drm/i915: unload: fix error_work races
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob4cccdce5f80f565b9faf821a0ab33f281a06826a
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
43 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
49 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
50 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51 unsigned alignment);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
56 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
61 static inline bool
62 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
64 return obj_priv->gtt_space &&
65 !obj_priv->active &&
66 obj_priv->pin_count == 0;
69 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
70 unsigned long end)
72 drm_i915_private_t *dev_priv = dev->dev_private;
74 if (start >= end ||
75 (start & (PAGE_SIZE - 1)) != 0 ||
76 (end & (PAGE_SIZE - 1)) != 0) {
77 return -EINVAL;
80 drm_mm_init(&dev_priv->mm.gtt_space, start,
81 end - start);
83 dev->gtt_total = (uint32_t) (end - start);
85 return 0;
88 int
89 i915_gem_init_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
92 struct drm_i915_gem_init *args = data;
93 int ret;
95 mutex_lock(&dev->struct_mutex);
96 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
97 mutex_unlock(&dev->struct_mutex);
99 return ret;
103 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
104 struct drm_file *file_priv)
106 struct drm_i915_gem_get_aperture *args = data;
108 if (!(dev->driver->driver_features & DRIVER_GEM))
109 return -ENODEV;
111 args->aper_size = dev->gtt_total;
112 args->aper_available_size = (args->aper_size -
113 atomic_read(&dev->pin_memory));
115 return 0;
120 * Creates a new mm object and returns a handle to it.
123 i915_gem_create_ioctl(struct drm_device *dev, void *data,
124 struct drm_file *file_priv)
126 struct drm_i915_gem_create *args = data;
127 struct drm_gem_object *obj;
128 int ret;
129 u32 handle;
131 args->size = roundup(args->size, PAGE_SIZE);
133 /* Allocate the new object */
134 obj = i915_gem_alloc_object(dev, args->size);
135 if (obj == NULL)
136 return -ENOMEM;
138 ret = drm_gem_handle_create(file_priv, obj, &handle);
139 if (ret) {
140 drm_gem_object_unreference_unlocked(obj);
141 return ret;
144 /* Sink the floating reference from kref_init(handlecount) */
145 drm_gem_object_handle_unreference_unlocked(obj);
147 args->handle = handle;
148 return 0;
151 static inline int
152 fast_shmem_read(struct page **pages,
153 loff_t page_base, int page_offset,
154 char __user *data,
155 int length)
157 char __iomem *vaddr;
158 int unwritten;
160 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
161 if (vaddr == NULL)
162 return -ENOMEM;
163 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
164 kunmap_atomic(vaddr, KM_USER0);
166 if (unwritten)
167 return -EFAULT;
169 return 0;
172 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
174 drm_i915_private_t *dev_priv = obj->dev->dev_private;
175 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
177 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
178 obj_priv->tiling_mode != I915_TILING_NONE;
181 static inline void
182 slow_shmem_copy(struct page *dst_page,
183 int dst_offset,
184 struct page *src_page,
185 int src_offset,
186 int length)
188 char *dst_vaddr, *src_vaddr;
190 dst_vaddr = kmap(dst_page);
191 src_vaddr = kmap(src_page);
193 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
195 kunmap(src_page);
196 kunmap(dst_page);
199 static inline void
200 slow_shmem_bit17_copy(struct page *gpu_page,
201 int gpu_offset,
202 struct page *cpu_page,
203 int cpu_offset,
204 int length,
205 int is_read)
207 char *gpu_vaddr, *cpu_vaddr;
209 /* Use the unswizzled path if this page isn't affected. */
210 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
211 if (is_read)
212 return slow_shmem_copy(cpu_page, cpu_offset,
213 gpu_page, gpu_offset, length);
214 else
215 return slow_shmem_copy(gpu_page, gpu_offset,
216 cpu_page, cpu_offset, length);
219 gpu_vaddr = kmap(gpu_page);
220 cpu_vaddr = kmap(cpu_page);
222 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
223 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 while (length > 0) {
226 int cacheline_end = ALIGN(gpu_offset + 1, 64);
227 int this_length = min(cacheline_end - gpu_offset, length);
228 int swizzled_gpu_offset = gpu_offset ^ 64;
230 if (is_read) {
231 memcpy(cpu_vaddr + cpu_offset,
232 gpu_vaddr + swizzled_gpu_offset,
233 this_length);
234 } else {
235 memcpy(gpu_vaddr + swizzled_gpu_offset,
236 cpu_vaddr + cpu_offset,
237 this_length);
239 cpu_offset += this_length;
240 gpu_offset += this_length;
241 length -= this_length;
244 kunmap(cpu_page);
245 kunmap(gpu_page);
249 * This is the fast shmem pread path, which attempts to copy_from_user directly
250 * from the backing pages of the object to the user's address space. On a
251 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
253 static int
254 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
255 struct drm_i915_gem_pread *args,
256 struct drm_file *file_priv)
258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
259 ssize_t remain;
260 loff_t offset, page_base;
261 char __user *user_data;
262 int page_offset, page_length;
263 int ret;
265 user_data = (char __user *) (uintptr_t) args->data_ptr;
266 remain = args->size;
268 mutex_lock(&dev->struct_mutex);
270 ret = i915_gem_object_get_pages(obj, 0);
271 if (ret != 0)
272 goto fail_unlock;
274 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
275 args->size);
276 if (ret != 0)
277 goto fail_put_pages;
279 obj_priv = to_intel_bo(obj);
280 offset = args->offset;
282 while (remain > 0) {
283 /* Operation in this page
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
295 ret = fast_shmem_read(obj_priv->pages,
296 page_base, page_offset,
297 user_data, page_length);
298 if (ret)
299 goto fail_put_pages;
301 remain -= page_length;
302 user_data += page_length;
303 offset += page_length;
306 fail_put_pages:
307 i915_gem_object_put_pages(obj);
308 fail_unlock:
309 mutex_unlock(&dev->struct_mutex);
311 return ret;
314 static int
315 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
317 int ret;
319 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
321 /* If we've insufficient memory to map in the pages, attempt
322 * to make some space by throwing out some old buffers.
324 if (ret == -ENOMEM) {
325 struct drm_device *dev = obj->dev;
327 ret = i915_gem_evict_something(dev, obj->size,
328 i915_gem_get_gtt_alignment(obj));
329 if (ret)
330 return ret;
332 ret = i915_gem_object_get_pages(obj, 0);
335 return ret;
339 * This is the fallback shmem pread path, which allocates temporary storage
340 * in kernel space to copy_to_user into outside of the struct_mutex, so we
341 * can copy out of the object's backing pages while holding the struct mutex
342 * and not take page faults.
344 static int
345 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
346 struct drm_i915_gem_pread *args,
347 struct drm_file *file_priv)
349 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
350 struct mm_struct *mm = current->mm;
351 struct page **user_pages;
352 ssize_t remain;
353 loff_t offset, pinned_pages, i;
354 loff_t first_data_page, last_data_page, num_pages;
355 int shmem_page_index, shmem_page_offset;
356 int data_page_index, data_page_offset;
357 int page_length;
358 int ret;
359 uint64_t data_ptr = args->data_ptr;
360 int do_bit17_swizzling;
362 remain = args->size;
364 /* Pin the user pages containing the data. We can't fault while
365 * holding the struct mutex, yet we want to hold it while
366 * dereferencing the user data.
368 first_data_page = data_ptr / PAGE_SIZE;
369 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
370 num_pages = last_data_page - first_data_page + 1;
372 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
373 if (user_pages == NULL)
374 return -ENOMEM;
376 down_read(&mm->mmap_sem);
377 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
378 num_pages, 1, 0, user_pages, NULL);
379 up_read(&mm->mmap_sem);
380 if (pinned_pages < num_pages) {
381 ret = -EFAULT;
382 goto fail_put_user_pages;
385 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
387 mutex_lock(&dev->struct_mutex);
389 ret = i915_gem_object_get_pages_or_evict(obj);
390 if (ret)
391 goto fail_unlock;
393 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
394 args->size);
395 if (ret != 0)
396 goto fail_put_pages;
398 obj_priv = to_intel_bo(obj);
399 offset = args->offset;
401 while (remain > 0) {
402 /* Operation in this page
404 * shmem_page_index = page number within shmem file
405 * shmem_page_offset = offset within page in shmem file
406 * data_page_index = page number in get_user_pages return
407 * data_page_offset = offset with data_page_index page.
408 * page_length = bytes to copy for this page
410 shmem_page_index = offset / PAGE_SIZE;
411 shmem_page_offset = offset & ~PAGE_MASK;
412 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
413 data_page_offset = data_ptr & ~PAGE_MASK;
415 page_length = remain;
416 if ((shmem_page_offset + page_length) > PAGE_SIZE)
417 page_length = PAGE_SIZE - shmem_page_offset;
418 if ((data_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - data_page_offset;
421 if (do_bit17_swizzling) {
422 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
423 shmem_page_offset,
424 user_pages[data_page_index],
425 data_page_offset,
426 page_length,
428 } else {
429 slow_shmem_copy(user_pages[data_page_index],
430 data_page_offset,
431 obj_priv->pages[shmem_page_index],
432 shmem_page_offset,
433 page_length);
436 remain -= page_length;
437 data_ptr += page_length;
438 offset += page_length;
441 fail_put_pages:
442 i915_gem_object_put_pages(obj);
443 fail_unlock:
444 mutex_unlock(&dev->struct_mutex);
445 fail_put_user_pages:
446 for (i = 0; i < pinned_pages; i++) {
447 SetPageDirty(user_pages[i]);
448 page_cache_release(user_pages[i]);
450 drm_free_large(user_pages);
452 return ret;
456 * Reads data from the object referenced by handle.
458 * On error, the contents of *data are undefined.
461 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
462 struct drm_file *file_priv)
464 struct drm_i915_gem_pread *args = data;
465 struct drm_gem_object *obj;
466 struct drm_i915_gem_object *obj_priv;
467 int ret;
469 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
470 if (obj == NULL)
471 return -ENOENT;
472 obj_priv = to_intel_bo(obj);
474 /* Bounds check source.
476 * XXX: This could use review for overflow issues...
478 if (args->offset > obj->size || args->size > obj->size ||
479 args->offset + args->size > obj->size) {
480 drm_gem_object_unreference_unlocked(obj);
481 return -EINVAL;
484 if (i915_gem_object_needs_bit17_swizzle(obj)) {
485 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
486 } else {
487 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
488 if (ret != 0)
489 ret = i915_gem_shmem_pread_slow(dev, obj, args,
490 file_priv);
493 drm_gem_object_unreference_unlocked(obj);
495 return ret;
498 /* This is the fast write path which cannot handle
499 * page faults in the source data
502 static inline int
503 fast_user_write(struct io_mapping *mapping,
504 loff_t page_base, int page_offset,
505 char __user *user_data,
506 int length)
508 char *vaddr_atomic;
509 unsigned long unwritten;
511 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
512 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
513 user_data, length);
514 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
515 if (unwritten)
516 return -EFAULT;
517 return 0;
520 /* Here's the write path which can sleep for
521 * page faults
524 static inline void
525 slow_kernel_write(struct io_mapping *mapping,
526 loff_t gtt_base, int gtt_offset,
527 struct page *user_page, int user_offset,
528 int length)
530 char __iomem *dst_vaddr;
531 char *src_vaddr;
533 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
534 src_vaddr = kmap(user_page);
536 memcpy_toio(dst_vaddr + gtt_offset,
537 src_vaddr + user_offset,
538 length);
540 kunmap(user_page);
541 io_mapping_unmap(dst_vaddr);
544 static inline int
545 fast_shmem_write(struct page **pages,
546 loff_t page_base, int page_offset,
547 char __user *data,
548 int length)
550 char __iomem *vaddr;
551 unsigned long unwritten;
553 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
554 if (vaddr == NULL)
555 return -ENOMEM;
556 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
557 kunmap_atomic(vaddr, KM_USER0);
559 if (unwritten)
560 return -EFAULT;
561 return 0;
565 * This is the fast pwrite path, where we copy the data directly from the
566 * user into the GTT, uncached.
568 static int
569 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
570 struct drm_i915_gem_pwrite *args,
571 struct drm_file *file_priv)
573 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
574 drm_i915_private_t *dev_priv = dev->dev_private;
575 ssize_t remain;
576 loff_t offset, page_base;
577 char __user *user_data;
578 int page_offset, page_length;
579 int ret;
581 user_data = (char __user *) (uintptr_t) args->data_ptr;
582 remain = args->size;
583 if (!access_ok(VERIFY_READ, user_data, remain))
584 return -EFAULT;
587 mutex_lock(&dev->struct_mutex);
588 ret = i915_gem_object_pin(obj, 0);
589 if (ret) {
590 mutex_unlock(&dev->struct_mutex);
591 return ret;
593 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
594 if (ret)
595 goto fail;
597 obj_priv = to_intel_bo(obj);
598 offset = obj_priv->gtt_offset + args->offset;
600 while (remain > 0) {
601 /* Operation in this page
603 * page_base = page offset within aperture
604 * page_offset = offset within page
605 * page_length = bytes to copy for this page
607 page_base = (offset & ~(PAGE_SIZE-1));
608 page_offset = offset & (PAGE_SIZE-1);
609 page_length = remain;
610 if ((page_offset + remain) > PAGE_SIZE)
611 page_length = PAGE_SIZE - page_offset;
613 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
614 page_offset, user_data, page_length);
616 /* If we get a fault while copying data, then (presumably) our
617 * source page isn't available. Return the error and we'll
618 * retry in the slow path.
620 if (ret)
621 goto fail;
623 remain -= page_length;
624 user_data += page_length;
625 offset += page_length;
628 fail:
629 i915_gem_object_unpin(obj);
630 mutex_unlock(&dev->struct_mutex);
632 return ret;
636 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
637 * the memory and maps it using kmap_atomic for copying.
639 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
640 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
642 static int
643 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
644 struct drm_i915_gem_pwrite *args,
645 struct drm_file *file_priv)
647 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
648 drm_i915_private_t *dev_priv = dev->dev_private;
649 ssize_t remain;
650 loff_t gtt_page_base, offset;
651 loff_t first_data_page, last_data_page, num_pages;
652 loff_t pinned_pages, i;
653 struct page **user_pages;
654 struct mm_struct *mm = current->mm;
655 int gtt_page_offset, data_page_offset, data_page_index, page_length;
656 int ret;
657 uint64_t data_ptr = args->data_ptr;
659 remain = args->size;
661 /* Pin the user pages containing the data. We can't fault while
662 * holding the struct mutex, and all of the pwrite implementations
663 * want to hold it while dereferencing the user data.
665 first_data_page = data_ptr / PAGE_SIZE;
666 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
667 num_pages = last_data_page - first_data_page + 1;
669 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
670 if (user_pages == NULL)
671 return -ENOMEM;
673 down_read(&mm->mmap_sem);
674 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
675 num_pages, 0, 0, user_pages, NULL);
676 up_read(&mm->mmap_sem);
677 if (pinned_pages < num_pages) {
678 ret = -EFAULT;
679 goto out_unpin_pages;
682 mutex_lock(&dev->struct_mutex);
683 ret = i915_gem_object_pin(obj, 0);
684 if (ret)
685 goto out_unlock;
687 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
688 if (ret)
689 goto out_unpin_object;
691 obj_priv = to_intel_bo(obj);
692 offset = obj_priv->gtt_offset + args->offset;
694 while (remain > 0) {
695 /* Operation in this page
697 * gtt_page_base = page offset within aperture
698 * gtt_page_offset = offset within page in aperture
699 * data_page_index = page number in get_user_pages return
700 * data_page_offset = offset with data_page_index page.
701 * page_length = bytes to copy for this page
703 gtt_page_base = offset & PAGE_MASK;
704 gtt_page_offset = offset & ~PAGE_MASK;
705 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
706 data_page_offset = data_ptr & ~PAGE_MASK;
708 page_length = remain;
709 if ((gtt_page_offset + page_length) > PAGE_SIZE)
710 page_length = PAGE_SIZE - gtt_page_offset;
711 if ((data_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - data_page_offset;
714 slow_kernel_write(dev_priv->mm.gtt_mapping,
715 gtt_page_base, gtt_page_offset,
716 user_pages[data_page_index],
717 data_page_offset,
718 page_length);
720 remain -= page_length;
721 offset += page_length;
722 data_ptr += page_length;
725 out_unpin_object:
726 i915_gem_object_unpin(obj);
727 out_unlock:
728 mutex_unlock(&dev->struct_mutex);
729 out_unpin_pages:
730 for (i = 0; i < pinned_pages; i++)
731 page_cache_release(user_pages[i]);
732 drm_free_large(user_pages);
734 return ret;
738 * This is the fast shmem pwrite path, which attempts to directly
739 * copy_from_user into the kmapped pages backing the object.
741 static int
742 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
747 ssize_t remain;
748 loff_t offset, page_base;
749 char __user *user_data;
750 int page_offset, page_length;
751 int ret;
753 user_data = (char __user *) (uintptr_t) args->data_ptr;
754 remain = args->size;
756 mutex_lock(&dev->struct_mutex);
758 ret = i915_gem_object_get_pages(obj, 0);
759 if (ret != 0)
760 goto fail_unlock;
762 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
763 if (ret != 0)
764 goto fail_put_pages;
766 obj_priv = to_intel_bo(obj);
767 offset = args->offset;
768 obj_priv->dirty = 1;
770 while (remain > 0) {
771 /* Operation in this page
773 * page_base = page offset within aperture
774 * page_offset = offset within page
775 * page_length = bytes to copy for this page
777 page_base = (offset & ~(PAGE_SIZE-1));
778 page_offset = offset & (PAGE_SIZE-1);
779 page_length = remain;
780 if ((page_offset + remain) > PAGE_SIZE)
781 page_length = PAGE_SIZE - page_offset;
783 ret = fast_shmem_write(obj_priv->pages,
784 page_base, page_offset,
785 user_data, page_length);
786 if (ret)
787 goto fail_put_pages;
789 remain -= page_length;
790 user_data += page_length;
791 offset += page_length;
794 fail_put_pages:
795 i915_gem_object_put_pages(obj);
796 fail_unlock:
797 mutex_unlock(&dev->struct_mutex);
799 return ret;
803 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
804 * the memory and maps it using kmap_atomic for copying.
806 * This avoids taking mmap_sem for faulting on the user's address while the
807 * struct_mutex is held.
809 static int
810 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
811 struct drm_i915_gem_pwrite *args,
812 struct drm_file *file_priv)
814 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
815 struct mm_struct *mm = current->mm;
816 struct page **user_pages;
817 ssize_t remain;
818 loff_t offset, pinned_pages, i;
819 loff_t first_data_page, last_data_page, num_pages;
820 int shmem_page_index, shmem_page_offset;
821 int data_page_index, data_page_offset;
822 int page_length;
823 int ret;
824 uint64_t data_ptr = args->data_ptr;
825 int do_bit17_swizzling;
827 remain = args->size;
829 /* Pin the user pages containing the data. We can't fault while
830 * holding the struct mutex, and all of the pwrite implementations
831 * want to hold it while dereferencing the user data.
833 first_data_page = data_ptr / PAGE_SIZE;
834 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
835 num_pages = last_data_page - first_data_page + 1;
837 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
838 if (user_pages == NULL)
839 return -ENOMEM;
841 down_read(&mm->mmap_sem);
842 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
843 num_pages, 0, 0, user_pages, NULL);
844 up_read(&mm->mmap_sem);
845 if (pinned_pages < num_pages) {
846 ret = -EFAULT;
847 goto fail_put_user_pages;
850 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852 mutex_lock(&dev->struct_mutex);
854 ret = i915_gem_object_get_pages_or_evict(obj);
855 if (ret)
856 goto fail_unlock;
858 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
859 if (ret != 0)
860 goto fail_put_pages;
862 obj_priv = to_intel_bo(obj);
863 offset = args->offset;
864 obj_priv->dirty = 1;
866 while (remain > 0) {
867 /* Operation in this page
869 * shmem_page_index = page number within shmem file
870 * shmem_page_offset = offset within page in shmem file
871 * data_page_index = page number in get_user_pages return
872 * data_page_offset = offset with data_page_index page.
873 * page_length = bytes to copy for this page
875 shmem_page_index = offset / PAGE_SIZE;
876 shmem_page_offset = offset & ~PAGE_MASK;
877 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
878 data_page_offset = data_ptr & ~PAGE_MASK;
880 page_length = remain;
881 if ((shmem_page_offset + page_length) > PAGE_SIZE)
882 page_length = PAGE_SIZE - shmem_page_offset;
883 if ((data_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - data_page_offset;
886 if (do_bit17_swizzling) {
887 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
888 shmem_page_offset,
889 user_pages[data_page_index],
890 data_page_offset,
891 page_length,
893 } else {
894 slow_shmem_copy(obj_priv->pages[shmem_page_index],
895 shmem_page_offset,
896 user_pages[data_page_index],
897 data_page_offset,
898 page_length);
901 remain -= page_length;
902 data_ptr += page_length;
903 offset += page_length;
906 fail_put_pages:
907 i915_gem_object_put_pages(obj);
908 fail_unlock:
909 mutex_unlock(&dev->struct_mutex);
910 fail_put_user_pages:
911 for (i = 0; i < pinned_pages; i++)
912 page_cache_release(user_pages[i]);
913 drm_free_large(user_pages);
915 return ret;
919 * Writes data to the object referenced by handle.
921 * On error, the contents of the buffer that were to be modified are undefined.
924 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
925 struct drm_file *file_priv)
927 struct drm_i915_gem_pwrite *args = data;
928 struct drm_gem_object *obj;
929 struct drm_i915_gem_object *obj_priv;
930 int ret = 0;
932 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
933 if (obj == NULL)
934 return -ENOENT;
935 obj_priv = to_intel_bo(obj);
937 /* Bounds check destination.
939 * XXX: This could use review for overflow issues...
941 if (args->offset > obj->size || args->size > obj->size ||
942 args->offset + args->size > obj->size) {
943 drm_gem_object_unreference_unlocked(obj);
944 return -EINVAL;
947 /* We can only do the GTT pwrite on untiled buffers, as otherwise
948 * it would end up going through the fenced access, and we'll get
949 * different detiling behavior between reading and writing.
950 * pread/pwrite currently are reading and writing from the CPU
951 * perspective, requiring manual detiling by the client.
953 if (obj_priv->phys_obj)
954 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
955 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
956 dev->gtt_total != 0 &&
957 obj->write_domain != I915_GEM_DOMAIN_CPU) {
958 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
959 if (ret == -EFAULT) {
960 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
961 file_priv);
963 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
964 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
965 } else {
966 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
967 if (ret == -EFAULT) {
968 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
969 file_priv);
973 #if WATCH_PWRITE
974 if (ret)
975 DRM_INFO("pwrite failed %d\n", ret);
976 #endif
978 drm_gem_object_unreference_unlocked(obj);
980 return ret;
984 * Called when user space prepares to use an object with the CPU, either
985 * through the mmap ioctl's mapping or a GTT mapping.
988 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
989 struct drm_file *file_priv)
991 struct drm_i915_private *dev_priv = dev->dev_private;
992 struct drm_i915_gem_set_domain *args = data;
993 struct drm_gem_object *obj;
994 struct drm_i915_gem_object *obj_priv;
995 uint32_t read_domains = args->read_domains;
996 uint32_t write_domain = args->write_domain;
997 int ret;
999 if (!(dev->driver->driver_features & DRIVER_GEM))
1000 return -ENODEV;
1002 /* Only handle setting domains to types used by the CPU. */
1003 if (write_domain & I915_GEM_GPU_DOMAINS)
1004 return -EINVAL;
1006 if (read_domains & I915_GEM_GPU_DOMAINS)
1007 return -EINVAL;
1009 /* Having something in the write domain implies it's in the read
1010 * domain, and only that read domain. Enforce that in the request.
1012 if (write_domain != 0 && read_domains != write_domain)
1013 return -EINVAL;
1015 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1016 if (obj == NULL)
1017 return -ENOENT;
1018 obj_priv = to_intel_bo(obj);
1020 mutex_lock(&dev->struct_mutex);
1022 intel_mark_busy(dev, obj);
1024 #if WATCH_BUF
1025 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1026 obj, obj->size, read_domains, write_domain);
1027 #endif
1028 if (read_domains & I915_GEM_DOMAIN_GTT) {
1029 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1031 /* Update the LRU on the fence for the CPU access that's
1032 * about to occur.
1034 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1035 struct drm_i915_fence_reg *reg =
1036 &dev_priv->fence_regs[obj_priv->fence_reg];
1037 list_move_tail(&reg->lru_list,
1038 &dev_priv->mm.fence_list);
1041 /* Silently promote "you're not bound, there was nothing to do"
1042 * to success, since the client was just asking us to
1043 * make sure everything was done.
1045 if (ret == -EINVAL)
1046 ret = 0;
1047 } else {
1048 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1052 /* Maintain LRU order of "inactive" objects */
1053 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1054 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1056 drm_gem_object_unreference(obj);
1057 mutex_unlock(&dev->struct_mutex);
1058 return ret;
1062 * Called when user space has done writes to this buffer
1065 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1066 struct drm_file *file_priv)
1068 struct drm_i915_gem_sw_finish *args = data;
1069 struct drm_gem_object *obj;
1070 struct drm_i915_gem_object *obj_priv;
1071 int ret = 0;
1073 if (!(dev->driver->driver_features & DRIVER_GEM))
1074 return -ENODEV;
1076 mutex_lock(&dev->struct_mutex);
1077 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1078 if (obj == NULL) {
1079 mutex_unlock(&dev->struct_mutex);
1080 return -ENOENT;
1083 #if WATCH_BUF
1084 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1085 __func__, args->handle, obj, obj->size);
1086 #endif
1087 obj_priv = to_intel_bo(obj);
1089 /* Pinned buffers may be scanout, so flush the cache */
1090 if (obj_priv->pin_count)
1091 i915_gem_object_flush_cpu_write_domain(obj);
1093 drm_gem_object_unreference(obj);
1094 mutex_unlock(&dev->struct_mutex);
1095 return ret;
1099 * Maps the contents of an object, returning the address it is mapped
1100 * into.
1102 * While the mapping holds a reference on the contents of the object, it doesn't
1103 * imply a ref on the object itself.
1106 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1107 struct drm_file *file_priv)
1109 struct drm_i915_gem_mmap *args = data;
1110 struct drm_gem_object *obj;
1111 loff_t offset;
1112 unsigned long addr;
1114 if (!(dev->driver->driver_features & DRIVER_GEM))
1115 return -ENODEV;
1117 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1118 if (obj == NULL)
1119 return -ENOENT;
1121 offset = args->offset;
1123 down_write(&current->mm->mmap_sem);
1124 addr = do_mmap(obj->filp, 0, args->size,
1125 PROT_READ | PROT_WRITE, MAP_SHARED,
1126 args->offset);
1127 up_write(&current->mm->mmap_sem);
1128 drm_gem_object_unreference_unlocked(obj);
1129 if (IS_ERR((void *)addr))
1130 return addr;
1132 args->addr_ptr = (uint64_t) addr;
1134 return 0;
1138 * i915_gem_fault - fault a page into the GTT
1139 * vma: VMA in question
1140 * vmf: fault info
1142 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1143 * from userspace. The fault handler takes care of binding the object to
1144 * the GTT (if needed), allocating and programming a fence register (again,
1145 * only if needed based on whether the old reg is still valid or the object
1146 * is tiled) and inserting a new PTE into the faulting process.
1148 * Note that the faulting process may involve evicting existing objects
1149 * from the GTT and/or fence registers to make room. So performance may
1150 * suffer if the GTT working set is large or there are few fence registers
1151 * left.
1153 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1155 struct drm_gem_object *obj = vma->vm_private_data;
1156 struct drm_device *dev = obj->dev;
1157 drm_i915_private_t *dev_priv = dev->dev_private;
1158 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1159 pgoff_t page_offset;
1160 unsigned long pfn;
1161 int ret = 0;
1162 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1164 /* We don't use vmf->pgoff since that has the fake offset */
1165 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1166 PAGE_SHIFT;
1168 /* Now bind it into the GTT if needed */
1169 mutex_lock(&dev->struct_mutex);
1170 if (!obj_priv->gtt_space) {
1171 ret = i915_gem_object_bind_to_gtt(obj, 0);
1172 if (ret)
1173 goto unlock;
1175 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1176 if (ret)
1177 goto unlock;
1180 /* Need a new fence register? */
1181 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1182 ret = i915_gem_object_get_fence_reg(obj);
1183 if (ret)
1184 goto unlock;
1187 if (i915_gem_object_is_inactive(obj_priv))
1188 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1190 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1191 page_offset;
1193 /* Finally, remap it using the new GTT offset */
1194 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1195 unlock:
1196 mutex_unlock(&dev->struct_mutex);
1198 switch (ret) {
1199 case 0:
1200 case -ERESTARTSYS:
1201 return VM_FAULT_NOPAGE;
1202 case -ENOMEM:
1203 case -EAGAIN:
1204 return VM_FAULT_OOM;
1205 default:
1206 return VM_FAULT_SIGBUS;
1211 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1212 * @obj: obj in question
1214 * GEM memory mapping works by handing back to userspace a fake mmap offset
1215 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1216 * up the object based on the offset and sets up the various memory mapping
1217 * structures.
1219 * This routine allocates and attaches a fake offset for @obj.
1221 static int
1222 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1224 struct drm_device *dev = obj->dev;
1225 struct drm_gem_mm *mm = dev->mm_private;
1226 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1227 struct drm_map_list *list;
1228 struct drm_local_map *map;
1229 int ret = 0;
1231 /* Set the object up for mmap'ing */
1232 list = &obj->map_list;
1233 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1234 if (!list->map)
1235 return -ENOMEM;
1237 map = list->map;
1238 map->type = _DRM_GEM;
1239 map->size = obj->size;
1240 map->handle = obj;
1242 /* Get a DRM GEM mmap offset allocated... */
1243 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1244 obj->size / PAGE_SIZE, 0, 0);
1245 if (!list->file_offset_node) {
1246 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1247 ret = -ENOMEM;
1248 goto out_free_list;
1251 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1252 obj->size / PAGE_SIZE, 0);
1253 if (!list->file_offset_node) {
1254 ret = -ENOMEM;
1255 goto out_free_list;
1258 list->hash.key = list->file_offset_node->start;
1259 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1260 DRM_ERROR("failed to add to map hash\n");
1261 ret = -ENOMEM;
1262 goto out_free_mm;
1265 /* By now we should be all set, any drm_mmap request on the offset
1266 * below will get to our mmap & fault handler */
1267 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1269 return 0;
1271 out_free_mm:
1272 drm_mm_put_block(list->file_offset_node);
1273 out_free_list:
1274 kfree(list->map);
1276 return ret;
1280 * i915_gem_release_mmap - remove physical page mappings
1281 * @obj: obj in question
1283 * Preserve the reservation of the mmapping with the DRM core code, but
1284 * relinquish ownership of the pages back to the system.
1286 * It is vital that we remove the page mapping if we have mapped a tiled
1287 * object through the GTT and then lose the fence register due to
1288 * resource pressure. Similarly if the object has been moved out of the
1289 * aperture, than pages mapped into userspace must be revoked. Removing the
1290 * mapping will then trigger a page fault on the next user access, allowing
1291 * fixup by i915_gem_fault().
1293 void
1294 i915_gem_release_mmap(struct drm_gem_object *obj)
1296 struct drm_device *dev = obj->dev;
1297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1299 if (dev->dev_mapping)
1300 unmap_mapping_range(dev->dev_mapping,
1301 obj_priv->mmap_offset, obj->size, 1);
1304 static void
1305 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1307 struct drm_device *dev = obj->dev;
1308 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1309 struct drm_gem_mm *mm = dev->mm_private;
1310 struct drm_map_list *list;
1312 list = &obj->map_list;
1313 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1315 if (list->file_offset_node) {
1316 drm_mm_put_block(list->file_offset_node);
1317 list->file_offset_node = NULL;
1320 if (list->map) {
1321 kfree(list->map);
1322 list->map = NULL;
1325 obj_priv->mmap_offset = 0;
1329 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1330 * @obj: object to check
1332 * Return the required GTT alignment for an object, taking into account
1333 * potential fence register mapping if needed.
1335 static uint32_t
1336 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1338 struct drm_device *dev = obj->dev;
1339 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1340 int start, i;
1343 * Minimum alignment is 4k (GTT page size), but might be greater
1344 * if a fence register is needed for the object.
1346 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1347 return 4096;
1350 * Previous chips need to be aligned to the size of the smallest
1351 * fence register that can contain the object.
1353 if (IS_I9XX(dev))
1354 start = 1024*1024;
1355 else
1356 start = 512*1024;
1358 for (i = start; i < obj->size; i <<= 1)
1361 return i;
1365 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1366 * @dev: DRM device
1367 * @data: GTT mapping ioctl data
1368 * @file_priv: GEM object info
1370 * Simply returns the fake offset to userspace so it can mmap it.
1371 * The mmap call will end up in drm_gem_mmap(), which will set things
1372 * up so we can get faults in the handler above.
1374 * The fault handler will take care of binding the object into the GTT
1375 * (since it may have been evicted to make room for something), allocating
1376 * a fence register, and mapping the appropriate aperture address into
1377 * userspace.
1380 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1381 struct drm_file *file_priv)
1383 struct drm_i915_gem_mmap_gtt *args = data;
1384 struct drm_gem_object *obj;
1385 struct drm_i915_gem_object *obj_priv;
1386 int ret;
1388 if (!(dev->driver->driver_features & DRIVER_GEM))
1389 return -ENODEV;
1391 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1392 if (obj == NULL)
1393 return -ENOENT;
1395 mutex_lock(&dev->struct_mutex);
1397 obj_priv = to_intel_bo(obj);
1399 if (obj_priv->madv != I915_MADV_WILLNEED) {
1400 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1401 drm_gem_object_unreference(obj);
1402 mutex_unlock(&dev->struct_mutex);
1403 return -EINVAL;
1407 if (!obj_priv->mmap_offset) {
1408 ret = i915_gem_create_mmap_offset(obj);
1409 if (ret) {
1410 drm_gem_object_unreference(obj);
1411 mutex_unlock(&dev->struct_mutex);
1412 return ret;
1416 args->offset = obj_priv->mmap_offset;
1419 * Pull it into the GTT so that we have a page list (makes the
1420 * initial fault faster and any subsequent flushing possible).
1422 if (!obj_priv->agp_mem) {
1423 ret = i915_gem_object_bind_to_gtt(obj, 0);
1424 if (ret) {
1425 drm_gem_object_unreference(obj);
1426 mutex_unlock(&dev->struct_mutex);
1427 return ret;
1431 drm_gem_object_unreference(obj);
1432 mutex_unlock(&dev->struct_mutex);
1434 return 0;
1437 void
1438 i915_gem_object_put_pages(struct drm_gem_object *obj)
1440 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1441 int page_count = obj->size / PAGE_SIZE;
1442 int i;
1444 BUG_ON(obj_priv->pages_refcount == 0);
1445 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1447 if (--obj_priv->pages_refcount != 0)
1448 return;
1450 if (obj_priv->tiling_mode != I915_TILING_NONE)
1451 i915_gem_object_save_bit_17_swizzle(obj);
1453 if (obj_priv->madv == I915_MADV_DONTNEED)
1454 obj_priv->dirty = 0;
1456 for (i = 0; i < page_count; i++) {
1457 if (obj_priv->dirty)
1458 set_page_dirty(obj_priv->pages[i]);
1460 if (obj_priv->madv == I915_MADV_WILLNEED)
1461 mark_page_accessed(obj_priv->pages[i]);
1463 page_cache_release(obj_priv->pages[i]);
1465 obj_priv->dirty = 0;
1467 drm_free_large(obj_priv->pages);
1468 obj_priv->pages = NULL;
1471 static void
1472 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1473 struct intel_ring_buffer *ring)
1475 struct drm_device *dev = obj->dev;
1476 drm_i915_private_t *dev_priv = dev->dev_private;
1477 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1478 BUG_ON(ring == NULL);
1479 obj_priv->ring = ring;
1481 /* Add a reference if we're newly entering the active list. */
1482 if (!obj_priv->active) {
1483 drm_gem_object_reference(obj);
1484 obj_priv->active = 1;
1486 /* Move from whatever list we were on to the tail of execution. */
1487 spin_lock(&dev_priv->mm.active_list_lock);
1488 list_move_tail(&obj_priv->list, &ring->active_list);
1489 spin_unlock(&dev_priv->mm.active_list_lock);
1490 obj_priv->last_rendering_seqno = seqno;
1493 static void
1494 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1496 struct drm_device *dev = obj->dev;
1497 drm_i915_private_t *dev_priv = dev->dev_private;
1498 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1500 BUG_ON(!obj_priv->active);
1501 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1502 obj_priv->last_rendering_seqno = 0;
1505 /* Immediately discard the backing storage */
1506 static void
1507 i915_gem_object_truncate(struct drm_gem_object *obj)
1509 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1510 struct inode *inode;
1512 /* Our goal here is to return as much of the memory as
1513 * is possible back to the system as we are called from OOM.
1514 * To do this we must instruct the shmfs to drop all of its
1515 * backing pages, *now*. Here we mirror the actions taken
1516 * when by shmem_delete_inode() to release the backing store.
1518 inode = obj->filp->f_path.dentry->d_inode;
1519 truncate_inode_pages(inode->i_mapping, 0);
1520 if (inode->i_op->truncate_range)
1521 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1523 obj_priv->madv = __I915_MADV_PURGED;
1526 static inline int
1527 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1529 return obj_priv->madv == I915_MADV_DONTNEED;
1532 static void
1533 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1535 struct drm_device *dev = obj->dev;
1536 drm_i915_private_t *dev_priv = dev->dev_private;
1537 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1539 i915_verify_inactive(dev, __FILE__, __LINE__);
1540 if (obj_priv->pin_count != 0)
1541 list_del_init(&obj_priv->list);
1542 else
1543 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1545 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1547 obj_priv->last_rendering_seqno = 0;
1548 obj_priv->ring = NULL;
1549 if (obj_priv->active) {
1550 obj_priv->active = 0;
1551 drm_gem_object_unreference(obj);
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1556 static void
1557 i915_gem_process_flushing_list(struct drm_device *dev,
1558 uint32_t flush_domains, uint32_t seqno,
1559 struct intel_ring_buffer *ring)
1561 drm_i915_private_t *dev_priv = dev->dev_private;
1562 struct drm_i915_gem_object *obj_priv, *next;
1564 list_for_each_entry_safe(obj_priv, next,
1565 &dev_priv->mm.gpu_write_list,
1566 gpu_write_list) {
1567 struct drm_gem_object *obj = &obj_priv->base;
1569 if ((obj->write_domain & flush_domains) ==
1570 obj->write_domain &&
1571 obj_priv->ring->ring_flag == ring->ring_flag) {
1572 uint32_t old_write_domain = obj->write_domain;
1574 obj->write_domain = 0;
1575 list_del_init(&obj_priv->gpu_write_list);
1576 i915_gem_object_move_to_active(obj, seqno, ring);
1578 /* update the fence lru list */
1579 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1580 struct drm_i915_fence_reg *reg =
1581 &dev_priv->fence_regs[obj_priv->fence_reg];
1582 list_move_tail(&reg->lru_list,
1583 &dev_priv->mm.fence_list);
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1593 uint32_t
1594 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1595 uint32_t flush_domains, struct intel_ring_buffer *ring)
1597 drm_i915_private_t *dev_priv = dev->dev_private;
1598 struct drm_i915_file_private *i915_file_priv = NULL;
1599 struct drm_i915_gem_request *request;
1600 uint32_t seqno;
1601 int was_empty;
1603 if (file_priv != NULL)
1604 i915_file_priv = file_priv->driver_priv;
1606 request = kzalloc(sizeof(*request), GFP_KERNEL);
1607 if (request == NULL)
1608 return 0;
1610 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1612 request->seqno = seqno;
1613 request->ring = ring;
1614 request->emitted_jiffies = jiffies;
1615 was_empty = list_empty(&ring->request_list);
1616 list_add_tail(&request->list, &ring->request_list);
1618 if (i915_file_priv) {
1619 list_add_tail(&request->client_list,
1620 &i915_file_priv->mm.request_list);
1621 } else {
1622 INIT_LIST_HEAD(&request->client_list);
1625 /* Associate any objects on the flushing list matching the write
1626 * domain we're flushing with our flush.
1628 if (flush_domains != 0)
1629 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1631 if (!dev_priv->mm.suspended) {
1632 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1633 if (was_empty)
1634 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1636 return seqno;
1640 * Command execution barrier
1642 * Ensures that all commands in the ring are finished
1643 * before signalling the CPU
1645 static uint32_t
1646 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1648 uint32_t flush_domains = 0;
1650 /* The sampler always gets flushed on i965 (sigh) */
1651 if (IS_I965G(dev))
1652 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1654 ring->flush(dev, ring,
1655 I915_GEM_DOMAIN_COMMAND, flush_domains);
1656 return flush_domains;
1660 * Moves buffers associated only with the given active seqno from the active
1661 * to inactive list, potentially freeing them.
1663 static void
1664 i915_gem_retire_request(struct drm_device *dev,
1665 struct drm_i915_gem_request *request)
1667 drm_i915_private_t *dev_priv = dev->dev_private;
1669 trace_i915_gem_request_retire(dev, request->seqno);
1671 /* Move any buffers on the active list that are no longer referenced
1672 * by the ringbuffer to the flushing/inactive lists as appropriate.
1674 spin_lock(&dev_priv->mm.active_list_lock);
1675 while (!list_empty(&request->ring->active_list)) {
1676 struct drm_gem_object *obj;
1677 struct drm_i915_gem_object *obj_priv;
1679 obj_priv = list_first_entry(&request->ring->active_list,
1680 struct drm_i915_gem_object,
1681 list);
1682 obj = &obj_priv->base;
1684 /* If the seqno being retired doesn't match the oldest in the
1685 * list, then the oldest in the list must still be newer than
1686 * this seqno.
1688 if (obj_priv->last_rendering_seqno != request->seqno)
1689 goto out;
1691 #if WATCH_LRU
1692 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1693 __func__, request->seqno, obj);
1694 #endif
1696 if (obj->write_domain != 0)
1697 i915_gem_object_move_to_flushing(obj);
1698 else {
1699 /* Take a reference on the object so it won't be
1700 * freed while the spinlock is held. The list
1701 * protection for this spinlock is safe when breaking
1702 * the lock like this since the next thing we do
1703 * is just get the head of the list again.
1705 drm_gem_object_reference(obj);
1706 i915_gem_object_move_to_inactive(obj);
1707 spin_unlock(&dev_priv->mm.active_list_lock);
1708 drm_gem_object_unreference(obj);
1709 spin_lock(&dev_priv->mm.active_list_lock);
1712 out:
1713 spin_unlock(&dev_priv->mm.active_list_lock);
1717 * Returns true if seq1 is later than seq2.
1719 bool
1720 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1722 return (int32_t)(seq1 - seq2) >= 0;
1725 uint32_t
1726 i915_get_gem_seqno(struct drm_device *dev,
1727 struct intel_ring_buffer *ring)
1729 return ring->get_gem_seqno(dev, ring);
1733 * This function clears the request list as sequence numbers are passed.
1735 static void
1736 i915_gem_retire_requests_ring(struct drm_device *dev,
1737 struct intel_ring_buffer *ring)
1739 drm_i915_private_t *dev_priv = dev->dev_private;
1740 uint32_t seqno;
1742 if (!ring->status_page.page_addr
1743 || list_empty(&ring->request_list))
1744 return;
1746 seqno = i915_get_gem_seqno(dev, ring);
1748 while (!list_empty(&ring->request_list)) {
1749 struct drm_i915_gem_request *request;
1750 uint32_t retiring_seqno;
1752 request = list_first_entry(&ring->request_list,
1753 struct drm_i915_gem_request,
1754 list);
1755 retiring_seqno = request->seqno;
1757 if (i915_seqno_passed(seqno, retiring_seqno) ||
1758 atomic_read(&dev_priv->mm.wedged)) {
1759 i915_gem_retire_request(dev, request);
1761 list_del(&request->list);
1762 list_del(&request->client_list);
1763 kfree(request);
1764 } else
1765 break;
1768 if (unlikely (dev_priv->trace_irq_seqno &&
1769 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1771 ring->user_irq_put(dev, ring);
1772 dev_priv->trace_irq_seqno = 0;
1776 void
1777 i915_gem_retire_requests(struct drm_device *dev)
1779 drm_i915_private_t *dev_priv = dev->dev_private;
1781 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1782 struct drm_i915_gem_object *obj_priv, *tmp;
1784 /* We must be careful that during unbind() we do not
1785 * accidentally infinitely recurse into retire requests.
1786 * Currently:
1787 * retire -> free -> unbind -> wait -> retire_ring
1789 list_for_each_entry_safe(obj_priv, tmp,
1790 &dev_priv->mm.deferred_free_list,
1791 list)
1792 i915_gem_free_object_tail(&obj_priv->base);
1795 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1796 if (HAS_BSD(dev))
1797 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1800 void
1801 i915_gem_retire_work_handler(struct work_struct *work)
1803 drm_i915_private_t *dev_priv;
1804 struct drm_device *dev;
1806 dev_priv = container_of(work, drm_i915_private_t,
1807 mm.retire_work.work);
1808 dev = dev_priv->dev;
1810 mutex_lock(&dev->struct_mutex);
1811 i915_gem_retire_requests(dev);
1813 if (!dev_priv->mm.suspended &&
1814 (!list_empty(&dev_priv->render_ring.request_list) ||
1815 (HAS_BSD(dev) &&
1816 !list_empty(&dev_priv->bsd_ring.request_list))))
1817 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1818 mutex_unlock(&dev->struct_mutex);
1822 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1823 int interruptible, struct intel_ring_buffer *ring)
1825 drm_i915_private_t *dev_priv = dev->dev_private;
1826 u32 ier;
1827 int ret = 0;
1829 BUG_ON(seqno == 0);
1831 if (atomic_read(&dev_priv->mm.wedged))
1832 return -EIO;
1834 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1835 if (HAS_PCH_SPLIT(dev))
1836 ier = I915_READ(DEIER) | I915_READ(GTIER);
1837 else
1838 ier = I915_READ(IER);
1839 if (!ier) {
1840 DRM_ERROR("something (likely vbetool) disabled "
1841 "interrupts, re-enabling\n");
1842 i915_driver_irq_preinstall(dev);
1843 i915_driver_irq_postinstall(dev);
1846 trace_i915_gem_request_wait_begin(dev, seqno);
1848 ring->waiting_gem_seqno = seqno;
1849 ring->user_irq_get(dev, ring);
1850 if (interruptible)
1851 ret = wait_event_interruptible(ring->irq_queue,
1852 i915_seqno_passed(
1853 ring->get_gem_seqno(dev, ring), seqno)
1854 || atomic_read(&dev_priv->mm.wedged));
1855 else
1856 wait_event(ring->irq_queue,
1857 i915_seqno_passed(
1858 ring->get_gem_seqno(dev, ring), seqno)
1859 || atomic_read(&dev_priv->mm.wedged));
1861 ring->user_irq_put(dev, ring);
1862 ring->waiting_gem_seqno = 0;
1864 trace_i915_gem_request_wait_end(dev, seqno);
1866 if (atomic_read(&dev_priv->mm.wedged))
1867 ret = -EIO;
1869 if (ret && ret != -ERESTARTSYS)
1870 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1871 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1873 /* Directly dispatch request retiring. While we have the work queue
1874 * to handle this, the waiter on a request often wants an associated
1875 * buffer to have made it to the inactive list, and we would need
1876 * a separate wait queue to handle that.
1878 if (ret == 0)
1879 i915_gem_retire_requests_ring(dev, ring);
1881 return ret;
1885 * Waits for a sequence number to be signaled, and cleans up the
1886 * request and object lists appropriately for that event.
1888 static int
1889 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1890 struct intel_ring_buffer *ring)
1892 return i915_do_wait_request(dev, seqno, 1, ring);
1895 static void
1896 i915_gem_flush(struct drm_device *dev,
1897 uint32_t invalidate_domains,
1898 uint32_t flush_domains)
1900 drm_i915_private_t *dev_priv = dev->dev_private;
1901 if (flush_domains & I915_GEM_DOMAIN_CPU)
1902 drm_agp_chipset_flush(dev);
1903 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1904 invalidate_domains,
1905 flush_domains);
1907 if (HAS_BSD(dev))
1908 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1909 invalidate_domains,
1910 flush_domains);
1914 * Ensures that all rendering to the object has completed and the object is
1915 * safe to unbind from the GTT or access from the CPU.
1917 static int
1918 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1920 struct drm_device *dev = obj->dev;
1921 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1922 int ret;
1924 /* This function only exists to support waiting for existing rendering,
1925 * not for emitting required flushes.
1927 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1929 /* If there is rendering queued on the buffer being evicted, wait for
1930 * it.
1932 if (obj_priv->active) {
1933 #if WATCH_BUF
1934 DRM_INFO("%s: object %p wait for seqno %08x\n",
1935 __func__, obj, obj_priv->last_rendering_seqno);
1936 #endif
1937 ret = i915_wait_request(dev,
1938 obj_priv->last_rendering_seqno, obj_priv->ring);
1939 if (ret != 0)
1940 return ret;
1943 return 0;
1947 * Unbinds an object from the GTT aperture.
1950 i915_gem_object_unbind(struct drm_gem_object *obj)
1952 struct drm_device *dev = obj->dev;
1953 drm_i915_private_t *dev_priv = dev->dev_private;
1954 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1955 int ret = 0;
1957 #if WATCH_BUF
1958 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1959 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1960 #endif
1961 if (obj_priv->gtt_space == NULL)
1962 return 0;
1964 if (obj_priv->pin_count != 0) {
1965 DRM_ERROR("Attempting to unbind pinned buffer\n");
1966 return -EINVAL;
1969 /* blow away mappings if mapped through GTT */
1970 i915_gem_release_mmap(obj);
1972 /* Move the object to the CPU domain to ensure that
1973 * any possible CPU writes while it's not in the GTT
1974 * are flushed when we go to remap it. This will
1975 * also ensure that all pending GPU writes are finished
1976 * before we unbind.
1978 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1979 if (ret == -ERESTARTSYS)
1980 return ret;
1981 /* Continue on if we fail due to EIO, the GPU is hung so we
1982 * should be safe and we need to cleanup or else we might
1983 * cause memory corruption through use-after-free.
1986 /* release the fence reg _after_ flushing */
1987 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1988 i915_gem_clear_fence_reg(obj);
1990 if (obj_priv->agp_mem != NULL) {
1991 drm_unbind_agp(obj_priv->agp_mem);
1992 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1993 obj_priv->agp_mem = NULL;
1996 i915_gem_object_put_pages(obj);
1997 BUG_ON(obj_priv->pages_refcount);
1999 if (obj_priv->gtt_space) {
2000 atomic_dec(&dev->gtt_count);
2001 atomic_sub(obj->size, &dev->gtt_memory);
2003 drm_mm_put_block(obj_priv->gtt_space);
2004 obj_priv->gtt_space = NULL;
2007 /* Remove ourselves from the LRU list if present. */
2008 spin_lock(&dev_priv->mm.active_list_lock);
2009 if (!list_empty(&obj_priv->list))
2010 list_del_init(&obj_priv->list);
2011 spin_unlock(&dev_priv->mm.active_list_lock);
2013 if (i915_gem_object_is_purgeable(obj_priv))
2014 i915_gem_object_truncate(obj);
2016 trace_i915_gem_object_unbind(obj);
2018 return ret;
2022 i915_gpu_idle(struct drm_device *dev)
2024 drm_i915_private_t *dev_priv = dev->dev_private;
2025 bool lists_empty;
2026 uint32_t seqno1, seqno2;
2027 int ret;
2029 spin_lock(&dev_priv->mm.active_list_lock);
2030 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2031 list_empty(&dev_priv->render_ring.active_list) &&
2032 (!HAS_BSD(dev) ||
2033 list_empty(&dev_priv->bsd_ring.active_list)));
2034 spin_unlock(&dev_priv->mm.active_list_lock);
2036 if (lists_empty)
2037 return 0;
2039 /* Flush everything onto the inactive list. */
2040 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2041 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2042 &dev_priv->render_ring);
2043 if (seqno1 == 0)
2044 return -ENOMEM;
2045 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2047 if (HAS_BSD(dev)) {
2048 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2049 &dev_priv->bsd_ring);
2050 if (seqno2 == 0)
2051 return -ENOMEM;
2053 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2054 if (ret)
2055 return ret;
2059 return ret;
2063 i915_gem_object_get_pages(struct drm_gem_object *obj,
2064 gfp_t gfpmask)
2066 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2067 int page_count, i;
2068 struct address_space *mapping;
2069 struct inode *inode;
2070 struct page *page;
2072 BUG_ON(obj_priv->pages_refcount
2073 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2075 if (obj_priv->pages_refcount++ != 0)
2076 return 0;
2078 /* Get the list of pages out of our struct file. They'll be pinned
2079 * at this point until we release them.
2081 page_count = obj->size / PAGE_SIZE;
2082 BUG_ON(obj_priv->pages != NULL);
2083 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2084 if (obj_priv->pages == NULL) {
2085 obj_priv->pages_refcount--;
2086 return -ENOMEM;
2089 inode = obj->filp->f_path.dentry->d_inode;
2090 mapping = inode->i_mapping;
2091 for (i = 0; i < page_count; i++) {
2092 page = read_cache_page_gfp(mapping, i,
2093 GFP_HIGHUSER |
2094 __GFP_COLD |
2095 __GFP_RECLAIMABLE |
2096 gfpmask);
2097 if (IS_ERR(page))
2098 goto err_pages;
2100 obj_priv->pages[i] = page;
2103 if (obj_priv->tiling_mode != I915_TILING_NONE)
2104 i915_gem_object_do_bit_17_swizzle(obj);
2106 return 0;
2108 err_pages:
2109 while (i--)
2110 page_cache_release(obj_priv->pages[i]);
2112 drm_free_large(obj_priv->pages);
2113 obj_priv->pages = NULL;
2114 obj_priv->pages_refcount--;
2115 return PTR_ERR(page);
2118 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2120 struct drm_gem_object *obj = reg->obj;
2121 struct drm_device *dev = obj->dev;
2122 drm_i915_private_t *dev_priv = dev->dev_private;
2123 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2124 int regnum = obj_priv->fence_reg;
2125 uint64_t val;
2127 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2128 0xfffff000) << 32;
2129 val |= obj_priv->gtt_offset & 0xfffff000;
2130 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2131 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2133 if (obj_priv->tiling_mode == I915_TILING_Y)
2134 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2135 val |= I965_FENCE_REG_VALID;
2137 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2140 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2142 struct drm_gem_object *obj = reg->obj;
2143 struct drm_device *dev = obj->dev;
2144 drm_i915_private_t *dev_priv = dev->dev_private;
2145 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2146 int regnum = obj_priv->fence_reg;
2147 uint64_t val;
2149 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2150 0xfffff000) << 32;
2151 val |= obj_priv->gtt_offset & 0xfffff000;
2152 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2153 if (obj_priv->tiling_mode == I915_TILING_Y)
2154 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2155 val |= I965_FENCE_REG_VALID;
2157 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2160 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2162 struct drm_gem_object *obj = reg->obj;
2163 struct drm_device *dev = obj->dev;
2164 drm_i915_private_t *dev_priv = dev->dev_private;
2165 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2166 int regnum = obj_priv->fence_reg;
2167 int tile_width;
2168 uint32_t fence_reg, val;
2169 uint32_t pitch_val;
2171 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2172 (obj_priv->gtt_offset & (obj->size - 1))) {
2173 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2174 __func__, obj_priv->gtt_offset, obj->size);
2175 return;
2178 if (obj_priv->tiling_mode == I915_TILING_Y &&
2179 HAS_128_BYTE_Y_TILING(dev))
2180 tile_width = 128;
2181 else
2182 tile_width = 512;
2184 /* Note: pitch better be a power of two tile widths */
2185 pitch_val = obj_priv->stride / tile_width;
2186 pitch_val = ffs(pitch_val) - 1;
2188 if (obj_priv->tiling_mode == I915_TILING_Y &&
2189 HAS_128_BYTE_Y_TILING(dev))
2190 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2191 else
2192 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2194 val = obj_priv->gtt_offset;
2195 if (obj_priv->tiling_mode == I915_TILING_Y)
2196 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2197 val |= I915_FENCE_SIZE_BITS(obj->size);
2198 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2199 val |= I830_FENCE_REG_VALID;
2201 if (regnum < 8)
2202 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2203 else
2204 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2205 I915_WRITE(fence_reg, val);
2208 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2210 struct drm_gem_object *obj = reg->obj;
2211 struct drm_device *dev = obj->dev;
2212 drm_i915_private_t *dev_priv = dev->dev_private;
2213 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2214 int regnum = obj_priv->fence_reg;
2215 uint32_t val;
2216 uint32_t pitch_val;
2217 uint32_t fence_size_bits;
2219 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2220 (obj_priv->gtt_offset & (obj->size - 1))) {
2221 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2222 __func__, obj_priv->gtt_offset);
2223 return;
2226 pitch_val = obj_priv->stride / 128;
2227 pitch_val = ffs(pitch_val) - 1;
2228 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2230 val = obj_priv->gtt_offset;
2231 if (obj_priv->tiling_mode == I915_TILING_Y)
2232 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2233 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2234 WARN_ON(fence_size_bits & ~0x00000f00);
2235 val |= fence_size_bits;
2236 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2237 val |= I830_FENCE_REG_VALID;
2239 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2242 static int i915_find_fence_reg(struct drm_device *dev)
2244 struct drm_i915_fence_reg *reg = NULL;
2245 struct drm_i915_gem_object *obj_priv = NULL;
2246 struct drm_i915_private *dev_priv = dev->dev_private;
2247 struct drm_gem_object *obj = NULL;
2248 int i, avail, ret;
2250 /* First try to find a free reg */
2251 avail = 0;
2252 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2253 reg = &dev_priv->fence_regs[i];
2254 if (!reg->obj)
2255 return i;
2257 obj_priv = to_intel_bo(reg->obj);
2258 if (!obj_priv->pin_count)
2259 avail++;
2262 if (avail == 0)
2263 return -ENOSPC;
2265 /* None available, try to steal one or wait for a user to finish */
2266 i = I915_FENCE_REG_NONE;
2267 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2268 lru_list) {
2269 obj = reg->obj;
2270 obj_priv = to_intel_bo(obj);
2272 if (obj_priv->pin_count)
2273 continue;
2275 /* found one! */
2276 i = obj_priv->fence_reg;
2277 break;
2280 BUG_ON(i == I915_FENCE_REG_NONE);
2282 /* We only have a reference on obj from the active list. put_fence_reg
2283 * might drop that one, causing a use-after-free in it. So hold a
2284 * private reference to obj like the other callers of put_fence_reg
2285 * (set_tiling ioctl) do. */
2286 drm_gem_object_reference(obj);
2287 ret = i915_gem_object_put_fence_reg(obj);
2288 drm_gem_object_unreference(obj);
2289 if (ret != 0)
2290 return ret;
2292 return i;
2296 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2297 * @obj: object to map through a fence reg
2299 * When mapping objects through the GTT, userspace wants to be able to write
2300 * to them without having to worry about swizzling if the object is tiled.
2302 * This function walks the fence regs looking for a free one for @obj,
2303 * stealing one if it can't find any.
2305 * It then sets up the reg based on the object's properties: address, pitch
2306 * and tiling format.
2309 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2311 struct drm_device *dev = obj->dev;
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2314 struct drm_i915_fence_reg *reg = NULL;
2315 int ret;
2317 /* Just update our place in the LRU if our fence is getting used. */
2318 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2319 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2320 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2321 return 0;
2324 switch (obj_priv->tiling_mode) {
2325 case I915_TILING_NONE:
2326 WARN(1, "allocating a fence for non-tiled object?\n");
2327 break;
2328 case I915_TILING_X:
2329 if (!obj_priv->stride)
2330 return -EINVAL;
2331 WARN((obj_priv->stride & (512 - 1)),
2332 "object 0x%08x is X tiled but has non-512B pitch\n",
2333 obj_priv->gtt_offset);
2334 break;
2335 case I915_TILING_Y:
2336 if (!obj_priv->stride)
2337 return -EINVAL;
2338 WARN((obj_priv->stride & (128 - 1)),
2339 "object 0x%08x is Y tiled but has non-128B pitch\n",
2340 obj_priv->gtt_offset);
2341 break;
2344 ret = i915_find_fence_reg(dev);
2345 if (ret < 0)
2346 return ret;
2348 obj_priv->fence_reg = ret;
2349 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2350 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2352 reg->obj = obj;
2354 if (IS_GEN6(dev))
2355 sandybridge_write_fence_reg(reg);
2356 else if (IS_I965G(dev))
2357 i965_write_fence_reg(reg);
2358 else if (IS_I9XX(dev))
2359 i915_write_fence_reg(reg);
2360 else
2361 i830_write_fence_reg(reg);
2363 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2364 obj_priv->tiling_mode);
2366 return 0;
2370 * i915_gem_clear_fence_reg - clear out fence register info
2371 * @obj: object to clear
2373 * Zeroes out the fence register itself and clears out the associated
2374 * data structures in dev_priv and obj_priv.
2376 static void
2377 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2379 struct drm_device *dev = obj->dev;
2380 drm_i915_private_t *dev_priv = dev->dev_private;
2381 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2382 struct drm_i915_fence_reg *reg =
2383 &dev_priv->fence_regs[obj_priv->fence_reg];
2385 if (IS_GEN6(dev)) {
2386 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2387 (obj_priv->fence_reg * 8), 0);
2388 } else if (IS_I965G(dev)) {
2389 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2390 } else {
2391 uint32_t fence_reg;
2393 if (obj_priv->fence_reg < 8)
2394 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2395 else
2396 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2397 8) * 4;
2399 I915_WRITE(fence_reg, 0);
2402 reg->obj = NULL;
2403 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2404 list_del_init(&reg->lru_list);
2408 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2409 * to the buffer to finish, and then resets the fence register.
2410 * @obj: tiled object holding a fence register.
2412 * Zeroes out the fence register itself and clears out the associated
2413 * data structures in dev_priv and obj_priv.
2416 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2418 struct drm_device *dev = obj->dev;
2419 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2421 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2422 return 0;
2424 /* If we've changed tiling, GTT-mappings of the object
2425 * need to re-fault to ensure that the correct fence register
2426 * setup is in place.
2428 i915_gem_release_mmap(obj);
2430 /* On the i915, GPU access to tiled buffers is via a fence,
2431 * therefore we must wait for any outstanding access to complete
2432 * before clearing the fence.
2434 if (!IS_I965G(dev)) {
2435 int ret;
2437 ret = i915_gem_object_flush_gpu_write_domain(obj);
2438 if (ret != 0)
2439 return ret;
2441 ret = i915_gem_object_wait_rendering(obj);
2442 if (ret != 0)
2443 return ret;
2446 i915_gem_object_flush_gtt_write_domain(obj);
2447 i915_gem_clear_fence_reg (obj);
2449 return 0;
2453 * Finds free space in the GTT aperture and binds the object there.
2455 static int
2456 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2458 struct drm_device *dev = obj->dev;
2459 drm_i915_private_t *dev_priv = dev->dev_private;
2460 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2461 struct drm_mm_node *free_space;
2462 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2463 int ret;
2465 if (obj_priv->madv != I915_MADV_WILLNEED) {
2466 DRM_ERROR("Attempting to bind a purgeable object\n");
2467 return -EINVAL;
2470 if (alignment == 0)
2471 alignment = i915_gem_get_gtt_alignment(obj);
2472 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2473 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2474 return -EINVAL;
2477 /* If the object is bigger than the entire aperture, reject it early
2478 * before evicting everything in a vain attempt to find space.
2480 if (obj->size > dev->gtt_total) {
2481 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2482 return -E2BIG;
2485 search_free:
2486 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2487 obj->size, alignment, 0);
2488 if (free_space != NULL) {
2489 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2490 alignment);
2491 if (obj_priv->gtt_space != NULL)
2492 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2494 if (obj_priv->gtt_space == NULL) {
2495 /* If the gtt is empty and we're still having trouble
2496 * fitting our object in, we're out of memory.
2498 #if WATCH_LRU
2499 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2500 #endif
2501 ret = i915_gem_evict_something(dev, obj->size, alignment);
2502 if (ret)
2503 return ret;
2505 goto search_free;
2508 #if WATCH_BUF
2509 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2510 obj->size, obj_priv->gtt_offset);
2511 #endif
2512 ret = i915_gem_object_get_pages(obj, gfpmask);
2513 if (ret) {
2514 drm_mm_put_block(obj_priv->gtt_space);
2515 obj_priv->gtt_space = NULL;
2517 if (ret == -ENOMEM) {
2518 /* first try to clear up some space from the GTT */
2519 ret = i915_gem_evict_something(dev, obj->size,
2520 alignment);
2521 if (ret) {
2522 /* now try to shrink everyone else */
2523 if (gfpmask) {
2524 gfpmask = 0;
2525 goto search_free;
2528 return ret;
2531 goto search_free;
2534 return ret;
2537 /* Create an AGP memory structure pointing at our pages, and bind it
2538 * into the GTT.
2540 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2541 obj_priv->pages,
2542 obj->size >> PAGE_SHIFT,
2543 obj_priv->gtt_offset,
2544 obj_priv->agp_type);
2545 if (obj_priv->agp_mem == NULL) {
2546 i915_gem_object_put_pages(obj);
2547 drm_mm_put_block(obj_priv->gtt_space);
2548 obj_priv->gtt_space = NULL;
2550 ret = i915_gem_evict_something(dev, obj->size, alignment);
2551 if (ret)
2552 return ret;
2554 goto search_free;
2556 atomic_inc(&dev->gtt_count);
2557 atomic_add(obj->size, &dev->gtt_memory);
2559 /* keep track of bounds object by adding it to the inactive list */
2560 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2562 /* Assert that the object is not currently in any GPU domain. As it
2563 * wasn't in the GTT, there shouldn't be any way it could have been in
2564 * a GPU cache
2566 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2567 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2569 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2571 return 0;
2574 void
2575 i915_gem_clflush_object(struct drm_gem_object *obj)
2577 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2579 /* If we don't have a page list set up, then we're not pinned
2580 * to GPU, and we can ignore the cache flush because it'll happen
2581 * again at bind time.
2583 if (obj_priv->pages == NULL)
2584 return;
2586 trace_i915_gem_object_clflush(obj);
2588 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2591 /** Flushes any GPU write domain for the object if it's dirty. */
2592 static int
2593 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2595 struct drm_device *dev = obj->dev;
2596 uint32_t old_write_domain;
2597 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2599 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2600 return 0;
2602 /* Queue the GPU write cache flushing we need. */
2603 old_write_domain = obj->write_domain;
2604 i915_gem_flush(dev, 0, obj->write_domain);
2605 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2606 return -ENOMEM;
2608 trace_i915_gem_object_change_domain(obj,
2609 obj->read_domains,
2610 old_write_domain);
2611 return 0;
2614 /** Flushes the GTT write domain for the object if it's dirty. */
2615 static void
2616 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2618 uint32_t old_write_domain;
2620 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2621 return;
2623 /* No actual flushing is required for the GTT write domain. Writes
2624 * to it immediately go to main memory as far as we know, so there's
2625 * no chipset flush. It also doesn't land in render cache.
2627 old_write_domain = obj->write_domain;
2628 obj->write_domain = 0;
2630 trace_i915_gem_object_change_domain(obj,
2631 obj->read_domains,
2632 old_write_domain);
2635 /** Flushes the CPU write domain for the object if it's dirty. */
2636 static void
2637 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2639 struct drm_device *dev = obj->dev;
2640 uint32_t old_write_domain;
2642 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2643 return;
2645 i915_gem_clflush_object(obj);
2646 drm_agp_chipset_flush(dev);
2647 old_write_domain = obj->write_domain;
2648 obj->write_domain = 0;
2650 trace_i915_gem_object_change_domain(obj,
2651 obj->read_domains,
2652 old_write_domain);
2656 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2658 int ret = 0;
2660 switch (obj->write_domain) {
2661 case I915_GEM_DOMAIN_GTT:
2662 i915_gem_object_flush_gtt_write_domain(obj);
2663 break;
2664 case I915_GEM_DOMAIN_CPU:
2665 i915_gem_object_flush_cpu_write_domain(obj);
2666 break;
2667 default:
2668 ret = i915_gem_object_flush_gpu_write_domain(obj);
2669 break;
2672 return ret;
2676 * Moves a single object to the GTT read, and possibly write domain.
2678 * This function returns when the move is complete, including waiting on
2679 * flushes to occur.
2682 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2684 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2685 uint32_t old_write_domain, old_read_domains;
2686 int ret;
2688 /* Not valid to be called on unbound objects. */
2689 if (obj_priv->gtt_space == NULL)
2690 return -EINVAL;
2692 ret = i915_gem_object_flush_gpu_write_domain(obj);
2693 if (ret != 0)
2694 return ret;
2696 /* Wait on any GPU rendering and flushing to occur. */
2697 ret = i915_gem_object_wait_rendering(obj);
2698 if (ret != 0)
2699 return ret;
2701 old_write_domain = obj->write_domain;
2702 old_read_domains = obj->read_domains;
2704 /* If we're writing through the GTT domain, then CPU and GPU caches
2705 * will need to be invalidated at next use.
2707 if (write)
2708 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2710 i915_gem_object_flush_cpu_write_domain(obj);
2712 /* It should now be out of any other write domains, and we can update
2713 * the domain values for our changes.
2715 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2716 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2717 if (write) {
2718 obj->write_domain = I915_GEM_DOMAIN_GTT;
2719 obj_priv->dirty = 1;
2722 trace_i915_gem_object_change_domain(obj,
2723 old_read_domains,
2724 old_write_domain);
2726 return 0;
2730 * Prepare buffer for display plane. Use uninterruptible for possible flush
2731 * wait, as in modesetting process we're not supposed to be interrupted.
2734 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2736 struct drm_device *dev = obj->dev;
2737 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2738 uint32_t old_write_domain, old_read_domains;
2739 int ret;
2741 /* Not valid to be called on unbound objects. */
2742 if (obj_priv->gtt_space == NULL)
2743 return -EINVAL;
2745 ret = i915_gem_object_flush_gpu_write_domain(obj);
2746 if (ret)
2747 return ret;
2749 /* Wait on any GPU rendering and flushing to occur. */
2750 if (obj_priv->active) {
2751 #if WATCH_BUF
2752 DRM_INFO("%s: object %p wait for seqno %08x\n",
2753 __func__, obj, obj_priv->last_rendering_seqno);
2754 #endif
2755 ret = i915_do_wait_request(dev,
2756 obj_priv->last_rendering_seqno,
2758 obj_priv->ring);
2759 if (ret != 0)
2760 return ret;
2763 i915_gem_object_flush_cpu_write_domain(obj);
2765 old_write_domain = obj->write_domain;
2766 old_read_domains = obj->read_domains;
2768 /* It should now be out of any other write domains, and we can update
2769 * the domain values for our changes.
2771 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2772 obj->read_domains = I915_GEM_DOMAIN_GTT;
2773 obj->write_domain = I915_GEM_DOMAIN_GTT;
2774 obj_priv->dirty = 1;
2776 trace_i915_gem_object_change_domain(obj,
2777 old_read_domains,
2778 old_write_domain);
2780 return 0;
2784 * Moves a single object to the CPU read, and possibly write domain.
2786 * This function returns when the move is complete, including waiting on
2787 * flushes to occur.
2789 static int
2790 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2792 uint32_t old_write_domain, old_read_domains;
2793 int ret;
2795 ret = i915_gem_object_flush_gpu_write_domain(obj);
2796 if (ret)
2797 return ret;
2799 /* Wait on any GPU rendering and flushing to occur. */
2800 ret = i915_gem_object_wait_rendering(obj);
2801 if (ret != 0)
2802 return ret;
2804 i915_gem_object_flush_gtt_write_domain(obj);
2806 /* If we have a partially-valid cache of the object in the CPU,
2807 * finish invalidating it and free the per-page flags.
2809 i915_gem_object_set_to_full_cpu_read_domain(obj);
2811 old_write_domain = obj->write_domain;
2812 old_read_domains = obj->read_domains;
2814 /* Flush the CPU cache if it's still invalid. */
2815 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2816 i915_gem_clflush_object(obj);
2818 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2821 /* It should now be out of any other write domains, and we can update
2822 * the domain values for our changes.
2824 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2826 /* If we're writing through the CPU, then the GPU read domains will
2827 * need to be invalidated at next use.
2829 if (write) {
2830 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2831 obj->write_domain = I915_GEM_DOMAIN_CPU;
2834 trace_i915_gem_object_change_domain(obj,
2835 old_read_domains,
2836 old_write_domain);
2838 return 0;
2842 * Set the next domain for the specified object. This
2843 * may not actually perform the necessary flushing/invaliding though,
2844 * as that may want to be batched with other set_domain operations
2846 * This is (we hope) the only really tricky part of gem. The goal
2847 * is fairly simple -- track which caches hold bits of the object
2848 * and make sure they remain coherent. A few concrete examples may
2849 * help to explain how it works. For shorthand, we use the notation
2850 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2851 * a pair of read and write domain masks.
2853 * Case 1: the batch buffer
2855 * 1. Allocated
2856 * 2. Written by CPU
2857 * 3. Mapped to GTT
2858 * 4. Read by GPU
2859 * 5. Unmapped from GTT
2860 * 6. Freed
2862 * Let's take these a step at a time
2864 * 1. Allocated
2865 * Pages allocated from the kernel may still have
2866 * cache contents, so we set them to (CPU, CPU) always.
2867 * 2. Written by CPU (using pwrite)
2868 * The pwrite function calls set_domain (CPU, CPU) and
2869 * this function does nothing (as nothing changes)
2870 * 3. Mapped by GTT
2871 * This function asserts that the object is not
2872 * currently in any GPU-based read or write domains
2873 * 4. Read by GPU
2874 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2875 * As write_domain is zero, this function adds in the
2876 * current read domains (CPU+COMMAND, 0).
2877 * flush_domains is set to CPU.
2878 * invalidate_domains is set to COMMAND
2879 * clflush is run to get data out of the CPU caches
2880 * then i915_dev_set_domain calls i915_gem_flush to
2881 * emit an MI_FLUSH and drm_agp_chipset_flush
2882 * 5. Unmapped from GTT
2883 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2884 * flush_domains and invalidate_domains end up both zero
2885 * so no flushing/invalidating happens
2886 * 6. Freed
2887 * yay, done
2889 * Case 2: The shared render buffer
2891 * 1. Allocated
2892 * 2. Mapped to GTT
2893 * 3. Read/written by GPU
2894 * 4. set_domain to (CPU,CPU)
2895 * 5. Read/written by CPU
2896 * 6. Read/written by GPU
2898 * 1. Allocated
2899 * Same as last example, (CPU, CPU)
2900 * 2. Mapped to GTT
2901 * Nothing changes (assertions find that it is not in the GPU)
2902 * 3. Read/written by GPU
2903 * execbuffer calls set_domain (RENDER, RENDER)
2904 * flush_domains gets CPU
2905 * invalidate_domains gets GPU
2906 * clflush (obj)
2907 * MI_FLUSH and drm_agp_chipset_flush
2908 * 4. set_domain (CPU, CPU)
2909 * flush_domains gets GPU
2910 * invalidate_domains gets CPU
2911 * wait_rendering (obj) to make sure all drawing is complete.
2912 * This will include an MI_FLUSH to get the data from GPU
2913 * to memory
2914 * clflush (obj) to invalidate the CPU cache
2915 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2916 * 5. Read/written by CPU
2917 * cache lines are loaded and dirtied
2918 * 6. Read written by GPU
2919 * Same as last GPU access
2921 * Case 3: The constant buffer
2923 * 1. Allocated
2924 * 2. Written by CPU
2925 * 3. Read by GPU
2926 * 4. Updated (written) by CPU again
2927 * 5. Read by GPU
2929 * 1. Allocated
2930 * (CPU, CPU)
2931 * 2. Written by CPU
2932 * (CPU, CPU)
2933 * 3. Read by GPU
2934 * (CPU+RENDER, 0)
2935 * flush_domains = CPU
2936 * invalidate_domains = RENDER
2937 * clflush (obj)
2938 * MI_FLUSH
2939 * drm_agp_chipset_flush
2940 * 4. Updated (written) by CPU again
2941 * (CPU, CPU)
2942 * flush_domains = 0 (no previous write domain)
2943 * invalidate_domains = 0 (no new read domains)
2944 * 5. Read by GPU
2945 * (CPU+RENDER, 0)
2946 * flush_domains = CPU
2947 * invalidate_domains = RENDER
2948 * clflush (obj)
2949 * MI_FLUSH
2950 * drm_agp_chipset_flush
2952 static void
2953 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2955 struct drm_device *dev = obj->dev;
2956 drm_i915_private_t *dev_priv = dev->dev_private;
2957 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2958 uint32_t invalidate_domains = 0;
2959 uint32_t flush_domains = 0;
2960 uint32_t old_read_domains;
2962 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2963 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2965 intel_mark_busy(dev, obj);
2967 #if WATCH_BUF
2968 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2969 __func__, obj,
2970 obj->read_domains, obj->pending_read_domains,
2971 obj->write_domain, obj->pending_write_domain);
2972 #endif
2974 * If the object isn't moving to a new write domain,
2975 * let the object stay in multiple read domains
2977 if (obj->pending_write_domain == 0)
2978 obj->pending_read_domains |= obj->read_domains;
2979 else
2980 obj_priv->dirty = 1;
2983 * Flush the current write domain if
2984 * the new read domains don't match. Invalidate
2985 * any read domains which differ from the old
2986 * write domain
2988 if (obj->write_domain &&
2989 obj->write_domain != obj->pending_read_domains) {
2990 flush_domains |= obj->write_domain;
2991 invalidate_domains |=
2992 obj->pending_read_domains & ~obj->write_domain;
2995 * Invalidate any read caches which may have
2996 * stale data. That is, any new read domains.
2998 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2999 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3000 #if WATCH_BUF
3001 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3002 __func__, flush_domains, invalidate_domains);
3003 #endif
3004 i915_gem_clflush_object(obj);
3007 old_read_domains = obj->read_domains;
3009 /* The actual obj->write_domain will be updated with
3010 * pending_write_domain after we emit the accumulated flush for all
3011 * of our domain changes in execbuffers (which clears objects'
3012 * write_domains). So if we have a current write domain that we
3013 * aren't changing, set pending_write_domain to that.
3015 if (flush_domains == 0 && obj->pending_write_domain == 0)
3016 obj->pending_write_domain = obj->write_domain;
3017 obj->read_domains = obj->pending_read_domains;
3019 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3020 if (obj_priv->ring == &dev_priv->render_ring)
3021 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3022 else if (obj_priv->ring == &dev_priv->bsd_ring)
3023 dev_priv->flush_rings |= FLUSH_BSD_RING;
3026 dev->invalidate_domains |= invalidate_domains;
3027 dev->flush_domains |= flush_domains;
3028 #if WATCH_BUF
3029 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3030 __func__,
3031 obj->read_domains, obj->write_domain,
3032 dev->invalidate_domains, dev->flush_domains);
3033 #endif
3035 trace_i915_gem_object_change_domain(obj,
3036 old_read_domains,
3037 obj->write_domain);
3041 * Moves the object from a partially CPU read to a full one.
3043 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3044 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3046 static void
3047 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3049 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3051 if (!obj_priv->page_cpu_valid)
3052 return;
3054 /* If we're partially in the CPU read domain, finish moving it in.
3056 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3057 int i;
3059 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3060 if (obj_priv->page_cpu_valid[i])
3061 continue;
3062 drm_clflush_pages(obj_priv->pages + i, 1);
3066 /* Free the page_cpu_valid mappings which are now stale, whether
3067 * or not we've got I915_GEM_DOMAIN_CPU.
3069 kfree(obj_priv->page_cpu_valid);
3070 obj_priv->page_cpu_valid = NULL;
3074 * Set the CPU read domain on a range of the object.
3076 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3077 * not entirely valid. The page_cpu_valid member of the object flags which
3078 * pages have been flushed, and will be respected by
3079 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3080 * of the whole object.
3082 * This function returns when the move is complete, including waiting on
3083 * flushes to occur.
3085 static int
3086 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3087 uint64_t offset, uint64_t size)
3089 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3090 uint32_t old_read_domains;
3091 int i, ret;
3093 if (offset == 0 && size == obj->size)
3094 return i915_gem_object_set_to_cpu_domain(obj, 0);
3096 ret = i915_gem_object_flush_gpu_write_domain(obj);
3097 if (ret)
3098 return ret;
3100 /* Wait on any GPU rendering and flushing to occur. */
3101 ret = i915_gem_object_wait_rendering(obj);
3102 if (ret != 0)
3103 return ret;
3104 i915_gem_object_flush_gtt_write_domain(obj);
3106 /* If we're already fully in the CPU read domain, we're done. */
3107 if (obj_priv->page_cpu_valid == NULL &&
3108 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3109 return 0;
3111 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3112 * newly adding I915_GEM_DOMAIN_CPU
3114 if (obj_priv->page_cpu_valid == NULL) {
3115 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3116 GFP_KERNEL);
3117 if (obj_priv->page_cpu_valid == NULL)
3118 return -ENOMEM;
3119 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3120 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3122 /* Flush the cache on any pages that are still invalid from the CPU's
3123 * perspective.
3125 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3126 i++) {
3127 if (obj_priv->page_cpu_valid[i])
3128 continue;
3130 drm_clflush_pages(obj_priv->pages + i, 1);
3132 obj_priv->page_cpu_valid[i] = 1;
3135 /* It should now be out of any other write domains, and we can update
3136 * the domain values for our changes.
3138 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3140 old_read_domains = obj->read_domains;
3141 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3143 trace_i915_gem_object_change_domain(obj,
3144 old_read_domains,
3145 obj->write_domain);
3147 return 0;
3151 * Pin an object to the GTT and evaluate the relocations landing in it.
3153 static int
3154 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3155 struct drm_file *file_priv,
3156 struct drm_i915_gem_exec_object2 *entry,
3157 struct drm_i915_gem_relocation_entry *relocs)
3159 struct drm_device *dev = obj->dev;
3160 drm_i915_private_t *dev_priv = dev->dev_private;
3161 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3162 int i, ret;
3163 void __iomem *reloc_page;
3164 bool need_fence;
3166 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3167 obj_priv->tiling_mode != I915_TILING_NONE;
3169 /* Check fence reg constraints and rebind if necessary */
3170 if (need_fence &&
3171 !i915_gem_object_fence_offset_ok(obj,
3172 obj_priv->tiling_mode)) {
3173 ret = i915_gem_object_unbind(obj);
3174 if (ret)
3175 return ret;
3178 /* Choose the GTT offset for our buffer and put it there. */
3179 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3180 if (ret)
3181 return ret;
3184 * Pre-965 chips need a fence register set up in order to
3185 * properly handle blits to/from tiled surfaces.
3187 if (need_fence) {
3188 ret = i915_gem_object_get_fence_reg(obj);
3189 if (ret != 0) {
3190 i915_gem_object_unpin(obj);
3191 return ret;
3195 entry->offset = obj_priv->gtt_offset;
3197 /* Apply the relocations, using the GTT aperture to avoid cache
3198 * flushing requirements.
3200 for (i = 0; i < entry->relocation_count; i++) {
3201 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3202 struct drm_gem_object *target_obj;
3203 struct drm_i915_gem_object *target_obj_priv;
3204 uint32_t reloc_val, reloc_offset;
3205 uint32_t __iomem *reloc_entry;
3207 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3208 reloc->target_handle);
3209 if (target_obj == NULL) {
3210 i915_gem_object_unpin(obj);
3211 return -ENOENT;
3213 target_obj_priv = to_intel_bo(target_obj);
3215 #if WATCH_RELOC
3216 DRM_INFO("%s: obj %p offset %08x target %d "
3217 "read %08x write %08x gtt %08x "
3218 "presumed %08x delta %08x\n",
3219 __func__,
3220 obj,
3221 (int) reloc->offset,
3222 (int) reloc->target_handle,
3223 (int) reloc->read_domains,
3224 (int) reloc->write_domain,
3225 (int) target_obj_priv->gtt_offset,
3226 (int) reloc->presumed_offset,
3227 reloc->delta);
3228 #endif
3230 /* The target buffer should have appeared before us in the
3231 * exec_object list, so it should have a GTT space bound by now.
3233 if (target_obj_priv->gtt_space == NULL) {
3234 DRM_ERROR("No GTT space found for object %d\n",
3235 reloc->target_handle);
3236 drm_gem_object_unreference(target_obj);
3237 i915_gem_object_unpin(obj);
3238 return -EINVAL;
3241 /* Validate that the target is in a valid r/w GPU domain */
3242 if (reloc->write_domain & (reloc->write_domain - 1)) {
3243 DRM_ERROR("reloc with multiple write domains: "
3244 "obj %p target %d offset %d "
3245 "read %08x write %08x",
3246 obj, reloc->target_handle,
3247 (int) reloc->offset,
3248 reloc->read_domains,
3249 reloc->write_domain);
3250 return -EINVAL;
3252 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3253 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3254 DRM_ERROR("reloc with read/write CPU domains: "
3255 "obj %p target %d offset %d "
3256 "read %08x write %08x",
3257 obj, reloc->target_handle,
3258 (int) reloc->offset,
3259 reloc->read_domains,
3260 reloc->write_domain);
3261 drm_gem_object_unreference(target_obj);
3262 i915_gem_object_unpin(obj);
3263 return -EINVAL;
3265 if (reloc->write_domain && target_obj->pending_write_domain &&
3266 reloc->write_domain != target_obj->pending_write_domain) {
3267 DRM_ERROR("Write domain conflict: "
3268 "obj %p target %d offset %d "
3269 "new %08x old %08x\n",
3270 obj, reloc->target_handle,
3271 (int) reloc->offset,
3272 reloc->write_domain,
3273 target_obj->pending_write_domain);
3274 drm_gem_object_unreference(target_obj);
3275 i915_gem_object_unpin(obj);
3276 return -EINVAL;
3279 target_obj->pending_read_domains |= reloc->read_domains;
3280 target_obj->pending_write_domain |= reloc->write_domain;
3282 /* If the relocation already has the right value in it, no
3283 * more work needs to be done.
3285 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3286 drm_gem_object_unreference(target_obj);
3287 continue;
3290 /* Check that the relocation address is valid... */
3291 if (reloc->offset > obj->size - 4) {
3292 DRM_ERROR("Relocation beyond object bounds: "
3293 "obj %p target %d offset %d size %d.\n",
3294 obj, reloc->target_handle,
3295 (int) reloc->offset, (int) obj->size);
3296 drm_gem_object_unreference(target_obj);
3297 i915_gem_object_unpin(obj);
3298 return -EINVAL;
3300 if (reloc->offset & 3) {
3301 DRM_ERROR("Relocation not 4-byte aligned: "
3302 "obj %p target %d offset %d.\n",
3303 obj, reloc->target_handle,
3304 (int) reloc->offset);
3305 drm_gem_object_unreference(target_obj);
3306 i915_gem_object_unpin(obj);
3307 return -EINVAL;
3310 /* and points to somewhere within the target object. */
3311 if (reloc->delta >= target_obj->size) {
3312 DRM_ERROR("Relocation beyond target object bounds: "
3313 "obj %p target %d delta %d size %d.\n",
3314 obj, reloc->target_handle,
3315 (int) reloc->delta, (int) target_obj->size);
3316 drm_gem_object_unreference(target_obj);
3317 i915_gem_object_unpin(obj);
3318 return -EINVAL;
3321 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3322 if (ret != 0) {
3323 drm_gem_object_unreference(target_obj);
3324 i915_gem_object_unpin(obj);
3325 return -EINVAL;
3328 /* Map the page containing the relocation we're going to
3329 * perform.
3331 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3332 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3333 (reloc_offset &
3334 ~(PAGE_SIZE - 1)),
3335 KM_USER0);
3336 reloc_entry = (uint32_t __iomem *)(reloc_page +
3337 (reloc_offset & (PAGE_SIZE - 1)));
3338 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3340 #if WATCH_BUF
3341 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3342 obj, (unsigned int) reloc->offset,
3343 readl(reloc_entry), reloc_val);
3344 #endif
3345 writel(reloc_val, reloc_entry);
3346 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3348 /* The updated presumed offset for this entry will be
3349 * copied back out to the user.
3351 reloc->presumed_offset = target_obj_priv->gtt_offset;
3353 drm_gem_object_unreference(target_obj);
3356 #if WATCH_BUF
3357 if (0)
3358 i915_gem_dump_object(obj, 128, __func__, ~0);
3359 #endif
3360 return 0;
3363 /* Throttle our rendering by waiting until the ring has completed our requests
3364 * emitted over 20 msec ago.
3366 * Note that if we were to use the current jiffies each time around the loop,
3367 * we wouldn't escape the function with any frames outstanding if the time to
3368 * render a frame was over 20ms.
3370 * This should get us reasonable parallelism between CPU and GPU but also
3371 * relatively low latency when blocking on a particular request to finish.
3373 static int
3374 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3376 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3377 int ret = 0;
3378 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3380 mutex_lock(&dev->struct_mutex);
3381 while (!list_empty(&i915_file_priv->mm.request_list)) {
3382 struct drm_i915_gem_request *request;
3384 request = list_first_entry(&i915_file_priv->mm.request_list,
3385 struct drm_i915_gem_request,
3386 client_list);
3388 if (time_after_eq(request->emitted_jiffies, recent_enough))
3389 break;
3391 ret = i915_wait_request(dev, request->seqno, request->ring);
3392 if (ret != 0)
3393 break;
3395 mutex_unlock(&dev->struct_mutex);
3397 return ret;
3400 static int
3401 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3402 uint32_t buffer_count,
3403 struct drm_i915_gem_relocation_entry **relocs)
3405 uint32_t reloc_count = 0, reloc_index = 0, i;
3406 int ret;
3408 *relocs = NULL;
3409 for (i = 0; i < buffer_count; i++) {
3410 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3411 return -EINVAL;
3412 reloc_count += exec_list[i].relocation_count;
3415 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3416 if (*relocs == NULL) {
3417 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3418 return -ENOMEM;
3421 for (i = 0; i < buffer_count; i++) {
3422 struct drm_i915_gem_relocation_entry __user *user_relocs;
3424 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3426 ret = copy_from_user(&(*relocs)[reloc_index],
3427 user_relocs,
3428 exec_list[i].relocation_count *
3429 sizeof(**relocs));
3430 if (ret != 0) {
3431 drm_free_large(*relocs);
3432 *relocs = NULL;
3433 return -EFAULT;
3436 reloc_index += exec_list[i].relocation_count;
3439 return 0;
3442 static int
3443 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3444 uint32_t buffer_count,
3445 struct drm_i915_gem_relocation_entry *relocs)
3447 uint32_t reloc_count = 0, i;
3448 int ret = 0;
3450 if (relocs == NULL)
3451 return 0;
3453 for (i = 0; i < buffer_count; i++) {
3454 struct drm_i915_gem_relocation_entry __user *user_relocs;
3455 int unwritten;
3457 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3459 unwritten = copy_to_user(user_relocs,
3460 &relocs[reloc_count],
3461 exec_list[i].relocation_count *
3462 sizeof(*relocs));
3464 if (unwritten) {
3465 ret = -EFAULT;
3466 goto err;
3469 reloc_count += exec_list[i].relocation_count;
3472 err:
3473 drm_free_large(relocs);
3475 return ret;
3478 static int
3479 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3480 uint64_t exec_offset)
3482 uint32_t exec_start, exec_len;
3484 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3485 exec_len = (uint32_t) exec->batch_len;
3487 if ((exec_start | exec_len) & 0x7)
3488 return -EINVAL;
3490 if (!exec_start)
3491 return -EINVAL;
3493 return 0;
3496 static int
3497 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3498 struct drm_gem_object **object_list,
3499 int count)
3501 drm_i915_private_t *dev_priv = dev->dev_private;
3502 struct drm_i915_gem_object *obj_priv;
3503 DEFINE_WAIT(wait);
3504 int i, ret = 0;
3506 for (;;) {
3507 prepare_to_wait(&dev_priv->pending_flip_queue,
3508 &wait, TASK_INTERRUPTIBLE);
3509 for (i = 0; i < count; i++) {
3510 obj_priv = to_intel_bo(object_list[i]);
3511 if (atomic_read(&obj_priv->pending_flip) > 0)
3512 break;
3514 if (i == count)
3515 break;
3517 if (!signal_pending(current)) {
3518 mutex_unlock(&dev->struct_mutex);
3519 schedule();
3520 mutex_lock(&dev->struct_mutex);
3521 continue;
3523 ret = -ERESTARTSYS;
3524 break;
3526 finish_wait(&dev_priv->pending_flip_queue, &wait);
3528 return ret;
3533 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3534 struct drm_file *file_priv,
3535 struct drm_i915_gem_execbuffer2 *args,
3536 struct drm_i915_gem_exec_object2 *exec_list)
3538 drm_i915_private_t *dev_priv = dev->dev_private;
3539 struct drm_gem_object **object_list = NULL;
3540 struct drm_gem_object *batch_obj;
3541 struct drm_i915_gem_object *obj_priv;
3542 struct drm_clip_rect *cliprects = NULL;
3543 struct drm_i915_gem_relocation_entry *relocs = NULL;
3544 int ret = 0, ret2, i, pinned = 0;
3545 uint64_t exec_offset;
3546 uint32_t seqno, flush_domains, reloc_index;
3547 int pin_tries, flips;
3549 struct intel_ring_buffer *ring = NULL;
3551 #if WATCH_EXEC
3552 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3553 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3554 #endif
3555 if (args->flags & I915_EXEC_BSD) {
3556 if (!HAS_BSD(dev)) {
3557 DRM_ERROR("execbuf with wrong flag\n");
3558 return -EINVAL;
3560 ring = &dev_priv->bsd_ring;
3561 } else {
3562 ring = &dev_priv->render_ring;
3565 if (args->buffer_count < 1) {
3566 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3567 return -EINVAL;
3569 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3570 if (object_list == NULL) {
3571 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3572 args->buffer_count);
3573 ret = -ENOMEM;
3574 goto pre_mutex_err;
3577 if (args->num_cliprects != 0) {
3578 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3579 GFP_KERNEL);
3580 if (cliprects == NULL) {
3581 ret = -ENOMEM;
3582 goto pre_mutex_err;
3585 ret = copy_from_user(cliprects,
3586 (struct drm_clip_rect __user *)
3587 (uintptr_t) args->cliprects_ptr,
3588 sizeof(*cliprects) * args->num_cliprects);
3589 if (ret != 0) {
3590 DRM_ERROR("copy %d cliprects failed: %d\n",
3591 args->num_cliprects, ret);
3592 ret = -EFAULT;
3593 goto pre_mutex_err;
3597 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3598 &relocs);
3599 if (ret != 0)
3600 goto pre_mutex_err;
3602 mutex_lock(&dev->struct_mutex);
3604 i915_verify_inactive(dev, __FILE__, __LINE__);
3606 if (atomic_read(&dev_priv->mm.wedged)) {
3607 mutex_unlock(&dev->struct_mutex);
3608 ret = -EIO;
3609 goto pre_mutex_err;
3612 if (dev_priv->mm.suspended) {
3613 mutex_unlock(&dev->struct_mutex);
3614 ret = -EBUSY;
3615 goto pre_mutex_err;
3618 /* Look up object handles */
3619 flips = 0;
3620 for (i = 0; i < args->buffer_count; i++) {
3621 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3622 exec_list[i].handle);
3623 if (object_list[i] == NULL) {
3624 DRM_ERROR("Invalid object handle %d at index %d\n",
3625 exec_list[i].handle, i);
3626 /* prevent error path from reading uninitialized data */
3627 args->buffer_count = i + 1;
3628 ret = -ENOENT;
3629 goto err;
3632 obj_priv = to_intel_bo(object_list[i]);
3633 if (obj_priv->in_execbuffer) {
3634 DRM_ERROR("Object %p appears more than once in object list\n",
3635 object_list[i]);
3636 /* prevent error path from reading uninitialized data */
3637 args->buffer_count = i + 1;
3638 ret = -EINVAL;
3639 goto err;
3641 obj_priv->in_execbuffer = true;
3642 flips += atomic_read(&obj_priv->pending_flip);
3645 if (flips > 0) {
3646 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3647 args->buffer_count);
3648 if (ret)
3649 goto err;
3652 /* Pin and relocate */
3653 for (pin_tries = 0; ; pin_tries++) {
3654 ret = 0;
3655 reloc_index = 0;
3657 for (i = 0; i < args->buffer_count; i++) {
3658 object_list[i]->pending_read_domains = 0;
3659 object_list[i]->pending_write_domain = 0;
3660 ret = i915_gem_object_pin_and_relocate(object_list[i],
3661 file_priv,
3662 &exec_list[i],
3663 &relocs[reloc_index]);
3664 if (ret)
3665 break;
3666 pinned = i + 1;
3667 reloc_index += exec_list[i].relocation_count;
3669 /* success */
3670 if (ret == 0)
3671 break;
3673 /* error other than GTT full, or we've already tried again */
3674 if (ret != -ENOSPC || pin_tries >= 1) {
3675 if (ret != -ERESTARTSYS) {
3676 unsigned long long total_size = 0;
3677 int num_fences = 0;
3678 for (i = 0; i < args->buffer_count; i++) {
3679 obj_priv = to_intel_bo(object_list[i]);
3681 total_size += object_list[i]->size;
3682 num_fences +=
3683 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3684 obj_priv->tiling_mode != I915_TILING_NONE;
3686 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3687 pinned+1, args->buffer_count,
3688 total_size, num_fences,
3689 ret);
3690 DRM_ERROR("%d objects [%d pinned], "
3691 "%d object bytes [%d pinned], "
3692 "%d/%d gtt bytes\n",
3693 atomic_read(&dev->object_count),
3694 atomic_read(&dev->pin_count),
3695 atomic_read(&dev->object_memory),
3696 atomic_read(&dev->pin_memory),
3697 atomic_read(&dev->gtt_memory),
3698 dev->gtt_total);
3700 goto err;
3703 /* unpin all of our buffers */
3704 for (i = 0; i < pinned; i++)
3705 i915_gem_object_unpin(object_list[i]);
3706 pinned = 0;
3708 /* evict everyone we can from the aperture */
3709 ret = i915_gem_evict_everything(dev);
3710 if (ret && ret != -ENOSPC)
3711 goto err;
3714 /* Set the pending read domains for the batch buffer to COMMAND */
3715 batch_obj = object_list[args->buffer_count-1];
3716 if (batch_obj->pending_write_domain) {
3717 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3718 ret = -EINVAL;
3719 goto err;
3721 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3723 /* Sanity check the batch buffer, prior to moving objects */
3724 exec_offset = exec_list[args->buffer_count - 1].offset;
3725 ret = i915_gem_check_execbuffer (args, exec_offset);
3726 if (ret != 0) {
3727 DRM_ERROR("execbuf with invalid offset/length\n");
3728 goto err;
3731 i915_verify_inactive(dev, __FILE__, __LINE__);
3733 /* Zero the global flush/invalidate flags. These
3734 * will be modified as new domains are computed
3735 * for each object
3737 dev->invalidate_domains = 0;
3738 dev->flush_domains = 0;
3739 dev_priv->flush_rings = 0;
3741 for (i = 0; i < args->buffer_count; i++) {
3742 struct drm_gem_object *obj = object_list[i];
3744 /* Compute new gpu domains and update invalidate/flush */
3745 i915_gem_object_set_to_gpu_domain(obj);
3748 i915_verify_inactive(dev, __FILE__, __LINE__);
3750 if (dev->invalidate_domains | dev->flush_domains) {
3751 #if WATCH_EXEC
3752 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3753 __func__,
3754 dev->invalidate_domains,
3755 dev->flush_domains);
3756 #endif
3757 i915_gem_flush(dev,
3758 dev->invalidate_domains,
3759 dev->flush_domains);
3760 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
3761 (void)i915_add_request(dev, file_priv,
3762 dev->flush_domains,
3763 &dev_priv->render_ring);
3764 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3765 (void)i915_add_request(dev, file_priv,
3766 dev->flush_domains,
3767 &dev_priv->bsd_ring);
3770 for (i = 0; i < args->buffer_count; i++) {
3771 struct drm_gem_object *obj = object_list[i];
3772 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3773 uint32_t old_write_domain = obj->write_domain;
3775 obj->write_domain = obj->pending_write_domain;
3776 if (obj->write_domain)
3777 list_move_tail(&obj_priv->gpu_write_list,
3778 &dev_priv->mm.gpu_write_list);
3779 else
3780 list_del_init(&obj_priv->gpu_write_list);
3782 trace_i915_gem_object_change_domain(obj,
3783 obj->read_domains,
3784 old_write_domain);
3787 i915_verify_inactive(dev, __FILE__, __LINE__);
3789 #if WATCH_COHERENCY
3790 for (i = 0; i < args->buffer_count; i++) {
3791 i915_gem_object_check_coherency(object_list[i],
3792 exec_list[i].handle);
3794 #endif
3796 #if WATCH_EXEC
3797 i915_gem_dump_object(batch_obj,
3798 args->batch_len,
3799 __func__,
3800 ~0);
3801 #endif
3803 /* Exec the batchbuffer */
3804 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3805 cliprects, exec_offset);
3806 if (ret) {
3807 DRM_ERROR("dispatch failed %d\n", ret);
3808 goto err;
3812 * Ensure that the commands in the batch buffer are
3813 * finished before the interrupt fires
3815 flush_domains = i915_retire_commands(dev, ring);
3817 i915_verify_inactive(dev, __FILE__, __LINE__);
3820 * Get a seqno representing the execution of the current buffer,
3821 * which we can wait on. We would like to mitigate these interrupts,
3822 * likely by only creating seqnos occasionally (so that we have
3823 * *some* interrupts representing completion of buffers that we can
3824 * wait on when trying to clear up gtt space).
3826 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3827 BUG_ON(seqno == 0);
3828 for (i = 0; i < args->buffer_count; i++) {
3829 struct drm_gem_object *obj = object_list[i];
3830 obj_priv = to_intel_bo(obj);
3832 i915_gem_object_move_to_active(obj, seqno, ring);
3833 #if WATCH_LRU
3834 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3835 #endif
3837 #if WATCH_LRU
3838 i915_dump_lru(dev, __func__);
3839 #endif
3841 i915_verify_inactive(dev, __FILE__, __LINE__);
3843 err:
3844 for (i = 0; i < pinned; i++)
3845 i915_gem_object_unpin(object_list[i]);
3847 for (i = 0; i < args->buffer_count; i++) {
3848 if (object_list[i]) {
3849 obj_priv = to_intel_bo(object_list[i]);
3850 obj_priv->in_execbuffer = false;
3852 drm_gem_object_unreference(object_list[i]);
3855 mutex_unlock(&dev->struct_mutex);
3857 pre_mutex_err:
3858 /* Copy the updated relocations out regardless of current error
3859 * state. Failure to update the relocs would mean that the next
3860 * time userland calls execbuf, it would do so with presumed offset
3861 * state that didn't match the actual object state.
3863 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3864 relocs);
3865 if (ret2 != 0) {
3866 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3868 if (ret == 0)
3869 ret = ret2;
3872 drm_free_large(object_list);
3873 kfree(cliprects);
3875 return ret;
3879 * Legacy execbuffer just creates an exec2 list from the original exec object
3880 * list array and passes it to the real function.
3883 i915_gem_execbuffer(struct drm_device *dev, void *data,
3884 struct drm_file *file_priv)
3886 struct drm_i915_gem_execbuffer *args = data;
3887 struct drm_i915_gem_execbuffer2 exec2;
3888 struct drm_i915_gem_exec_object *exec_list = NULL;
3889 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3890 int ret, i;
3892 #if WATCH_EXEC
3893 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3894 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3895 #endif
3897 if (args->buffer_count < 1) {
3898 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3899 return -EINVAL;
3902 /* Copy in the exec list from userland */
3903 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3904 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3905 if (exec_list == NULL || exec2_list == NULL) {
3906 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3907 args->buffer_count);
3908 drm_free_large(exec_list);
3909 drm_free_large(exec2_list);
3910 return -ENOMEM;
3912 ret = copy_from_user(exec_list,
3913 (struct drm_i915_relocation_entry __user *)
3914 (uintptr_t) args->buffers_ptr,
3915 sizeof(*exec_list) * args->buffer_count);
3916 if (ret != 0) {
3917 DRM_ERROR("copy %d exec entries failed %d\n",
3918 args->buffer_count, ret);
3919 drm_free_large(exec_list);
3920 drm_free_large(exec2_list);
3921 return -EFAULT;
3924 for (i = 0; i < args->buffer_count; i++) {
3925 exec2_list[i].handle = exec_list[i].handle;
3926 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3927 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3928 exec2_list[i].alignment = exec_list[i].alignment;
3929 exec2_list[i].offset = exec_list[i].offset;
3930 if (!IS_I965G(dev))
3931 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3932 else
3933 exec2_list[i].flags = 0;
3936 exec2.buffers_ptr = args->buffers_ptr;
3937 exec2.buffer_count = args->buffer_count;
3938 exec2.batch_start_offset = args->batch_start_offset;
3939 exec2.batch_len = args->batch_len;
3940 exec2.DR1 = args->DR1;
3941 exec2.DR4 = args->DR4;
3942 exec2.num_cliprects = args->num_cliprects;
3943 exec2.cliprects_ptr = args->cliprects_ptr;
3944 exec2.flags = I915_EXEC_RENDER;
3946 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3947 if (!ret) {
3948 /* Copy the new buffer offsets back to the user's exec list. */
3949 for (i = 0; i < args->buffer_count; i++)
3950 exec_list[i].offset = exec2_list[i].offset;
3951 /* ... and back out to userspace */
3952 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3953 (uintptr_t) args->buffers_ptr,
3954 exec_list,
3955 sizeof(*exec_list) * args->buffer_count);
3956 if (ret) {
3957 ret = -EFAULT;
3958 DRM_ERROR("failed to copy %d exec entries "
3959 "back to user (%d)\n",
3960 args->buffer_count, ret);
3964 drm_free_large(exec_list);
3965 drm_free_large(exec2_list);
3966 return ret;
3970 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3971 struct drm_file *file_priv)
3973 struct drm_i915_gem_execbuffer2 *args = data;
3974 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3975 int ret;
3977 #if WATCH_EXEC
3978 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3979 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3980 #endif
3982 if (args->buffer_count < 1) {
3983 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3984 return -EINVAL;
3987 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3988 if (exec2_list == NULL) {
3989 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3990 args->buffer_count);
3991 return -ENOMEM;
3993 ret = copy_from_user(exec2_list,
3994 (struct drm_i915_relocation_entry __user *)
3995 (uintptr_t) args->buffers_ptr,
3996 sizeof(*exec2_list) * args->buffer_count);
3997 if (ret != 0) {
3998 DRM_ERROR("copy %d exec entries failed %d\n",
3999 args->buffer_count, ret);
4000 drm_free_large(exec2_list);
4001 return -EFAULT;
4004 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4005 if (!ret) {
4006 /* Copy the new buffer offsets back to the user's exec list. */
4007 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4008 (uintptr_t) args->buffers_ptr,
4009 exec2_list,
4010 sizeof(*exec2_list) * args->buffer_count);
4011 if (ret) {
4012 ret = -EFAULT;
4013 DRM_ERROR("failed to copy %d exec entries "
4014 "back to user (%d)\n",
4015 args->buffer_count, ret);
4019 drm_free_large(exec2_list);
4020 return ret;
4024 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4026 struct drm_device *dev = obj->dev;
4027 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4028 int ret;
4030 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4032 i915_verify_inactive(dev, __FILE__, __LINE__);
4034 if (obj_priv->gtt_space != NULL) {
4035 if (alignment == 0)
4036 alignment = i915_gem_get_gtt_alignment(obj);
4037 if (obj_priv->gtt_offset & (alignment - 1)) {
4038 WARN(obj_priv->pin_count,
4039 "bo is already pinned with incorrect alignment:"
4040 " offset=%x, req.alignment=%x\n",
4041 obj_priv->gtt_offset, alignment);
4042 ret = i915_gem_object_unbind(obj);
4043 if (ret)
4044 return ret;
4048 if (obj_priv->gtt_space == NULL) {
4049 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4050 if (ret)
4051 return ret;
4054 obj_priv->pin_count++;
4056 /* If the object is not active and not pending a flush,
4057 * remove it from the inactive list
4059 if (obj_priv->pin_count == 1) {
4060 atomic_inc(&dev->pin_count);
4061 atomic_add(obj->size, &dev->pin_memory);
4062 if (!obj_priv->active &&
4063 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4064 list_del_init(&obj_priv->list);
4066 i915_verify_inactive(dev, __FILE__, __LINE__);
4068 return 0;
4071 void
4072 i915_gem_object_unpin(struct drm_gem_object *obj)
4074 struct drm_device *dev = obj->dev;
4075 drm_i915_private_t *dev_priv = dev->dev_private;
4076 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4078 i915_verify_inactive(dev, __FILE__, __LINE__);
4079 obj_priv->pin_count--;
4080 BUG_ON(obj_priv->pin_count < 0);
4081 BUG_ON(obj_priv->gtt_space == NULL);
4083 /* If the object is no longer pinned, and is
4084 * neither active nor being flushed, then stick it on
4085 * the inactive list
4087 if (obj_priv->pin_count == 0) {
4088 if (!obj_priv->active &&
4089 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4090 list_move_tail(&obj_priv->list,
4091 &dev_priv->mm.inactive_list);
4092 atomic_dec(&dev->pin_count);
4093 atomic_sub(obj->size, &dev->pin_memory);
4095 i915_verify_inactive(dev, __FILE__, __LINE__);
4099 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4100 struct drm_file *file_priv)
4102 struct drm_i915_gem_pin *args = data;
4103 struct drm_gem_object *obj;
4104 struct drm_i915_gem_object *obj_priv;
4105 int ret;
4107 mutex_lock(&dev->struct_mutex);
4109 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4110 if (obj == NULL) {
4111 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4112 args->handle);
4113 mutex_unlock(&dev->struct_mutex);
4114 return -ENOENT;
4116 obj_priv = to_intel_bo(obj);
4118 if (obj_priv->madv != I915_MADV_WILLNEED) {
4119 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4120 drm_gem_object_unreference(obj);
4121 mutex_unlock(&dev->struct_mutex);
4122 return -EINVAL;
4125 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4126 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4127 args->handle);
4128 drm_gem_object_unreference(obj);
4129 mutex_unlock(&dev->struct_mutex);
4130 return -EINVAL;
4133 obj_priv->user_pin_count++;
4134 obj_priv->pin_filp = file_priv;
4135 if (obj_priv->user_pin_count == 1) {
4136 ret = i915_gem_object_pin(obj, args->alignment);
4137 if (ret != 0) {
4138 drm_gem_object_unreference(obj);
4139 mutex_unlock(&dev->struct_mutex);
4140 return ret;
4144 /* XXX - flush the CPU caches for pinned objects
4145 * as the X server doesn't manage domains yet
4147 i915_gem_object_flush_cpu_write_domain(obj);
4148 args->offset = obj_priv->gtt_offset;
4149 drm_gem_object_unreference(obj);
4150 mutex_unlock(&dev->struct_mutex);
4152 return 0;
4156 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4157 struct drm_file *file_priv)
4159 struct drm_i915_gem_pin *args = data;
4160 struct drm_gem_object *obj;
4161 struct drm_i915_gem_object *obj_priv;
4163 mutex_lock(&dev->struct_mutex);
4165 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4166 if (obj == NULL) {
4167 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4168 args->handle);
4169 mutex_unlock(&dev->struct_mutex);
4170 return -ENOENT;
4173 obj_priv = to_intel_bo(obj);
4174 if (obj_priv->pin_filp != file_priv) {
4175 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4176 args->handle);
4177 drm_gem_object_unreference(obj);
4178 mutex_unlock(&dev->struct_mutex);
4179 return -EINVAL;
4181 obj_priv->user_pin_count--;
4182 if (obj_priv->user_pin_count == 0) {
4183 obj_priv->pin_filp = NULL;
4184 i915_gem_object_unpin(obj);
4187 drm_gem_object_unreference(obj);
4188 mutex_unlock(&dev->struct_mutex);
4189 return 0;
4193 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4194 struct drm_file *file_priv)
4196 struct drm_i915_gem_busy *args = data;
4197 struct drm_gem_object *obj;
4198 struct drm_i915_gem_object *obj_priv;
4200 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4201 if (obj == NULL) {
4202 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4203 args->handle);
4204 return -ENOENT;
4207 mutex_lock(&dev->struct_mutex);
4209 /* Count all active objects as busy, even if they are currently not used
4210 * by the gpu. Users of this interface expect objects to eventually
4211 * become non-busy without any further actions, therefore emit any
4212 * necessary flushes here.
4214 obj_priv = to_intel_bo(obj);
4215 args->busy = obj_priv->active;
4216 if (args->busy) {
4217 /* Unconditionally flush objects, even when the gpu still uses this
4218 * object. Userspace calling this function indicates that it wants to
4219 * use this buffer rather sooner than later, so issuing the required
4220 * flush earlier is beneficial.
4222 if (obj->write_domain) {
4223 i915_gem_flush(dev, 0, obj->write_domain);
4224 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4227 /* Update the active list for the hardware's current position.
4228 * Otherwise this only updates on a delayed timer or when irqs
4229 * are actually unmasked, and our working set ends up being
4230 * larger than required.
4232 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4234 args->busy = obj_priv->active;
4237 drm_gem_object_unreference(obj);
4238 mutex_unlock(&dev->struct_mutex);
4239 return 0;
4243 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4244 struct drm_file *file_priv)
4246 return i915_gem_ring_throttle(dev, file_priv);
4250 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4251 struct drm_file *file_priv)
4253 struct drm_i915_gem_madvise *args = data;
4254 struct drm_gem_object *obj;
4255 struct drm_i915_gem_object *obj_priv;
4257 switch (args->madv) {
4258 case I915_MADV_DONTNEED:
4259 case I915_MADV_WILLNEED:
4260 break;
4261 default:
4262 return -EINVAL;
4265 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4266 if (obj == NULL) {
4267 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4268 args->handle);
4269 return -ENOENT;
4272 mutex_lock(&dev->struct_mutex);
4273 obj_priv = to_intel_bo(obj);
4275 if (obj_priv->pin_count) {
4276 drm_gem_object_unreference(obj);
4277 mutex_unlock(&dev->struct_mutex);
4279 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4280 return -EINVAL;
4283 if (obj_priv->madv != __I915_MADV_PURGED)
4284 obj_priv->madv = args->madv;
4286 /* if the object is no longer bound, discard its backing storage */
4287 if (i915_gem_object_is_purgeable(obj_priv) &&
4288 obj_priv->gtt_space == NULL)
4289 i915_gem_object_truncate(obj);
4291 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4293 drm_gem_object_unreference(obj);
4294 mutex_unlock(&dev->struct_mutex);
4296 return 0;
4299 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4300 size_t size)
4302 struct drm_i915_gem_object *obj;
4304 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4305 if (obj == NULL)
4306 return NULL;
4308 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4309 kfree(obj);
4310 return NULL;
4313 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4314 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4316 obj->agp_type = AGP_USER_MEMORY;
4317 obj->base.driver_private = NULL;
4318 obj->fence_reg = I915_FENCE_REG_NONE;
4319 INIT_LIST_HEAD(&obj->list);
4320 INIT_LIST_HEAD(&obj->gpu_write_list);
4321 obj->madv = I915_MADV_WILLNEED;
4323 trace_i915_gem_object_create(&obj->base);
4325 return &obj->base;
4328 int i915_gem_init_object(struct drm_gem_object *obj)
4330 BUG();
4332 return 0;
4335 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4337 struct drm_device *dev = obj->dev;
4338 drm_i915_private_t *dev_priv = dev->dev_private;
4339 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4340 int ret;
4342 ret = i915_gem_object_unbind(obj);
4343 if (ret == -ERESTARTSYS) {
4344 list_move(&obj_priv->list,
4345 &dev_priv->mm.deferred_free_list);
4346 return;
4349 if (obj_priv->mmap_offset)
4350 i915_gem_free_mmap_offset(obj);
4352 drm_gem_object_release(obj);
4354 kfree(obj_priv->page_cpu_valid);
4355 kfree(obj_priv->bit_17);
4356 kfree(obj_priv);
4359 void i915_gem_free_object(struct drm_gem_object *obj)
4361 struct drm_device *dev = obj->dev;
4362 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4364 trace_i915_gem_object_destroy(obj);
4366 while (obj_priv->pin_count > 0)
4367 i915_gem_object_unpin(obj);
4369 if (obj_priv->phys_obj)
4370 i915_gem_detach_phys_object(dev, obj);
4372 i915_gem_free_object_tail(obj);
4376 i915_gem_idle(struct drm_device *dev)
4378 drm_i915_private_t *dev_priv = dev->dev_private;
4379 int ret;
4381 mutex_lock(&dev->struct_mutex);
4383 if (dev_priv->mm.suspended ||
4384 (dev_priv->render_ring.gem_object == NULL) ||
4385 (HAS_BSD(dev) &&
4386 dev_priv->bsd_ring.gem_object == NULL)) {
4387 mutex_unlock(&dev->struct_mutex);
4388 return 0;
4391 ret = i915_gpu_idle(dev);
4392 if (ret) {
4393 mutex_unlock(&dev->struct_mutex);
4394 return ret;
4397 /* Under UMS, be paranoid and evict. */
4398 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4399 ret = i915_gem_evict_inactive(dev);
4400 if (ret) {
4401 mutex_unlock(&dev->struct_mutex);
4402 return ret;
4406 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4407 * We need to replace this with a semaphore, or something.
4408 * And not confound mm.suspended!
4410 dev_priv->mm.suspended = 1;
4411 del_timer_sync(&dev_priv->hangcheck_timer);
4413 i915_kernel_lost_context(dev);
4414 i915_gem_cleanup_ringbuffer(dev);
4416 mutex_unlock(&dev->struct_mutex);
4418 /* Cancel the retire work handler, which should be idle now. */
4419 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4421 return 0;
4425 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4426 * over cache flushing.
4428 static int
4429 i915_gem_init_pipe_control(struct drm_device *dev)
4431 drm_i915_private_t *dev_priv = dev->dev_private;
4432 struct drm_gem_object *obj;
4433 struct drm_i915_gem_object *obj_priv;
4434 int ret;
4436 obj = i915_gem_alloc_object(dev, 4096);
4437 if (obj == NULL) {
4438 DRM_ERROR("Failed to allocate seqno page\n");
4439 ret = -ENOMEM;
4440 goto err;
4442 obj_priv = to_intel_bo(obj);
4443 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4445 ret = i915_gem_object_pin(obj, 4096);
4446 if (ret)
4447 goto err_unref;
4449 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4450 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4451 if (dev_priv->seqno_page == NULL)
4452 goto err_unpin;
4454 dev_priv->seqno_obj = obj;
4455 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4457 return 0;
4459 err_unpin:
4460 i915_gem_object_unpin(obj);
4461 err_unref:
4462 drm_gem_object_unreference(obj);
4463 err:
4464 return ret;
4468 static void
4469 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4471 drm_i915_private_t *dev_priv = dev->dev_private;
4472 struct drm_gem_object *obj;
4473 struct drm_i915_gem_object *obj_priv;
4475 obj = dev_priv->seqno_obj;
4476 obj_priv = to_intel_bo(obj);
4477 kunmap(obj_priv->pages[0]);
4478 i915_gem_object_unpin(obj);
4479 drm_gem_object_unreference(obj);
4480 dev_priv->seqno_obj = NULL;
4482 dev_priv->seqno_page = NULL;
4486 i915_gem_init_ringbuffer(struct drm_device *dev)
4488 drm_i915_private_t *dev_priv = dev->dev_private;
4489 int ret;
4491 dev_priv->render_ring = render_ring;
4493 if (!I915_NEED_GFX_HWS(dev)) {
4494 dev_priv->render_ring.status_page.page_addr
4495 = dev_priv->status_page_dmah->vaddr;
4496 memset(dev_priv->render_ring.status_page.page_addr,
4497 0, PAGE_SIZE);
4500 if (HAS_PIPE_CONTROL(dev)) {
4501 ret = i915_gem_init_pipe_control(dev);
4502 if (ret)
4503 return ret;
4506 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4507 if (ret)
4508 goto cleanup_pipe_control;
4510 if (HAS_BSD(dev)) {
4511 dev_priv->bsd_ring = bsd_ring;
4512 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4513 if (ret)
4514 goto cleanup_render_ring;
4517 dev_priv->next_seqno = 1;
4519 return 0;
4521 cleanup_render_ring:
4522 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4523 cleanup_pipe_control:
4524 if (HAS_PIPE_CONTROL(dev))
4525 i915_gem_cleanup_pipe_control(dev);
4526 return ret;
4529 void
4530 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4532 drm_i915_private_t *dev_priv = dev->dev_private;
4534 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4535 if (HAS_BSD(dev))
4536 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4537 if (HAS_PIPE_CONTROL(dev))
4538 i915_gem_cleanup_pipe_control(dev);
4542 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4543 struct drm_file *file_priv)
4545 drm_i915_private_t *dev_priv = dev->dev_private;
4546 int ret;
4548 if (drm_core_check_feature(dev, DRIVER_MODESET))
4549 return 0;
4551 if (atomic_read(&dev_priv->mm.wedged)) {
4552 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4553 atomic_set(&dev_priv->mm.wedged, 0);
4556 mutex_lock(&dev->struct_mutex);
4557 dev_priv->mm.suspended = 0;
4559 ret = i915_gem_init_ringbuffer(dev);
4560 if (ret != 0) {
4561 mutex_unlock(&dev->struct_mutex);
4562 return ret;
4565 spin_lock(&dev_priv->mm.active_list_lock);
4566 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4567 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4568 spin_unlock(&dev_priv->mm.active_list_lock);
4570 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4571 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4572 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4573 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4574 mutex_unlock(&dev->struct_mutex);
4576 ret = drm_irq_install(dev);
4577 if (ret)
4578 goto cleanup_ringbuffer;
4580 return 0;
4582 cleanup_ringbuffer:
4583 mutex_lock(&dev->struct_mutex);
4584 i915_gem_cleanup_ringbuffer(dev);
4585 dev_priv->mm.suspended = 1;
4586 mutex_unlock(&dev->struct_mutex);
4588 return ret;
4592 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4593 struct drm_file *file_priv)
4595 if (drm_core_check_feature(dev, DRIVER_MODESET))
4596 return 0;
4598 drm_irq_uninstall(dev);
4599 return i915_gem_idle(dev);
4602 void
4603 i915_gem_lastclose(struct drm_device *dev)
4605 int ret;
4607 if (drm_core_check_feature(dev, DRIVER_MODESET))
4608 return;
4610 ret = i915_gem_idle(dev);
4611 if (ret)
4612 DRM_ERROR("failed to idle hardware: %d\n", ret);
4615 void
4616 i915_gem_load(struct drm_device *dev)
4618 int i;
4619 drm_i915_private_t *dev_priv = dev->dev_private;
4621 spin_lock_init(&dev_priv->mm.active_list_lock);
4622 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4623 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4624 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4625 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4626 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4627 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4628 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4629 if (HAS_BSD(dev)) {
4630 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4631 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4633 for (i = 0; i < 16; i++)
4634 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4635 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4636 i915_gem_retire_work_handler);
4637 spin_lock(&shrink_list_lock);
4638 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4639 spin_unlock(&shrink_list_lock);
4641 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4642 if (IS_GEN3(dev)) {
4643 u32 tmp = I915_READ(MI_ARB_STATE);
4644 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4645 /* arb state is a masked write, so set bit + bit in mask */
4646 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4647 I915_WRITE(MI_ARB_STATE, tmp);
4651 /* Old X drivers will take 0-2 for front, back, depth buffers */
4652 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4653 dev_priv->fence_reg_start = 3;
4655 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4656 dev_priv->num_fence_regs = 16;
4657 else
4658 dev_priv->num_fence_regs = 8;
4660 /* Initialize fence registers to zero */
4661 if (IS_I965G(dev)) {
4662 for (i = 0; i < 16; i++)
4663 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4664 } else {
4665 for (i = 0; i < 8; i++)
4666 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4667 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4668 for (i = 0; i < 8; i++)
4669 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4671 i915_gem_detect_bit_6_swizzle(dev);
4672 init_waitqueue_head(&dev_priv->pending_flip_queue);
4676 * Create a physically contiguous memory object for this object
4677 * e.g. for cursor + overlay regs
4679 int i915_gem_init_phys_object(struct drm_device *dev,
4680 int id, int size, int align)
4682 drm_i915_private_t *dev_priv = dev->dev_private;
4683 struct drm_i915_gem_phys_object *phys_obj;
4684 int ret;
4686 if (dev_priv->mm.phys_objs[id - 1] || !size)
4687 return 0;
4689 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4690 if (!phys_obj)
4691 return -ENOMEM;
4693 phys_obj->id = id;
4695 phys_obj->handle = drm_pci_alloc(dev, size, align);
4696 if (!phys_obj->handle) {
4697 ret = -ENOMEM;
4698 goto kfree_obj;
4700 #ifdef CONFIG_X86
4701 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4702 #endif
4704 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4706 return 0;
4707 kfree_obj:
4708 kfree(phys_obj);
4709 return ret;
4712 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4714 drm_i915_private_t *dev_priv = dev->dev_private;
4715 struct drm_i915_gem_phys_object *phys_obj;
4717 if (!dev_priv->mm.phys_objs[id - 1])
4718 return;
4720 phys_obj = dev_priv->mm.phys_objs[id - 1];
4721 if (phys_obj->cur_obj) {
4722 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4725 #ifdef CONFIG_X86
4726 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4727 #endif
4728 drm_pci_free(dev, phys_obj->handle);
4729 kfree(phys_obj);
4730 dev_priv->mm.phys_objs[id - 1] = NULL;
4733 void i915_gem_free_all_phys_object(struct drm_device *dev)
4735 int i;
4737 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4738 i915_gem_free_phys_object(dev, i);
4741 void i915_gem_detach_phys_object(struct drm_device *dev,
4742 struct drm_gem_object *obj)
4744 struct drm_i915_gem_object *obj_priv;
4745 int i;
4746 int ret;
4747 int page_count;
4749 obj_priv = to_intel_bo(obj);
4750 if (!obj_priv->phys_obj)
4751 return;
4753 ret = i915_gem_object_get_pages(obj, 0);
4754 if (ret)
4755 goto out;
4757 page_count = obj->size / PAGE_SIZE;
4759 for (i = 0; i < page_count; i++) {
4760 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4761 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4763 memcpy(dst, src, PAGE_SIZE);
4764 kunmap_atomic(dst, KM_USER0);
4766 drm_clflush_pages(obj_priv->pages, page_count);
4767 drm_agp_chipset_flush(dev);
4769 i915_gem_object_put_pages(obj);
4770 out:
4771 obj_priv->phys_obj->cur_obj = NULL;
4772 obj_priv->phys_obj = NULL;
4776 i915_gem_attach_phys_object(struct drm_device *dev,
4777 struct drm_gem_object *obj,
4778 int id,
4779 int align)
4781 drm_i915_private_t *dev_priv = dev->dev_private;
4782 struct drm_i915_gem_object *obj_priv;
4783 int ret = 0;
4784 int page_count;
4785 int i;
4787 if (id > I915_MAX_PHYS_OBJECT)
4788 return -EINVAL;
4790 obj_priv = to_intel_bo(obj);
4792 if (obj_priv->phys_obj) {
4793 if (obj_priv->phys_obj->id == id)
4794 return 0;
4795 i915_gem_detach_phys_object(dev, obj);
4798 /* create a new object */
4799 if (!dev_priv->mm.phys_objs[id - 1]) {
4800 ret = i915_gem_init_phys_object(dev, id,
4801 obj->size, align);
4802 if (ret) {
4803 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4804 goto out;
4808 /* bind to the object */
4809 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4810 obj_priv->phys_obj->cur_obj = obj;
4812 ret = i915_gem_object_get_pages(obj, 0);
4813 if (ret) {
4814 DRM_ERROR("failed to get page list\n");
4815 goto out;
4818 page_count = obj->size / PAGE_SIZE;
4820 for (i = 0; i < page_count; i++) {
4821 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4822 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4824 memcpy(dst, src, PAGE_SIZE);
4825 kunmap_atomic(src, KM_USER0);
4828 i915_gem_object_put_pages(obj);
4830 return 0;
4831 out:
4832 return ret;
4835 static int
4836 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4837 struct drm_i915_gem_pwrite *args,
4838 struct drm_file *file_priv)
4840 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4841 void *obj_addr;
4842 int ret;
4843 char __user *user_data;
4845 user_data = (char __user *) (uintptr_t) args->data_ptr;
4846 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4848 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4849 ret = copy_from_user(obj_addr, user_data, args->size);
4850 if (ret)
4851 return -EFAULT;
4853 drm_agp_chipset_flush(dev);
4854 return 0;
4857 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4859 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4861 /* Clean up our request list when the client is going away, so that
4862 * later retire_requests won't dereference our soon-to-be-gone
4863 * file_priv.
4865 mutex_lock(&dev->struct_mutex);
4866 while (!list_empty(&i915_file_priv->mm.request_list))
4867 list_del_init(i915_file_priv->mm.request_list.next);
4868 mutex_unlock(&dev->struct_mutex);
4871 static int
4872 i915_gpu_is_active(struct drm_device *dev)
4874 drm_i915_private_t *dev_priv = dev->dev_private;
4875 int lists_empty;
4877 spin_lock(&dev_priv->mm.active_list_lock);
4878 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4879 list_empty(&dev_priv->render_ring.active_list);
4880 if (HAS_BSD(dev))
4881 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4882 spin_unlock(&dev_priv->mm.active_list_lock);
4884 return !lists_empty;
4887 static int
4888 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4890 drm_i915_private_t *dev_priv, *next_dev;
4891 struct drm_i915_gem_object *obj_priv, *next_obj;
4892 int cnt = 0;
4893 int would_deadlock = 1;
4895 /* "fast-path" to count number of available objects */
4896 if (nr_to_scan == 0) {
4897 spin_lock(&shrink_list_lock);
4898 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4899 struct drm_device *dev = dev_priv->dev;
4901 if (mutex_trylock(&dev->struct_mutex)) {
4902 list_for_each_entry(obj_priv,
4903 &dev_priv->mm.inactive_list,
4904 list)
4905 cnt++;
4906 mutex_unlock(&dev->struct_mutex);
4909 spin_unlock(&shrink_list_lock);
4911 return (cnt / 100) * sysctl_vfs_cache_pressure;
4914 spin_lock(&shrink_list_lock);
4916 rescan:
4917 /* first scan for clean buffers */
4918 list_for_each_entry_safe(dev_priv, next_dev,
4919 &shrink_list, mm.shrink_list) {
4920 struct drm_device *dev = dev_priv->dev;
4922 if (! mutex_trylock(&dev->struct_mutex))
4923 continue;
4925 spin_unlock(&shrink_list_lock);
4926 i915_gem_retire_requests(dev);
4928 list_for_each_entry_safe(obj_priv, next_obj,
4929 &dev_priv->mm.inactive_list,
4930 list) {
4931 if (i915_gem_object_is_purgeable(obj_priv)) {
4932 i915_gem_object_unbind(&obj_priv->base);
4933 if (--nr_to_scan <= 0)
4934 break;
4938 spin_lock(&shrink_list_lock);
4939 mutex_unlock(&dev->struct_mutex);
4941 would_deadlock = 0;
4943 if (nr_to_scan <= 0)
4944 break;
4947 /* second pass, evict/count anything still on the inactive list */
4948 list_for_each_entry_safe(dev_priv, next_dev,
4949 &shrink_list, mm.shrink_list) {
4950 struct drm_device *dev = dev_priv->dev;
4952 if (! mutex_trylock(&dev->struct_mutex))
4953 continue;
4955 spin_unlock(&shrink_list_lock);
4957 list_for_each_entry_safe(obj_priv, next_obj,
4958 &dev_priv->mm.inactive_list,
4959 list) {
4960 if (nr_to_scan > 0) {
4961 i915_gem_object_unbind(&obj_priv->base);
4962 nr_to_scan--;
4963 } else
4964 cnt++;
4967 spin_lock(&shrink_list_lock);
4968 mutex_unlock(&dev->struct_mutex);
4970 would_deadlock = 0;
4973 if (nr_to_scan) {
4974 int active = 0;
4977 * We are desperate for pages, so as a last resort, wait
4978 * for the GPU to finish and discard whatever we can.
4979 * This has a dramatic impact to reduce the number of
4980 * OOM-killer events whilst running the GPU aggressively.
4982 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4983 struct drm_device *dev = dev_priv->dev;
4985 if (!mutex_trylock(&dev->struct_mutex))
4986 continue;
4988 spin_unlock(&shrink_list_lock);
4990 if (i915_gpu_is_active(dev)) {
4991 i915_gpu_idle(dev);
4992 active++;
4995 spin_lock(&shrink_list_lock);
4996 mutex_unlock(&dev->struct_mutex);
4999 if (active)
5000 goto rescan;
5003 spin_unlock(&shrink_list_lock);
5005 if (would_deadlock)
5006 return -1;
5007 else if (cnt > 0)
5008 return (cnt / 100) * sysctl_vfs_cache_pressure;
5009 else
5010 return 0;
5013 static struct shrinker shrinker = {
5014 .shrink = i915_gem_shrink,
5015 .seeks = DEFAULT_SEEKS,
5018 __init void
5019 i915_gem_shrinker_init(void)
5021 register_shrinker(&shrinker);
5024 __exit void
5025 i915_gem_shrinker_exit(void)
5027 unregister_shrinker(&shrinker);