5 select HAVE_DMA_API_DEBUG
9 select SYS_SUPPORTS_APM_EMULATION
10 select GENERIC_ATOMIC64 if (CPU_V6 || !CPU_32v6K || !AEABI)
11 select HAVE_OPROFILE if (HAVE_PERF_EVENTS)
13 select HAVE_KPROBES if (!XIP_KERNEL && !THUMB2_KERNEL)
14 select HAVE_KRETPROBES if (HAVE_KPROBES)
15 select HAVE_FUNCTION_TRACER if (!XIP_KERNEL)
16 select HAVE_FTRACE_MCOUNT_RECORD if (!XIP_KERNEL)
17 select HAVE_DYNAMIC_FTRACE if (!XIP_KERNEL)
18 select HAVE_FUNCTION_GRAPH_TRACER if (!THUMB2_KERNEL)
19 select HAVE_GENERIC_DMA_COHERENT
20 select HAVE_KERNEL_GZIP
21 select HAVE_KERNEL_LZO
22 select HAVE_KERNEL_LZMA
24 select HAVE_PERF_EVENTS
25 select PERF_USE_VMALLOC
26 select HAVE_REGS_AND_STACK_ACCESS_API
27 select HAVE_HW_BREAKPOINT if (PERF_EVENTS && (CPU_V6 || CPU_V6K || CPU_V7))
28 select HAVE_C_RECORDMCOUNT
29 select HAVE_GENERIC_HARDIRQS
30 select HAVE_SPARSE_IRQ
31 select GENERIC_IRQ_SHOW
33 The ARM series is a line of low-power-consumption RISC chip designs
34 licensed by ARM Ltd and targeted at embedded applications and
35 handhelds such as the Compaq IPAQ. ARM-based PCs are no longer
36 manufactured, but legacy ARM-based PC hardware remains popular in
37 Europe. There is an ARM Linux project with a web page at
38 <http://www.arm.linux.org.uk/>.
46 config SYS_SUPPORTS_APM_EMULATION
49 config HAVE_SCHED_CLOCK
55 config ARCH_USES_GETTIMEOFFSET
59 config GENERIC_CLOCKEVENTS
62 config GENERIC_CLOCKEVENTS_BROADCAST
64 depends on GENERIC_CLOCKEVENTS
73 select GENERIC_ALLOCATOR
84 The Extended Industry Standard Architecture (EISA) bus was
85 developed as an open alternative to the IBM MicroChannel bus.
87 The EISA bus provided some of the features of the IBM MicroChannel
88 bus while maintaining backward compatibility with cards made for
89 the older ISA bus. The EISA bus saw limited use between 1988 and
90 1995 when it was made obsolete by the PCI bus.
92 Say Y here if you are building a kernel for an EISA-based machine.
102 MicroChannel Architecture is found in some IBM PS/2 machines and
103 laptops. It is a bus system similar to PCI or ISA. See
104 <file:Documentation/mca.txt> (and especially the web page given
105 there) before attempting to build an MCA bus kernel.
107 config STACKTRACE_SUPPORT
111 config HAVE_LATENCYTOP_SUPPORT
116 config LOCKDEP_SUPPORT
120 config TRACE_IRQFLAGS_SUPPORT
124 config HARDIRQS_SW_RESEND
128 config GENERIC_IRQ_PROBE
132 config GENERIC_LOCKBREAK
135 depends on SMP && PREEMPT
137 config RWSEM_GENERIC_SPINLOCK
141 config RWSEM_XCHGADD_ALGORITHM
144 config ARCH_HAS_ILOG2_U32
147 config ARCH_HAS_ILOG2_U64
150 config ARCH_HAS_CPUFREQ
153 Internal node to signify that the ARCH has CPUFREQ support
154 and that the relevant menu configurations are displayed for
157 config ARCH_HAS_CPU_IDLE_WAIT
160 config GENERIC_HWEIGHT
164 config GENERIC_CALIBRATE_DELAY
168 config ARCH_MAY_HAVE_PC_FDC
174 config NEED_DMA_MAP_STATE
177 config GENERIC_ISA_DMA
188 default 0xffff0000 if MMU || CPU_HIGH_VECTOR
189 default DRAM_BASE if REMAP_VECTORS_TO_RAM
192 The base address of exception vectors.
194 config ARM_PATCH_PHYS_VIRT
195 bool "Patch physical to virtual translations at runtime (EXPERIMENTAL)"
196 depends on EXPERIMENTAL
197 depends on !XIP_KERNEL && MMU
198 depends on !ARCH_REALVIEW || !SPARSEMEM
200 Patch phys-to-virt and virt-to-phys translation functions at
201 boot and module load time according to the position of the
202 kernel in system memory.
204 This can only be used with non-XIP MMU kernels where the base
205 of physical memory is at a 16MB boundary, or theoretically 64K
206 for the MSM machine class.
208 config ARM_PATCH_PHYS_VIRT_16BIT
210 depends on ARM_PATCH_PHYS_VIRT && ARCH_MSM
212 This option extends the physical to virtual translation patching
213 to allow physical memory down to a theoretical minimum of 64K
216 source "init/Kconfig"
218 source "kernel/Kconfig.freezer"
223 bool "MMU-based Paged Memory Management Support"
226 Select if you want MMU-based virtualised addressing space
227 support by paged memory management. If unsure, say 'Y'.
230 # The "ARM system type" choice list is ordered alphabetically by option
231 # text. Please add new entries in the option alphabetic order.
234 prompt "ARM system type"
235 default ARCH_VERSATILE
237 config ARCH_INTEGRATOR
238 bool "ARM Ltd. Integrator family"
240 select ARCH_HAS_CPUFREQ
243 select GENERIC_CLOCKEVENTS
244 select PLAT_VERSATILE
245 select PLAT_VERSATILE_FPGA_IRQ
247 Support for ARM's Integrator platform.
250 bool "ARM Ltd. RealView family"
254 select GENERIC_CLOCKEVENTS
255 select ARCH_WANT_OPTIONAL_GPIOLIB
256 select PLAT_VERSATILE
257 select PLAT_VERSATILE_CLCD
258 select ARM_TIMER_SP804
259 select GPIO_PL061 if GPIOLIB
261 This enables support for ARM Ltd RealView boards.
263 config ARCH_VERSATILE
264 bool "ARM Ltd. Versatile family"
269 select GENERIC_CLOCKEVENTS
270 select ARCH_WANT_OPTIONAL_GPIOLIB
271 select PLAT_VERSATILE
272 select PLAT_VERSATILE_CLCD
273 select PLAT_VERSATILE_FPGA_IRQ
274 select ARM_TIMER_SP804
276 This enables support for ARM Ltd Versatile board.
279 bool "ARM Ltd. Versatile Express family"
280 select ARCH_WANT_OPTIONAL_GPIOLIB
282 select ARM_TIMER_SP804
284 select GENERIC_CLOCKEVENTS
286 select HAVE_PATA_PLATFORM
288 select PLAT_VERSATILE
289 select PLAT_VERSATILE_CLCD
291 This enables support for the ARM Ltd Versatile Express boards.
295 select ARCH_REQUIRE_GPIOLIB
298 select ARM_PATCH_PHYS_VIRT if MMU
300 This enables support for systems based on the Atmel AT91RM9200,
301 AT91SAM9 and AT91CAP9 processors.
304 bool "Broadcom BCMRING"
308 select ARM_TIMER_SP804
310 select GENERIC_CLOCKEVENTS
311 select ARCH_WANT_OPTIONAL_GPIOLIB
313 Support for Broadcom's BCMRing platform.
316 bool "Cirrus Logic CLPS711x/EP721x-based"
318 select ARCH_USES_GETTIMEOFFSET
320 Support for Cirrus Logic 711x/721x based boards.
323 bool "Cavium Networks CNS3XXX family"
325 select GENERIC_CLOCKEVENTS
327 select MIGHT_HAVE_PCI
328 select PCI_DOMAINS if PCI
330 Support for Cavium Networks CNS3XXX platform.
333 bool "Cortina Systems Gemini"
335 select ARCH_REQUIRE_GPIOLIB
336 select ARCH_USES_GETTIMEOFFSET
338 Support for the Cortina Systems Gemini family SoCs
345 select ARCH_USES_GETTIMEOFFSET
347 This is an evaluation board for the StrongARM processor available
348 from Digital. It has limited hardware on-board, including an
349 Ethernet interface, two PCMCIA sockets, two serial ports and a
358 select ARCH_REQUIRE_GPIOLIB
359 select ARCH_HAS_HOLES_MEMORYMODEL
360 select ARCH_USES_GETTIMEOFFSET
362 This enables support for the Cirrus EP93xx series of CPUs.
364 config ARCH_FOOTBRIDGE
368 select GENERIC_CLOCKEVENTS
370 Support for systems based on the DC21285 companion chip
371 ("FootBridge"), such as the Simtec CATS and the Rebel NetWinder.
374 bool "Freescale MXC/iMX-based"
375 select GENERIC_CLOCKEVENTS
376 select ARCH_REQUIRE_GPIOLIB
379 select HAVE_SCHED_CLOCK
381 Support for Freescale MXC/iMX-based family of processors
384 bool "Freescale MXS-based"
385 select GENERIC_CLOCKEVENTS
386 select ARCH_REQUIRE_GPIOLIB
390 Support for Freescale MXS-based family of processors
393 bool "Hilscher NetX based"
397 select GENERIC_CLOCKEVENTS
399 This enables support for systems based on the Hilscher NetX Soc
402 bool "Hynix HMS720x-based"
405 select ARCH_USES_GETTIMEOFFSET
407 This enables support for systems based on the Hynix HMS720x
415 select ARCH_SUPPORTS_MSI
418 Support for Intel's IOP13XX (XScale) family of processors.
426 select ARCH_REQUIRE_GPIOLIB
428 Support for Intel's 80219 and IOP32X (XScale) family of
437 select ARCH_REQUIRE_GPIOLIB
439 Support for Intel's IOP33X (XScale) family of processors.
446 select ARCH_USES_GETTIMEOFFSET
448 Support for Intel's IXP23xx (XScale) family of processors.
451 bool "IXP2400/2800-based"
455 select ARCH_USES_GETTIMEOFFSET
457 Support for Intel's IXP2400/2800 (XScale) family of processors.
465 select GENERIC_CLOCKEVENTS
466 select HAVE_SCHED_CLOCK
467 select MIGHT_HAVE_PCI
468 select DMABOUNCE if PCI
470 Support for Intel's IXP4XX (XScale) family of processors.
476 select ARCH_REQUIRE_GPIOLIB
477 select GENERIC_CLOCKEVENTS
480 Support for the Marvell Dove SoC 88AP510
483 bool "Marvell Kirkwood"
486 select ARCH_REQUIRE_GPIOLIB
487 select GENERIC_CLOCKEVENTS
490 Support for the following Marvell Kirkwood series SoCs:
491 88F6180, 88F6192 and 88F6281.
494 bool "Marvell Loki (88RC8480)"
496 select GENERIC_CLOCKEVENTS
499 Support for the Marvell Loki (88RC8480) SoC.
505 select ARCH_REQUIRE_GPIOLIB
508 select USB_ARCH_HAS_OHCI
511 select GENERIC_CLOCKEVENTS
513 Support for the NXP LPC32XX family of processors
516 bool "Marvell MV78xx0"
519 select ARCH_REQUIRE_GPIOLIB
520 select GENERIC_CLOCKEVENTS
523 Support for the following Marvell MV78xx0 series SoCs:
531 select ARCH_REQUIRE_GPIOLIB
532 select GENERIC_CLOCKEVENTS
535 Support for the following Marvell Orion 5x series SoCs:
536 Orion-1 (5181), Orion-VoIP (5181L), Orion-NAS (5182),
537 Orion-2 (5281), Orion-1-90 (6183).
540 bool "Marvell PXA168/910/MMP2"
542 select ARCH_REQUIRE_GPIOLIB
544 select GENERIC_CLOCKEVENTS
545 select HAVE_SCHED_CLOCK
550 Support for Marvell's PXA168/PXA910(MMP) and MMP2 processor line.
553 bool "Micrel/Kendin KS8695"
555 select ARCH_REQUIRE_GPIOLIB
556 select ARCH_USES_GETTIMEOFFSET
558 Support for Micrel/Kendin KS8695 "Centaur" (ARM922T) based
559 System-on-Chip devices.
562 bool "Nuvoton W90X900 CPU"
564 select ARCH_REQUIRE_GPIOLIB
567 select GENERIC_CLOCKEVENTS
569 Support for Nuvoton (Winbond logic dept.) ARM9 processor,
570 At present, the w90x900 has been renamed nuc900, regarding
571 the ARM series product line, you can login the following
572 link address to know more.
574 <http://www.nuvoton.com/hq/enu/ProductAndSales/ProductLines/
575 ConsumerElectronicsIC/ARMMicrocontroller/ARMMicrocontroller>
578 bool "Nuvoton NUC93X CPU"
582 Support for Nuvoton (Winbond logic dept.) NUC93X MCU,The NUC93X is a
583 low-power and high performance MPEG-4/JPEG multimedia controller chip.
590 select GENERIC_CLOCKEVENTS
593 select HAVE_SCHED_CLOCK
594 select ARCH_HAS_BARRIERS if CACHE_L2X0
595 select ARCH_HAS_CPUFREQ
597 This enables support for NVIDIA Tegra based systems (Tegra APX,
598 Tegra 6xx and Tegra 2 series).
601 bool "Philips Nexperia PNX4008 Mobile"
604 select ARCH_USES_GETTIMEOFFSET
606 This enables support for Philips PNX4008 mobile platform.
609 bool "PXA2xx/PXA3xx-based"
612 select ARCH_HAS_CPUFREQ
615 select ARCH_REQUIRE_GPIOLIB
616 select GENERIC_CLOCKEVENTS
617 select HAVE_SCHED_CLOCK
622 Support for Intel/Marvell's PXA2xx/PXA3xx processor line.
627 select GENERIC_CLOCKEVENTS
628 select ARCH_REQUIRE_GPIOLIB
631 Support for Qualcomm MSM/QSD based systems. This runs on the
632 apps processor of the MSM/QSD and depends on a shared memory
633 interface to the modem processor which runs the baseband
634 stack and controls some vital subsystems
635 (clock and power control, etc).
638 bool "Renesas SH-Mobile / R-Mobile"
641 select GENERIC_CLOCKEVENTS
644 select MULTI_IRQ_HANDLER
646 Support for Renesas's SH-Mobile and R-Mobile ARM platforms.
653 select ARCH_MAY_HAVE_PC_FDC
654 select HAVE_PATA_PLATFORM
657 select ARCH_SPARSEMEM_ENABLE
658 select ARCH_USES_GETTIMEOFFSET
660 On the Acorn Risc-PC, Linux can support the internal IDE disk and
661 CD-ROM interface, serial and parallel port, and the floppy drive.
668 select ARCH_SPARSEMEM_ENABLE
670 select ARCH_HAS_CPUFREQ
672 select GENERIC_CLOCKEVENTS
674 select HAVE_SCHED_CLOCK
676 select ARCH_REQUIRE_GPIOLIB
678 Support for StrongARM 11x0 based boards.
681 bool "Samsung S3C2410, S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443, S3C2450"
683 select ARCH_HAS_CPUFREQ
685 select ARCH_USES_GETTIMEOFFSET
686 select HAVE_S3C2410_I2C if I2C
688 Samsung S3C2410X CPU based systems, such as the Simtec Electronics
689 BAST (<http://www.simtec.co.uk/products/EB110ITX/>), the IPAQ 1940 or
690 the Samsung SMDK2410 development board (and derivatives).
692 Note, the S3C2416 and the S3C2450 are so close that they even share
693 the same SoC ID code. This means that there is no separate machine
694 directory (no arch/arm/mach-s3c2450) as the S3C2416 was first.
697 bool "Samsung S3C64XX"
703 select ARCH_USES_GETTIMEOFFSET
704 select ARCH_HAS_CPUFREQ
705 select ARCH_REQUIRE_GPIOLIB
706 select SAMSUNG_CLKSRC
707 select SAMSUNG_IRQ_VIC_TIMER
708 select SAMSUNG_IRQ_UART
709 select S3C_GPIO_TRACK
710 select S3C_GPIO_PULL_UPDOWN
711 select S3C_GPIO_CFG_S3C24XX
712 select S3C_GPIO_CFG_S3C64XX
714 select USB_ARCH_HAS_OHCI
715 select SAMSUNG_GPIOLIB_4BIT
716 select HAVE_S3C2410_I2C if I2C
717 select HAVE_S3C2410_WATCHDOG if WATCHDOG
719 Samsung S3C64XX series based systems
722 bool "Samsung S5P6440 S5P6450"
726 select HAVE_S3C2410_WATCHDOG if WATCHDOG
727 select GENERIC_CLOCKEVENTS
728 select HAVE_SCHED_CLOCK
729 select HAVE_S3C2410_I2C if I2C
730 select HAVE_S3C_RTC if RTC_CLASS
732 Samsung S5P64X0 CPU based systems, such as the Samsung SMDK6440,
736 bool "Samsung S5PC100"
740 select ARM_L1_CACHE_SHIFT_6
741 select ARCH_USES_GETTIMEOFFSET
742 select HAVE_S3C2410_I2C if I2C
743 select HAVE_S3C_RTC if RTC_CLASS
744 select HAVE_S3C2410_WATCHDOG if WATCHDOG
746 Samsung S5PC100 series based systems
749 bool "Samsung S5PV210/S5PC110"
751 select ARCH_SPARSEMEM_ENABLE
754 select ARM_L1_CACHE_SHIFT_6
755 select ARCH_HAS_CPUFREQ
756 select GENERIC_CLOCKEVENTS
757 select HAVE_SCHED_CLOCK
758 select HAVE_S3C2410_I2C if I2C
759 select HAVE_S3C_RTC if RTC_CLASS
760 select HAVE_S3C2410_WATCHDOG if WATCHDOG
762 Samsung S5PV210/S5PC110 series based systems
765 bool "Samsung EXYNOS4"
767 select ARCH_SPARSEMEM_ENABLE
770 select ARCH_HAS_CPUFREQ
771 select GENERIC_CLOCKEVENTS
772 select HAVE_S3C_RTC if RTC_CLASS
773 select HAVE_S3C2410_I2C if I2C
774 select HAVE_S3C2410_WATCHDOG if WATCHDOG
776 Samsung EXYNOS4 series based systems
785 select ARCH_USES_GETTIMEOFFSET
787 Support for the StrongARM based Digital DNARD machine, also known
788 as "Shark" (<http://www.shark-linux.de/shark.html>).
791 bool "Telechips TCC ARM926-based systems"
796 select GENERIC_CLOCKEVENTS
798 Support for Telechips TCC ARM926-based systems.
801 bool "ST-Ericsson U300 Series"
805 select HAVE_SCHED_CLOCK
809 select GENERIC_CLOCKEVENTS
813 Support for ST-Ericsson U300 series mobile platforms.
816 bool "ST-Ericsson U8500 Series"
819 select GENERIC_CLOCKEVENTS
821 select ARCH_REQUIRE_GPIOLIB
822 select ARCH_HAS_CPUFREQ
824 Support for ST-Ericsson's Ux500 architecture
827 bool "STMicroelectronics Nomadik"
832 select GENERIC_CLOCKEVENTS
833 select ARCH_REQUIRE_GPIOLIB
835 Support for the Nomadik platform by ST-Ericsson
839 select GENERIC_CLOCKEVENTS
840 select ARCH_REQUIRE_GPIOLIB
844 select GENERIC_ALLOCATOR
845 select GENERIC_IRQ_CHIP
846 select ARCH_HAS_HOLES_MEMORYMODEL
848 Support for TI's DaVinci platform.
853 select ARCH_REQUIRE_GPIOLIB
854 select ARCH_HAS_CPUFREQ
855 select GENERIC_CLOCKEVENTS
856 select HAVE_SCHED_CLOCK
857 select ARCH_HAS_HOLES_MEMORYMODEL
859 Support for TI's OMAP platform (OMAP1/2/3/4).
864 select ARCH_REQUIRE_GPIOLIB
867 select GENERIC_CLOCKEVENTS
870 Support for ST's SPEAr platform (SPEAr3xx, SPEAr6xx and SPEAr13xx).
873 bool "VIA/WonderMedia 85xx"
876 select ARCH_HAS_CPUFREQ
877 select GENERIC_CLOCKEVENTS
878 select ARCH_REQUIRE_GPIOLIB
881 Support for VIA/WonderMedia VT8500/WM85xx System-on-Chip.
885 # This is sorted alphabetically by mach-* pathname. However, plat-*
886 # Kconfigs may be included either alphabetically (according to the
887 # plat- suffix) or along side the corresponding mach-* source.
889 source "arch/arm/mach-at91/Kconfig"
891 source "arch/arm/mach-bcmring/Kconfig"
893 source "arch/arm/mach-clps711x/Kconfig"
895 source "arch/arm/mach-cns3xxx/Kconfig"
897 source "arch/arm/mach-davinci/Kconfig"
899 source "arch/arm/mach-dove/Kconfig"
901 source "arch/arm/mach-ep93xx/Kconfig"
903 source "arch/arm/mach-footbridge/Kconfig"
905 source "arch/arm/mach-gemini/Kconfig"
907 source "arch/arm/mach-h720x/Kconfig"
909 source "arch/arm/mach-integrator/Kconfig"
911 source "arch/arm/mach-iop32x/Kconfig"
913 source "arch/arm/mach-iop33x/Kconfig"
915 source "arch/arm/mach-iop13xx/Kconfig"
917 source "arch/arm/mach-ixp4xx/Kconfig"
919 source "arch/arm/mach-ixp2000/Kconfig"
921 source "arch/arm/mach-ixp23xx/Kconfig"
923 source "arch/arm/mach-kirkwood/Kconfig"
925 source "arch/arm/mach-ks8695/Kconfig"
927 source "arch/arm/mach-loki/Kconfig"
929 source "arch/arm/mach-lpc32xx/Kconfig"
931 source "arch/arm/mach-msm/Kconfig"
933 source "arch/arm/mach-mv78xx0/Kconfig"
935 source "arch/arm/plat-mxc/Kconfig"
937 source "arch/arm/mach-mxs/Kconfig"
939 source "arch/arm/mach-netx/Kconfig"
941 source "arch/arm/mach-nomadik/Kconfig"
942 source "arch/arm/plat-nomadik/Kconfig"
944 source "arch/arm/mach-nuc93x/Kconfig"
946 source "arch/arm/plat-omap/Kconfig"
948 source "arch/arm/mach-omap1/Kconfig"
950 source "arch/arm/mach-omap2/Kconfig"
952 source "arch/arm/mach-orion5x/Kconfig"
954 source "arch/arm/mach-pxa/Kconfig"
955 source "arch/arm/plat-pxa/Kconfig"
957 source "arch/arm/mach-mmp/Kconfig"
959 source "arch/arm/mach-realview/Kconfig"
961 source "arch/arm/mach-sa1100/Kconfig"
963 source "arch/arm/plat-samsung/Kconfig"
964 source "arch/arm/plat-s3c24xx/Kconfig"
965 source "arch/arm/plat-s5p/Kconfig"
967 source "arch/arm/plat-spear/Kconfig"
969 source "arch/arm/plat-tcc/Kconfig"
972 source "arch/arm/mach-s3c2400/Kconfig"
973 source "arch/arm/mach-s3c2410/Kconfig"
974 source "arch/arm/mach-s3c2412/Kconfig"
975 source "arch/arm/mach-s3c2416/Kconfig"
976 source "arch/arm/mach-s3c2440/Kconfig"
977 source "arch/arm/mach-s3c2443/Kconfig"
981 source "arch/arm/mach-s3c64xx/Kconfig"
984 source "arch/arm/mach-s5p64x0/Kconfig"
986 source "arch/arm/mach-s5pc100/Kconfig"
988 source "arch/arm/mach-s5pv210/Kconfig"
990 source "arch/arm/mach-exynos4/Kconfig"
992 source "arch/arm/mach-shmobile/Kconfig"
994 source "arch/arm/mach-tegra/Kconfig"
996 source "arch/arm/mach-u300/Kconfig"
998 source "arch/arm/mach-ux500/Kconfig"
1000 source "arch/arm/mach-versatile/Kconfig"
1002 source "arch/arm/mach-vexpress/Kconfig"
1003 source "arch/arm/plat-versatile/Kconfig"
1005 source "arch/arm/mach-vt8500/Kconfig"
1007 source "arch/arm/mach-w90x900/Kconfig"
1009 # Definitions to make life easier
1015 select GENERIC_CLOCKEVENTS
1016 select HAVE_SCHED_CLOCK
1021 select GENERIC_IRQ_CHIP
1022 select HAVE_SCHED_CLOCK
1027 config PLAT_VERSATILE
1030 config ARM_TIMER_SP804
1034 source arch/arm/mm/Kconfig
1037 bool "Enable iWMMXt support"
1038 depends on CPU_XSCALE || CPU_XSC3 || CPU_MOHAWK || CPU_PJ4
1039 default y if PXA27x || PXA3xx || PXA95x || ARCH_MMP
1041 Enable support for iWMMXt context switching at run time if
1042 running on a CPU that supports it.
1044 # bool 'Use XScale PMU as timer source' CONFIG_XSCALE_PMU_TIMER
1047 depends on CPU_XSCALE && !XSCALE_PMU_TIMER
1051 depends on (CPU_V6 || CPU_V6K || CPU_V7 || XSCALE_PMU) && \
1052 (!ARCH_OMAP3 || OMAP3_EMU)
1056 config MULTI_IRQ_HANDLER
1059 Allow each machine to specify it's own IRQ handler at run time.
1062 source "arch/arm/Kconfig-nommu"
1065 config ARM_ERRATA_411920
1066 bool "ARM errata: Invalidation of the Instruction Cache operation can fail"
1067 depends on CPU_V6 || CPU_V6K
1069 Invalidation of the Instruction Cache operation can
1070 fail. This erratum is present in 1136 (before r1p4), 1156 and 1176.
1071 It does not affect the MPCore. This option enables the ARM Ltd.
1072 recommended workaround.
1074 config ARM_ERRATA_430973
1075 bool "ARM errata: Stale prediction on replaced interworking branch"
1078 This option enables the workaround for the 430973 Cortex-A8
1079 (r1p0..r1p2) erratum. If a code sequence containing an ARM/Thumb
1080 interworking branch is replaced with another code sequence at the
1081 same virtual address, whether due to self-modifying code or virtual
1082 to physical address re-mapping, Cortex-A8 does not recover from the
1083 stale interworking branch prediction. This results in Cortex-A8
1084 executing the new code sequence in the incorrect ARM or Thumb state.
1085 The workaround enables the BTB/BTAC operations by setting ACTLR.IBE
1086 and also flushes the branch target cache at every context switch.
1087 Note that setting specific bits in the ACTLR register may not be
1088 available in non-secure mode.
1090 config ARM_ERRATA_458693
1091 bool "ARM errata: Processor deadlock when a false hazard is created"
1094 This option enables the workaround for the 458693 Cortex-A8 (r2p0)
1095 erratum. For very specific sequences of memory operations, it is
1096 possible for a hazard condition intended for a cache line to instead
1097 be incorrectly associated with a different cache line. This false
1098 hazard might then cause a processor deadlock. The workaround enables
1099 the L1 caching of the NEON accesses and disables the PLD instruction
1100 in the ACTLR register. Note that setting specific bits in the ACTLR
1101 register may not be available in non-secure mode.
1103 config ARM_ERRATA_460075
1104 bool "ARM errata: Data written to the L2 cache can be overwritten with stale data"
1107 This option enables the workaround for the 460075 Cortex-A8 (r2p0)
1108 erratum. Any asynchronous access to the L2 cache may encounter a
1109 situation in which recent store transactions to the L2 cache are lost
1110 and overwritten with stale memory contents from external memory. The
1111 workaround disables the write-allocate mode for the L2 cache via the
1112 ACTLR register. Note that setting specific bits in the ACTLR register
1113 may not be available in non-secure mode.
1115 config ARM_ERRATA_742230
1116 bool "ARM errata: DMB operation may be faulty"
1117 depends on CPU_V7 && SMP
1119 This option enables the workaround for the 742230 Cortex-A9
1120 (r1p0..r2p2) erratum. Under rare circumstances, a DMB instruction
1121 between two write operations may not ensure the correct visibility
1122 ordering of the two writes. This workaround sets a specific bit in
1123 the diagnostic register of the Cortex-A9 which causes the DMB
1124 instruction to behave as a DSB, ensuring the correct behaviour of
1127 config ARM_ERRATA_742231
1128 bool "ARM errata: Incorrect hazard handling in the SCU may lead to data corruption"
1129 depends on CPU_V7 && SMP
1131 This option enables the workaround for the 742231 Cortex-A9
1132 (r2p0..r2p2) erratum. Under certain conditions, specific to the
1133 Cortex-A9 MPCore micro-architecture, two CPUs working in SMP mode,
1134 accessing some data located in the same cache line, may get corrupted
1135 data due to bad handling of the address hazard when the line gets
1136 replaced from one of the CPUs at the same time as another CPU is
1137 accessing it. This workaround sets specific bits in the diagnostic
1138 register of the Cortex-A9 which reduces the linefill issuing
1139 capabilities of the processor.
1141 config PL310_ERRATA_588369
1142 bool "Clean & Invalidate maintenance operations do not invalidate clean lines"
1143 depends on CACHE_L2X0
1145 The PL310 L2 cache controller implements three types of Clean &
1146 Invalidate maintenance operations: by Physical Address
1147 (offset 0x7F0), by Index/Way (0x7F8) and by Way (0x7FC).
1148 They are architecturally defined to behave as the execution of a
1149 clean operation followed immediately by an invalidate operation,
1150 both performing to the same memory location. This functionality
1151 is not correctly implemented in PL310 as clean lines are not
1152 invalidated as a result of these operations.
1154 config ARM_ERRATA_720789
1155 bool "ARM errata: TLBIASIDIS and TLBIMVAIS operations can broadcast a faulty ASID"
1156 depends on CPU_V7 && SMP
1158 This option enables the workaround for the 720789 Cortex-A9 (prior to
1159 r2p0) erratum. A faulty ASID can be sent to the other CPUs for the
1160 broadcasted CP15 TLB maintenance operations TLBIASIDIS and TLBIMVAIS.
1161 As a consequence of this erratum, some TLB entries which should be
1162 invalidated are not, resulting in an incoherency in the system page
1163 tables. The workaround changes the TLB flushing routines to invalidate
1164 entries regardless of the ASID.
1166 config PL310_ERRATA_727915
1167 bool "Background Clean & Invalidate by Way operation can cause data corruption"
1168 depends on CACHE_L2X0
1170 PL310 implements the Clean & Invalidate by Way L2 cache maintenance
1171 operation (offset 0x7FC). This operation runs in background so that
1172 PL310 can handle normal accesses while it is in progress. Under very
1173 rare circumstances, due to this erratum, write data can be lost when
1174 PL310 treats a cacheable write transaction during a Clean &
1175 Invalidate by Way operation.
1177 config ARM_ERRATA_743622
1178 bool "ARM errata: Faulty hazard checking in the Store Buffer may lead to data corruption"
1181 This option enables the workaround for the 743622 Cortex-A9
1182 (r2p0..r2p2) erratum. Under very rare conditions, a faulty
1183 optimisation in the Cortex-A9 Store Buffer may lead to data
1184 corruption. This workaround sets a specific bit in the diagnostic
1185 register of the Cortex-A9 which disables the Store Buffer
1186 optimisation, preventing the defect from occurring. This has no
1187 visible impact on the overall performance or power consumption of the
1190 config ARM_ERRATA_751472
1191 bool "ARM errata: Interrupted ICIALLUIS may prevent completion of broadcasted operation"
1192 depends on CPU_V7 && SMP
1194 This option enables the workaround for the 751472 Cortex-A9 (prior
1195 to r3p0) erratum. An interrupted ICIALLUIS operation may prevent the
1196 completion of a following broadcasted operation if the second
1197 operation is received by a CPU before the ICIALLUIS has completed,
1198 potentially leading to corrupted entries in the cache or TLB.
1200 config ARM_ERRATA_753970
1201 bool "ARM errata: cache sync operation may be faulty"
1202 depends on CACHE_PL310
1204 This option enables the workaround for the 753970 PL310 (r3p0) erratum.
1206 Under some condition the effect of cache sync operation on
1207 the store buffer still remains when the operation completes.
1208 This means that the store buffer is always asked to drain and
1209 this prevents it from merging any further writes. The workaround
1210 is to replace the normal offset of cache sync operation (0x730)
1211 by another offset targeting an unmapped PL310 register 0x740.
1212 This has the same effect as the cache sync operation: store buffer
1213 drain and waiting for all buffers empty.
1215 config ARM_ERRATA_754322
1216 bool "ARM errata: possible faulty MMU translations following an ASID switch"
1219 This option enables the workaround for the 754322 Cortex-A9 (r2p*,
1220 r3p*) erratum. A speculative memory access may cause a page table walk
1221 which starts prior to an ASID switch but completes afterwards. This
1222 can populate the micro-TLB with a stale entry which may be hit with
1223 the new ASID. This workaround places two dsb instructions in the mm
1224 switching code so that no page table walks can cross the ASID switch.
1226 config ARM_ERRATA_754327
1227 bool "ARM errata: no automatic Store Buffer drain"
1228 depends on CPU_V7 && SMP
1230 This option enables the workaround for the 754327 Cortex-A9 (prior to
1231 r2p0) erratum. The Store Buffer does not have any automatic draining
1232 mechanism and therefore a livelock may occur if an external agent
1233 continuously polls a memory location waiting to observe an update.
1234 This workaround defines cpu_relax() as smp_mb(), preventing correctly
1235 written polling loops from denying visibility of updates to memory.
1239 source "arch/arm/common/Kconfig"
1249 Find out whether you have ISA slots on your motherboard. ISA is the
1250 name of a bus system, i.e. the way the CPU talks to the other stuff
1251 inside your box. Other bus systems are PCI, EISA, MicroChannel
1252 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
1253 newer boards don't support it. If you have ISA, say Y, otherwise N.
1255 # Select ISA DMA controller support
1260 # Select ISA DMA interface
1265 bool "PCI support" if MIGHT_HAVE_PCI
1267 Find out whether you have a PCI motherboard. PCI is the name of a
1268 bus system, i.e. the way the CPU talks to the other stuff inside
1269 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
1270 VESA. If you have PCI, say Y, otherwise N.
1276 config PCI_NANOENGINE
1277 bool "BSE nanoEngine PCI support"
1278 depends on SA1100_NANOENGINE
1280 Enable PCI on the BSE nanoEngine board.
1285 # Select the host bridge type
1286 config PCI_HOST_VIA82C505
1288 depends on PCI && ARCH_SHARK
1291 config PCI_HOST_ITE8152
1293 depends on PCI && MACH_ARMCORE
1297 source "drivers/pci/Kconfig"
1299 source "drivers/pcmcia/Kconfig"
1303 menu "Kernel Features"
1305 source "kernel/time/Kconfig"
1308 bool "Symmetric Multi-Processing"
1309 depends on CPU_V6K || CPU_V7
1310 depends on GENERIC_CLOCKEVENTS
1311 depends on REALVIEW_EB_ARM11MP || REALVIEW_EB_A9MP || \
1312 MACH_REALVIEW_PB11MP || MACH_REALVIEW_PBX || ARCH_OMAP4 || \
1313 ARCH_EXYNOS4 || ARCH_TEGRA || ARCH_U8500 || ARCH_VEXPRESS_CA9X4 || \
1314 ARCH_MSM_SCORPIONMP || ARCH_SHMOBILE
1315 select USE_GENERIC_SMP_HELPERS
1316 select HAVE_ARM_SCU if !ARCH_MSM_SCORPIONMP
1318 This enables support for systems with more than one CPU. If you have
1319 a system with only one CPU, like most personal computers, say N. If
1320 you have a system with more than one CPU, say Y.
1322 If you say N here, the kernel will run on single and multiprocessor
1323 machines, but will use only one CPU of a multiprocessor machine. If
1324 you say Y here, the kernel will run on many, but not all, single
1325 processor machines. On a single processor machine, the kernel will
1326 run faster if you say N here.
1328 See also <file:Documentation/i386/IO-APIC.txt>,
1329 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
1330 <http://tldp.org/HOWTO/SMP-HOWTO.html>.
1332 If you don't know what to do here, say N.
1335 bool "Allow booting SMP kernel on uniprocessor systems (EXPERIMENTAL)"
1336 depends on EXPERIMENTAL
1337 depends on SMP && !XIP_KERNEL
1340 SMP kernels contain instructions which fail on non-SMP processors.
1341 Enabling this option allows the kernel to modify itself to make
1342 these instructions safe. Disabling it allows about 1K of space
1345 If you don't know what to do here, say Y.
1351 This option enables support for the ARM system coherency unit
1358 This options enables support for the ARM timer and watchdog unit
1361 prompt "Memory split"
1364 Select the desired split between kernel and user memory.
1366 If you are not absolutely sure what you are doing, leave this
1370 bool "3G/1G user/kernel split"
1372 bool "2G/2G user/kernel split"
1374 bool "1G/3G user/kernel split"
1379 default 0x40000000 if VMSPLIT_1G
1380 default 0x80000000 if VMSPLIT_2G
1384 int "Maximum number of CPUs (2-32)"
1390 bool "Support for hot-pluggable CPUs (EXPERIMENTAL)"
1391 depends on SMP && HOTPLUG && EXPERIMENTAL
1393 Say Y here to experiment with turning CPUs off and on. CPUs
1394 can be controlled through /sys/devices/system/cpu.
1397 bool "Use local timer interrupts"
1400 select HAVE_ARM_TWD if (!ARCH_MSM_SCORPIONMP && !EXYNOS4_MCT)
1402 Enable support for local timers on SMP platforms, rather then the
1403 legacy IPI broadcast method. Local timers allows the system
1404 accounting to be spread across the timer interval, preventing a
1405 "thundering herd" at every timer tick.
1407 source kernel/Kconfig.preempt
1411 default 200 if ARCH_EBSA110 || ARCH_S3C2410 || ARCH_S5P64X0 || \
1412 ARCH_S5PV210 || ARCH_EXYNOS4
1413 default OMAP_32K_TIMER_HZ if ARCH_OMAP && OMAP_32K_TIMER
1414 default AT91_TIMER_HZ if ARCH_AT91
1415 default SHMOBILE_TIMER_HZ if ARCH_SHMOBILE
1418 config THUMB2_KERNEL
1419 bool "Compile the kernel in Thumb-2 mode (EXPERIMENTAL)"
1420 depends on CPU_V7 && !CPU_V6 && !CPU_V6K && EXPERIMENTAL
1422 select ARM_ASM_UNIFIED
1424 By enabling this option, the kernel will be compiled in
1425 Thumb-2 mode. A compiler/assembler that understand the unified
1426 ARM-Thumb syntax is needed.
1430 config THUMB2_AVOID_R_ARM_THM_JUMP11
1431 bool "Work around buggy Thumb-2 short branch relocations in gas"
1432 depends on THUMB2_KERNEL && MODULES
1435 Various binutils versions can resolve Thumb-2 branches to
1436 locally-defined, preemptible global symbols as short-range "b.n"
1437 branch instructions.
1439 This is a problem, because there's no guarantee the final
1440 destination of the symbol, or any candidate locations for a
1441 trampoline, are within range of the branch. For this reason, the
1442 kernel does not support fixing up the R_ARM_THM_JUMP11 (102)
1443 relocation in modules at all, and it makes little sense to add
1446 The symptom is that the kernel fails with an "unsupported
1447 relocation" error when loading some modules.
1449 Until fixed tools are available, passing
1450 -fno-optimize-sibling-calls to gcc should prevent gcc generating
1451 code which hits this problem, at the cost of a bit of extra runtime
1452 stack usage in some cases.
1454 The problem is described in more detail at:
1455 https://bugs.launchpad.net/binutils-linaro/+bug/725126
1457 Only Thumb-2 kernels are affected.
1459 Unless you are sure your tools don't have this problem, say Y.
1461 config ARM_ASM_UNIFIED
1465 bool "Use the ARM EABI to compile the kernel"
1467 This option allows for the kernel to be compiled using the latest
1468 ARM ABI (aka EABI). This is only useful if you are using a user
1469 space environment that is also compiled with EABI.
1471 Since there are major incompatibilities between the legacy ABI and
1472 EABI, especially with regard to structure member alignment, this
1473 option also changes the kernel syscall calling convention to
1474 disambiguate both ABIs and allow for backward compatibility support
1475 (selected with CONFIG_OABI_COMPAT).
1477 To use this you need GCC version 4.0.0 or later.
1480 bool "Allow old ABI binaries to run with this kernel (EXPERIMENTAL)"
1481 depends on AEABI && EXPERIMENTAL && !THUMB2_KERNEL
1484 This option preserves the old syscall interface along with the
1485 new (ARM EABI) one. It also provides a compatibility layer to
1486 intercept syscalls that have structure arguments which layout
1487 in memory differs between the legacy ABI and the new ARM EABI
1488 (only for non "thumb" binaries). This option adds a tiny
1489 overhead to all syscalls and produces a slightly larger kernel.
1490 If you know you'll be using only pure EABI user space then you
1491 can say N here. If this option is not selected and you attempt
1492 to execute a legacy ABI binary then the result will be
1493 UNPREDICTABLE (in fact it can be predicted that it won't work
1494 at all). If in doubt say Y.
1496 config ARCH_HAS_HOLES_MEMORYMODEL
1499 config ARCH_SPARSEMEM_ENABLE
1502 config ARCH_SPARSEMEM_DEFAULT
1503 def_bool ARCH_SPARSEMEM_ENABLE
1505 config ARCH_SELECT_MEMORY_MODEL
1506 def_bool ARCH_SPARSEMEM_ENABLE
1508 config HAVE_ARCH_PFN_VALID
1509 def_bool ARCH_HAS_HOLES_MEMORYMODEL || !SPARSEMEM
1512 bool "High Memory Support"
1515 The address space of ARM processors is only 4 Gigabytes large
1516 and it has to accommodate user address space, kernel address
1517 space as well as some memory mapped IO. That means that, if you
1518 have a large amount of physical memory and/or IO, not all of the
1519 memory can be "permanently mapped" by the kernel. The physical
1520 memory that is not permanently mapped is called "high memory".
1522 Depending on the selected kernel/user memory split, minimum
1523 vmalloc space and actual amount of RAM, you may not need this
1524 option which should result in a slightly faster kernel.
1529 bool "Allocate 2nd-level pagetables from highmem"
1532 config HW_PERF_EVENTS
1533 bool "Enable hardware performance counter support for perf events"
1534 depends on PERF_EVENTS && CPU_HAS_PMU
1537 Enable hardware performance counter support for perf events. If
1538 disabled, perf events will use software events only.
1542 config FORCE_MAX_ZONEORDER
1543 int "Maximum zone order" if ARCH_SHMOBILE
1544 range 11 64 if ARCH_SHMOBILE
1545 default "9" if SA1111
1548 The kernel memory allocator divides physically contiguous memory
1549 blocks into "zones", where each zone is a power of two number of
1550 pages. This option selects the largest power of two that the kernel
1551 keeps in the memory allocator. If you need to allocate very large
1552 blocks of physically contiguous memory, then you may need to
1553 increase this value.
1555 This config option is actually maximum order plus one. For example,
1556 a value of 11 means that the largest free memory block is 2^10 pages.
1559 bool "Timer and CPU usage LEDs"
1560 depends on ARCH_CDB89712 || ARCH_EBSA110 || \
1561 ARCH_EBSA285 || ARCH_INTEGRATOR || \
1562 ARCH_LUBBOCK || MACH_MAINSTONE || ARCH_NETWINDER || \
1563 ARCH_OMAP || ARCH_P720T || ARCH_PXA_IDP || \
1564 ARCH_SA1100 || ARCH_SHARK || ARCH_VERSATILE || \
1565 ARCH_AT91 || ARCH_DAVINCI || \
1566 ARCH_KS8695 || MACH_RD88F5182 || ARCH_REALVIEW
1568 If you say Y here, the LEDs on your machine will be used
1569 to provide useful information about your current system status.
1571 If you are compiling a kernel for a NetWinder or EBSA-285, you will
1572 be able to select which LEDs are active using the options below. If
1573 you are compiling a kernel for the EBSA-110 or the LART however, the
1574 red LED will simply flash regularly to indicate that the system is
1575 still functional. It is safe to say Y here if you have a CATS
1576 system, but the driver will do nothing.
1579 bool "Timer LED" if (!ARCH_CDB89712 && !ARCH_OMAP) || \
1580 OMAP_OSK_MISTRAL || MACH_OMAP_H2 \
1581 || MACH_OMAP_PERSEUS2
1583 depends on !GENERIC_CLOCKEVENTS
1584 default y if ARCH_EBSA110
1586 If you say Y here, one of the system LEDs (the green one on the
1587 NetWinder, the amber one on the EBSA285, or the red one on the LART)
1588 will flash regularly to indicate that the system is still
1589 operational. This is mainly useful to kernel hackers who are
1590 debugging unstable kernels.
1592 The LART uses the same LED for both Timer LED and CPU usage LED
1593 functions. You may choose to use both, but the Timer LED function
1594 will overrule the CPU usage LED.
1597 bool "CPU usage LED" if (!ARCH_CDB89712 && !ARCH_EBSA110 && \
1599 || OMAP_OSK_MISTRAL || MACH_OMAP_H2 \
1600 || MACH_OMAP_PERSEUS2
1603 If you say Y here, the red LED will be used to give a good real
1604 time indication of CPU usage, by lighting whenever the idle task
1605 is not currently executing.
1607 The LART uses the same LED for both Timer LED and CPU usage LED
1608 functions. You may choose to use both, but the Timer LED function
1609 will overrule the CPU usage LED.
1611 config ALIGNMENT_TRAP
1613 depends on CPU_CP15_MMU
1614 default y if !ARCH_EBSA110
1615 select HAVE_PROC_CPU if PROC_FS
1617 ARM processors cannot fetch/store information which is not
1618 naturally aligned on the bus, i.e., a 4 byte fetch must start at an
1619 address divisible by 4. On 32-bit ARM processors, these non-aligned
1620 fetch/store instructions will be emulated in software if you say
1621 here, which has a severe performance impact. This is necessary for
1622 correct operation of some network protocols. With an IP-only
1623 configuration it is safe to say N, otherwise say Y.
1625 config UACCESS_WITH_MEMCPY
1626 bool "Use kernel mem{cpy,set}() for {copy_to,clear}_user() (EXPERIMENTAL)"
1627 depends on MMU && EXPERIMENTAL
1628 default y if CPU_FEROCEON
1630 Implement faster copy_to_user and clear_user methods for CPU
1631 cores where a 8-word STM instruction give significantly higher
1632 memory write throughput than a sequence of individual 32bit stores.
1634 A possible side effect is a slight increase in scheduling latency
1635 between threads sharing the same address space if they invoke
1636 such copy operations with large buffers.
1638 However, if the CPU data cache is using a write-allocate mode,
1639 this option is unlikely to provide any performance gain.
1643 prompt "Enable seccomp to safely compute untrusted bytecode"
1645 This kernel feature is useful for number crunching applications
1646 that may need to compute untrusted bytecode during their
1647 execution. By using pipes or other transports made available to
1648 the process as file descriptors supporting the read/write
1649 syscalls, it's possible to isolate those applications in
1650 their own address space using seccomp. Once seccomp is
1651 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1652 and the task is only allowed to execute a few safe syscalls
1653 defined by each seccomp mode.
1655 config CC_STACKPROTECTOR
1656 bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
1657 depends on EXPERIMENTAL
1659 This option turns on the -fstack-protector GCC feature. This
1660 feature puts, at the beginning of functions, a canary value on
1661 the stack just before the return address, and validates
1662 the value just before actually returning. Stack based buffer
1663 overflows (that need to overwrite this return address) now also
1664 overwrite the canary, which gets detected and the attack is then
1665 neutralized via a kernel panic.
1666 This feature requires gcc version 4.2 or above.
1668 config DEPRECATED_PARAM_STRUCT
1669 bool "Provide old way to pass kernel parameters"
1671 This was deprecated in 2001 and announced to live on for 5 years.
1672 Some old boot loaders still use this way.
1679 bool "Flattened Device Tree support"
1681 select OF_EARLY_FLATTREE
1683 Include support for flattened device tree machine descriptions.
1685 # Compressed boot loader in ROM. Yes, we really want to ask about
1686 # TEXT and BSS so we preserve their values in the config files.
1687 config ZBOOT_ROM_TEXT
1688 hex "Compressed ROM boot loader base address"
1691 The physical address at which the ROM-able zImage is to be
1692 placed in the target. Platforms which normally make use of
1693 ROM-able zImage formats normally set this to a suitable
1694 value in their defconfig file.
1696 If ZBOOT_ROM is not enabled, this has no effect.
1698 config ZBOOT_ROM_BSS
1699 hex "Compressed ROM boot loader BSS address"
1702 The base address of an area of read/write memory in the target
1703 for the ROM-able zImage which must be available while the
1704 decompressor is running. It must be large enough to hold the
1705 entire decompressed kernel plus an additional 128 KiB.
1706 Platforms which normally make use of ROM-able zImage formats
1707 normally set this to a suitable value in their defconfig file.
1709 If ZBOOT_ROM is not enabled, this has no effect.
1712 bool "Compressed boot loader in ROM/flash"
1713 depends on ZBOOT_ROM_TEXT != ZBOOT_ROM_BSS
1715 Say Y here if you intend to execute your compressed kernel image
1716 (zImage) directly from ROM or flash. If unsure, say N.
1718 config ZBOOT_ROM_MMCIF
1719 bool "Include MMCIF loader in zImage (EXPERIMENTAL)"
1720 depends on ZBOOT_ROM && ARCH_SH7372 && EXPERIMENTAL
1722 Say Y here to include experimental MMCIF loading code in the
1723 ROM-able zImage. With this enabled it is possible to write the
1724 the ROM-able zImage kernel image to an MMC card and boot the
1725 kernel straight from the reset vector. At reset the processor
1726 Mask ROM will load the first part of the the ROM-able zImage
1727 which in turn loads the rest the kernel image to RAM using the
1728 MMCIF hardware block.
1731 string "Default kernel command string"
1734 On some architectures (EBSA110 and CATS), there is currently no way
1735 for the boot loader to pass arguments to the kernel. For these
1736 architectures, you should supply some command-line options at build
1737 time by entering them here. As a minimum, you should specify the
1738 memory size and the root device (e.g., mem=64M root=/dev/nfs).
1741 prompt "Kernel command line type" if CMDLINE != ""
1742 default CMDLINE_FROM_BOOTLOADER
1744 config CMDLINE_FROM_BOOTLOADER
1745 bool "Use bootloader kernel arguments if available"
1747 Uses the command-line options passed by the boot loader. If
1748 the boot loader doesn't provide any, the default kernel command
1749 string provided in CMDLINE will be used.
1751 config CMDLINE_EXTEND
1752 bool "Extend bootloader kernel arguments"
1754 The command-line arguments provided by the boot loader will be
1755 appended to the default kernel command string.
1757 config CMDLINE_FORCE
1758 bool "Always use the default kernel command string"
1760 Always use the default kernel command string, even if the boot
1761 loader passes other arguments to the kernel.
1762 This is useful if you cannot or don't want to change the
1763 command-line options your boot loader passes to the kernel.
1767 bool "Kernel Execute-In-Place from ROM"
1768 depends on !ZBOOT_ROM
1770 Execute-In-Place allows the kernel to run from non-volatile storage
1771 directly addressable by the CPU, such as NOR flash. This saves RAM
1772 space since the text section of the kernel is not loaded from flash
1773 to RAM. Read-write sections, such as the data section and stack,
1774 are still copied to RAM. The XIP kernel is not compressed since
1775 it has to run directly from flash, so it will take more space to
1776 store it. The flash address used to link the kernel object files,
1777 and for storing it, is configuration dependent. Therefore, if you
1778 say Y here, you must know the proper physical address where to
1779 store the kernel image depending on your own flash memory usage.
1781 Also note that the make target becomes "make xipImage" rather than
1782 "make zImage" or "make Image". The final kernel binary to put in
1783 ROM memory will be arch/arm/boot/xipImage.
1787 config XIP_PHYS_ADDR
1788 hex "XIP Kernel Physical Location"
1789 depends on XIP_KERNEL
1790 default "0x00080000"
1792 This is the physical address in your flash memory the kernel will
1793 be linked for and stored to. This address is dependent on your
1797 bool "Kexec system call (EXPERIMENTAL)"
1798 depends on EXPERIMENTAL
1800 kexec is a system call that implements the ability to shutdown your
1801 current kernel, and to start another kernel. It is like a reboot
1802 but it is independent of the system firmware. And like a reboot
1803 you can start any kernel with it, not just Linux.
1805 It is an ongoing process to be certain the hardware in a machine
1806 is properly shutdown, so do not be surprised if this code does not
1807 initially work for you. It may help to enable device hotplugging
1811 bool "Export atags in procfs"
1815 Should the atags used to boot the kernel be exported in an "atags"
1816 file in procfs. Useful with kexec.
1819 bool "Build kdump crash kernel (EXPERIMENTAL)"
1820 depends on EXPERIMENTAL
1822 Generate crash dump after being started by kexec. This should
1823 be normally only set in special crash dump kernels which are
1824 loaded in the main kernel with kexec-tools into a specially
1825 reserved region and then later executed after a crash by
1826 kdump/kexec. The crash dump kernel must be compiled to a
1827 memory address not used by the main kernel
1829 For more details see Documentation/kdump/kdump.txt
1831 config AUTO_ZRELADDR
1832 bool "Auto calculation of the decompressed kernel image address"
1833 depends on !ZBOOT_ROM && !ARCH_U300
1835 ZRELADDR is the physical address where the decompressed kernel
1836 image will be placed. If AUTO_ZRELADDR is selected, the address
1837 will be determined at run-time by masking the current IP with
1838 0xf8000000. This assumes the zImage being placed in the first 128MB
1839 from start of memory.
1843 menu "CPU Power Management"
1847 source "drivers/cpufreq/Kconfig"
1850 tristate "CPUfreq driver for i.MX CPUs"
1851 depends on ARCH_MXC && CPU_FREQ
1853 This enables the CPUfreq driver for i.MX CPUs.
1855 config CPU_FREQ_SA1100
1858 config CPU_FREQ_SA1110
1861 config CPU_FREQ_INTEGRATOR
1862 tristate "CPUfreq driver for ARM Integrator CPUs"
1863 depends on ARCH_INTEGRATOR && CPU_FREQ
1866 This enables the CPUfreq driver for ARM Integrator CPUs.
1868 For details, take a look at <file:Documentation/cpu-freq>.
1874 depends on CPU_FREQ && ARCH_PXA && PXA25x
1876 select CPU_FREQ_DEFAULT_GOV_USERSPACE
1878 config CPU_FREQ_S3C64XX
1879 bool "CPUfreq support for Samsung S3C64XX CPUs"
1880 depends on CPU_FREQ && CPU_S3C6410
1885 Internal configuration node for common cpufreq on Samsung SoC
1887 config CPU_FREQ_S3C24XX
1888 bool "CPUfreq driver for Samsung S3C24XX series CPUs (EXPERIMENTAL)"
1889 depends on ARCH_S3C2410 && CPU_FREQ && EXPERIMENTAL
1892 This enables the CPUfreq driver for the Samsung S3C24XX family
1895 For details, take a look at <file:Documentation/cpu-freq>.
1899 config CPU_FREQ_S3C24XX_PLL
1900 bool "Support CPUfreq changing of PLL frequency (EXPERIMENTAL)"
1901 depends on CPU_FREQ_S3C24XX && EXPERIMENTAL
1903 Compile in support for changing the PLL frequency from the
1904 S3C24XX series CPUfreq driver. The PLL takes time to settle
1905 after a frequency change, so by default it is not enabled.
1907 This also means that the PLL tables for the selected CPU(s) will
1908 be built which may increase the size of the kernel image.
1910 config CPU_FREQ_S3C24XX_DEBUG
1911 bool "Debug CPUfreq Samsung driver core"
1912 depends on CPU_FREQ_S3C24XX
1914 Enable s3c_freq_dbg for the Samsung S3C CPUfreq core
1916 config CPU_FREQ_S3C24XX_IODEBUG
1917 bool "Debug CPUfreq Samsung driver IO timing"
1918 depends on CPU_FREQ_S3C24XX
1920 Enable s3c_freq_iodbg for the Samsung S3C CPUfreq core
1922 config CPU_FREQ_S3C24XX_DEBUGFS
1923 bool "Export debugfs for CPUFreq"
1924 depends on CPU_FREQ_S3C24XX && DEBUG_FS
1926 Export status information via debugfs.
1930 source "drivers/cpuidle/Kconfig"
1934 menu "Floating point emulation"
1936 comment "At least one emulation must be selected"
1939 bool "NWFPE math emulation"
1940 depends on (!AEABI || OABI_COMPAT) && !THUMB2_KERNEL
1942 Say Y to include the NWFPE floating point emulator in the kernel.
1943 This is necessary to run most binaries. Linux does not currently
1944 support floating point hardware so you need to say Y here even if
1945 your machine has an FPA or floating point co-processor podule.
1947 You may say N here if you are going to load the Acorn FPEmulator
1948 early in the bootup.
1951 bool "Support extended precision"
1952 depends on FPE_NWFPE
1954 Say Y to include 80-bit support in the kernel floating-point
1955 emulator. Otherwise, only 32 and 64-bit support is compiled in.
1956 Note that gcc does not generate 80-bit operations by default,
1957 so in most cases this option only enlarges the size of the
1958 floating point emulator without any good reason.
1960 You almost surely want to say N here.
1963 bool "FastFPE math emulation (EXPERIMENTAL)"
1964 depends on (!AEABI || OABI_COMPAT) && !CPU_32v3 && EXPERIMENTAL
1966 Say Y here to include the FAST floating point emulator in the kernel.
1967 This is an experimental much faster emulator which now also has full
1968 precision for the mantissa. It does not support any exceptions.
1969 It is very simple, and approximately 3-6 times faster than NWFPE.
1971 It should be sufficient for most programs. It may be not suitable
1972 for scientific calculations, but you have to check this for yourself.
1973 If you do not feel you need a faster FP emulation you should better
1977 bool "VFP-format floating point maths"
1978 depends on CPU_V6 || CPU_V6K || CPU_ARM926T || CPU_V7 || CPU_FEROCEON
1980 Say Y to include VFP support code in the kernel. This is needed
1981 if your hardware includes a VFP unit.
1983 Please see <file:Documentation/arm/VFP/release-notes.txt> for
1984 release notes and additional status information.
1986 Say N if your target does not have VFP hardware.
1994 bool "Advanced SIMD (NEON) Extension support"
1995 depends on VFPv3 && CPU_V7
1997 Say Y to include support code for NEON, the ARMv7 Advanced SIMD
2002 menu "Userspace binary formats"
2004 source "fs/Kconfig.binfmt"
2007 tristate "RISC OS personality"
2010 Say Y here to include the kernel code necessary if you want to run
2011 Acorn RISC OS/Arthur binaries under Linux. This code is still very
2012 experimental; if this sounds frightening, say N and sleep in peace.
2013 You can also say M here to compile this support as a module (which
2014 will be called arthur).
2018 menu "Power management options"
2020 source "kernel/power/Kconfig"
2022 config ARCH_SUSPEND_POSSIBLE
2023 depends on !ARCH_S5P64X0 && !ARCH_S5PC100
2024 depends on CPU_ARM920T || CPU_ARM926T || CPU_SA1100 || \
2025 CPU_V6 || CPU_V6K || CPU_V7 || CPU_XSC3 || CPU_XSCALE
2030 source "net/Kconfig"
2032 source "drivers/Kconfig"
2036 source "arch/arm/Kconfig.debug"
2038 source "security/Kconfig"
2040 source "crypto/Kconfig"
2042 source "lib/Kconfig"