mtd: move zero length verification to MTD API functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / mtdcore.c
blob6acc4fb254e27e9505dd93b8fc84c8c6daa055d6
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
43 #include "mtdcore.h"
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
48 static struct backing_dev_info mtd_bdi_unmappable = {
49 .capabilities = BDI_CAP_MAP_COPY,
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
57 static struct backing_dev_info mtd_bdi_ro_mappable = {
58 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
67 static struct backing_dev_info mtd_bdi_rw_mappable = {
68 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 BDI_CAP_WRITE_MAP),
73 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74 static int mtd_cls_resume(struct device *dev);
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .suspend = mtd_cls_suspend,
80 .resume = mtd_cls_resume,
83 static DEFINE_IDR(mtd_idr);
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
90 struct mtd_info *__mtd_next_device(int i)
92 return idr_get_next(&mtd_idr, &i);
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
96 static LIST_HEAD(mtd_notifiers);
99 #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 #else
102 #define MTD_DEVT(index) 0
103 #endif
105 /* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
108 static void mtd_release(struct device *dev)
110 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111 dev_t index = MTD_DEVT(mtd->index);
113 /* remove /dev/mtdXro node if needed */
114 if (index)
115 device_destroy(&mtd_class, index + 1);
118 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
120 struct mtd_info *mtd = dev_get_drvdata(dev);
122 return mtd ? mtd_suspend(mtd) : 0;
125 static int mtd_cls_resume(struct device *dev)
127 struct mtd_info *mtd = dev_get_drvdata(dev);
129 if (mtd)
130 mtd_resume(mtd);
131 return 0;
134 static ssize_t mtd_type_show(struct device *dev,
135 struct device_attribute *attr, char *buf)
137 struct mtd_info *mtd = dev_get_drvdata(dev);
138 char *type;
140 switch (mtd->type) {
141 case MTD_ABSENT:
142 type = "absent";
143 break;
144 case MTD_RAM:
145 type = "ram";
146 break;
147 case MTD_ROM:
148 type = "rom";
149 break;
150 case MTD_NORFLASH:
151 type = "nor";
152 break;
153 case MTD_NANDFLASH:
154 type = "nand";
155 break;
156 case MTD_DATAFLASH:
157 type = "dataflash";
158 break;
159 case MTD_UBIVOLUME:
160 type = "ubi";
161 break;
162 default:
163 type = "unknown";
166 return snprintf(buf, PAGE_SIZE, "%s\n", type);
168 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
170 static ssize_t mtd_flags_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
173 struct mtd_info *mtd = dev_get_drvdata(dev);
175 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
178 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
180 static ssize_t mtd_size_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
183 struct mtd_info *mtd = dev_get_drvdata(dev);
185 return snprintf(buf, PAGE_SIZE, "%llu\n",
186 (unsigned long long)mtd->size);
189 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191 static ssize_t mtd_erasesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
194 struct mtd_info *mtd = dev_get_drvdata(dev);
196 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
201 static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
204 struct mtd_info *mtd = dev_get_drvdata(dev);
206 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
209 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
214 struct mtd_info *mtd = dev_get_drvdata(dev);
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
217 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
220 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
222 static ssize_t mtd_oobsize_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
225 struct mtd_info *mtd = dev_get_drvdata(dev);
227 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
230 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
235 struct mtd_info *mtd = dev_get_drvdata(dev);
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
240 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 NULL);
243 static ssize_t mtd_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
246 struct mtd_info *mtd = dev_get_drvdata(dev);
248 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
251 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
253 static struct attribute *mtd_attrs[] = {
254 &dev_attr_type.attr,
255 &dev_attr_flags.attr,
256 &dev_attr_size.attr,
257 &dev_attr_erasesize.attr,
258 &dev_attr_writesize.attr,
259 &dev_attr_subpagesize.attr,
260 &dev_attr_oobsize.attr,
261 &dev_attr_numeraseregions.attr,
262 &dev_attr_name.attr,
263 NULL,
266 static struct attribute_group mtd_group = {
267 .attrs = mtd_attrs,
270 static const struct attribute_group *mtd_groups[] = {
271 &mtd_group,
272 NULL,
275 static struct device_type mtd_devtype = {
276 .name = "mtd",
277 .groups = mtd_groups,
278 .release = mtd_release,
282 * add_mtd_device - register an MTD device
283 * @mtd: pointer to new MTD device info structure
285 * Add a device to the list of MTD devices present in the system, and
286 * notify each currently active MTD 'user' of its arrival. Returns
287 * zero on success or 1 on failure, which currently will only happen
288 * if there is insufficient memory or a sysfs error.
291 int add_mtd_device(struct mtd_info *mtd)
293 struct mtd_notifier *not;
294 int i, error;
296 if (!mtd->backing_dev_info) {
297 switch (mtd->type) {
298 case MTD_RAM:
299 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
300 break;
301 case MTD_ROM:
302 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
303 break;
304 default:
305 mtd->backing_dev_info = &mtd_bdi_unmappable;
306 break;
310 BUG_ON(mtd->writesize == 0);
311 mutex_lock(&mtd_table_mutex);
313 do {
314 if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
315 goto fail_locked;
316 error = idr_get_new(&mtd_idr, mtd, &i);
317 } while (error == -EAGAIN);
319 if (error)
320 goto fail_locked;
322 mtd->index = i;
323 mtd->usecount = 0;
325 if (is_power_of_2(mtd->erasesize))
326 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
327 else
328 mtd->erasesize_shift = 0;
330 if (is_power_of_2(mtd->writesize))
331 mtd->writesize_shift = ffs(mtd->writesize) - 1;
332 else
333 mtd->writesize_shift = 0;
335 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
336 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
338 /* Some chips always power up locked. Unlock them now */
339 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
340 error = mtd_unlock(mtd, 0, mtd->size);
341 if (error && error != -EOPNOTSUPP)
342 printk(KERN_WARNING
343 "%s: unlock failed, writes may not work\n",
344 mtd->name);
347 /* Caller should have set dev.parent to match the
348 * physical device.
350 mtd->dev.type = &mtd_devtype;
351 mtd->dev.class = &mtd_class;
352 mtd->dev.devt = MTD_DEVT(i);
353 dev_set_name(&mtd->dev, "mtd%d", i);
354 dev_set_drvdata(&mtd->dev, mtd);
355 if (device_register(&mtd->dev) != 0)
356 goto fail_added;
358 if (MTD_DEVT(i))
359 device_create(&mtd_class, mtd->dev.parent,
360 MTD_DEVT(i) + 1,
361 NULL, "mtd%dro", i);
363 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
364 /* No need to get a refcount on the module containing
365 the notifier, since we hold the mtd_table_mutex */
366 list_for_each_entry(not, &mtd_notifiers, list)
367 not->add(mtd);
369 mutex_unlock(&mtd_table_mutex);
370 /* We _know_ we aren't being removed, because
371 our caller is still holding us here. So none
372 of this try_ nonsense, and no bitching about it
373 either. :) */
374 __module_get(THIS_MODULE);
375 return 0;
377 fail_added:
378 idr_remove(&mtd_idr, i);
379 fail_locked:
380 mutex_unlock(&mtd_table_mutex);
381 return 1;
385 * del_mtd_device - unregister an MTD device
386 * @mtd: pointer to MTD device info structure
388 * Remove a device from the list of MTD devices present in the system,
389 * and notify each currently active MTD 'user' of its departure.
390 * Returns zero on success or 1 on failure, which currently will happen
391 * if the requested device does not appear to be present in the list.
394 int del_mtd_device(struct mtd_info *mtd)
396 int ret;
397 struct mtd_notifier *not;
399 mutex_lock(&mtd_table_mutex);
401 if (idr_find(&mtd_idr, mtd->index) != mtd) {
402 ret = -ENODEV;
403 goto out_error;
406 /* No need to get a refcount on the module containing
407 the notifier, since we hold the mtd_table_mutex */
408 list_for_each_entry(not, &mtd_notifiers, list)
409 not->remove(mtd);
411 if (mtd->usecount) {
412 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
413 mtd->index, mtd->name, mtd->usecount);
414 ret = -EBUSY;
415 } else {
416 device_unregister(&mtd->dev);
418 idr_remove(&mtd_idr, mtd->index);
420 module_put(THIS_MODULE);
421 ret = 0;
424 out_error:
425 mutex_unlock(&mtd_table_mutex);
426 return ret;
430 * mtd_device_parse_register - parse partitions and register an MTD device.
432 * @mtd: the MTD device to register
433 * @types: the list of MTD partition probes to try, see
434 * 'parse_mtd_partitions()' for more information
435 * @parser_data: MTD partition parser-specific data
436 * @parts: fallback partition information to register, if parsing fails;
437 * only valid if %nr_parts > %0
438 * @nr_parts: the number of partitions in parts, if zero then the full
439 * MTD device is registered if no partition info is found
441 * This function aggregates MTD partitions parsing (done by
442 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
443 * basically follows the most common pattern found in many MTD drivers:
445 * * It first tries to probe partitions on MTD device @mtd using parsers
446 * specified in @types (if @types is %NULL, then the default list of parsers
447 * is used, see 'parse_mtd_partitions()' for more information). If none are
448 * found this functions tries to fallback to information specified in
449 * @parts/@nr_parts.
450 * * If any partitioning info was found, this function registers the found
451 * partitions.
452 * * If no partitions were found this function just registers the MTD device
453 * @mtd and exits.
455 * Returns zero in case of success and a negative error code in case of failure.
457 int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
458 struct mtd_part_parser_data *parser_data,
459 const struct mtd_partition *parts,
460 int nr_parts)
462 int err;
463 struct mtd_partition *real_parts;
465 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
466 if (err <= 0 && nr_parts && parts) {
467 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
468 GFP_KERNEL);
469 if (!real_parts)
470 err = -ENOMEM;
471 else
472 err = nr_parts;
475 if (err > 0) {
476 err = add_mtd_partitions(mtd, real_parts, err);
477 kfree(real_parts);
478 } else if (err == 0) {
479 err = add_mtd_device(mtd);
480 if (err == 1)
481 err = -ENODEV;
484 return err;
486 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
489 * mtd_device_unregister - unregister an existing MTD device.
491 * @master: the MTD device to unregister. This will unregister both the master
492 * and any partitions if registered.
494 int mtd_device_unregister(struct mtd_info *master)
496 int err;
498 err = del_mtd_partitions(master);
499 if (err)
500 return err;
502 if (!device_is_registered(&master->dev))
503 return 0;
505 return del_mtd_device(master);
507 EXPORT_SYMBOL_GPL(mtd_device_unregister);
510 * register_mtd_user - register a 'user' of MTD devices.
511 * @new: pointer to notifier info structure
513 * Registers a pair of callbacks function to be called upon addition
514 * or removal of MTD devices. Causes the 'add' callback to be immediately
515 * invoked for each MTD device currently present in the system.
517 void register_mtd_user (struct mtd_notifier *new)
519 struct mtd_info *mtd;
521 mutex_lock(&mtd_table_mutex);
523 list_add(&new->list, &mtd_notifiers);
525 __module_get(THIS_MODULE);
527 mtd_for_each_device(mtd)
528 new->add(mtd);
530 mutex_unlock(&mtd_table_mutex);
532 EXPORT_SYMBOL_GPL(register_mtd_user);
535 * unregister_mtd_user - unregister a 'user' of MTD devices.
536 * @old: pointer to notifier info structure
538 * Removes a callback function pair from the list of 'users' to be
539 * notified upon addition or removal of MTD devices. Causes the
540 * 'remove' callback to be immediately invoked for each MTD device
541 * currently present in the system.
543 int unregister_mtd_user (struct mtd_notifier *old)
545 struct mtd_info *mtd;
547 mutex_lock(&mtd_table_mutex);
549 module_put(THIS_MODULE);
551 mtd_for_each_device(mtd)
552 old->remove(mtd);
554 list_del(&old->list);
555 mutex_unlock(&mtd_table_mutex);
556 return 0;
558 EXPORT_SYMBOL_GPL(unregister_mtd_user);
561 * get_mtd_device - obtain a validated handle for an MTD device
562 * @mtd: last known address of the required MTD device
563 * @num: internal device number of the required MTD device
565 * Given a number and NULL address, return the num'th entry in the device
566 * table, if any. Given an address and num == -1, search the device table
567 * for a device with that address and return if it's still present. Given
568 * both, return the num'th driver only if its address matches. Return
569 * error code if not.
571 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
573 struct mtd_info *ret = NULL, *other;
574 int err = -ENODEV;
576 mutex_lock(&mtd_table_mutex);
578 if (num == -1) {
579 mtd_for_each_device(other) {
580 if (other == mtd) {
581 ret = mtd;
582 break;
585 } else if (num >= 0) {
586 ret = idr_find(&mtd_idr, num);
587 if (mtd && mtd != ret)
588 ret = NULL;
591 if (!ret) {
592 ret = ERR_PTR(err);
593 goto out;
596 err = __get_mtd_device(ret);
597 if (err)
598 ret = ERR_PTR(err);
599 out:
600 mutex_unlock(&mtd_table_mutex);
601 return ret;
603 EXPORT_SYMBOL_GPL(get_mtd_device);
606 int __get_mtd_device(struct mtd_info *mtd)
608 int err;
610 if (!try_module_get(mtd->owner))
611 return -ENODEV;
613 if (mtd->_get_device) {
614 err = mtd->_get_device(mtd);
616 if (err) {
617 module_put(mtd->owner);
618 return err;
621 mtd->usecount++;
622 return 0;
624 EXPORT_SYMBOL_GPL(__get_mtd_device);
627 * get_mtd_device_nm - obtain a validated handle for an MTD device by
628 * device name
629 * @name: MTD device name to open
631 * This function returns MTD device description structure in case of
632 * success and an error code in case of failure.
634 struct mtd_info *get_mtd_device_nm(const char *name)
636 int err = -ENODEV;
637 struct mtd_info *mtd = NULL, *other;
639 mutex_lock(&mtd_table_mutex);
641 mtd_for_each_device(other) {
642 if (!strcmp(name, other->name)) {
643 mtd = other;
644 break;
648 if (!mtd)
649 goto out_unlock;
651 err = __get_mtd_device(mtd);
652 if (err)
653 goto out_unlock;
655 mutex_unlock(&mtd_table_mutex);
656 return mtd;
658 out_unlock:
659 mutex_unlock(&mtd_table_mutex);
660 return ERR_PTR(err);
662 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
664 void put_mtd_device(struct mtd_info *mtd)
666 mutex_lock(&mtd_table_mutex);
667 __put_mtd_device(mtd);
668 mutex_unlock(&mtd_table_mutex);
671 EXPORT_SYMBOL_GPL(put_mtd_device);
673 void __put_mtd_device(struct mtd_info *mtd)
675 --mtd->usecount;
676 BUG_ON(mtd->usecount < 0);
678 if (mtd->_put_device)
679 mtd->_put_device(mtd);
681 module_put(mtd->owner);
683 EXPORT_SYMBOL_GPL(__put_mtd_device);
686 * Erase is an asynchronous operation. Device drivers are supposed
687 * to call instr->callback() whenever the operation completes, even
688 * if it completes with a failure.
689 * Callers are supposed to pass a callback function and wait for it
690 * to be called before writing to the block.
692 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
694 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
695 return -EINVAL;
696 if (!(mtd->flags & MTD_WRITEABLE))
697 return -EROFS;
698 if (!instr->len) {
699 instr->state = MTD_ERASE_DONE;
700 mtd_erase_callback(instr);
701 return 0;
703 return mtd->_erase(mtd, instr);
705 EXPORT_SYMBOL_GPL(mtd_erase);
708 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
710 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
711 void **virt, resource_size_t *phys)
713 *retlen = 0;
714 *virt = NULL;
715 if (phys)
716 *phys = 0;
717 if (!mtd->_point)
718 return -EOPNOTSUPP;
719 if (from < 0 || from > mtd->size || len > mtd->size - from)
720 return -EINVAL;
721 if (!len)
722 return 0;
723 return mtd->_point(mtd, from, len, retlen, virt, phys);
725 EXPORT_SYMBOL_GPL(mtd_point);
727 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
728 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
730 if (!mtd->_point)
731 return -EOPNOTSUPP;
732 if (from < 0 || from > mtd->size || len > mtd->size - from)
733 return -EINVAL;
734 if (!len)
735 return 0;
736 return mtd->_unpoint(mtd, from, len);
738 EXPORT_SYMBOL_GPL(mtd_unpoint);
741 * Allow NOMMU mmap() to directly map the device (if not NULL)
742 * - return the address to which the offset maps
743 * - return -ENOSYS to indicate refusal to do the mapping
745 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
746 unsigned long offset, unsigned long flags)
748 if (!mtd->_get_unmapped_area)
749 return -EOPNOTSUPP;
750 if (offset > mtd->size || len > mtd->size - offset)
751 return -EINVAL;
752 return mtd->_get_unmapped_area(mtd, len, offset, flags);
754 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
756 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
757 u_char *buf)
759 *retlen = 0;
760 if (from < 0 || from > mtd->size || len > mtd->size - from)
761 return -EINVAL;
762 if (!len)
763 return 0;
764 return mtd->_read(mtd, from, len, retlen, buf);
766 EXPORT_SYMBOL_GPL(mtd_read);
768 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
769 const u_char *buf)
771 *retlen = 0;
772 if (to < 0 || to > mtd->size || len > mtd->size - to)
773 return -EINVAL;
774 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
775 return -EROFS;
776 if (!len)
777 return 0;
778 return mtd->_write(mtd, to, len, retlen, buf);
780 EXPORT_SYMBOL_GPL(mtd_write);
783 * In blackbox flight recorder like scenarios we want to make successful writes
784 * in interrupt context. panic_write() is only intended to be called when its
785 * known the kernel is about to panic and we need the write to succeed. Since
786 * the kernel is not going to be running for much longer, this function can
787 * break locks and delay to ensure the write succeeds (but not sleep).
789 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
790 const u_char *buf)
792 *retlen = 0;
793 if (!mtd->_panic_write)
794 return -EOPNOTSUPP;
795 if (to < 0 || to > mtd->size || len > mtd->size - to)
796 return -EINVAL;
797 if (!(mtd->flags & MTD_WRITEABLE))
798 return -EROFS;
799 if (!len)
800 return 0;
801 return mtd->_panic_write(mtd, to, len, retlen, buf);
803 EXPORT_SYMBOL_GPL(mtd_panic_write);
805 /* Chip-supported device locking */
806 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
808 if (!mtd->_lock)
809 return -EOPNOTSUPP;
810 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
811 return -EINVAL;
812 if (!len)
813 return 0;
814 return mtd->_lock(mtd, ofs, len);
816 EXPORT_SYMBOL_GPL(mtd_lock);
818 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
820 if (!mtd->_unlock)
821 return -EOPNOTSUPP;
822 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
823 return -EINVAL;
824 if (!len)
825 return 0;
826 return mtd->_unlock(mtd, ofs, len);
828 EXPORT_SYMBOL_GPL(mtd_unlock);
830 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
832 if (!mtd->_is_locked)
833 return -EOPNOTSUPP;
834 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
835 return -EINVAL;
836 if (!len)
837 return 0;
838 return mtd->_is_locked(mtd, ofs, len);
840 EXPORT_SYMBOL_GPL(mtd_is_locked);
842 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
844 if (!mtd->_block_isbad)
845 return 0;
846 if (ofs < 0 || ofs > mtd->size)
847 return -EINVAL;
848 return mtd->_block_isbad(mtd, ofs);
850 EXPORT_SYMBOL_GPL(mtd_block_isbad);
852 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
854 if (!mtd->_block_markbad)
855 return -EOPNOTSUPP;
856 if (ofs < 0 || ofs > mtd->size)
857 return -EINVAL;
858 if (!(mtd->flags & MTD_WRITEABLE))
859 return -EROFS;
860 return mtd->_block_markbad(mtd, ofs);
862 EXPORT_SYMBOL_GPL(mtd_block_markbad);
865 * default_mtd_writev - the default writev method
866 * @mtd: mtd device description object pointer
867 * @vecs: the vectors to write
868 * @count: count of vectors in @vecs
869 * @to: the MTD device offset to write to
870 * @retlen: on exit contains the count of bytes written to the MTD device.
872 * This function returns zero in case of success and a negative error code in
873 * case of failure.
875 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
876 unsigned long count, loff_t to, size_t *retlen)
878 unsigned long i;
879 size_t totlen = 0, thislen;
880 int ret = 0;
882 for (i = 0; i < count; i++) {
883 if (!vecs[i].iov_len)
884 continue;
885 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
886 vecs[i].iov_base);
887 totlen += thislen;
888 if (ret || thislen != vecs[i].iov_len)
889 break;
890 to += vecs[i].iov_len;
892 *retlen = totlen;
893 return ret;
897 * mtd_writev - the vector-based MTD write method
898 * @mtd: mtd device description object pointer
899 * @vecs: the vectors to write
900 * @count: count of vectors in @vecs
901 * @to: the MTD device offset to write to
902 * @retlen: on exit contains the count of bytes written to the MTD device.
904 * This function returns zero in case of success and a negative error code in
905 * case of failure.
907 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
908 unsigned long count, loff_t to, size_t *retlen)
910 *retlen = 0;
911 if (!(mtd->flags & MTD_WRITEABLE))
912 return -EROFS;
913 if (!mtd->_writev)
914 return default_mtd_writev(mtd, vecs, count, to, retlen);
915 return mtd->_writev(mtd, vecs, count, to, retlen);
917 EXPORT_SYMBOL_GPL(mtd_writev);
920 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
921 * @mtd: mtd device description object pointer
922 * @size: a pointer to the ideal or maximum size of the allocation, points
923 * to the actual allocation size on success.
925 * This routine attempts to allocate a contiguous kernel buffer up to
926 * the specified size, backing off the size of the request exponentially
927 * until the request succeeds or until the allocation size falls below
928 * the system page size. This attempts to make sure it does not adversely
929 * impact system performance, so when allocating more than one page, we
930 * ask the memory allocator to avoid re-trying, swapping, writing back
931 * or performing I/O.
933 * Note, this function also makes sure that the allocated buffer is aligned to
934 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
936 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
937 * to handle smaller (i.e. degraded) buffer allocations under low- or
938 * fragmented-memory situations where such reduced allocations, from a
939 * requested ideal, are allowed.
941 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
943 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
945 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
946 __GFP_NORETRY | __GFP_NO_KSWAPD;
947 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
948 void *kbuf;
950 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
952 while (*size > min_alloc) {
953 kbuf = kmalloc(*size, flags);
954 if (kbuf)
955 return kbuf;
957 *size >>= 1;
958 *size = ALIGN(*size, mtd->writesize);
962 * For the last resort allocation allow 'kmalloc()' to do all sorts of
963 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
965 return kmalloc(*size, GFP_KERNEL);
967 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
969 #ifdef CONFIG_PROC_FS
971 /*====================================================================*/
972 /* Support for /proc/mtd */
974 static struct proc_dir_entry *proc_mtd;
976 static int mtd_proc_show(struct seq_file *m, void *v)
978 struct mtd_info *mtd;
980 seq_puts(m, "dev: size erasesize name\n");
981 mutex_lock(&mtd_table_mutex);
982 mtd_for_each_device(mtd) {
983 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
984 mtd->index, (unsigned long long)mtd->size,
985 mtd->erasesize, mtd->name);
987 mutex_unlock(&mtd_table_mutex);
988 return 0;
991 static int mtd_proc_open(struct inode *inode, struct file *file)
993 return single_open(file, mtd_proc_show, NULL);
996 static const struct file_operations mtd_proc_ops = {
997 .open = mtd_proc_open,
998 .read = seq_read,
999 .llseek = seq_lseek,
1000 .release = single_release,
1002 #endif /* CONFIG_PROC_FS */
1004 /*====================================================================*/
1005 /* Init code */
1007 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1009 int ret;
1011 ret = bdi_init(bdi);
1012 if (!ret)
1013 ret = bdi_register(bdi, NULL, name);
1015 if (ret)
1016 bdi_destroy(bdi);
1018 return ret;
1021 static int __init init_mtd(void)
1023 int ret;
1025 ret = class_register(&mtd_class);
1026 if (ret)
1027 goto err_reg;
1029 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1030 if (ret)
1031 goto err_bdi1;
1033 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1034 if (ret)
1035 goto err_bdi2;
1037 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1038 if (ret)
1039 goto err_bdi3;
1041 #ifdef CONFIG_PROC_FS
1042 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1043 #endif /* CONFIG_PROC_FS */
1044 return 0;
1046 err_bdi3:
1047 bdi_destroy(&mtd_bdi_ro_mappable);
1048 err_bdi2:
1049 bdi_destroy(&mtd_bdi_unmappable);
1050 err_bdi1:
1051 class_unregister(&mtd_class);
1052 err_reg:
1053 pr_err("Error registering mtd class or bdi: %d\n", ret);
1054 return ret;
1057 static void __exit cleanup_mtd(void)
1059 #ifdef CONFIG_PROC_FS
1060 if (proc_mtd)
1061 remove_proc_entry( "mtd", NULL);
1062 #endif /* CONFIG_PROC_FS */
1063 class_unregister(&mtd_class);
1064 bdi_destroy(&mtd_bdi_unmappable);
1065 bdi_destroy(&mtd_bdi_ro_mappable);
1066 bdi_destroy(&mtd_bdi_rw_mappable);
1069 module_init(init_mtd);
1070 module_exit(cleanup_mtd);
1072 MODULE_LICENSE("GPL");
1073 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1074 MODULE_DESCRIPTION("Core MTD registration and access routines");