x86: add the capability to print fuzzy backtraces
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / traps_32.c
blob8ef8a9ddfec60aceee9b37f2fca29df45c4d7c3d
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * 'Traps.c' handles hardware traps and faults after we have saved some
10 * state in 'asm.s'.
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/errno.h>
16 #include <linux/timer.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/highmem.h>
23 #include <linux/kallsyms.h>
24 #include <linux/ptrace.h>
25 #include <linux/utsname.h>
26 #include <linux/kprobes.h>
27 #include <linux/kexec.h>
28 #include <linux/unwind.h>
29 #include <linux/uaccess.h>
30 #include <linux/nmi.h>
31 #include <linux/bug.h>
33 #ifdef CONFIG_EISA
34 #include <linux/ioport.h>
35 #include <linux/eisa.h>
36 #endif
38 #ifdef CONFIG_MCA
39 #include <linux/mca.h>
40 #endif
42 #if defined(CONFIG_EDAC)
43 #include <linux/edac.h>
44 #endif
46 #include <asm/processor.h>
47 #include <asm/system.h>
48 #include <asm/io.h>
49 #include <asm/atomic.h>
50 #include <asm/debugreg.h>
51 #include <asm/desc.h>
52 #include <asm/i387.h>
53 #include <asm/nmi.h>
54 #include <asm/unwind.h>
55 #include <asm/smp.h>
56 #include <asm/arch_hooks.h>
57 #include <linux/kdebug.h>
58 #include <asm/stacktrace.h>
60 #include <linux/module.h>
62 #include "mach_traps.h"
64 int panic_on_unrecovered_nmi;
66 DECLARE_BITMAP(used_vectors, NR_VECTORS);
67 EXPORT_SYMBOL_GPL(used_vectors);
69 asmlinkage int system_call(void);
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq = 0;
75 * The IDT has to be page-aligned to simplify the Pentium
76 * F0 0F bug workaround.. We have a special link segment
77 * for this.
79 gate_desc idt_table[256]
80 __attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
82 asmlinkage void divide_error(void);
83 asmlinkage void debug(void);
84 asmlinkage void nmi(void);
85 asmlinkage void int3(void);
86 asmlinkage void overflow(void);
87 asmlinkage void bounds(void);
88 asmlinkage void invalid_op(void);
89 asmlinkage void device_not_available(void);
90 asmlinkage void coprocessor_segment_overrun(void);
91 asmlinkage void invalid_TSS(void);
92 asmlinkage void segment_not_present(void);
93 asmlinkage void stack_segment(void);
94 asmlinkage void general_protection(void);
95 asmlinkage void page_fault(void);
96 asmlinkage void coprocessor_error(void);
97 asmlinkage void simd_coprocessor_error(void);
98 asmlinkage void alignment_check(void);
99 asmlinkage void spurious_interrupt_bug(void);
100 asmlinkage void machine_check(void);
102 int kstack_depth_to_print = 24;
103 static unsigned int code_bytes = 64;
105 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
107 return p > (void *)tinfo &&
108 p <= (void *)tinfo + THREAD_SIZE - size;
111 /* The form of the top of the frame on the stack */
112 struct stack_frame {
113 struct stack_frame *next_frame;
114 unsigned long return_address;
117 static inline unsigned long print_context_stack(struct thread_info *tinfo,
118 unsigned long *stack, unsigned long bp,
119 const struct stacktrace_ops *ops, void *data)
121 #ifdef CONFIG_FRAME_POINTER
122 struct stack_frame *frame = (struct stack_frame *)bp;
123 while (valid_stack_ptr(tinfo, frame, sizeof(*frame))) {
124 struct stack_frame *next;
125 unsigned long addr;
127 addr = frame->return_address;
128 if (__kernel_text_address(addr))
129 ops->address(data, addr, 1);
131 * break out of recursive entries (such as
132 * end_of_stack_stop_unwind_function). Also,
133 * we can never allow a frame pointer to
134 * move downwards!
136 next = frame->next_frame;
137 bp = (unsigned long) next;
138 if (next <= frame)
139 break;
140 frame = next;
142 #else
143 while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
144 unsigned long addr;
146 addr = *stack++;
147 if (__kernel_text_address(addr))
148 ops->address(data, addr, 1);
150 #endif
151 return bp;
154 #define MSG(msg) ops->warning(data, msg)
156 void dump_trace(struct task_struct *task, struct pt_regs *regs,
157 unsigned long *stack,
158 const struct stacktrace_ops *ops, void *data)
160 unsigned long bp = 0;
162 if (!task)
163 task = current;
165 if (!stack) {
166 unsigned long dummy;
167 stack = &dummy;
168 if (task != current)
169 stack = (unsigned long *)task->thread.sp;
172 #ifdef CONFIG_FRAME_POINTER
173 if (!bp) {
174 if (task == current) {
175 /* Grab bp right from our regs */
176 asm ("movl %%ebp, %0" : "=r" (bp) : );
177 } else {
178 /* bp is the last reg pushed by switch_to */
179 bp = *(unsigned long *) task->thread.sp;
182 #endif
184 while (1) {
185 struct thread_info *context;
186 context = (struct thread_info *)
187 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
188 bp = print_context_stack(context, stack, bp, ops, data);
189 /* Should be after the line below, but somewhere
190 in early boot context comes out corrupted and we
191 can't reference it -AK */
192 if (ops->stack(data, "IRQ") < 0)
193 break;
194 stack = (unsigned long*)context->previous_esp;
195 if (!stack)
196 break;
197 touch_nmi_watchdog();
200 EXPORT_SYMBOL(dump_trace);
202 static void
203 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
205 printk(data);
206 print_symbol(msg, symbol);
207 printk("\n");
210 static void print_trace_warning(void *data, char *msg)
212 printk("%s%s\n", (char *)data, msg);
215 static int print_trace_stack(void *data, char *name)
217 return 0;
221 * Print one address/symbol entries per line.
223 static void print_trace_address(void *data, unsigned long addr, int reliable)
225 printk("%s [<%08lx>] ", (char *)data, addr);
226 if (!reliable)
227 printk("? ");
228 print_symbol("%s\n", addr);
229 touch_nmi_watchdog();
232 static const struct stacktrace_ops print_trace_ops = {
233 .warning = print_trace_warning,
234 .warning_symbol = print_trace_warning_symbol,
235 .stack = print_trace_stack,
236 .address = print_trace_address,
239 static void
240 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
241 unsigned long * stack, char *log_lvl)
243 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
244 printk("%s =======================\n", log_lvl);
247 void show_trace(struct task_struct *task, struct pt_regs *regs,
248 unsigned long * stack)
250 show_trace_log_lvl(task, regs, stack, "");
253 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
254 unsigned long *sp, char *log_lvl)
256 unsigned long *stack;
257 int i;
259 if (sp == NULL) {
260 if (task)
261 sp = (unsigned long*)task->thread.sp;
262 else
263 sp = (unsigned long *)&sp;
266 stack = sp;
267 for(i = 0; i < kstack_depth_to_print; i++) {
268 if (kstack_end(stack))
269 break;
270 if (i && ((i % 8) == 0))
271 printk("\n%s ", log_lvl);
272 printk("%08lx ", *stack++);
274 printk("\n%sCall Trace:\n", log_lvl);
275 show_trace_log_lvl(task, regs, sp, log_lvl);
278 void show_stack(struct task_struct *task, unsigned long *sp)
280 printk(" ");
281 show_stack_log_lvl(task, NULL, sp, "");
285 * The architecture-independent dump_stack generator
287 void dump_stack(void)
289 unsigned long stack;
291 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
292 current->pid, current->comm, print_tainted(),
293 init_utsname()->release,
294 (int)strcspn(init_utsname()->version, " "),
295 init_utsname()->version);
296 show_trace(current, NULL, &stack);
299 EXPORT_SYMBOL(dump_stack);
301 void show_registers(struct pt_regs *regs)
303 int i;
305 print_modules();
306 __show_registers(regs, 0);
307 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
308 TASK_COMM_LEN, current->comm, task_pid_nr(current),
309 current_thread_info(), current, task_thread_info(current));
311 * When in-kernel, we also print out the stack and code at the
312 * time of the fault..
314 if (!user_mode_vm(regs)) {
315 u8 *ip;
316 unsigned int code_prologue = code_bytes * 43 / 64;
317 unsigned int code_len = code_bytes;
318 unsigned char c;
320 printk("\n" KERN_EMERG "Stack: ");
321 show_stack_log_lvl(NULL, regs, &regs->sp, KERN_EMERG);
323 printk(KERN_EMERG "Code: ");
325 ip = (u8 *)regs->ip - code_prologue;
326 if (ip < (u8 *)PAGE_OFFSET ||
327 probe_kernel_address(ip, c)) {
328 /* try starting at EIP */
329 ip = (u8 *)regs->ip;
330 code_len = code_len - code_prologue + 1;
332 for (i = 0; i < code_len; i++, ip++) {
333 if (ip < (u8 *)PAGE_OFFSET ||
334 probe_kernel_address(ip, c)) {
335 printk(" Bad EIP value.");
336 break;
338 if (ip == (u8 *)regs->ip)
339 printk("<%02x> ", c);
340 else
341 printk("%02x ", c);
344 printk("\n");
347 int is_valid_bugaddr(unsigned long ip)
349 unsigned short ud2;
351 if (ip < PAGE_OFFSET)
352 return 0;
353 if (probe_kernel_address((unsigned short *)ip, ud2))
354 return 0;
356 return ud2 == 0x0b0f;
359 static int die_counter;
361 int __kprobes __die(const char * str, struct pt_regs * regs, long err)
363 unsigned long sp;
364 unsigned short ss;
366 printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
367 #ifdef CONFIG_PREEMPT
368 printk("PREEMPT ");
369 #endif
370 #ifdef CONFIG_SMP
371 printk("SMP ");
372 #endif
373 #ifdef CONFIG_DEBUG_PAGEALLOC
374 printk("DEBUG_PAGEALLOC");
375 #endif
376 printk("\n");
378 if (notify_die(DIE_OOPS, str, regs, err,
379 current->thread.trap_no, SIGSEGV) !=
380 NOTIFY_STOP) {
381 show_registers(regs);
382 /* Executive summary in case the oops scrolled away */
383 sp = (unsigned long) (&regs->sp);
384 savesegment(ss, ss);
385 if (user_mode(regs)) {
386 sp = regs->sp;
387 ss = regs->ss & 0xffff;
389 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
390 print_symbol("%s", regs->ip);
391 printk(" SS:ESP %04x:%08lx\n", ss, sp);
392 return 0;
393 } else {
394 return 1;
399 * This is gone through when something in the kernel has done something bad and
400 * is about to be terminated.
402 void die(const char * str, struct pt_regs * regs, long err)
404 static struct {
405 raw_spinlock_t lock;
406 u32 lock_owner;
407 int lock_owner_depth;
408 } die = {
409 .lock = __RAW_SPIN_LOCK_UNLOCKED,
410 .lock_owner = -1,
411 .lock_owner_depth = 0
413 unsigned long flags;
415 oops_enter();
417 if (die.lock_owner != raw_smp_processor_id()) {
418 console_verbose();
419 raw_local_irq_save(flags);
420 __raw_spin_lock(&die.lock);
421 die.lock_owner = smp_processor_id();
422 die.lock_owner_depth = 0;
423 bust_spinlocks(1);
424 } else
425 raw_local_irq_save(flags);
427 if (++die.lock_owner_depth < 3) {
428 report_bug(regs->ip, regs);
430 if (__die(str, regs, err))
431 regs = NULL;
432 } else {
433 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
436 bust_spinlocks(0);
437 die.lock_owner = -1;
438 add_taint(TAINT_DIE);
439 __raw_spin_unlock(&die.lock);
440 raw_local_irq_restore(flags);
442 if (!regs)
443 return;
445 if (kexec_should_crash(current))
446 crash_kexec(regs);
448 if (in_interrupt())
449 panic("Fatal exception in interrupt");
451 if (panic_on_oops)
452 panic("Fatal exception");
454 oops_exit();
455 do_exit(SIGSEGV);
458 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
460 if (!user_mode_vm(regs))
461 die(str, regs, err);
464 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
465 struct pt_regs * regs, long error_code,
466 siginfo_t *info)
468 struct task_struct *tsk = current;
470 if (regs->flags & VM_MASK) {
471 if (vm86)
472 goto vm86_trap;
473 goto trap_signal;
476 if (!user_mode(regs))
477 goto kernel_trap;
479 trap_signal: {
481 * We want error_code and trap_no set for userspace faults and
482 * kernelspace faults which result in die(), but not
483 * kernelspace faults which are fixed up. die() gives the
484 * process no chance to handle the signal and notice the
485 * kernel fault information, so that won't result in polluting
486 * the information about previously queued, but not yet
487 * delivered, faults. See also do_general_protection below.
489 tsk->thread.error_code = error_code;
490 tsk->thread.trap_no = trapnr;
492 if (info)
493 force_sig_info(signr, info, tsk);
494 else
495 force_sig(signr, tsk);
496 return;
499 kernel_trap: {
500 if (!fixup_exception(regs)) {
501 tsk->thread.error_code = error_code;
502 tsk->thread.trap_no = trapnr;
503 die(str, regs, error_code);
505 return;
508 vm86_trap: {
509 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
510 if (ret) goto trap_signal;
511 return;
515 #define DO_ERROR(trapnr, signr, str, name) \
516 void do_##name(struct pt_regs * regs, long error_code) \
518 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
519 == NOTIFY_STOP) \
520 return; \
521 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
524 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
525 void do_##name(struct pt_regs * regs, long error_code) \
527 siginfo_t info; \
528 if (irq) \
529 local_irq_enable(); \
530 info.si_signo = signr; \
531 info.si_errno = 0; \
532 info.si_code = sicode; \
533 info.si_addr = (void __user *)siaddr; \
534 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
535 == NOTIFY_STOP) \
536 return; \
537 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
540 #define DO_VM86_ERROR(trapnr, signr, str, name) \
541 void do_##name(struct pt_regs * regs, long error_code) \
543 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
544 == NOTIFY_STOP) \
545 return; \
546 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
549 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
550 void do_##name(struct pt_regs * regs, long error_code) \
552 siginfo_t info; \
553 info.si_signo = signr; \
554 info.si_errno = 0; \
555 info.si_code = sicode; \
556 info.si_addr = (void __user *)siaddr; \
557 trace_hardirqs_fixup(); \
558 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
559 == NOTIFY_STOP) \
560 return; \
561 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
564 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
565 #ifndef CONFIG_KPROBES
566 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
567 #endif
568 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
569 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
570 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0)
571 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
572 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
573 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
574 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
575 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
576 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
578 void __kprobes do_general_protection(struct pt_regs * regs,
579 long error_code)
581 int cpu = get_cpu();
582 struct tss_struct *tss = &per_cpu(init_tss, cpu);
583 struct thread_struct *thread = &current->thread;
586 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
587 * invalid offset set (the LAZY one) and the faulting thread has
588 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
589 * and we set the offset field correctly. Then we let the CPU to
590 * restart the faulting instruction.
592 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
593 thread->io_bitmap_ptr) {
594 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
595 thread->io_bitmap_max);
597 * If the previously set map was extending to higher ports
598 * than the current one, pad extra space with 0xff (no access).
600 if (thread->io_bitmap_max < tss->io_bitmap_max)
601 memset((char *) tss->io_bitmap +
602 thread->io_bitmap_max, 0xff,
603 tss->io_bitmap_max - thread->io_bitmap_max);
604 tss->io_bitmap_max = thread->io_bitmap_max;
605 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
606 tss->io_bitmap_owner = thread;
607 put_cpu();
608 return;
610 put_cpu();
612 if (regs->flags & VM_MASK)
613 goto gp_in_vm86;
615 if (!user_mode(regs))
616 goto gp_in_kernel;
618 current->thread.error_code = error_code;
619 current->thread.trap_no = 13;
620 if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
621 printk_ratelimit())
622 printk(KERN_INFO
623 "%s[%d] general protection ip:%lx sp:%lx error:%lx\n",
624 current->comm, task_pid_nr(current),
625 regs->ip, regs->sp, error_code);
627 force_sig(SIGSEGV, current);
628 return;
630 gp_in_vm86:
631 local_irq_enable();
632 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
633 return;
635 gp_in_kernel:
636 if (!fixup_exception(regs)) {
637 current->thread.error_code = error_code;
638 current->thread.trap_no = 13;
639 if (notify_die(DIE_GPF, "general protection fault", regs,
640 error_code, 13, SIGSEGV) == NOTIFY_STOP)
641 return;
642 die("general protection fault", regs, error_code);
646 static __kprobes void
647 mem_parity_error(unsigned char reason, struct pt_regs * regs)
649 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
650 "CPU %d.\n", reason, smp_processor_id());
651 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
653 #if defined(CONFIG_EDAC)
654 if(edac_handler_set()) {
655 edac_atomic_assert_error();
656 return;
658 #endif
660 if (panic_on_unrecovered_nmi)
661 panic("NMI: Not continuing");
663 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
665 /* Clear and disable the memory parity error line. */
666 clear_mem_error(reason);
669 static __kprobes void
670 io_check_error(unsigned char reason, struct pt_regs * regs)
672 unsigned long i;
674 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
675 show_registers(regs);
677 /* Re-enable the IOCK line, wait for a few seconds */
678 reason = (reason & 0xf) | 8;
679 outb(reason, 0x61);
680 i = 2000;
681 while (--i) udelay(1000);
682 reason &= ~8;
683 outb(reason, 0x61);
686 static __kprobes void
687 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
689 #ifdef CONFIG_MCA
690 /* Might actually be able to figure out what the guilty party
691 * is. */
692 if( MCA_bus ) {
693 mca_handle_nmi();
694 return;
696 #endif
697 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
698 "CPU %d.\n", reason, smp_processor_id());
699 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
700 if (panic_on_unrecovered_nmi)
701 panic("NMI: Not continuing");
703 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
706 static DEFINE_SPINLOCK(nmi_print_lock);
708 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
710 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
711 NOTIFY_STOP)
712 return;
714 spin_lock(&nmi_print_lock);
716 * We are in trouble anyway, lets at least try
717 * to get a message out.
719 bust_spinlocks(1);
720 printk(KERN_EMERG "%s", msg);
721 printk(" on CPU%d, ip %08lx, registers:\n",
722 smp_processor_id(), regs->ip);
723 show_registers(regs);
724 console_silent();
725 spin_unlock(&nmi_print_lock);
726 bust_spinlocks(0);
728 /* If we are in kernel we are probably nested up pretty bad
729 * and might aswell get out now while we still can.
731 if (!user_mode_vm(regs)) {
732 current->thread.trap_no = 2;
733 crash_kexec(regs);
736 do_exit(SIGSEGV);
739 static __kprobes void default_do_nmi(struct pt_regs * regs)
741 unsigned char reason = 0;
743 /* Only the BSP gets external NMIs from the system. */
744 if (!smp_processor_id())
745 reason = get_nmi_reason();
747 if (!(reason & 0xc0)) {
748 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
749 == NOTIFY_STOP)
750 return;
751 #ifdef CONFIG_X86_LOCAL_APIC
753 * Ok, so this is none of the documented NMI sources,
754 * so it must be the NMI watchdog.
756 if (nmi_watchdog_tick(regs, reason))
757 return;
758 if (!do_nmi_callback(regs, smp_processor_id()))
759 #endif
760 unknown_nmi_error(reason, regs);
762 return;
764 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
765 return;
766 if (reason & 0x80)
767 mem_parity_error(reason, regs);
768 if (reason & 0x40)
769 io_check_error(reason, regs);
771 * Reassert NMI in case it became active meanwhile
772 * as it's edge-triggered.
774 reassert_nmi();
777 static int ignore_nmis;
779 __kprobes void do_nmi(struct pt_regs * regs, long error_code)
781 int cpu;
783 nmi_enter();
785 cpu = smp_processor_id();
787 ++nmi_count(cpu);
789 if (!ignore_nmis)
790 default_do_nmi(regs);
792 nmi_exit();
795 void stop_nmi(void)
797 acpi_nmi_disable();
798 ignore_nmis++;
801 void restart_nmi(void)
803 ignore_nmis--;
804 acpi_nmi_enable();
807 #ifdef CONFIG_KPROBES
808 void __kprobes do_int3(struct pt_regs *regs, long error_code)
810 trace_hardirqs_fixup();
812 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
813 == NOTIFY_STOP)
814 return;
815 /* This is an interrupt gate, because kprobes wants interrupts
816 disabled. Normal trap handlers don't. */
817 restore_interrupts(regs);
818 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
820 #endif
823 * Our handling of the processor debug registers is non-trivial.
824 * We do not clear them on entry and exit from the kernel. Therefore
825 * it is possible to get a watchpoint trap here from inside the kernel.
826 * However, the code in ./ptrace.c has ensured that the user can
827 * only set watchpoints on userspace addresses. Therefore the in-kernel
828 * watchpoint trap can only occur in code which is reading/writing
829 * from user space. Such code must not hold kernel locks (since it
830 * can equally take a page fault), therefore it is safe to call
831 * force_sig_info even though that claims and releases locks.
833 * Code in ./signal.c ensures that the debug control register
834 * is restored before we deliver any signal, and therefore that
835 * user code runs with the correct debug control register even though
836 * we clear it here.
838 * Being careful here means that we don't have to be as careful in a
839 * lot of more complicated places (task switching can be a bit lazy
840 * about restoring all the debug state, and ptrace doesn't have to
841 * find every occurrence of the TF bit that could be saved away even
842 * by user code)
844 void __kprobes do_debug(struct pt_regs * regs, long error_code)
846 unsigned int condition;
847 struct task_struct *tsk = current;
849 trace_hardirqs_fixup();
851 get_debugreg(condition, 6);
854 * The processor cleared BTF, so don't mark that we need it set.
856 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
857 tsk->thread.debugctlmsr = 0;
859 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
860 SIGTRAP) == NOTIFY_STOP)
861 return;
862 /* It's safe to allow irq's after DR6 has been saved */
863 if (regs->flags & X86_EFLAGS_IF)
864 local_irq_enable();
866 /* Mask out spurious debug traps due to lazy DR7 setting */
867 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
868 if (!tsk->thread.debugreg7)
869 goto clear_dr7;
872 if (regs->flags & VM_MASK)
873 goto debug_vm86;
875 /* Save debug status register where ptrace can see it */
876 tsk->thread.debugreg6 = condition;
879 * Single-stepping through TF: make sure we ignore any events in
880 * kernel space (but re-enable TF when returning to user mode).
882 if (condition & DR_STEP) {
884 * We already checked v86 mode above, so we can
885 * check for kernel mode by just checking the CPL
886 * of CS.
888 if (!user_mode(regs))
889 goto clear_TF_reenable;
892 /* Ok, finally something we can handle */
893 send_sigtrap(tsk, regs, error_code);
895 /* Disable additional traps. They'll be re-enabled when
896 * the signal is delivered.
898 clear_dr7:
899 set_debugreg(0, 7);
900 return;
902 debug_vm86:
903 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
904 return;
906 clear_TF_reenable:
907 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
908 regs->flags &= ~TF_MASK;
909 return;
913 * Note that we play around with the 'TS' bit in an attempt to get
914 * the correct behaviour even in the presence of the asynchronous
915 * IRQ13 behaviour
917 void math_error(void __user *ip)
919 struct task_struct * task;
920 siginfo_t info;
921 unsigned short cwd, swd;
924 * Save the info for the exception handler and clear the error.
926 task = current;
927 save_init_fpu(task);
928 task->thread.trap_no = 16;
929 task->thread.error_code = 0;
930 info.si_signo = SIGFPE;
931 info.si_errno = 0;
932 info.si_code = __SI_FAULT;
933 info.si_addr = ip;
935 * (~cwd & swd) will mask out exceptions that are not set to unmasked
936 * status. 0x3f is the exception bits in these regs, 0x200 is the
937 * C1 reg you need in case of a stack fault, 0x040 is the stack
938 * fault bit. We should only be taking one exception at a time,
939 * so if this combination doesn't produce any single exception,
940 * then we have a bad program that isn't syncronizing its FPU usage
941 * and it will suffer the consequences since we won't be able to
942 * fully reproduce the context of the exception
944 cwd = get_fpu_cwd(task);
945 swd = get_fpu_swd(task);
946 switch (swd & ~cwd & 0x3f) {
947 case 0x000: /* No unmasked exception */
948 return;
949 default: /* Multiple exceptions */
950 break;
951 case 0x001: /* Invalid Op */
953 * swd & 0x240 == 0x040: Stack Underflow
954 * swd & 0x240 == 0x240: Stack Overflow
955 * User must clear the SF bit (0x40) if set
957 info.si_code = FPE_FLTINV;
958 break;
959 case 0x002: /* Denormalize */
960 case 0x010: /* Underflow */
961 info.si_code = FPE_FLTUND;
962 break;
963 case 0x004: /* Zero Divide */
964 info.si_code = FPE_FLTDIV;
965 break;
966 case 0x008: /* Overflow */
967 info.si_code = FPE_FLTOVF;
968 break;
969 case 0x020: /* Precision */
970 info.si_code = FPE_FLTRES;
971 break;
973 force_sig_info(SIGFPE, &info, task);
976 void do_coprocessor_error(struct pt_regs * regs, long error_code)
978 ignore_fpu_irq = 1;
979 math_error((void __user *)regs->ip);
982 static void simd_math_error(void __user *ip)
984 struct task_struct * task;
985 siginfo_t info;
986 unsigned short mxcsr;
989 * Save the info for the exception handler and clear the error.
991 task = current;
992 save_init_fpu(task);
993 task->thread.trap_no = 19;
994 task->thread.error_code = 0;
995 info.si_signo = SIGFPE;
996 info.si_errno = 0;
997 info.si_code = __SI_FAULT;
998 info.si_addr = ip;
1000 * The SIMD FPU exceptions are handled a little differently, as there
1001 * is only a single status/control register. Thus, to determine which
1002 * unmasked exception was caught we must mask the exception mask bits
1003 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1005 mxcsr = get_fpu_mxcsr(task);
1006 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1007 case 0x000:
1008 default:
1009 break;
1010 case 0x001: /* Invalid Op */
1011 info.si_code = FPE_FLTINV;
1012 break;
1013 case 0x002: /* Denormalize */
1014 case 0x010: /* Underflow */
1015 info.si_code = FPE_FLTUND;
1016 break;
1017 case 0x004: /* Zero Divide */
1018 info.si_code = FPE_FLTDIV;
1019 break;
1020 case 0x008: /* Overflow */
1021 info.si_code = FPE_FLTOVF;
1022 break;
1023 case 0x020: /* Precision */
1024 info.si_code = FPE_FLTRES;
1025 break;
1027 force_sig_info(SIGFPE, &info, task);
1030 void do_simd_coprocessor_error(struct pt_regs * regs,
1031 long error_code)
1033 if (cpu_has_xmm) {
1034 /* Handle SIMD FPU exceptions on PIII+ processors. */
1035 ignore_fpu_irq = 1;
1036 simd_math_error((void __user *)regs->ip);
1037 } else {
1039 * Handle strange cache flush from user space exception
1040 * in all other cases. This is undocumented behaviour.
1042 if (regs->flags & VM_MASK) {
1043 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1044 error_code);
1045 return;
1047 current->thread.trap_no = 19;
1048 current->thread.error_code = error_code;
1049 die_if_kernel("cache flush denied", regs, error_code);
1050 force_sig(SIGSEGV, current);
1054 void do_spurious_interrupt_bug(struct pt_regs * regs,
1055 long error_code)
1057 #if 0
1058 /* No need to warn about this any longer. */
1059 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1060 #endif
1063 unsigned long patch_espfix_desc(unsigned long uesp,
1064 unsigned long kesp)
1066 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1067 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1068 unsigned long new_kesp = kesp - base;
1069 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1070 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1071 /* Set up base for espfix segment */
1072 desc &= 0x00f0ff0000000000ULL;
1073 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1074 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1075 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1076 (lim_pages & 0xffff);
1077 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1078 return new_kesp;
1082 * 'math_state_restore()' saves the current math information in the
1083 * old math state array, and gets the new ones from the current task
1085 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1086 * Don't touch unless you *really* know how it works.
1088 * Must be called with kernel preemption disabled (in this case,
1089 * local interrupts are disabled at the call-site in entry.S).
1091 asmlinkage void math_state_restore(void)
1093 struct thread_info *thread = current_thread_info();
1094 struct task_struct *tsk = thread->task;
1096 clts(); /* Allow maths ops (or we recurse) */
1097 if (!tsk_used_math(tsk))
1098 init_fpu(tsk);
1099 restore_fpu(tsk);
1100 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1101 tsk->fpu_counter++;
1103 EXPORT_SYMBOL_GPL(math_state_restore);
1105 #ifndef CONFIG_MATH_EMULATION
1107 asmlinkage void math_emulate(long arg)
1109 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1110 printk(KERN_EMERG "killing %s.\n",current->comm);
1111 force_sig(SIGFPE,current);
1112 schedule();
1115 #endif /* CONFIG_MATH_EMULATION */
1118 void __init trap_init(void)
1120 int i;
1122 #ifdef CONFIG_EISA
1123 void __iomem *p = ioremap(0x0FFFD9, 4);
1124 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1125 EISA_bus = 1;
1127 iounmap(p);
1128 #endif
1130 #ifdef CONFIG_X86_LOCAL_APIC
1131 init_apic_mappings();
1132 #endif
1134 set_trap_gate(0,&divide_error);
1135 set_intr_gate(1,&debug);
1136 set_intr_gate(2,&nmi);
1137 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1138 set_system_gate(4,&overflow);
1139 set_trap_gate(5,&bounds);
1140 set_trap_gate(6,&invalid_op);
1141 set_trap_gate(7,&device_not_available);
1142 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1143 set_trap_gate(9,&coprocessor_segment_overrun);
1144 set_trap_gate(10,&invalid_TSS);
1145 set_trap_gate(11,&segment_not_present);
1146 set_trap_gate(12,&stack_segment);
1147 set_trap_gate(13,&general_protection);
1148 set_intr_gate(14,&page_fault);
1149 set_trap_gate(15,&spurious_interrupt_bug);
1150 set_trap_gate(16,&coprocessor_error);
1151 set_trap_gate(17,&alignment_check);
1152 #ifdef CONFIG_X86_MCE
1153 set_trap_gate(18,&machine_check);
1154 #endif
1155 set_trap_gate(19,&simd_coprocessor_error);
1157 if (cpu_has_fxsr) {
1159 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1160 * Generates a compile-time "error: zero width for bit-field" if
1161 * the alignment is wrong.
1163 struct fxsrAlignAssert {
1164 int _:!(offsetof(struct task_struct,
1165 thread.i387.fxsave) & 15);
1168 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1169 set_in_cr4(X86_CR4_OSFXSR);
1170 printk("done.\n");
1172 if (cpu_has_xmm) {
1173 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1174 "support... ");
1175 set_in_cr4(X86_CR4_OSXMMEXCPT);
1176 printk("done.\n");
1179 set_system_gate(SYSCALL_VECTOR,&system_call);
1181 /* Reserve all the builtin and the syscall vector. */
1182 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1183 set_bit(i, used_vectors);
1184 set_bit(SYSCALL_VECTOR, used_vectors);
1187 * Should be a barrier for any external CPU state.
1189 cpu_init();
1191 trap_init_hook();
1194 static int __init kstack_setup(char *s)
1196 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1197 return 1;
1199 __setup("kstack=", kstack_setup);
1201 static int __init code_bytes_setup(char *s)
1203 code_bytes = simple_strtoul(s, NULL, 0);
1204 if (code_bytes > 8192)
1205 code_bytes = 8192;
1207 return 1;
1209 __setup("code_bytes=", code_bytes_setup);