[IPV4] fib_trie: put leaf nodes in a slab cache
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / libfs.c
blob6e68b700958d331e7e0c2446d54b7d9d06b8f3c2
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
11 #include <linux/exportfs.h>
13 #include <asm/uaccess.h>
15 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
16 struct kstat *stat)
18 struct inode *inode = dentry->d_inode;
19 generic_fillattr(inode, stat);
20 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
21 return 0;
24 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
26 buf->f_type = dentry->d_sb->s_magic;
27 buf->f_bsize = PAGE_CACHE_SIZE;
28 buf->f_namelen = NAME_MAX;
29 return 0;
33 * Retaining negative dentries for an in-memory filesystem just wastes
34 * memory and lookup time: arrange for them to be deleted immediately.
36 static int simple_delete_dentry(struct dentry *dentry)
38 return 1;
42 * Lookup the data. This is trivial - if the dentry didn't already
43 * exist, we know it is negative. Set d_op to delete negative dentries.
45 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
47 static struct dentry_operations simple_dentry_operations = {
48 .d_delete = simple_delete_dentry,
51 if (dentry->d_name.len > NAME_MAX)
52 return ERR_PTR(-ENAMETOOLONG);
53 dentry->d_op = &simple_dentry_operations;
54 d_add(dentry, NULL);
55 return NULL;
58 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
60 return 0;
63 int dcache_dir_open(struct inode *inode, struct file *file)
65 static struct qstr cursor_name = {.len = 1, .name = "."};
67 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
69 return file->private_data ? 0 : -ENOMEM;
72 int dcache_dir_close(struct inode *inode, struct file *file)
74 dput(file->private_data);
75 return 0;
78 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
80 mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
81 switch (origin) {
82 case 1:
83 offset += file->f_pos;
84 case 0:
85 if (offset >= 0)
86 break;
87 default:
88 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
89 return -EINVAL;
91 if (offset != file->f_pos) {
92 file->f_pos = offset;
93 if (file->f_pos >= 2) {
94 struct list_head *p;
95 struct dentry *cursor = file->private_data;
96 loff_t n = file->f_pos - 2;
98 spin_lock(&dcache_lock);
99 list_del(&cursor->d_u.d_child);
100 p = file->f_path.dentry->d_subdirs.next;
101 while (n && p != &file->f_path.dentry->d_subdirs) {
102 struct dentry *next;
103 next = list_entry(p, struct dentry, d_u.d_child);
104 if (!d_unhashed(next) && next->d_inode)
105 n--;
106 p = p->next;
108 list_add_tail(&cursor->d_u.d_child, p);
109 spin_unlock(&dcache_lock);
112 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
113 return offset;
116 /* Relationship between i_mode and the DT_xxx types */
117 static inline unsigned char dt_type(struct inode *inode)
119 return (inode->i_mode >> 12) & 15;
123 * Directory is locked and all positive dentries in it are safe, since
124 * for ramfs-type trees they can't go away without unlink() or rmdir(),
125 * both impossible due to the lock on directory.
128 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
130 struct dentry *dentry = filp->f_path.dentry;
131 struct dentry *cursor = filp->private_data;
132 struct list_head *p, *q = &cursor->d_u.d_child;
133 ino_t ino;
134 int i = filp->f_pos;
136 switch (i) {
137 case 0:
138 ino = dentry->d_inode->i_ino;
139 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
140 break;
141 filp->f_pos++;
142 i++;
143 /* fallthrough */
144 case 1:
145 ino = parent_ino(dentry);
146 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
147 break;
148 filp->f_pos++;
149 i++;
150 /* fallthrough */
151 default:
152 spin_lock(&dcache_lock);
153 if (filp->f_pos == 2)
154 list_move(q, &dentry->d_subdirs);
156 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
157 struct dentry *next;
158 next = list_entry(p, struct dentry, d_u.d_child);
159 if (d_unhashed(next) || !next->d_inode)
160 continue;
162 spin_unlock(&dcache_lock);
163 if (filldir(dirent, next->d_name.name,
164 next->d_name.len, filp->f_pos,
165 next->d_inode->i_ino,
166 dt_type(next->d_inode)) < 0)
167 return 0;
168 spin_lock(&dcache_lock);
169 /* next is still alive */
170 list_move(q, p);
171 p = q;
172 filp->f_pos++;
174 spin_unlock(&dcache_lock);
176 return 0;
179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
181 return -EISDIR;
184 const struct file_operations simple_dir_operations = {
185 .open = dcache_dir_open,
186 .release = dcache_dir_close,
187 .llseek = dcache_dir_lseek,
188 .read = generic_read_dir,
189 .readdir = dcache_readdir,
190 .fsync = simple_sync_file,
193 const struct inode_operations simple_dir_inode_operations = {
194 .lookup = simple_lookup,
197 static const struct super_operations simple_super_operations = {
198 .statfs = simple_statfs,
202 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
203 * will never be mountable)
205 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
206 const struct super_operations *ops, unsigned long magic,
207 struct vfsmount *mnt)
209 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
210 struct dentry *dentry;
211 struct inode *root;
212 struct qstr d_name = {.name = name, .len = strlen(name)};
214 if (IS_ERR(s))
215 return PTR_ERR(s);
217 s->s_flags = MS_NOUSER;
218 s->s_maxbytes = ~0ULL;
219 s->s_blocksize = 1024;
220 s->s_blocksize_bits = 10;
221 s->s_magic = magic;
222 s->s_op = ops ? ops : &simple_super_operations;
223 s->s_time_gran = 1;
224 root = new_inode(s);
225 if (!root)
226 goto Enomem;
228 * since this is the first inode, make it number 1. New inodes created
229 * after this must take care not to collide with it (by passing
230 * max_reserved of 1 to iunique).
232 root->i_ino = 1;
233 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
234 root->i_uid = root->i_gid = 0;
235 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
236 dentry = d_alloc(NULL, &d_name);
237 if (!dentry) {
238 iput(root);
239 goto Enomem;
241 dentry->d_sb = s;
242 dentry->d_parent = dentry;
243 d_instantiate(dentry, root);
244 s->s_root = dentry;
245 s->s_flags |= MS_ACTIVE;
246 return simple_set_mnt(mnt, s);
248 Enomem:
249 up_write(&s->s_umount);
250 deactivate_super(s);
251 return -ENOMEM;
254 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
256 struct inode *inode = old_dentry->d_inode;
258 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
259 inc_nlink(inode);
260 atomic_inc(&inode->i_count);
261 dget(dentry);
262 d_instantiate(dentry, inode);
263 return 0;
266 static inline int simple_positive(struct dentry *dentry)
268 return dentry->d_inode && !d_unhashed(dentry);
271 int simple_empty(struct dentry *dentry)
273 struct dentry *child;
274 int ret = 0;
276 spin_lock(&dcache_lock);
277 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
278 if (simple_positive(child))
279 goto out;
280 ret = 1;
281 out:
282 spin_unlock(&dcache_lock);
283 return ret;
286 int simple_unlink(struct inode *dir, struct dentry *dentry)
288 struct inode *inode = dentry->d_inode;
290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
291 drop_nlink(inode);
292 dput(dentry);
293 return 0;
296 int simple_rmdir(struct inode *dir, struct dentry *dentry)
298 if (!simple_empty(dentry))
299 return -ENOTEMPTY;
301 drop_nlink(dentry->d_inode);
302 simple_unlink(dir, dentry);
303 drop_nlink(dir);
304 return 0;
307 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
308 struct inode *new_dir, struct dentry *new_dentry)
310 struct inode *inode = old_dentry->d_inode;
311 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
313 if (!simple_empty(new_dentry))
314 return -ENOTEMPTY;
316 if (new_dentry->d_inode) {
317 simple_unlink(new_dir, new_dentry);
318 if (they_are_dirs)
319 drop_nlink(old_dir);
320 } else if (they_are_dirs) {
321 drop_nlink(old_dir);
322 inc_nlink(new_dir);
325 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
326 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
328 return 0;
331 int simple_readpage(struct file *file, struct page *page)
333 clear_highpage(page);
334 flush_dcache_page(page);
335 SetPageUptodate(page);
336 unlock_page(page);
337 return 0;
340 int simple_prepare_write(struct file *file, struct page *page,
341 unsigned from, unsigned to)
343 if (!PageUptodate(page)) {
344 if (to - from != PAGE_CACHE_SIZE) {
345 void *kaddr = kmap_atomic(page, KM_USER0);
346 memset(kaddr, 0, from);
347 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
348 flush_dcache_page(page);
349 kunmap_atomic(kaddr, KM_USER0);
352 return 0;
355 int simple_write_begin(struct file *file, struct address_space *mapping,
356 loff_t pos, unsigned len, unsigned flags,
357 struct page **pagep, void **fsdata)
359 struct page *page;
360 pgoff_t index;
361 unsigned from;
363 index = pos >> PAGE_CACHE_SHIFT;
364 from = pos & (PAGE_CACHE_SIZE - 1);
366 page = __grab_cache_page(mapping, index);
367 if (!page)
368 return -ENOMEM;
370 *pagep = page;
372 return simple_prepare_write(file, page, from, from+len);
375 static int simple_commit_write(struct file *file, struct page *page,
376 unsigned from, unsigned to)
378 struct inode *inode = page->mapping->host;
379 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
381 if (!PageUptodate(page))
382 SetPageUptodate(page);
384 * No need to use i_size_read() here, the i_size
385 * cannot change under us because we hold the i_mutex.
387 if (pos > inode->i_size)
388 i_size_write(inode, pos);
389 set_page_dirty(page);
390 return 0;
393 int simple_write_end(struct file *file, struct address_space *mapping,
394 loff_t pos, unsigned len, unsigned copied,
395 struct page *page, void *fsdata)
397 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
399 /* zero the stale part of the page if we did a short copy */
400 if (copied < len) {
401 void *kaddr = kmap_atomic(page, KM_USER0);
402 memset(kaddr + from + copied, 0, len - copied);
403 flush_dcache_page(page);
404 kunmap_atomic(kaddr, KM_USER0);
407 simple_commit_write(file, page, from, from+copied);
409 unlock_page(page);
410 page_cache_release(page);
412 return copied;
416 * the inodes created here are not hashed. If you use iunique to generate
417 * unique inode values later for this filesystem, then you must take care
418 * to pass it an appropriate max_reserved value to avoid collisions.
420 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
422 struct inode *inode;
423 struct dentry *root;
424 struct dentry *dentry;
425 int i;
427 s->s_blocksize = PAGE_CACHE_SIZE;
428 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
429 s->s_magic = magic;
430 s->s_op = &simple_super_operations;
431 s->s_time_gran = 1;
433 inode = new_inode(s);
434 if (!inode)
435 return -ENOMEM;
437 * because the root inode is 1, the files array must not contain an
438 * entry at index 1
440 inode->i_ino = 1;
441 inode->i_mode = S_IFDIR | 0755;
442 inode->i_uid = inode->i_gid = 0;
443 inode->i_blocks = 0;
444 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
445 inode->i_op = &simple_dir_inode_operations;
446 inode->i_fop = &simple_dir_operations;
447 inode->i_nlink = 2;
448 root = d_alloc_root(inode);
449 if (!root) {
450 iput(inode);
451 return -ENOMEM;
453 for (i = 0; !files->name || files->name[0]; i++, files++) {
454 if (!files->name)
455 continue;
457 /* warn if it tries to conflict with the root inode */
458 if (unlikely(i == 1))
459 printk(KERN_WARNING "%s: %s passed in a files array"
460 "with an index of 1!\n", __func__,
461 s->s_type->name);
463 dentry = d_alloc_name(root, files->name);
464 if (!dentry)
465 goto out;
466 inode = new_inode(s);
467 if (!inode)
468 goto out;
469 inode->i_mode = S_IFREG | files->mode;
470 inode->i_uid = inode->i_gid = 0;
471 inode->i_blocks = 0;
472 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
473 inode->i_fop = files->ops;
474 inode->i_ino = i;
475 d_add(dentry, inode);
477 s->s_root = root;
478 return 0;
479 out:
480 d_genocide(root);
481 dput(root);
482 return -ENOMEM;
485 static DEFINE_SPINLOCK(pin_fs_lock);
487 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
489 struct vfsmount *mnt = NULL;
490 spin_lock(&pin_fs_lock);
491 if (unlikely(!*mount)) {
492 spin_unlock(&pin_fs_lock);
493 mnt = vfs_kern_mount(type, 0, type->name, NULL);
494 if (IS_ERR(mnt))
495 return PTR_ERR(mnt);
496 spin_lock(&pin_fs_lock);
497 if (!*mount)
498 *mount = mnt;
500 mntget(*mount);
501 ++*count;
502 spin_unlock(&pin_fs_lock);
503 mntput(mnt);
504 return 0;
507 void simple_release_fs(struct vfsmount **mount, int *count)
509 struct vfsmount *mnt;
510 spin_lock(&pin_fs_lock);
511 mnt = *mount;
512 if (!--*count)
513 *mount = NULL;
514 spin_unlock(&pin_fs_lock);
515 mntput(mnt);
518 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
519 const void *from, size_t available)
521 loff_t pos = *ppos;
522 if (pos < 0)
523 return -EINVAL;
524 if (pos >= available)
525 return 0;
526 if (count > available - pos)
527 count = available - pos;
528 if (copy_to_user(to, from + pos, count))
529 return -EFAULT;
530 *ppos = pos + count;
531 return count;
535 * Transaction based IO.
536 * The file expects a single write which triggers the transaction, and then
537 * possibly a read which collects the result - which is stored in a
538 * file-local buffer.
540 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
542 struct simple_transaction_argresp *ar;
543 static DEFINE_SPINLOCK(simple_transaction_lock);
545 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
546 return ERR_PTR(-EFBIG);
548 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
549 if (!ar)
550 return ERR_PTR(-ENOMEM);
552 spin_lock(&simple_transaction_lock);
554 /* only one write allowed per open */
555 if (file->private_data) {
556 spin_unlock(&simple_transaction_lock);
557 free_page((unsigned long)ar);
558 return ERR_PTR(-EBUSY);
561 file->private_data = ar;
563 spin_unlock(&simple_transaction_lock);
565 if (copy_from_user(ar->data, buf, size))
566 return ERR_PTR(-EFAULT);
568 return ar->data;
571 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
573 struct simple_transaction_argresp *ar = file->private_data;
575 if (!ar)
576 return 0;
577 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
580 int simple_transaction_release(struct inode *inode, struct file *file)
582 free_page((unsigned long)file->private_data);
583 return 0;
586 /* Simple attribute files */
588 struct simple_attr {
589 u64 (*get)(void *);
590 void (*set)(void *, u64);
591 char get_buf[24]; /* enough to store a u64 and "\n\0" */
592 char set_buf[24];
593 void *data;
594 const char *fmt; /* format for read operation */
595 struct mutex mutex; /* protects access to these buffers */
598 /* simple_attr_open is called by an actual attribute open file operation
599 * to set the attribute specific access operations. */
600 int simple_attr_open(struct inode *inode, struct file *file,
601 u64 (*get)(void *), void (*set)(void *, u64),
602 const char *fmt)
604 struct simple_attr *attr;
606 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
607 if (!attr)
608 return -ENOMEM;
610 attr->get = get;
611 attr->set = set;
612 attr->data = inode->i_private;
613 attr->fmt = fmt;
614 mutex_init(&attr->mutex);
616 file->private_data = attr;
618 return nonseekable_open(inode, file);
621 int simple_attr_close(struct inode *inode, struct file *file)
623 kfree(file->private_data);
624 return 0;
627 /* read from the buffer that is filled with the get function */
628 ssize_t simple_attr_read(struct file *file, char __user *buf,
629 size_t len, loff_t *ppos)
631 struct simple_attr *attr;
632 size_t size;
633 ssize_t ret;
635 attr = file->private_data;
637 if (!attr->get)
638 return -EACCES;
640 mutex_lock(&attr->mutex);
641 if (*ppos) /* continued read */
642 size = strlen(attr->get_buf);
643 else /* first read */
644 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
645 attr->fmt,
646 (unsigned long long)attr->get(attr->data));
648 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
649 mutex_unlock(&attr->mutex);
650 return ret;
653 /* interpret the buffer as a number to call the set function with */
654 ssize_t simple_attr_write(struct file *file, const char __user *buf,
655 size_t len, loff_t *ppos)
657 struct simple_attr *attr;
658 u64 val;
659 size_t size;
660 ssize_t ret;
662 attr = file->private_data;
664 if (!attr->set)
665 return -EACCES;
667 mutex_lock(&attr->mutex);
668 ret = -EFAULT;
669 size = min(sizeof(attr->set_buf) - 1, len);
670 if (copy_from_user(attr->set_buf, buf, size))
671 goto out;
673 ret = len; /* claim we got the whole input */
674 attr->set_buf[size] = '\0';
675 val = simple_strtol(attr->set_buf, NULL, 0);
676 attr->set(attr->data, val);
677 out:
678 mutex_unlock(&attr->mutex);
679 return ret;
683 * This is what d_alloc_anon should have been. Once the exportfs
684 * argument transition has been finished I will update d_alloc_anon
685 * to this prototype and this wrapper will go away. --hch
687 static struct dentry *exportfs_d_alloc(struct inode *inode)
689 struct dentry *dentry;
691 if (!inode)
692 return NULL;
693 if (IS_ERR(inode))
694 return ERR_PTR(PTR_ERR(inode));
696 dentry = d_alloc_anon(inode);
697 if (!dentry) {
698 iput(inode);
699 dentry = ERR_PTR(-ENOMEM);
701 return dentry;
705 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
706 * @sb: filesystem to do the file handle conversion on
707 * @fid: file handle to convert
708 * @fh_len: length of the file handle in bytes
709 * @fh_type: type of file handle
710 * @get_inode: filesystem callback to retrieve inode
712 * This function decodes @fid as long as it has one of the well-known
713 * Linux filehandle types and calls @get_inode on it to retrieve the
714 * inode for the object specified in the file handle.
716 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
717 int fh_len, int fh_type, struct inode *(*get_inode)
718 (struct super_block *sb, u64 ino, u32 gen))
720 struct inode *inode = NULL;
722 if (fh_len < 2)
723 return NULL;
725 switch (fh_type) {
726 case FILEID_INO32_GEN:
727 case FILEID_INO32_GEN_PARENT:
728 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
729 break;
732 return exportfs_d_alloc(inode);
734 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
737 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
738 * @sb: filesystem to do the file handle conversion on
739 * @fid: file handle to convert
740 * @fh_len: length of the file handle in bytes
741 * @fh_type: type of file handle
742 * @get_inode: filesystem callback to retrieve inode
744 * This function decodes @fid as long as it has one of the well-known
745 * Linux filehandle types and calls @get_inode on it to retrieve the
746 * inode for the _parent_ object specified in the file handle if it
747 * is specified in the file handle, or NULL otherwise.
749 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
750 int fh_len, int fh_type, struct inode *(*get_inode)
751 (struct super_block *sb, u64 ino, u32 gen))
753 struct inode *inode = NULL;
755 if (fh_len <= 2)
756 return NULL;
758 switch (fh_type) {
759 case FILEID_INO32_GEN_PARENT:
760 inode = get_inode(sb, fid->i32.parent_ino,
761 (fh_len > 3 ? fid->i32.parent_gen : 0));
762 break;
765 return exportfs_d_alloc(inode);
767 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
769 EXPORT_SYMBOL(dcache_dir_close);
770 EXPORT_SYMBOL(dcache_dir_lseek);
771 EXPORT_SYMBOL(dcache_dir_open);
772 EXPORT_SYMBOL(dcache_readdir);
773 EXPORT_SYMBOL(generic_read_dir);
774 EXPORT_SYMBOL(get_sb_pseudo);
775 EXPORT_SYMBOL(simple_write_begin);
776 EXPORT_SYMBOL(simple_write_end);
777 EXPORT_SYMBOL(simple_dir_inode_operations);
778 EXPORT_SYMBOL(simple_dir_operations);
779 EXPORT_SYMBOL(simple_empty);
780 EXPORT_SYMBOL(d_alloc_name);
781 EXPORT_SYMBOL(simple_fill_super);
782 EXPORT_SYMBOL(simple_getattr);
783 EXPORT_SYMBOL(simple_link);
784 EXPORT_SYMBOL(simple_lookup);
785 EXPORT_SYMBOL(simple_pin_fs);
786 EXPORT_SYMBOL(simple_prepare_write);
787 EXPORT_SYMBOL(simple_readpage);
788 EXPORT_SYMBOL(simple_release_fs);
789 EXPORT_SYMBOL(simple_rename);
790 EXPORT_SYMBOL(simple_rmdir);
791 EXPORT_SYMBOL(simple_statfs);
792 EXPORT_SYMBOL(simple_sync_file);
793 EXPORT_SYMBOL(simple_unlink);
794 EXPORT_SYMBOL(simple_read_from_buffer);
795 EXPORT_SYMBOL(simple_transaction_get);
796 EXPORT_SYMBOL(simple_transaction_read);
797 EXPORT_SYMBOL(simple_transaction_release);
798 EXPORT_SYMBOL_GPL(simple_attr_open);
799 EXPORT_SYMBOL_GPL(simple_attr_close);
800 EXPORT_SYMBOL_GPL(simple_attr_read);
801 EXPORT_SYMBOL_GPL(simple_attr_write);