
4177 if (do_swap_account
)
4178 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
4181 memset(&mystat
, 0, sizeof(mystat
));
4182 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
4183 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
4184 if (i
== MCS_SWAP
&& !do_swap_account
)
4186 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
4189 #ifdef CONFIG_DEBUG_VM
4190 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
4194 struct mem_cgroup_per_zone
*mz
;
4195 unsigned long recent_rotated
[2] = {0, 0};
4196 unsigned long recent_scanned
[2] = {0, 0};
4198 for_each_online_node(nid
)
4199 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4200 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
4202 recent_rotated
[0] +=
4203 mz
->reclaim_stat
.recent_rotated
[0];
4204 recent_rotated
[1] +=
4205 mz
->reclaim_stat
.recent_rotated
[1];
4206 recent_scanned
[0] +=
4207 mz
->reclaim_stat
.recent_scanned
[0];
4208 recent_scanned
[1] +=
4209 mz
->reclaim_stat
.recent_scanned
[1];
4211 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
4212 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
4213 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
4214 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
4221 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4223 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4225 return get_swappiness(memcg
);
4228 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4231 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4232 struct mem_cgroup
*parent
;
4237 if (cgrp
->parent
== NULL
)
4240 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4244 /* If under hierarchy, only empty-root can set this value */
4245 if ((parent
->use_hierarchy
) ||
4246 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4251 memcg
->swappiness
= val
;
4258 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4260 struct mem_cgroup_threshold_ary
*t
;
4266 t
= rcu_dereference(memcg
->thresholds
.primary
);
4268 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4273 usage
= mem_cgroup_usage(memcg
, swap
);
4276 * current_threshold points to threshold just below usage.
4277 * If it's not true, a threshold was crossed after last
4278 * call of __mem_cgroup_threshold().
4280 i
= t
->current_threshold
;
4283 * Iterate backward over array of thresholds starting from
4284 * current_threshold and check if a threshold is crossed.
4285 * If none of thresholds below usage is crossed, we read
4286 * only one element of the array here.
4288 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4289 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4291 /* i = current_threshold + 1 */
4295 * Iterate forward over array of thresholds starting from
4296 * current_threshold+1 and check if a threshold is crossed.
4297 * If none of thresholds above usage is crossed, we read
4298 * only one element of the array here.
4300 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4301 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4303 /* Update current_threshold */
4304 t
->current_threshold
= i
- 1;
4309 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4312 __mem_cgroup_threshold(memcg
, false);
4313 if (do_swap_account
)
4314 __mem_cgroup_threshold(memcg
, true);
4316 memcg
= parent_mem_cgroup(memcg
);
4320 static int compare_thresholds(const void *a
, const void *b
)
4322 const struct mem_cgroup_threshold
*_a
= a
;
4323 const struct mem_cgroup_threshold
*_b
= b
;
4325 return _a
->threshold
- _b
->threshold
;
4328 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
4330 struct mem_cgroup_eventfd_list
*ev
;
4332 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
4333 eventfd_signal(ev
->eventfd
, 1);
4337 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
4339 struct mem_cgroup
*iter
;
4341 for_each_mem_cgroup_tree(iter
, mem
)
4342 mem_cgroup_oom_notify_cb(iter
);
4345 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4346 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4348 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4349 struct mem_cgroup_thresholds
*thresholds
;
4350 struct mem_cgroup_threshold_ary
*new;
4351 int type
= MEMFILE_TYPE(cft
->private);
4352 u64 threshold
, usage
;
4355 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4359 mutex_lock(&memcg
->thresholds_lock
);
4362 thresholds
= &memcg
->thresholds
;
4363 else if (type
== _MEMSWAP
)
4364 thresholds
= &memcg
->memsw_thresholds
;
4368 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4370 /* Check if a threshold crossed before adding a new one */
4371 if (thresholds
->primary
)
4372 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4374 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4376 /* Allocate memory for new array of thresholds */
4377 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4385 /* Copy thresholds (if any) to new array */
4386 if (thresholds
->primary
) {
4387 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4388 sizeof(struct mem_cgroup_threshold
));
4391 /* Add new threshold */
4392 new->entries
[size
- 1].eventfd
= eventfd
;
4393 new->entries
[size
- 1].threshold
= threshold
;
4395 /* Sort thresholds. Registering of new threshold isn't time-critical */
4396 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4397 compare_thresholds
, NULL
);
4399 /* Find current threshold */
4400 new->current_threshold
= -1;
4401 for (i
= 0; i
< size
; i
++) {
4402 if (new->entries
[i
].threshold
< usage
) {
4404 * new->current_threshold will not be used until
4405 * rcu_assign_pointer(), so it's safe to increment
4408 ++new->current_threshold
;
4412 /* Free old spare buffer and save old primary buffer as spare */
4413 kfree(thresholds
->spare
);
4414 thresholds
->spare
= thresholds
->primary
;
4416 rcu_assign_pointer(thresholds
->primary
, new);
4418 /* To be sure that nobody uses thresholds */
4422 mutex_unlock(&memcg
->thresholds_lock
);
4427 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4428 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4430 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4431 struct mem_cgroup_thresholds
*thresholds
;
4432 struct mem_cgroup_threshold_ary
*new;
4433 int type
= MEMFILE_TYPE(cft
->private);
4437 mutex_lock(&memcg
->thresholds_lock
);
4439 thresholds
= &memcg
->thresholds
;
4440 else if (type
== _MEMSWAP
)
4441 thresholds
= &memcg
->memsw_thresholds
;
4446 * Something went wrong if we trying to unregister a threshold
4447 * if we don't have thresholds
4449 BUG_ON(!thresholds
);
4451 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4453 /* Check if a threshold crossed before removing */
4454 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4456 /* Calculate new number of threshold */
4458 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4459 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4463 new = thresholds
->spare
;
4465 /* Set thresholds array to NULL if we don't have thresholds */
4474 /* Copy thresholds and find current threshold */
4475 new->current_threshold
= -1;
4476 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4477 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4480 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4481 if (new->entries
[j
].threshold
< usage
) {
4483 * new->current_threshold will not be used
4484 * until rcu_assign_pointer(), so it's safe to increment
4487 ++new->current_threshold
;
4493 /* Swap primary and spare array */
4494 thresholds
->spare
= thresholds
->primary
;
4495 rcu_assign_pointer(thresholds
->primary
, new);
4497 /* To be sure that nobody uses thresholds */
4500 mutex_unlock(&memcg
->thresholds_lock
);
4503 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4504 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4506 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4507 struct mem_cgroup_eventfd_list
*event
;
4508 int type
= MEMFILE_TYPE(cft
->private);
4510 BUG_ON(type
!= _OOM_TYPE
);
4511 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4515 mutex_lock(&memcg_oom_mutex
);
4517 event
->eventfd
= eventfd
;
4518 list_add(&event
->list
, &memcg
->oom_notify
);
4520 /* already in OOM ? */
4521 if (atomic_read(&memcg
->oom_lock
))
4522 eventfd_signal(eventfd
, 1);
4523 mutex_unlock(&memcg_oom_mutex
);
4528 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4529 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4531 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4532 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4533 int type
= MEMFILE_TYPE(cft
->private);
4535 BUG_ON(type
!= _OOM_TYPE
);
4537 mutex_lock(&memcg_oom_mutex
);
4539 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4540 if (ev
->eventfd
== eventfd
) {
4541 list_del(&ev
->list
);
4546 mutex_unlock(&memcg_oom_mutex
);
4549 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4550 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4552 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4554 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4556 if (atomic_read(&mem
->oom_lock
))
4557 cb
->fill(cb
, "under_oom", 1);
4559 cb
->fill(cb
, "under_oom", 0);
4563 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4564 struct cftype
*cft
, u64 val
)
4566 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4567 struct mem_cgroup
*parent
;
4569 /* cannot set to root cgroup and only 0 and 1 are allowed */
4570 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4573 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4576 /* oom-kill-disable is a flag for subhierarchy. */
4577 if ((parent
->use_hierarchy
) ||
4578 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4582 mem
->oom_kill_disable
= val
;
4584 memcg_oom_recover(mem
);
4590 static const struct file_operations mem_control_numa_stat_file_operations
= {
4592 .llseek
= seq_lseek
,
4593 .release
= single_release
,
4596 static int mem_control_numa_stat_open(struct inode
*unused
, struct file
*file
)
4598 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
4600 file
->f_op
= &mem_control_numa_stat_file_operations
;
4601 return single_open(file
, mem_control_numa_stat_show
, cont
);
4603 #endif /* CONFIG_NUMA */
4605 static struct cftype mem_cgroup_files
[] = {
4607 .name
= "usage_in_bytes",
4608 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4609 .read_u64
= mem_cgroup_read
,
4610 .register_event
= mem_cgroup_usage_register_event
,
4611 .unregister_event
= mem_cgroup_usage_unregister_event
,
4614 .name
= "max_usage_in_bytes",
4615 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4616 .trigger
= mem_cgroup_reset
,
4617 .read_u64
= mem_cgroup_read
,
4620 .name
= "limit_in_bytes",
4621 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4622 .write_string
= mem_cgroup_write
,
4623 .read_u64
= mem_cgroup_read
,
4626 .name
= "soft_limit_in_bytes",
4627 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4628 .write_string
= mem_cgroup_write
,
4629 .read_u64
= mem_cgroup_read
,
4633 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4634 .trigger
= mem_cgroup_reset
,
4635 .read_u64
= mem_cgroup_read
,
4639 .read_map
= mem_control_stat_show
,
4642 .name
= "force_empty",
4643 .trigger
= mem_cgroup_force_empty_write
,
4646 .name
= "use_hierarchy",
4647 .write_u64
= mem_cgroup_hierarchy_write
,
4648 .read_u64
= mem_cgroup_hierarchy_read
,
4651 .name
= "swappiness",
4652 .read_u64
= mem_cgroup_swappiness_read
,
4653 .write_u64
= mem_cgroup_swappiness_write
,
4656 .name
= "move_charge_at_immigrate",
4657 .read_u64
= mem_cgroup_move_charge_read
,
4658 .write_u64
= mem_cgroup_move_charge_write
,
4661 .name
= "oom_control",
4662 .read_map
= mem_cgroup_oom_control_read
,
4663 .write_u64
= mem_cgroup_oom_control_write
,
4664 .register_event
= mem_cgroup_oom_register_event
,
4665 .unregister_event
= mem_cgroup_oom_unregister_event
,
4666 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4670 .name
= "numa_stat",
4671 .open
= mem_control_numa_stat_open
,
4677 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4678 static struct cftype memsw_cgroup_files
[] = {
4680 .name
= "memsw.usage_in_bytes",
4681 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4682 .read_u64
= mem_cgroup_read
,
4683 .register_event
= mem_cgroup_usage_register_event
,
4684 .unregister_event
= mem_cgroup_usage_unregister_event
,
4687 .name
= "memsw.max_usage_in_bytes",
4688 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4689 .trigger
= mem_cgroup_reset
,
4690 .read_u64
= mem_cgroup_read
,
4693 .name
= "memsw.limit_in_bytes",
4694 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4695 .write_string
= mem_cgroup_write
,
4696 .read_u64
= mem_cgroup_read
,
4699 .name
= "memsw.failcnt",
4700 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4701 .trigger
= mem_cgroup_reset
,
4702 .read_u64
= mem_cgroup_read
,
4706 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4708 if (!do_swap_account
)
4710 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4711 ARRAY_SIZE(memsw_cgroup_files
));
4714 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4720 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4722 struct mem_cgroup_per_node
*pn
;
4723 struct mem_cgroup_per_zone
*mz
;
4725 int zone
, tmp
= node
;
4727 * This routine is called against possible nodes.
4728 * But it's BUG to call kmalloc() against offline node.
4730 * TODO: this routine can waste much memory for nodes which will
4731 * never be onlined. It's better to use memory hotplug callback
4734 if (!node_state(node
, N_NORMAL_MEMORY
))
4736 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4740 mem
->info
.nodeinfo
[node
] = pn
;
4741 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4742 mz
= &pn
->zoneinfo
[zone
];
4744 INIT_LIST_HEAD(&mz
->lists
[l
]);
4745 mz
->usage_in_excess
= 0;
4746 mz
->on_tree
= false;
4752 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4754 kfree(mem
->info
.nodeinfo
[node
]);
4757 static struct mem_cgroup
*mem_cgroup_alloc(void)
4759 struct mem_cgroup
*mem
;
4760 int size
= sizeof(struct mem_cgroup
);
4762 /* Can be very big if MAX_NUMNODES is very big */
4763 if (size
< PAGE_SIZE
)
4764 mem
= kzalloc(size
, GFP_KERNEL
);
4766 mem
= vzalloc(size
);
4771 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4774 spin_lock_init(&mem
->pcp_counter_lock
);
4778 if (size
< PAGE_SIZE
)
4786 * At destroying mem_cgroup, references from swap_cgroup can remain.
4787 * (scanning all at force_empty is too costly...)
4789 * Instead of clearing all references at force_empty, we remember
4790 * the number of reference from swap_cgroup and free mem_cgroup when
4791 * it goes down to 0.
4793 * Removal of cgroup itself succeeds regardless of refs from swap.
4796 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4800 mem_cgroup_remove_from_trees(mem
);
4801 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4803 for_each_node_state(node
, N_POSSIBLE
)
4804 free_mem_cgroup_per_zone_info(mem
, node
);
4806 free_percpu(mem
->stat
);
4807 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4813 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4815 atomic_inc(&mem
->refcnt
);
4818 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4820 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4821 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4822 __mem_cgroup_free(mem
);
4824 mem_cgroup_put(parent
);
4828 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4830 __mem_cgroup_put(mem
, 1);
4834 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4838 if (!mem
->res
.parent
)
4840 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4843 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4844 static void __init
enable_swap_cgroup(void)
4846 if (!mem_cgroup_disabled() && really_do_swap_account
)
4847 do_swap_account
= 1;
4850 static void __init
enable_swap_cgroup(void)
4855 static int mem_cgroup_soft_limit_tree_init(void)
4857 struct mem_cgroup_tree_per_node
*rtpn
;
4858 struct mem_cgroup_tree_per_zone
*rtpz
;
4859 int tmp
, node
, zone
;
4861 for_each_node_state(node
, N_POSSIBLE
) {
4863 if (!node_state(node
, N_NORMAL_MEMORY
))
4865 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4869 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4871 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4872 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4873 rtpz
->rb_root
= RB_ROOT
;
4874 spin_lock_init(&rtpz
->lock
);
4880 static struct cgroup_subsys_state
* __ref
4881 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4883 struct mem_cgroup
*mem
, *parent
;
4884 long error
= -ENOMEM
;
4887 mem
= mem_cgroup_alloc();
4889 return ERR_PTR(error
);
4891 for_each_node_state(node
, N_POSSIBLE
)
4892 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4896 if (cont
->parent
== NULL
) {
4898 enable_swap_cgroup();
4900 root_mem_cgroup
= mem
;
4901 if (mem_cgroup_soft_limit_tree_init())
4903 for_each_possible_cpu(cpu
) {
4904 struct memcg_stock_pcp
*stock
=
4905 &per_cpu(memcg_stock
, cpu
);
4906 INIT_WORK(&stock
->work
, drain_local_stock
);
4908 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4910 parent
= mem_cgroup_from_cont(cont
->parent
);
4911 mem
->use_hierarchy
= parent
->use_hierarchy
;
4912 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4915 if (parent
&& parent
->use_hierarchy
) {
4916 res_counter_init(&mem
->res
, &parent
->res
);
4917 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4919 * We increment refcnt of the parent to ensure that we can
4920 * safely access it on res_counter_charge/uncharge.
4921 * This refcnt will be decremented when freeing this
4922 * mem_cgroup(see mem_cgroup_put).
4924 mem_cgroup_get(parent
);
4926 res_counter_init(&mem
->res
, NULL
);
4927 res_counter_init(&mem
->memsw
, NULL
);
4929 mem
->last_scanned_child
= 0;
4930 mem
->last_scanned_node
= MAX_NUMNODES
;
4931 INIT_LIST_HEAD(&mem
->oom_notify
);
4934 mem
->swappiness
= get_swappiness(parent
);
4935 atomic_set(&mem
->refcnt
, 1);
4936 mem
->move_charge_at_immigrate
= 0;
4937 mutex_init(&mem
->thresholds_lock
);
4940 __mem_cgroup_free(mem
);
4941 root_mem_cgroup
= NULL
;
4942 return ERR_PTR(error
);
4945 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4946 struct cgroup
*cont
)
4948 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4950 return mem_cgroup_force_empty(mem
, false);
4953 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4954 struct cgroup
*cont
)
4956 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4958 mem_cgroup_put(mem
);
4961 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4962 struct cgroup
*cont
)
4966 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4967 ARRAY_SIZE(mem_cgroup_files
));
4970 ret
= register_memsw_files(cont
, ss
);
4975 /* Handlers for move charge at task migration. */
4976 #define PRECHARGE_COUNT_AT_ONCE 256
4977 static int mem_cgroup_do_precharge(unsigned long count
)
4980 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4981 struct mem_cgroup
*mem
= mc
.to
;
4983 if (mem_cgroup_is_root(mem
)) {
4984 mc
.precharge
+= count
;
4985 /* we don't need css_get for root */
4988 /* try to charge at once */
4990 struct res_counter
*dummy
;
4992 * "mem" cannot be under rmdir() because we've already checked
4993 * by cgroup_lock_live_cgroup() that it is not removed and we
4994 * are still under the same cgroup_mutex. So we can postpone
4997 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4999 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
5000 PAGE_SIZE
* count
, &dummy
)) {
5001 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
5004 mc
.precharge
+= count
;
5008 /* fall back to one by one charge */
5010 if (signal_pending(current
)) {
5014 if (!batch_count
--) {
5015 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5018 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, 1, &mem
, false);
5020 /* mem_cgroup_clear_mc() will do uncharge later */
5028 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5029 * @vma: the vma the pte to be checked belongs
5030 * @addr: the address corresponding to the pte to be checked
5031 * @ptent: the pte to be checked
5032 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5035 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5036 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5037 * move charge. if @target is not NULL, the page is stored in target->page
5038 * with extra refcnt got(Callers should handle it).
5039 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5040 * target for charge migration. if @target is not NULL, the entry is stored
5043 * Called with pte lock held.
5050 enum mc_target_type
{
5051 MC_TARGET_NONE
, /* not used */
5056 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5057 unsigned long addr
, pte_t ptent
)
5059 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5061 if (!page
|| !page_mapped(page
))
5063 if (PageAnon(page
)) {
5064 /* we don't move shared anon */
5065 if (!move_anon() || page_mapcount(page
) > 2)
5067 } else if (!move_file())
5068 /* we ignore mapcount for file pages */
5070 if (!get_page_unless_zero(page
))
5076 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5077 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5080 struct page
*page
= NULL
;
5081 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5083 if (!move_anon() || non_swap_entry(ent
))
5085 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
5086 if (usage_count
> 1) { /* we don't move shared anon */
5091 if (do_swap_account
)
5092 entry
->val
= ent
.val
;
5097 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5098 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5100 struct page
*page
= NULL
;
5101 struct inode
*inode
;
5102 struct address_space
*mapping
;
5105 if (!vma
->vm_file
) /* anonymous vma */
5110 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
5111 mapping
= vma
->vm_file
->f_mapping
;
5112 if (pte_none(ptent
))
5113 pgoff
= linear_page_index(vma
, addr
);
5114 else /* pte_file(ptent) is true */
5115 pgoff
= pte_to_pgoff(ptent
);
5117 /* page is moved even if it's not RSS of this task(page-faulted). */
5118 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
5119 page
= find_get_page(mapping
, pgoff
);
5120 } else { /* shmem/tmpfs file. we should take account of swap too. */
5122 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
5123 if (do_swap_account
)
5124 entry
->val
= ent
.val
;
5130 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
5131 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5133 struct page
*page
= NULL
;
5134 struct page_cgroup
*pc
;
5136 swp_entry_t ent
= { .val
= 0 };
5138 if (pte_present(ptent
))
5139 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5140 else if (is_swap_pte(ptent
))
5141 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5142 else if (pte_none(ptent
) || pte_file(ptent
))
5143 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5145 if (!page
&& !ent
.val
)
5148 pc
= lookup_page_cgroup(page
);
5150 * Do only loose check w/o page_cgroup lock.
5151 * mem_cgroup_move_account() checks the pc is valid or not under
5154 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5155 ret
= MC_TARGET_PAGE
;
5157 target
->page
= page
;
5159 if (!ret
|| !target
)
5162 /* There is a swap entry and a page doesn't exist or isn't charged */
5163 if (ent
.val
&& !ret
&&
5164 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
5165 ret
= MC_TARGET_SWAP
;
5172 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5173 unsigned long addr
, unsigned long end
,
5174 struct mm_walk
*walk
)
5176 struct vm_area_struct
*vma
= walk
->private;
5180 split_huge_page_pmd(walk
->mm
, pmd
);
5182 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5183 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5184 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
5185 mc
.precharge
++; /* increment precharge temporarily */
5186 pte_unmap_unlock(pte
- 1, ptl
);
5192 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5194 unsigned long precharge
;
5195 struct vm_area_struct
*vma
;
5197 down_read(&mm
->mmap_sem
);
5198 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5199 struct mm_walk mem_cgroup_count_precharge_walk
= {
5200 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5204 if (is_vm_hugetlb_page(vma
))
5206 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5207 &mem_cgroup_count_precharge_walk
);
5209 up_read(&mm
->mmap_sem
);
5211 precharge
= mc
.precharge
;
5217 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5219 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5221 VM_BUG_ON(mc
.moving_task
);
5222 mc
.moving_task
= current
;
5223 return mem_cgroup_do_precharge(precharge
);
5226 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5227 static void __mem_cgroup_clear_mc(void)
5229 struct mem_cgroup
*from
= mc
.from
;
5230 struct mem_cgroup
*to
= mc
.to
;
5232 /* we must uncharge all the leftover precharges from mc.to */
5234 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5238 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5239 * we must uncharge here.
5241 if (mc
.moved_charge
) {
5242 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5243 mc
.moved_charge
= 0;
5245 /* we must fixup refcnts and charges */
5246 if (mc
.moved_swap
) {
5247 /* uncharge swap account from the old cgroup */
5248 if (!mem_cgroup_is_root(mc
.from
))
5249 res_counter_uncharge(&mc
.from
->memsw
,
5250 PAGE_SIZE
* mc
.moved_swap
);
5251 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5253 if (!mem_cgroup_is_root(mc
.to
)) {
5255 * we charged both to->res and to->memsw, so we should
5258 res_counter_uncharge(&mc
.to
->res
,
5259 PAGE_SIZE
* mc
.moved_swap
);
5261 /* we've already done mem_cgroup_get(mc.to) */
5264 memcg_oom_recover(from
);
5265 memcg_oom_recover(to
);
5266 wake_up_all(&mc
.waitq
);
5269 static void mem_cgroup_clear_mc(void)
5271 struct mem_cgroup
*from
= mc
.from
;
5274 * we must clear moving_task before waking up waiters at the end of
5277 mc
.moving_task
= NULL
;
5278 __mem_cgroup_clear_mc();
5279 spin_lock(&mc
.lock
);
5282 spin_unlock(&mc
.lock
);
5283 mem_cgroup_end_move(from
);
5286 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5287 struct cgroup
*cgroup
,
5288 struct task_struct
*p
)
5291 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
5293 if (mem
->move_charge_at_immigrate
) {
5294 struct mm_struct
*mm
;
5295 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5297 VM_BUG_ON(from
== mem
);
5299 mm
= get_task_mm(p
);
5302 /* We move charges only when we move a owner of the mm */
5303 if (mm
->owner
== p
) {
5306 VM_BUG_ON(mc
.precharge
);
5307 VM_BUG_ON(mc
.moved_charge
);
5308 VM_BUG_ON(mc
.moved_swap
);
5309 mem_cgroup_start_move(from
);
5310 spin_lock(&mc
.lock
);
5313 spin_unlock(&mc
.lock
);
5314 /* We set mc.moving_task later */
5316 ret
= mem_cgroup_precharge_mc(mm
);
5318 mem_cgroup_clear_mc();
5325 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5326 struct cgroup
*cgroup
,
5327 struct task_struct
*p
)
5329 mem_cgroup_clear_mc();
5332 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5333 unsigned long addr
, unsigned long end
,
5334 struct mm_walk
*walk
)
5337 struct vm_area_struct
*vma
= walk
->private;
5341 split_huge_page_pmd(walk
->mm
, pmd
);
5343 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5344 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5345 pte_t ptent
= *(pte
++);
5346 union mc_target target
;
5349 struct page_cgroup
*pc
;
5355 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
5357 case MC_TARGET_PAGE
:
5359 if (isolate_lru_page(page
))
5361 pc
= lookup_page_cgroup(page
);
5362 if (!mem_cgroup_move_account(page
, 1, pc
,
5363 mc
.from
, mc
.to
, false)) {
5365 /* we uncharge from mc.from later. */
5368 putback_lru_page(page
);
5369 put
: /* is_target_pte_for_mc() gets the page */
5372 case MC_TARGET_SWAP
:
5374 if (!mem_cgroup_move_swap_account(ent
,
5375 mc
.from
, mc
.to
, false)) {
5377 /* we fixup refcnts and charges later. */
5385 pte_unmap_unlock(pte
- 1, ptl
);
5390 * We have consumed all precharges we got in can_attach().
5391 * We try charge one by one, but don't do any additional
5392 * charges to mc.to if we have failed in charge once in attach()
5395 ret
= mem_cgroup_do_precharge(1);
5403 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5405 struct vm_area_struct
*vma
;
5407 lru_add_drain_all();
5409 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5411 * Someone who are holding the mmap_sem might be waiting in
5412 * waitq. So we cancel all extra charges, wake up all waiters,
5413 * and retry. Because we cancel precharges, we might not be able
5414 * to move enough charges, but moving charge is a best-effort
5415 * feature anyway, so it wouldn't be a big problem.
5417 __mem_cgroup_clear_mc();
5421 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5423 struct mm_walk mem_cgroup_move_charge_walk
= {
5424 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5428 if (is_vm_hugetlb_page(vma
))
5430 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5431 &mem_cgroup_move_charge_walk
);
5434 * means we have consumed all precharges and failed in
5435 * doing additional charge. Just abandon here.
5439 up_read(&mm
->mmap_sem
);
5442 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5443 struct cgroup
*cont
,
5444 struct cgroup
*old_cont
,
5445 struct task_struct
*p
)
5447 struct mm_struct
*mm
= get_task_mm(p
);
5451 mem_cgroup_move_charge(mm
);
5456 mem_cgroup_clear_mc();
5458 #else /* !CONFIG_MMU */
5459 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5460 struct cgroup
*cgroup
,
5461 struct task_struct
*p
)
5465 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5466 struct cgroup
*cgroup
,
5467 struct task_struct
*p
)
5470 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5471 struct cgroup
*cont
,
5472 struct cgroup
*old_cont
,
5473 struct task_struct
*p
)
5478 struct cgroup_subsys mem_cgroup_subsys
= {
5480 .subsys_id
= mem_cgroup_subsys_id
,
5481 .create
= mem_cgroup_create
,
5482 .pre_destroy
= mem_cgroup_pre_destroy
,
5483 .destroy
= mem_cgroup_destroy
,
5484 .populate
= mem_cgroup_populate
,
5485 .can_attach
= mem_cgroup_can_attach
,
5486 .cancel_attach
= mem_cgroup_cancel_attach
,
5487 .attach
= mem_cgroup_move_task
,
5492 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5493 static int __init
enable_swap_account(char *s
)
5495 /* consider enabled if no parameter or 1 is given */
5496 if (!strcmp(s
, "1"))
5497 really_do_swap_account
= 1;
5498 else if (!strcmp(s
, "0"))
5499 really_do_swap_account
= 0;
5502 __setup("swapaccount=", enable_swap_account
);