ARM: pxa: fix warning in zeus.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blobca389394fa2a1d563097c06d34881ac0e8e42559
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
107 * ->i_mmap_lock
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 if (PageSwapBacked(page))
124 __dec_zone_page_state(page, NR_SHMEM);
125 BUG_ON(page_mapped(page));
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 void remove_from_page_cache(struct page *page)
142 struct address_space *mapping = page->mapping;
143 void (*freepage)(struct page *);
145 BUG_ON(!PageLocked(page));
147 freepage = mapping->a_ops->freepage;
148 spin_lock_irq(&mapping->tree_lock);
149 __remove_from_page_cache(page);
150 spin_unlock_irq(&mapping->tree_lock);
151 mem_cgroup_uncharge_cache_page(page);
153 if (freepage)
154 freepage(page);
156 EXPORT_SYMBOL(remove_from_page_cache);
158 static int sync_page(void *word)
160 struct address_space *mapping;
161 struct page *page;
163 page = container_of((unsigned long *)word, struct page, flags);
166 * page_mapping() is being called without PG_locked held.
167 * Some knowledge of the state and use of the page is used to
168 * reduce the requirements down to a memory barrier.
169 * The danger here is of a stale page_mapping() return value
170 * indicating a struct address_space different from the one it's
171 * associated with when it is associated with one.
172 * After smp_mb(), it's either the correct page_mapping() for
173 * the page, or an old page_mapping() and the page's own
174 * page_mapping() has gone NULL.
175 * The ->sync_page() address_space operation must tolerate
176 * page_mapping() going NULL. By an amazing coincidence,
177 * this comes about because none of the users of the page
178 * in the ->sync_page() methods make essential use of the
179 * page_mapping(), merely passing the page down to the backing
180 * device's unplug functions when it's non-NULL, which in turn
181 * ignore it for all cases but swap, where only page_private(page) is
182 * of interest. When page_mapping() does go NULL, the entire
183 * call stack gracefully ignores the page and returns.
184 * -- wli
186 smp_mb();
187 mapping = page_mapping(page);
188 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
189 mapping->a_ops->sync_page(page);
190 io_schedule();
191 return 0;
194 static int sync_page_killable(void *word)
196 sync_page(word);
197 return fatal_signal_pending(current) ? -EINTR : 0;
201 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
202 * @mapping: address space structure to write
203 * @start: offset in bytes where the range starts
204 * @end: offset in bytes where the range ends (inclusive)
205 * @sync_mode: enable synchronous operation
207 * Start writeback against all of a mapping's dirty pages that lie
208 * within the byte offsets <start, end> inclusive.
210 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
211 * opposed to a regular memory cleansing writeback. The difference between
212 * these two operations is that if a dirty page/buffer is encountered, it must
213 * be waited upon, and not just skipped over.
215 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216 loff_t end, int sync_mode)
218 int ret;
219 struct writeback_control wbc = {
220 .sync_mode = sync_mode,
221 .nr_to_write = LONG_MAX,
222 .range_start = start,
223 .range_end = end,
226 if (!mapping_cap_writeback_dirty(mapping))
227 return 0;
229 ret = do_writepages(mapping, &wbc);
230 return ret;
233 static inline int __filemap_fdatawrite(struct address_space *mapping,
234 int sync_mode)
236 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 int filemap_fdatawrite(struct address_space *mapping)
241 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
243 EXPORT_SYMBOL(filemap_fdatawrite);
245 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
246 loff_t end)
248 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
250 EXPORT_SYMBOL(filemap_fdatawrite_range);
253 * filemap_flush - mostly a non-blocking flush
254 * @mapping: target address_space
256 * This is a mostly non-blocking flush. Not suitable for data-integrity
257 * purposes - I/O may not be started against all dirty pages.
259 int filemap_flush(struct address_space *mapping)
261 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
263 EXPORT_SYMBOL(filemap_flush);
266 * filemap_fdatawait_range - wait for writeback to complete
267 * @mapping: address space structure to wait for
268 * @start_byte: offset in bytes where the range starts
269 * @end_byte: offset in bytes where the range ends (inclusive)
271 * Walk the list of under-writeback pages of the given address space
272 * in the given range and wait for all of them.
274 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
275 loff_t end_byte)
277 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
278 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
279 struct pagevec pvec;
280 int nr_pages;
281 int ret = 0;
283 if (end_byte < start_byte)
284 return 0;
286 pagevec_init(&pvec, 0);
287 while ((index <= end) &&
288 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
289 PAGECACHE_TAG_WRITEBACK,
290 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
291 unsigned i;
293 for (i = 0; i < nr_pages; i++) {
294 struct page *page = pvec.pages[i];
296 /* until radix tree lookup accepts end_index */
297 if (page->index > end)
298 continue;
300 wait_on_page_writeback(page);
301 if (PageError(page))
302 ret = -EIO;
304 pagevec_release(&pvec);
305 cond_resched();
308 /* Check for outstanding write errors */
309 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310 ret = -ENOSPC;
311 if (test_and_clear_bit(AS_EIO, &mapping->flags))
312 ret = -EIO;
314 return ret;
316 EXPORT_SYMBOL(filemap_fdatawait_range);
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
325 int filemap_fdatawait(struct address_space *mapping)
327 loff_t i_size = i_size_read(mapping->host);
329 if (i_size == 0)
330 return 0;
332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
334 EXPORT_SYMBOL(filemap_fdatawait);
336 int filemap_write_and_wait(struct address_space *mapping)
338 int err = 0;
340 if (mapping->nrpages) {
341 err = filemap_fdatawrite(mapping);
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
354 return err;
356 EXPORT_SYMBOL(filemap_write_and_wait);
359 * filemap_write_and_wait_range - write out & wait on a file range
360 * @mapping: the address_space for the pages
361 * @lstart: offset in bytes where the range starts
362 * @lend: offset in bytes where the range ends (inclusive)
364 * Write out and wait upon file offsets lstart->lend, inclusive.
366 * Note that `lend' is inclusive (describes the last byte to be written) so
367 * that this function can be used to write to the very end-of-file (end = -1).
369 int filemap_write_and_wait_range(struct address_space *mapping,
370 loff_t lstart, loff_t lend)
372 int err = 0;
374 if (mapping->nrpages) {
375 err = __filemap_fdatawrite_range(mapping, lstart, lend,
376 WB_SYNC_ALL);
377 /* See comment of filemap_write_and_wait() */
378 if (err != -EIO) {
379 int err2 = filemap_fdatawait_range(mapping,
380 lstart, lend);
381 if (!err)
382 err = err2;
385 return err;
387 EXPORT_SYMBOL(filemap_write_and_wait_range);
390 * add_to_page_cache_locked - add a locked page to the pagecache
391 * @page: page to add
392 * @mapping: the page's address_space
393 * @offset: page index
394 * @gfp_mask: page allocation mode
396 * This function is used to add a page to the pagecache. It must be locked.
397 * This function does not add the page to the LRU. The caller must do that.
399 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
400 pgoff_t offset, gfp_t gfp_mask)
402 int error;
404 VM_BUG_ON(!PageLocked(page));
406 error = mem_cgroup_cache_charge(page, current->mm,
407 gfp_mask & GFP_RECLAIM_MASK);
408 if (error)
409 goto out;
411 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
412 if (error == 0) {
413 page_cache_get(page);
414 page->mapping = mapping;
415 page->index = offset;
417 spin_lock_irq(&mapping->tree_lock);
418 error = radix_tree_insert(&mapping->page_tree, offset, page);
419 if (likely(!error)) {
420 mapping->nrpages++;
421 __inc_zone_page_state(page, NR_FILE_PAGES);
422 if (PageSwapBacked(page))
423 __inc_zone_page_state(page, NR_SHMEM);
424 spin_unlock_irq(&mapping->tree_lock);
425 } else {
426 page->mapping = NULL;
427 spin_unlock_irq(&mapping->tree_lock);
428 mem_cgroup_uncharge_cache_page(page);
429 page_cache_release(page);
431 radix_tree_preload_end();
432 } else
433 mem_cgroup_uncharge_cache_page(page);
434 out:
435 return error;
437 EXPORT_SYMBOL(add_to_page_cache_locked);
439 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
440 pgoff_t offset, gfp_t gfp_mask)
442 int ret;
445 * Splice_read and readahead add shmem/tmpfs pages into the page cache
446 * before shmem_readpage has a chance to mark them as SwapBacked: they
447 * need to go on the anon lru below, and mem_cgroup_cache_charge
448 * (called in add_to_page_cache) needs to know where they're going too.
450 if (mapping_cap_swap_backed(mapping))
451 SetPageSwapBacked(page);
453 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
454 if (ret == 0) {
455 if (page_is_file_cache(page))
456 lru_cache_add_file(page);
457 else
458 lru_cache_add_anon(page);
460 return ret;
462 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
464 #ifdef CONFIG_NUMA
465 struct page *__page_cache_alloc(gfp_t gfp)
467 int n;
468 struct page *page;
470 if (cpuset_do_page_mem_spread()) {
471 get_mems_allowed();
472 n = cpuset_mem_spread_node();
473 page = alloc_pages_exact_node(n, gfp, 0);
474 put_mems_allowed();
475 return page;
477 return alloc_pages(gfp, 0);
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
482 static int __sleep_on_page_lock(void *word)
484 io_schedule();
485 return 0;
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
498 static wait_queue_head_t *page_waitqueue(struct page *page)
500 const struct zone *zone = page_zone(page);
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
505 static inline void wake_up_page(struct page *page, int bit)
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
510 void wait_on_page_bit(struct page *page, int bit_nr)
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
518 EXPORT_SYMBOL(wait_on_page_bit);
521 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
522 * @page: Page defining the wait queue of interest
523 * @waiter: Waiter to add to the queue
525 * Add an arbitrary @waiter to the wait queue for the nominated @page.
527 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
529 wait_queue_head_t *q = page_waitqueue(page);
530 unsigned long flags;
532 spin_lock_irqsave(&q->lock, flags);
533 __add_wait_queue(q, waiter);
534 spin_unlock_irqrestore(&q->lock, flags);
536 EXPORT_SYMBOL_GPL(add_page_wait_queue);
539 * unlock_page - unlock a locked page
540 * @page: the page
542 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
543 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
544 * mechananism between PageLocked pages and PageWriteback pages is shared.
545 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
547 * The mb is necessary to enforce ordering between the clear_bit and the read
548 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
550 void unlock_page(struct page *page)
552 VM_BUG_ON(!PageLocked(page));
553 clear_bit_unlock(PG_locked, &page->flags);
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_locked);
557 EXPORT_SYMBOL(unlock_page);
560 * end_page_writeback - end writeback against a page
561 * @page: the page
563 void end_page_writeback(struct page *page)
565 if (TestClearPageReclaim(page))
566 rotate_reclaimable_page(page);
568 if (!test_clear_page_writeback(page))
569 BUG();
571 smp_mb__after_clear_bit();
572 wake_up_page(page, PG_writeback);
574 EXPORT_SYMBOL(end_page_writeback);
577 * __lock_page - get a lock on the page, assuming we need to sleep to get it
578 * @page: the page to lock
580 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
581 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
582 * chances are that on the second loop, the block layer's plug list is empty,
583 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
585 void __lock_page(struct page *page)
587 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
589 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
590 TASK_UNINTERRUPTIBLE);
592 EXPORT_SYMBOL(__lock_page);
594 int __lock_page_killable(struct page *page)
596 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
598 return __wait_on_bit_lock(page_waitqueue(page), &wait,
599 sync_page_killable, TASK_KILLABLE);
601 EXPORT_SYMBOL_GPL(__lock_page_killable);
604 * __lock_page_nosync - get a lock on the page, without calling sync_page()
605 * @page: the page to lock
607 * Variant of lock_page that does not require the caller to hold a reference
608 * on the page's mapping.
610 void __lock_page_nosync(struct page *page)
612 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
614 TASK_UNINTERRUPTIBLE);
617 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
618 unsigned int flags)
620 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
621 __lock_page(page);
622 return 1;
623 } else {
624 up_read(&mm->mmap_sem);
625 wait_on_page_locked(page);
626 return 0;
631 * find_get_page - find and get a page reference
632 * @mapping: the address_space to search
633 * @offset: the page index
635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
636 * If yes, increment its refcount and return it; if no, return NULL.
638 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
640 void **pagep;
641 struct page *page;
643 rcu_read_lock();
644 repeat:
645 page = NULL;
646 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
647 if (pagep) {
648 page = radix_tree_deref_slot(pagep);
649 if (unlikely(!page))
650 goto out;
651 if (radix_tree_deref_retry(page))
652 goto repeat;
654 if (!page_cache_get_speculative(page))
655 goto repeat;
658 * Has the page moved?
659 * This is part of the lockless pagecache protocol. See
660 * include/linux/pagemap.h for details.
662 if (unlikely(page != *pagep)) {
663 page_cache_release(page);
664 goto repeat;
667 out:
668 rcu_read_unlock();
670 return page;
672 EXPORT_SYMBOL(find_get_page);
675 * find_lock_page - locate, pin and lock a pagecache page
676 * @mapping: the address_space to search
677 * @offset: the page index
679 * Locates the desired pagecache page, locks it, increments its reference
680 * count and returns its address.
682 * Returns zero if the page was not present. find_lock_page() may sleep.
684 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
686 struct page *page;
688 repeat:
689 page = find_get_page(mapping, offset);
690 if (page) {
691 lock_page(page);
692 /* Has the page been truncated? */
693 if (unlikely(page->mapping != mapping)) {
694 unlock_page(page);
695 page_cache_release(page);
696 goto repeat;
698 VM_BUG_ON(page->index != offset);
700 return page;
702 EXPORT_SYMBOL(find_lock_page);
705 * find_or_create_page - locate or add a pagecache page
706 * @mapping: the page's address_space
707 * @index: the page's index into the mapping
708 * @gfp_mask: page allocation mode
710 * Locates a page in the pagecache. If the page is not present, a new page
711 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
712 * LRU list. The returned page is locked and has its reference count
713 * incremented.
715 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
716 * allocation!
718 * find_or_create_page() returns the desired page's address, or zero on
719 * memory exhaustion.
721 struct page *find_or_create_page(struct address_space *mapping,
722 pgoff_t index, gfp_t gfp_mask)
724 struct page *page;
725 int err;
726 repeat:
727 page = find_lock_page(mapping, index);
728 if (!page) {
729 page = __page_cache_alloc(gfp_mask);
730 if (!page)
731 return NULL;
733 * We want a regular kernel memory (not highmem or DMA etc)
734 * allocation for the radix tree nodes, but we need to honour
735 * the context-specific requirements the caller has asked for.
736 * GFP_RECLAIM_MASK collects those requirements.
738 err = add_to_page_cache_lru(page, mapping, index,
739 (gfp_mask & GFP_RECLAIM_MASK));
740 if (unlikely(err)) {
741 page_cache_release(page);
742 page = NULL;
743 if (err == -EEXIST)
744 goto repeat;
747 return page;
749 EXPORT_SYMBOL(find_or_create_page);
752 * find_get_pages - gang pagecache lookup
753 * @mapping: The address_space to search
754 * @start: The starting page index
755 * @nr_pages: The maximum number of pages
756 * @pages: Where the resulting pages are placed
758 * find_get_pages() will search for and return a group of up to
759 * @nr_pages pages in the mapping. The pages are placed at @pages.
760 * find_get_pages() takes a reference against the returned pages.
762 * The search returns a group of mapping-contiguous pages with ascending
763 * indexes. There may be holes in the indices due to not-present pages.
765 * find_get_pages() returns the number of pages which were found.
767 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
768 unsigned int nr_pages, struct page **pages)
770 unsigned int i;
771 unsigned int ret;
772 unsigned int nr_found;
774 rcu_read_lock();
775 restart:
776 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
777 (void ***)pages, start, nr_pages);
778 ret = 0;
779 for (i = 0; i < nr_found; i++) {
780 struct page *page;
781 repeat:
782 page = radix_tree_deref_slot((void **)pages[i]);
783 if (unlikely(!page))
784 continue;
785 if (radix_tree_deref_retry(page)) {
786 if (ret)
787 start = pages[ret-1]->index;
788 goto restart;
791 if (!page_cache_get_speculative(page))
792 goto repeat;
794 /* Has the page moved? */
795 if (unlikely(page != *((void **)pages[i]))) {
796 page_cache_release(page);
797 goto repeat;
800 pages[ret] = page;
801 ret++;
803 rcu_read_unlock();
804 return ret;
808 * find_get_pages_contig - gang contiguous pagecache lookup
809 * @mapping: The address_space to search
810 * @index: The starting page index
811 * @nr_pages: The maximum number of pages
812 * @pages: Where the resulting pages are placed
814 * find_get_pages_contig() works exactly like find_get_pages(), except
815 * that the returned number of pages are guaranteed to be contiguous.
817 * find_get_pages_contig() returns the number of pages which were found.
819 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
820 unsigned int nr_pages, struct page **pages)
822 unsigned int i;
823 unsigned int ret;
824 unsigned int nr_found;
826 rcu_read_lock();
827 restart:
828 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
829 (void ***)pages, index, nr_pages);
830 ret = 0;
831 for (i = 0; i < nr_found; i++) {
832 struct page *page;
833 repeat:
834 page = radix_tree_deref_slot((void **)pages[i]);
835 if (unlikely(!page))
836 continue;
837 if (radix_tree_deref_retry(page))
838 goto restart;
840 if (page->mapping == NULL || page->index != index)
841 break;
843 if (!page_cache_get_speculative(page))
844 goto repeat;
846 /* Has the page moved? */
847 if (unlikely(page != *((void **)pages[i]))) {
848 page_cache_release(page);
849 goto repeat;
852 pages[ret] = page;
853 ret++;
854 index++;
856 rcu_read_unlock();
857 return ret;
859 EXPORT_SYMBOL(find_get_pages_contig);
862 * find_get_pages_tag - find and return pages that match @tag
863 * @mapping: the address_space to search
864 * @index: the starting page index
865 * @tag: the tag index
866 * @nr_pages: the maximum number of pages
867 * @pages: where the resulting pages are placed
869 * Like find_get_pages, except we only return pages which are tagged with
870 * @tag. We update @index to index the next page for the traversal.
872 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
873 int tag, unsigned int nr_pages, struct page **pages)
875 unsigned int i;
876 unsigned int ret;
877 unsigned int nr_found;
879 rcu_read_lock();
880 restart:
881 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
882 (void ***)pages, *index, nr_pages, tag);
883 ret = 0;
884 for (i = 0; i < nr_found; i++) {
885 struct page *page;
886 repeat:
887 page = radix_tree_deref_slot((void **)pages[i]);
888 if (unlikely(!page))
889 continue;
890 if (radix_tree_deref_retry(page))
891 goto restart;
893 if (!page_cache_get_speculative(page))
894 goto repeat;
896 /* Has the page moved? */
897 if (unlikely(page != *((void **)pages[i]))) {
898 page_cache_release(page);
899 goto repeat;
902 pages[ret] = page;
903 ret++;
905 rcu_read_unlock();
907 if (ret)
908 *index = pages[ret - 1]->index + 1;
910 return ret;
912 EXPORT_SYMBOL(find_get_pages_tag);
915 * grab_cache_page_nowait - returns locked page at given index in given cache
916 * @mapping: target address_space
917 * @index: the page index
919 * Same as grab_cache_page(), but do not wait if the page is unavailable.
920 * This is intended for speculative data generators, where the data can
921 * be regenerated if the page couldn't be grabbed. This routine should
922 * be safe to call while holding the lock for another page.
924 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
925 * and deadlock against the caller's locked page.
927 struct page *
928 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
930 struct page *page = find_get_page(mapping, index);
932 if (page) {
933 if (trylock_page(page))
934 return page;
935 page_cache_release(page);
936 return NULL;
938 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
939 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
940 page_cache_release(page);
941 page = NULL;
943 return page;
945 EXPORT_SYMBOL(grab_cache_page_nowait);
948 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
949 * a _large_ part of the i/o request. Imagine the worst scenario:
951 * ---R__________________________________________B__________
952 * ^ reading here ^ bad block(assume 4k)
954 * read(R) => miss => readahead(R...B) => media error => frustrating retries
955 * => failing the whole request => read(R) => read(R+1) =>
956 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
957 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
958 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
960 * It is going insane. Fix it by quickly scaling down the readahead size.
962 static void shrink_readahead_size_eio(struct file *filp,
963 struct file_ra_state *ra)
965 ra->ra_pages /= 4;
969 * do_generic_file_read - generic file read routine
970 * @filp: the file to read
971 * @ppos: current file position
972 * @desc: read_descriptor
973 * @actor: read method
975 * This is a generic file read routine, and uses the
976 * mapping->a_ops->readpage() function for the actual low-level stuff.
978 * This is really ugly. But the goto's actually try to clarify some
979 * of the logic when it comes to error handling etc.
981 static void do_generic_file_read(struct file *filp, loff_t *ppos,
982 read_descriptor_t *desc, read_actor_t actor)
984 struct address_space *mapping = filp->f_mapping;
985 struct inode *inode = mapping->host;
986 struct file_ra_state *ra = &filp->f_ra;
987 pgoff_t index;
988 pgoff_t last_index;
989 pgoff_t prev_index;
990 unsigned long offset; /* offset into pagecache page */
991 unsigned int prev_offset;
992 int error;
994 index = *ppos >> PAGE_CACHE_SHIFT;
995 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
996 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
997 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
998 offset = *ppos & ~PAGE_CACHE_MASK;
1000 for (;;) {
1001 struct page *page;
1002 pgoff_t end_index;
1003 loff_t isize;
1004 unsigned long nr, ret;
1006 cond_resched();
1007 find_page:
1008 page = find_get_page(mapping, index);
1009 if (!page) {
1010 page_cache_sync_readahead(mapping,
1011 ra, filp,
1012 index, last_index - index);
1013 page = find_get_page(mapping, index);
1014 if (unlikely(page == NULL))
1015 goto no_cached_page;
1017 if (PageReadahead(page)) {
1018 page_cache_async_readahead(mapping,
1019 ra, filp, page,
1020 index, last_index - index);
1022 if (!PageUptodate(page)) {
1023 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1024 !mapping->a_ops->is_partially_uptodate)
1025 goto page_not_up_to_date;
1026 if (!trylock_page(page))
1027 goto page_not_up_to_date;
1028 /* Did it get truncated before we got the lock? */
1029 if (!page->mapping)
1030 goto page_not_up_to_date_locked;
1031 if (!mapping->a_ops->is_partially_uptodate(page,
1032 desc, offset))
1033 goto page_not_up_to_date_locked;
1034 unlock_page(page);
1036 page_ok:
1038 * i_size must be checked after we know the page is Uptodate.
1040 * Checking i_size after the check allows us to calculate
1041 * the correct value for "nr", which means the zero-filled
1042 * part of the page is not copied back to userspace (unless
1043 * another truncate extends the file - this is desired though).
1046 isize = i_size_read(inode);
1047 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1048 if (unlikely(!isize || index > end_index)) {
1049 page_cache_release(page);
1050 goto out;
1053 /* nr is the maximum number of bytes to copy from this page */
1054 nr = PAGE_CACHE_SIZE;
1055 if (index == end_index) {
1056 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1057 if (nr <= offset) {
1058 page_cache_release(page);
1059 goto out;
1062 nr = nr - offset;
1064 /* If users can be writing to this page using arbitrary
1065 * virtual addresses, take care about potential aliasing
1066 * before reading the page on the kernel side.
1068 if (mapping_writably_mapped(mapping))
1069 flush_dcache_page(page);
1072 * When a sequential read accesses a page several times,
1073 * only mark it as accessed the first time.
1075 if (prev_index != index || offset != prev_offset)
1076 mark_page_accessed(page);
1077 prev_index = index;
1080 * Ok, we have the page, and it's up-to-date, so
1081 * now we can copy it to user space...
1083 * The actor routine returns how many bytes were actually used..
1084 * NOTE! This may not be the same as how much of a user buffer
1085 * we filled up (we may be padding etc), so we can only update
1086 * "pos" here (the actor routine has to update the user buffer
1087 * pointers and the remaining count).
1089 ret = actor(desc, page, offset, nr);
1090 offset += ret;
1091 index += offset >> PAGE_CACHE_SHIFT;
1092 offset &= ~PAGE_CACHE_MASK;
1093 prev_offset = offset;
1095 page_cache_release(page);
1096 if (ret == nr && desc->count)
1097 continue;
1098 goto out;
1100 page_not_up_to_date:
1101 /* Get exclusive access to the page ... */
1102 error = lock_page_killable(page);
1103 if (unlikely(error))
1104 goto readpage_error;
1106 page_not_up_to_date_locked:
1107 /* Did it get truncated before we got the lock? */
1108 if (!page->mapping) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 continue;
1114 /* Did somebody else fill it already? */
1115 if (PageUptodate(page)) {
1116 unlock_page(page);
1117 goto page_ok;
1120 readpage:
1122 * A previous I/O error may have been due to temporary
1123 * failures, eg. multipath errors.
1124 * PG_error will be set again if readpage fails.
1126 ClearPageError(page);
1127 /* Start the actual read. The read will unlock the page. */
1128 error = mapping->a_ops->readpage(filp, page);
1130 if (unlikely(error)) {
1131 if (error == AOP_TRUNCATED_PAGE) {
1132 page_cache_release(page);
1133 goto find_page;
1135 goto readpage_error;
1138 if (!PageUptodate(page)) {
1139 error = lock_page_killable(page);
1140 if (unlikely(error))
1141 goto readpage_error;
1142 if (!PageUptodate(page)) {
1143 if (page->mapping == NULL) {
1145 * invalidate_mapping_pages got it
1147 unlock_page(page);
1148 page_cache_release(page);
1149 goto find_page;
1151 unlock_page(page);
1152 shrink_readahead_size_eio(filp, ra);
1153 error = -EIO;
1154 goto readpage_error;
1156 unlock_page(page);
1159 goto page_ok;
1161 readpage_error:
1162 /* UHHUH! A synchronous read error occurred. Report it */
1163 desc->error = error;
1164 page_cache_release(page);
1165 goto out;
1167 no_cached_page:
1169 * Ok, it wasn't cached, so we need to create a new
1170 * page..
1172 page = page_cache_alloc_cold(mapping);
1173 if (!page) {
1174 desc->error = -ENOMEM;
1175 goto out;
1177 error = add_to_page_cache_lru(page, mapping,
1178 index, GFP_KERNEL);
1179 if (error) {
1180 page_cache_release(page);
1181 if (error == -EEXIST)
1182 goto find_page;
1183 desc->error = error;
1184 goto out;
1186 goto readpage;
1189 out:
1190 ra->prev_pos = prev_index;
1191 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1192 ra->prev_pos |= prev_offset;
1194 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1195 file_accessed(filp);
1198 int file_read_actor(read_descriptor_t *desc, struct page *page,
1199 unsigned long offset, unsigned long size)
1201 char *kaddr;
1202 unsigned long left, count = desc->count;
1204 if (size > count)
1205 size = count;
1208 * Faults on the destination of a read are common, so do it before
1209 * taking the kmap.
1211 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1212 kaddr = kmap_atomic(page, KM_USER0);
1213 left = __copy_to_user_inatomic(desc->arg.buf,
1214 kaddr + offset, size);
1215 kunmap_atomic(kaddr, KM_USER0);
1216 if (left == 0)
1217 goto success;
1220 /* Do it the slow way */
1221 kaddr = kmap(page);
1222 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1223 kunmap(page);
1225 if (left) {
1226 size -= left;
1227 desc->error = -EFAULT;
1229 success:
1230 desc->count = count - size;
1231 desc->written += size;
1232 desc->arg.buf += size;
1233 return size;
1237 * Performs necessary checks before doing a write
1238 * @iov: io vector request
1239 * @nr_segs: number of segments in the iovec
1240 * @count: number of bytes to write
1241 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1243 * Adjust number of segments and amount of bytes to write (nr_segs should be
1244 * properly initialized first). Returns appropriate error code that caller
1245 * should return or zero in case that write should be allowed.
1247 int generic_segment_checks(const struct iovec *iov,
1248 unsigned long *nr_segs, size_t *count, int access_flags)
1250 unsigned long seg;
1251 size_t cnt = 0;
1252 for (seg = 0; seg < *nr_segs; seg++) {
1253 const struct iovec *iv = &iov[seg];
1256 * If any segment has a negative length, or the cumulative
1257 * length ever wraps negative then return -EINVAL.
1259 cnt += iv->iov_len;
1260 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1261 return -EINVAL;
1262 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1263 continue;
1264 if (seg == 0)
1265 return -EFAULT;
1266 *nr_segs = seg;
1267 cnt -= iv->iov_len; /* This segment is no good */
1268 break;
1270 *count = cnt;
1271 return 0;
1273 EXPORT_SYMBOL(generic_segment_checks);
1276 * generic_file_aio_read - generic filesystem read routine
1277 * @iocb: kernel I/O control block
1278 * @iov: io vector request
1279 * @nr_segs: number of segments in the iovec
1280 * @pos: current file position
1282 * This is the "read()" routine for all filesystems
1283 * that can use the page cache directly.
1285 ssize_t
1286 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1287 unsigned long nr_segs, loff_t pos)
1289 struct file *filp = iocb->ki_filp;
1290 ssize_t retval;
1291 unsigned long seg = 0;
1292 size_t count;
1293 loff_t *ppos = &iocb->ki_pos;
1295 count = 0;
1296 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1297 if (retval)
1298 return retval;
1300 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1301 if (filp->f_flags & O_DIRECT) {
1302 loff_t size;
1303 struct address_space *mapping;
1304 struct inode *inode;
1306 mapping = filp->f_mapping;
1307 inode = mapping->host;
1308 if (!count)
1309 goto out; /* skip atime */
1310 size = i_size_read(inode);
1311 if (pos < size) {
1312 retval = filemap_write_and_wait_range(mapping, pos,
1313 pos + iov_length(iov, nr_segs) - 1);
1314 if (!retval) {
1315 retval = mapping->a_ops->direct_IO(READ, iocb,
1316 iov, pos, nr_segs);
1318 if (retval > 0) {
1319 *ppos = pos + retval;
1320 count -= retval;
1324 * Btrfs can have a short DIO read if we encounter
1325 * compressed extents, so if there was an error, or if
1326 * we've already read everything we wanted to, or if
1327 * there was a short read because we hit EOF, go ahead
1328 * and return. Otherwise fallthrough to buffered io for
1329 * the rest of the read.
1331 if (retval < 0 || !count || *ppos >= size) {
1332 file_accessed(filp);
1333 goto out;
1338 count = retval;
1339 for (seg = 0; seg < nr_segs; seg++) {
1340 read_descriptor_t desc;
1341 loff_t offset = 0;
1344 * If we did a short DIO read we need to skip the section of the
1345 * iov that we've already read data into.
1347 if (count) {
1348 if (count > iov[seg].iov_len) {
1349 count -= iov[seg].iov_len;
1350 continue;
1352 offset = count;
1353 count = 0;
1356 desc.written = 0;
1357 desc.arg.buf = iov[seg].iov_base + offset;
1358 desc.count = iov[seg].iov_len - offset;
1359 if (desc.count == 0)
1360 continue;
1361 desc.error = 0;
1362 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1363 retval += desc.written;
1364 if (desc.error) {
1365 retval = retval ?: desc.error;
1366 break;
1368 if (desc.count > 0)
1369 break;
1371 out:
1372 return retval;
1374 EXPORT_SYMBOL(generic_file_aio_read);
1376 static ssize_t
1377 do_readahead(struct address_space *mapping, struct file *filp,
1378 pgoff_t index, unsigned long nr)
1380 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1381 return -EINVAL;
1383 force_page_cache_readahead(mapping, filp, index, nr);
1384 return 0;
1387 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1389 ssize_t ret;
1390 struct file *file;
1392 ret = -EBADF;
1393 file = fget(fd);
1394 if (file) {
1395 if (file->f_mode & FMODE_READ) {
1396 struct address_space *mapping = file->f_mapping;
1397 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1398 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1399 unsigned long len = end - start + 1;
1400 ret = do_readahead(mapping, file, start, len);
1402 fput(file);
1404 return ret;
1406 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1407 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1409 return SYSC_readahead((int) fd, offset, (size_t) count);
1411 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1412 #endif
1414 #ifdef CONFIG_MMU
1416 * page_cache_read - adds requested page to the page cache if not already there
1417 * @file: file to read
1418 * @offset: page index
1420 * This adds the requested page to the page cache if it isn't already there,
1421 * and schedules an I/O to read in its contents from disk.
1423 static int page_cache_read(struct file *file, pgoff_t offset)
1425 struct address_space *mapping = file->f_mapping;
1426 struct page *page;
1427 int ret;
1429 do {
1430 page = page_cache_alloc_cold(mapping);
1431 if (!page)
1432 return -ENOMEM;
1434 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1435 if (ret == 0)
1436 ret = mapping->a_ops->readpage(file, page);
1437 else if (ret == -EEXIST)
1438 ret = 0; /* losing race to add is OK */
1440 page_cache_release(page);
1442 } while (ret == AOP_TRUNCATED_PAGE);
1444 return ret;
1447 #define MMAP_LOTSAMISS (100)
1450 * Synchronous readahead happens when we don't even find
1451 * a page in the page cache at all.
1453 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1454 struct file_ra_state *ra,
1455 struct file *file,
1456 pgoff_t offset)
1458 unsigned long ra_pages;
1459 struct address_space *mapping = file->f_mapping;
1461 /* If we don't want any read-ahead, don't bother */
1462 if (VM_RandomReadHint(vma))
1463 return;
1465 if (VM_SequentialReadHint(vma) ||
1466 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1467 page_cache_sync_readahead(mapping, ra, file, offset,
1468 ra->ra_pages);
1469 return;
1472 if (ra->mmap_miss < INT_MAX)
1473 ra->mmap_miss++;
1476 * Do we miss much more than hit in this file? If so,
1477 * stop bothering with read-ahead. It will only hurt.
1479 if (ra->mmap_miss > MMAP_LOTSAMISS)
1480 return;
1483 * mmap read-around
1485 ra_pages = max_sane_readahead(ra->ra_pages);
1486 if (ra_pages) {
1487 ra->start = max_t(long, 0, offset - ra_pages/2);
1488 ra->size = ra_pages;
1489 ra->async_size = 0;
1490 ra_submit(ra, mapping, file);
1495 * Asynchronous readahead happens when we find the page and PG_readahead,
1496 * so we want to possibly extend the readahead further..
1498 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1499 struct file_ra_state *ra,
1500 struct file *file,
1501 struct page *page,
1502 pgoff_t offset)
1504 struct address_space *mapping = file->f_mapping;
1506 /* If we don't want any read-ahead, don't bother */
1507 if (VM_RandomReadHint(vma))
1508 return;
1509 if (ra->mmap_miss > 0)
1510 ra->mmap_miss--;
1511 if (PageReadahead(page))
1512 page_cache_async_readahead(mapping, ra, file,
1513 page, offset, ra->ra_pages);
1517 * filemap_fault - read in file data for page fault handling
1518 * @vma: vma in which the fault was taken
1519 * @vmf: struct vm_fault containing details of the fault
1521 * filemap_fault() is invoked via the vma operations vector for a
1522 * mapped memory region to read in file data during a page fault.
1524 * The goto's are kind of ugly, but this streamlines the normal case of having
1525 * it in the page cache, and handles the special cases reasonably without
1526 * having a lot of duplicated code.
1528 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1530 int error;
1531 struct file *file = vma->vm_file;
1532 struct address_space *mapping = file->f_mapping;
1533 struct file_ra_state *ra = &file->f_ra;
1534 struct inode *inode = mapping->host;
1535 pgoff_t offset = vmf->pgoff;
1536 struct page *page;
1537 pgoff_t size;
1538 int ret = 0;
1540 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1541 if (offset >= size)
1542 return VM_FAULT_SIGBUS;
1545 * Do we have something in the page cache already?
1547 page = find_get_page(mapping, offset);
1548 if (likely(page)) {
1550 * We found the page, so try async readahead before
1551 * waiting for the lock.
1553 do_async_mmap_readahead(vma, ra, file, page, offset);
1554 } else {
1555 /* No page in the page cache at all */
1556 do_sync_mmap_readahead(vma, ra, file, offset);
1557 count_vm_event(PGMAJFAULT);
1558 ret = VM_FAULT_MAJOR;
1559 retry_find:
1560 page = find_get_page(mapping, offset);
1561 if (!page)
1562 goto no_cached_page;
1565 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1566 page_cache_release(page);
1567 return ret | VM_FAULT_RETRY;
1570 /* Did it get truncated? */
1571 if (unlikely(page->mapping != mapping)) {
1572 unlock_page(page);
1573 put_page(page);
1574 goto retry_find;
1576 VM_BUG_ON(page->index != offset);
1579 * We have a locked page in the page cache, now we need to check
1580 * that it's up-to-date. If not, it is going to be due to an error.
1582 if (unlikely(!PageUptodate(page)))
1583 goto page_not_uptodate;
1586 * Found the page and have a reference on it.
1587 * We must recheck i_size under page lock.
1589 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1590 if (unlikely(offset >= size)) {
1591 unlock_page(page);
1592 page_cache_release(page);
1593 return VM_FAULT_SIGBUS;
1596 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1597 vmf->page = page;
1598 return ret | VM_FAULT_LOCKED;
1600 no_cached_page:
1602 * We're only likely to ever get here if MADV_RANDOM is in
1603 * effect.
1605 error = page_cache_read(file, offset);
1608 * The page we want has now been added to the page cache.
1609 * In the unlikely event that someone removed it in the
1610 * meantime, we'll just come back here and read it again.
1612 if (error >= 0)
1613 goto retry_find;
1616 * An error return from page_cache_read can result if the
1617 * system is low on memory, or a problem occurs while trying
1618 * to schedule I/O.
1620 if (error == -ENOMEM)
1621 return VM_FAULT_OOM;
1622 return VM_FAULT_SIGBUS;
1624 page_not_uptodate:
1626 * Umm, take care of errors if the page isn't up-to-date.
1627 * Try to re-read it _once_. We do this synchronously,
1628 * because there really aren't any performance issues here
1629 * and we need to check for errors.
1631 ClearPageError(page);
1632 error = mapping->a_ops->readpage(file, page);
1633 if (!error) {
1634 wait_on_page_locked(page);
1635 if (!PageUptodate(page))
1636 error = -EIO;
1638 page_cache_release(page);
1640 if (!error || error == AOP_TRUNCATED_PAGE)
1641 goto retry_find;
1643 /* Things didn't work out. Return zero to tell the mm layer so. */
1644 shrink_readahead_size_eio(file, ra);
1645 return VM_FAULT_SIGBUS;
1647 EXPORT_SYMBOL(filemap_fault);
1649 const struct vm_operations_struct generic_file_vm_ops = {
1650 .fault = filemap_fault,
1653 /* This is used for a general mmap of a disk file */
1655 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1657 struct address_space *mapping = file->f_mapping;
1659 if (!mapping->a_ops->readpage)
1660 return -ENOEXEC;
1661 file_accessed(file);
1662 vma->vm_ops = &generic_file_vm_ops;
1663 vma->vm_flags |= VM_CAN_NONLINEAR;
1664 return 0;
1668 * This is for filesystems which do not implement ->writepage.
1670 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1672 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1673 return -EINVAL;
1674 return generic_file_mmap(file, vma);
1676 #else
1677 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1679 return -ENOSYS;
1681 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1683 return -ENOSYS;
1685 #endif /* CONFIG_MMU */
1687 EXPORT_SYMBOL(generic_file_mmap);
1688 EXPORT_SYMBOL(generic_file_readonly_mmap);
1690 static struct page *__read_cache_page(struct address_space *mapping,
1691 pgoff_t index,
1692 int (*filler)(void *,struct page*),
1693 void *data,
1694 gfp_t gfp)
1696 struct page *page;
1697 int err;
1698 repeat:
1699 page = find_get_page(mapping, index);
1700 if (!page) {
1701 page = __page_cache_alloc(gfp | __GFP_COLD);
1702 if (!page)
1703 return ERR_PTR(-ENOMEM);
1704 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1705 if (unlikely(err)) {
1706 page_cache_release(page);
1707 if (err == -EEXIST)
1708 goto repeat;
1709 /* Presumably ENOMEM for radix tree node */
1710 return ERR_PTR(err);
1712 err = filler(data, page);
1713 if (err < 0) {
1714 page_cache_release(page);
1715 page = ERR_PTR(err);
1718 return page;
1721 static struct page *do_read_cache_page(struct address_space *mapping,
1722 pgoff_t index,
1723 int (*filler)(void *,struct page*),
1724 void *data,
1725 gfp_t gfp)
1728 struct page *page;
1729 int err;
1731 retry:
1732 page = __read_cache_page(mapping, index, filler, data, gfp);
1733 if (IS_ERR(page))
1734 return page;
1735 if (PageUptodate(page))
1736 goto out;
1738 lock_page(page);
1739 if (!page->mapping) {
1740 unlock_page(page);
1741 page_cache_release(page);
1742 goto retry;
1744 if (PageUptodate(page)) {
1745 unlock_page(page);
1746 goto out;
1748 err = filler(data, page);
1749 if (err < 0) {
1750 page_cache_release(page);
1751 return ERR_PTR(err);
1753 out:
1754 mark_page_accessed(page);
1755 return page;
1759 * read_cache_page_async - read into page cache, fill it if needed
1760 * @mapping: the page's address_space
1761 * @index: the page index
1762 * @filler: function to perform the read
1763 * @data: destination for read data
1765 * Same as read_cache_page, but don't wait for page to become unlocked
1766 * after submitting it to the filler.
1768 * Read into the page cache. If a page already exists, and PageUptodate() is
1769 * not set, try to fill the page but don't wait for it to become unlocked.
1771 * If the page does not get brought uptodate, return -EIO.
1773 struct page *read_cache_page_async(struct address_space *mapping,
1774 pgoff_t index,
1775 int (*filler)(void *,struct page*),
1776 void *data)
1778 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1780 EXPORT_SYMBOL(read_cache_page_async);
1782 static struct page *wait_on_page_read(struct page *page)
1784 if (!IS_ERR(page)) {
1785 wait_on_page_locked(page);
1786 if (!PageUptodate(page)) {
1787 page_cache_release(page);
1788 page = ERR_PTR(-EIO);
1791 return page;
1795 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1796 * @mapping: the page's address_space
1797 * @index: the page index
1798 * @gfp: the page allocator flags to use if allocating
1800 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1801 * any new page allocations done using the specified allocation flags. Note
1802 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1803 * expect to do this atomically or anything like that - but you can pass in
1804 * other page requirements.
1806 * If the page does not get brought uptodate, return -EIO.
1808 struct page *read_cache_page_gfp(struct address_space *mapping,
1809 pgoff_t index,
1810 gfp_t gfp)
1812 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1814 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1816 EXPORT_SYMBOL(read_cache_page_gfp);
1819 * read_cache_page - read into page cache, fill it if needed
1820 * @mapping: the page's address_space
1821 * @index: the page index
1822 * @filler: function to perform the read
1823 * @data: destination for read data
1825 * Read into the page cache. If a page already exists, and PageUptodate() is
1826 * not set, try to fill the page then wait for it to become unlocked.
1828 * If the page does not get brought uptodate, return -EIO.
1830 struct page *read_cache_page(struct address_space *mapping,
1831 pgoff_t index,
1832 int (*filler)(void *,struct page*),
1833 void *data)
1835 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1837 EXPORT_SYMBOL(read_cache_page);
1840 * The logic we want is
1842 * if suid or (sgid and xgrp)
1843 * remove privs
1845 int should_remove_suid(struct dentry *dentry)
1847 mode_t mode = dentry->d_inode->i_mode;
1848 int kill = 0;
1850 /* suid always must be killed */
1851 if (unlikely(mode & S_ISUID))
1852 kill = ATTR_KILL_SUID;
1855 * sgid without any exec bits is just a mandatory locking mark; leave
1856 * it alone. If some exec bits are set, it's a real sgid; kill it.
1858 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1859 kill |= ATTR_KILL_SGID;
1861 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1862 return kill;
1864 return 0;
1866 EXPORT_SYMBOL(should_remove_suid);
1868 static int __remove_suid(struct dentry *dentry, int kill)
1870 struct iattr newattrs;
1872 newattrs.ia_valid = ATTR_FORCE | kill;
1873 return notify_change(dentry, &newattrs);
1876 int file_remove_suid(struct file *file)
1878 struct dentry *dentry = file->f_path.dentry;
1879 int killsuid = should_remove_suid(dentry);
1880 int killpriv = security_inode_need_killpriv(dentry);
1881 int error = 0;
1883 if (killpriv < 0)
1884 return killpriv;
1885 if (killpriv)
1886 error = security_inode_killpriv(dentry);
1887 if (!error && killsuid)
1888 error = __remove_suid(dentry, killsuid);
1890 return error;
1892 EXPORT_SYMBOL(file_remove_suid);
1894 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1895 const struct iovec *iov, size_t base, size_t bytes)
1897 size_t copied = 0, left = 0;
1899 while (bytes) {
1900 char __user *buf = iov->iov_base + base;
1901 int copy = min(bytes, iov->iov_len - base);
1903 base = 0;
1904 left = __copy_from_user_inatomic(vaddr, buf, copy);
1905 copied += copy;
1906 bytes -= copy;
1907 vaddr += copy;
1908 iov++;
1910 if (unlikely(left))
1911 break;
1913 return copied - left;
1917 * Copy as much as we can into the page and return the number of bytes which
1918 * were successfully copied. If a fault is encountered then return the number of
1919 * bytes which were copied.
1921 size_t iov_iter_copy_from_user_atomic(struct page *page,
1922 struct iov_iter *i, unsigned long offset, size_t bytes)
1924 char *kaddr;
1925 size_t copied;
1927 BUG_ON(!in_atomic());
1928 kaddr = kmap_atomic(page, KM_USER0);
1929 if (likely(i->nr_segs == 1)) {
1930 int left;
1931 char __user *buf = i->iov->iov_base + i->iov_offset;
1932 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1933 copied = bytes - left;
1934 } else {
1935 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1936 i->iov, i->iov_offset, bytes);
1938 kunmap_atomic(kaddr, KM_USER0);
1940 return copied;
1942 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1945 * This has the same sideeffects and return value as
1946 * iov_iter_copy_from_user_atomic().
1947 * The difference is that it attempts to resolve faults.
1948 * Page must not be locked.
1950 size_t iov_iter_copy_from_user(struct page *page,
1951 struct iov_iter *i, unsigned long offset, size_t bytes)
1953 char *kaddr;
1954 size_t copied;
1956 kaddr = kmap(page);
1957 if (likely(i->nr_segs == 1)) {
1958 int left;
1959 char __user *buf = i->iov->iov_base + i->iov_offset;
1960 left = __copy_from_user(kaddr + offset, buf, bytes);
1961 copied = bytes - left;
1962 } else {
1963 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1964 i->iov, i->iov_offset, bytes);
1966 kunmap(page);
1967 return copied;
1969 EXPORT_SYMBOL(iov_iter_copy_from_user);
1971 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1973 BUG_ON(i->count < bytes);
1975 if (likely(i->nr_segs == 1)) {
1976 i->iov_offset += bytes;
1977 i->count -= bytes;
1978 } else {
1979 const struct iovec *iov = i->iov;
1980 size_t base = i->iov_offset;
1983 * The !iov->iov_len check ensures we skip over unlikely
1984 * zero-length segments (without overruning the iovec).
1986 while (bytes || unlikely(i->count && !iov->iov_len)) {
1987 int copy;
1989 copy = min(bytes, iov->iov_len - base);
1990 BUG_ON(!i->count || i->count < copy);
1991 i->count -= copy;
1992 bytes -= copy;
1993 base += copy;
1994 if (iov->iov_len == base) {
1995 iov++;
1996 base = 0;
1999 i->iov = iov;
2000 i->iov_offset = base;
2003 EXPORT_SYMBOL(iov_iter_advance);
2006 * Fault in the first iovec of the given iov_iter, to a maximum length
2007 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2008 * accessed (ie. because it is an invalid address).
2010 * writev-intensive code may want this to prefault several iovecs -- that
2011 * would be possible (callers must not rely on the fact that _only_ the
2012 * first iovec will be faulted with the current implementation).
2014 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2016 char __user *buf = i->iov->iov_base + i->iov_offset;
2017 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2018 return fault_in_pages_readable(buf, bytes);
2020 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2023 * Return the count of just the current iov_iter segment.
2025 size_t iov_iter_single_seg_count(struct iov_iter *i)
2027 const struct iovec *iov = i->iov;
2028 if (i->nr_segs == 1)
2029 return i->count;
2030 else
2031 return min(i->count, iov->iov_len - i->iov_offset);
2033 EXPORT_SYMBOL(iov_iter_single_seg_count);
2036 * Performs necessary checks before doing a write
2038 * Can adjust writing position or amount of bytes to write.
2039 * Returns appropriate error code that caller should return or
2040 * zero in case that write should be allowed.
2042 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2044 struct inode *inode = file->f_mapping->host;
2045 unsigned long limit = rlimit(RLIMIT_FSIZE);
2047 if (unlikely(*pos < 0))
2048 return -EINVAL;
2050 if (!isblk) {
2051 /* FIXME: this is for backwards compatibility with 2.4 */
2052 if (file->f_flags & O_APPEND)
2053 *pos = i_size_read(inode);
2055 if (limit != RLIM_INFINITY) {
2056 if (*pos >= limit) {
2057 send_sig(SIGXFSZ, current, 0);
2058 return -EFBIG;
2060 if (*count > limit - (typeof(limit))*pos) {
2061 *count = limit - (typeof(limit))*pos;
2067 * LFS rule
2069 if (unlikely(*pos + *count > MAX_NON_LFS &&
2070 !(file->f_flags & O_LARGEFILE))) {
2071 if (*pos >= MAX_NON_LFS) {
2072 return -EFBIG;
2074 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2075 *count = MAX_NON_LFS - (unsigned long)*pos;
2080 * Are we about to exceed the fs block limit ?
2082 * If we have written data it becomes a short write. If we have
2083 * exceeded without writing data we send a signal and return EFBIG.
2084 * Linus frestrict idea will clean these up nicely..
2086 if (likely(!isblk)) {
2087 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2088 if (*count || *pos > inode->i_sb->s_maxbytes) {
2089 return -EFBIG;
2091 /* zero-length writes at ->s_maxbytes are OK */
2094 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2095 *count = inode->i_sb->s_maxbytes - *pos;
2096 } else {
2097 #ifdef CONFIG_BLOCK
2098 loff_t isize;
2099 if (bdev_read_only(I_BDEV(inode)))
2100 return -EPERM;
2101 isize = i_size_read(inode);
2102 if (*pos >= isize) {
2103 if (*count || *pos > isize)
2104 return -ENOSPC;
2107 if (*pos + *count > isize)
2108 *count = isize - *pos;
2109 #else
2110 return -EPERM;
2111 #endif
2113 return 0;
2115 EXPORT_SYMBOL(generic_write_checks);
2117 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2118 loff_t pos, unsigned len, unsigned flags,
2119 struct page **pagep, void **fsdata)
2121 const struct address_space_operations *aops = mapping->a_ops;
2123 return aops->write_begin(file, mapping, pos, len, flags,
2124 pagep, fsdata);
2126 EXPORT_SYMBOL(pagecache_write_begin);
2128 int pagecache_write_end(struct file *file, struct address_space *mapping,
2129 loff_t pos, unsigned len, unsigned copied,
2130 struct page *page, void *fsdata)
2132 const struct address_space_operations *aops = mapping->a_ops;
2134 mark_page_accessed(page);
2135 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2137 EXPORT_SYMBOL(pagecache_write_end);
2139 ssize_t
2140 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2141 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2142 size_t count, size_t ocount)
2144 struct file *file = iocb->ki_filp;
2145 struct address_space *mapping = file->f_mapping;
2146 struct inode *inode = mapping->host;
2147 ssize_t written;
2148 size_t write_len;
2149 pgoff_t end;
2151 if (count != ocount)
2152 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2154 write_len = iov_length(iov, *nr_segs);
2155 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2157 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2158 if (written)
2159 goto out;
2162 * After a write we want buffered reads to be sure to go to disk to get
2163 * the new data. We invalidate clean cached page from the region we're
2164 * about to write. We do this *before* the write so that we can return
2165 * without clobbering -EIOCBQUEUED from ->direct_IO().
2167 if (mapping->nrpages) {
2168 written = invalidate_inode_pages2_range(mapping,
2169 pos >> PAGE_CACHE_SHIFT, end);
2171 * If a page can not be invalidated, return 0 to fall back
2172 * to buffered write.
2174 if (written) {
2175 if (written == -EBUSY)
2176 return 0;
2177 goto out;
2181 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2184 * Finally, try again to invalidate clean pages which might have been
2185 * cached by non-direct readahead, or faulted in by get_user_pages()
2186 * if the source of the write was an mmap'ed region of the file
2187 * we're writing. Either one is a pretty crazy thing to do,
2188 * so we don't support it 100%. If this invalidation
2189 * fails, tough, the write still worked...
2191 if (mapping->nrpages) {
2192 invalidate_inode_pages2_range(mapping,
2193 pos >> PAGE_CACHE_SHIFT, end);
2196 if (written > 0) {
2197 pos += written;
2198 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2199 i_size_write(inode, pos);
2200 mark_inode_dirty(inode);
2202 *ppos = pos;
2204 out:
2205 return written;
2207 EXPORT_SYMBOL(generic_file_direct_write);
2210 * Find or create a page at the given pagecache position. Return the locked
2211 * page. This function is specifically for buffered writes.
2213 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2214 pgoff_t index, unsigned flags)
2216 int status;
2217 struct page *page;
2218 gfp_t gfp_notmask = 0;
2219 if (flags & AOP_FLAG_NOFS)
2220 gfp_notmask = __GFP_FS;
2221 repeat:
2222 page = find_lock_page(mapping, index);
2223 if (likely(page))
2224 return page;
2226 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2227 if (!page)
2228 return NULL;
2229 status = add_to_page_cache_lru(page, mapping, index,
2230 GFP_KERNEL & ~gfp_notmask);
2231 if (unlikely(status)) {
2232 page_cache_release(page);
2233 if (status == -EEXIST)
2234 goto repeat;
2235 return NULL;
2237 return page;
2239 EXPORT_SYMBOL(grab_cache_page_write_begin);
2241 static ssize_t generic_perform_write(struct file *file,
2242 struct iov_iter *i, loff_t pos)
2244 struct address_space *mapping = file->f_mapping;
2245 const struct address_space_operations *a_ops = mapping->a_ops;
2246 long status = 0;
2247 ssize_t written = 0;
2248 unsigned int flags = 0;
2251 * Copies from kernel address space cannot fail (NFSD is a big user).
2253 if (segment_eq(get_fs(), KERNEL_DS))
2254 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2256 do {
2257 struct page *page;
2258 unsigned long offset; /* Offset into pagecache page */
2259 unsigned long bytes; /* Bytes to write to page */
2260 size_t copied; /* Bytes copied from user */
2261 void *fsdata;
2263 offset = (pos & (PAGE_CACHE_SIZE - 1));
2264 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2265 iov_iter_count(i));
2267 again:
2270 * Bring in the user page that we will copy from _first_.
2271 * Otherwise there's a nasty deadlock on copying from the
2272 * same page as we're writing to, without it being marked
2273 * up-to-date.
2275 * Not only is this an optimisation, but it is also required
2276 * to check that the address is actually valid, when atomic
2277 * usercopies are used, below.
2279 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2280 status = -EFAULT;
2281 break;
2284 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2285 &page, &fsdata);
2286 if (unlikely(status))
2287 break;
2289 if (mapping_writably_mapped(mapping))
2290 flush_dcache_page(page);
2292 pagefault_disable();
2293 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2294 pagefault_enable();
2295 flush_dcache_page(page);
2297 mark_page_accessed(page);
2298 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2299 page, fsdata);
2300 if (unlikely(status < 0))
2301 break;
2302 copied = status;
2304 cond_resched();
2306 iov_iter_advance(i, copied);
2307 if (unlikely(copied == 0)) {
2309 * If we were unable to copy any data at all, we must
2310 * fall back to a single segment length write.
2312 * If we didn't fallback here, we could livelock
2313 * because not all segments in the iov can be copied at
2314 * once without a pagefault.
2316 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2317 iov_iter_single_seg_count(i));
2318 goto again;
2320 pos += copied;
2321 written += copied;
2323 balance_dirty_pages_ratelimited(mapping);
2325 } while (iov_iter_count(i));
2327 return written ? written : status;
2330 ssize_t
2331 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2332 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2333 size_t count, ssize_t written)
2335 struct file *file = iocb->ki_filp;
2336 ssize_t status;
2337 struct iov_iter i;
2339 iov_iter_init(&i, iov, nr_segs, count, written);
2340 status = generic_perform_write(file, &i, pos);
2342 if (likely(status >= 0)) {
2343 written += status;
2344 *ppos = pos + status;
2347 return written ? written : status;
2349 EXPORT_SYMBOL(generic_file_buffered_write);
2352 * __generic_file_aio_write - write data to a file
2353 * @iocb: IO state structure (file, offset, etc.)
2354 * @iov: vector with data to write
2355 * @nr_segs: number of segments in the vector
2356 * @ppos: position where to write
2358 * This function does all the work needed for actually writing data to a
2359 * file. It does all basic checks, removes SUID from the file, updates
2360 * modification times and calls proper subroutines depending on whether we
2361 * do direct IO or a standard buffered write.
2363 * It expects i_mutex to be grabbed unless we work on a block device or similar
2364 * object which does not need locking at all.
2366 * This function does *not* take care of syncing data in case of O_SYNC write.
2367 * A caller has to handle it. This is mainly due to the fact that we want to
2368 * avoid syncing under i_mutex.
2370 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2371 unsigned long nr_segs, loff_t *ppos)
2373 struct file *file = iocb->ki_filp;
2374 struct address_space * mapping = file->f_mapping;
2375 size_t ocount; /* original count */
2376 size_t count; /* after file limit checks */
2377 struct inode *inode = mapping->host;
2378 loff_t pos;
2379 ssize_t written;
2380 ssize_t err;
2382 ocount = 0;
2383 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2384 if (err)
2385 return err;
2387 count = ocount;
2388 pos = *ppos;
2390 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2392 /* We can write back this queue in page reclaim */
2393 current->backing_dev_info = mapping->backing_dev_info;
2394 written = 0;
2396 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2397 if (err)
2398 goto out;
2400 if (count == 0)
2401 goto out;
2403 err = file_remove_suid(file);
2404 if (err)
2405 goto out;
2407 file_update_time(file);
2409 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2410 if (unlikely(file->f_flags & O_DIRECT)) {
2411 loff_t endbyte;
2412 ssize_t written_buffered;
2414 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2415 ppos, count, ocount);
2416 if (written < 0 || written == count)
2417 goto out;
2419 * direct-io write to a hole: fall through to buffered I/O
2420 * for completing the rest of the request.
2422 pos += written;
2423 count -= written;
2424 written_buffered = generic_file_buffered_write(iocb, iov,
2425 nr_segs, pos, ppos, count,
2426 written);
2428 * If generic_file_buffered_write() retuned a synchronous error
2429 * then we want to return the number of bytes which were
2430 * direct-written, or the error code if that was zero. Note
2431 * that this differs from normal direct-io semantics, which
2432 * will return -EFOO even if some bytes were written.
2434 if (written_buffered < 0) {
2435 err = written_buffered;
2436 goto out;
2440 * We need to ensure that the page cache pages are written to
2441 * disk and invalidated to preserve the expected O_DIRECT
2442 * semantics.
2444 endbyte = pos + written_buffered - written - 1;
2445 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2446 if (err == 0) {
2447 written = written_buffered;
2448 invalidate_mapping_pages(mapping,
2449 pos >> PAGE_CACHE_SHIFT,
2450 endbyte >> PAGE_CACHE_SHIFT);
2451 } else {
2453 * We don't know how much we wrote, so just return
2454 * the number of bytes which were direct-written
2457 } else {
2458 written = generic_file_buffered_write(iocb, iov, nr_segs,
2459 pos, ppos, count, written);
2461 out:
2462 current->backing_dev_info = NULL;
2463 return written ? written : err;
2465 EXPORT_SYMBOL(__generic_file_aio_write);
2468 * generic_file_aio_write - write data to a file
2469 * @iocb: IO state structure
2470 * @iov: vector with data to write
2471 * @nr_segs: number of segments in the vector
2472 * @pos: position in file where to write
2474 * This is a wrapper around __generic_file_aio_write() to be used by most
2475 * filesystems. It takes care of syncing the file in case of O_SYNC file
2476 * and acquires i_mutex as needed.
2478 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2479 unsigned long nr_segs, loff_t pos)
2481 struct file *file = iocb->ki_filp;
2482 struct inode *inode = file->f_mapping->host;
2483 ssize_t ret;
2485 BUG_ON(iocb->ki_pos != pos);
2487 mutex_lock(&inode->i_mutex);
2488 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2489 mutex_unlock(&inode->i_mutex);
2491 if (ret > 0 || ret == -EIOCBQUEUED) {
2492 ssize_t err;
2494 err = generic_write_sync(file, pos, ret);
2495 if (err < 0 && ret > 0)
2496 ret = err;
2498 return ret;
2500 EXPORT_SYMBOL(generic_file_aio_write);
2503 * try_to_release_page() - release old fs-specific metadata on a page
2505 * @page: the page which the kernel is trying to free
2506 * @gfp_mask: memory allocation flags (and I/O mode)
2508 * The address_space is to try to release any data against the page
2509 * (presumably at page->private). If the release was successful, return `1'.
2510 * Otherwise return zero.
2512 * This may also be called if PG_fscache is set on a page, indicating that the
2513 * page is known to the local caching routines.
2515 * The @gfp_mask argument specifies whether I/O may be performed to release
2516 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2519 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2521 struct address_space * const mapping = page->mapping;
2523 BUG_ON(!PageLocked(page));
2524 if (PageWriteback(page))
2525 return 0;
2527 if (mapping && mapping->a_ops->releasepage)
2528 return mapping->a_ops->releasepage(page, gfp_mask);
2529 return try_to_free_buffers(page);
2532 EXPORT_SYMBOL(try_to_release_page);