2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per process-grouping structure
79 /* various state flags, see below */
82 struct cfq_data
*cfqd
;
83 /* service_tree member */
84 struct rb_node rb_node
;
85 /* service_tree key */
87 /* prio tree member */
88 struct rb_node p_node
;
89 /* prio tree root we belong to, if any */
90 struct rb_root
*p_root
;
91 /* sorted list of pending requests */
92 struct rb_root sort_list
;
93 /* if fifo isn't expired, next request to serve */
94 struct request
*next_rq
;
95 /* requests queued in sort_list */
97 /* currently allocated requests */
99 /* fifo list of requests in sort_list */
100 struct list_head fifo
;
102 unsigned long slice_end
;
104 unsigned int slice_dispatch
;
106 /* pending metadata requests */
108 /* number of requests that are on the dispatch list or inside driver */
111 /* io prio of this group */
112 unsigned short ioprio
, org_ioprio
;
113 unsigned short ioprio_class
, org_ioprio_class
;
119 * Per block device queue structure
122 struct request_queue
*queue
;
125 * rr list of queues with requests and the count of them
127 struct cfq_rb_root service_tree
;
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
134 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
136 unsigned int busy_queues
;
142 * queue-depth detection
147 int rq_in_driver_peak
;
150 * idle window management
152 struct timer_list idle_slice_timer
;
153 struct delayed_work unplug_work
;
155 struct cfq_queue
*active_queue
;
156 struct cfq_io_context
*active_cic
;
159 * async queue for each priority case
161 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
162 struct cfq_queue
*async_idle_cfqq
;
164 sector_t last_position
;
167 * tunables, see top of file
169 unsigned int cfq_quantum
;
170 unsigned int cfq_fifo_expire
[2];
171 unsigned int cfq_back_penalty
;
172 unsigned int cfq_back_max
;
173 unsigned int cfq_slice
[2];
174 unsigned int cfq_slice_async_rq
;
175 unsigned int cfq_slice_idle
;
176 unsigned int cfq_latency
;
178 struct list_head cic_list
;
181 * Fallback dummy cfqq for extreme OOM conditions
183 struct cfq_queue oom_cfqq
;
185 unsigned long last_end_sync_rq
;
188 enum cfqq_state_flags
{
189 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
191 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
192 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
193 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
196 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
197 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
198 CFQ_CFQQ_FLAG_coop
, /* has done a coop jump of the queue */
201 #define CFQ_CFQQ_FNS(name) \
202 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
206 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
210 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
216 CFQ_CFQQ_FNS(wait_request
);
217 CFQ_CFQQ_FNS(must_dispatch
);
218 CFQ_CFQQ_FNS(must_alloc_slice
);
219 CFQ_CFQQ_FNS(fifo_expire
);
220 CFQ_CFQQ_FNS(idle_window
);
221 CFQ_CFQQ_FNS(prio_changed
);
222 CFQ_CFQQ_FNS(slice_new
);
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
232 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
233 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
234 struct io_context
*, gfp_t
);
235 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
236 struct io_context
*);
238 static inline int rq_in_driver(struct cfq_data
*cfqd
)
240 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
243 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
246 return cic
->cfqq
[!!is_sync
];
249 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
250 struct cfq_queue
*cfqq
, int is_sync
)
252 cic
->cfqq
[!!is_sync
] = cfqq
;
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
259 static inline int cfq_bio_sync(struct bio
*bio
)
261 if (bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
))
268 * scheduler run of queue, if there are requests pending and no one in the
269 * driver that will restart queueing
271 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
,
274 if (cfqd
->busy_queues
) {
275 cfq_log(cfqd
, "schedule dispatch");
276 kblockd_schedule_delayed_work(cfqd
->queue
, &cfqd
->unplug_work
,
281 static int cfq_queue_empty(struct request_queue
*q
)
283 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
285 return !cfqd
->busy_queues
;
289 * Scale schedule slice based on io priority. Use the sync time slice only
290 * if a queue is marked sync and has sync io queued. A sync queue with async
291 * io only, should not get full sync slice length.
293 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
296 const int base_slice
= cfqd
->cfq_slice
[sync
];
298 WARN_ON(prio
>= IOPRIO_BE_NR
);
300 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
304 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
306 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
310 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
312 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
313 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
317 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
318 * isn't valid until the first request from the dispatch is activated
319 * and the slice time set.
321 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
323 if (cfq_cfqq_slice_new(cfqq
))
325 if (time_before(jiffies
, cfqq
->slice_end
))
332 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
333 * We choose the request that is closest to the head right now. Distance
334 * behind the head is penalized and only allowed to a certain extent.
336 static struct request
*
337 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
339 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
340 unsigned long back_max
;
341 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
342 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
343 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
345 if (rq1
== NULL
|| rq1
== rq2
)
350 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
352 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
354 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
356 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
359 s1
= blk_rq_pos(rq1
);
360 s2
= blk_rq_pos(rq2
);
362 last
= cfqd
->last_position
;
365 * by definition, 1KiB is 2 sectors
367 back_max
= cfqd
->cfq_back_max
* 2;
370 * Strict one way elevator _except_ in the case where we allow
371 * short backward seeks which are biased as twice the cost of a
372 * similar forward seek.
376 else if (s1
+ back_max
>= last
)
377 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
379 wrap
|= CFQ_RQ1_WRAP
;
383 else if (s2
+ back_max
>= last
)
384 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
386 wrap
|= CFQ_RQ2_WRAP
;
388 /* Found required data */
391 * By doing switch() on the bit mask "wrap" we avoid having to
392 * check two variables for all permutations: --> faster!
395 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
411 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
414 * Since both rqs are wrapped,
415 * start with the one that's further behind head
416 * (--> only *one* back seek required),
417 * since back seek takes more time than forward.
427 * The below is leftmost cache rbtree addon
429 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
432 root
->left
= rb_first(&root
->rb
);
435 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
440 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
446 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
450 rb_erase_init(n
, &root
->rb
);
454 * would be nice to take fifo expire time into account as well
456 static struct request
*
457 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
458 struct request
*last
)
460 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
461 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
462 struct request
*next
= NULL
, *prev
= NULL
;
464 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
467 prev
= rb_entry_rq(rbprev
);
470 next
= rb_entry_rq(rbnext
);
472 rbnext
= rb_first(&cfqq
->sort_list
);
473 if (rbnext
&& rbnext
!= &last
->rb_node
)
474 next
= rb_entry_rq(rbnext
);
477 return cfq_choose_req(cfqd
, next
, prev
);
480 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
481 struct cfq_queue
*cfqq
)
484 * just an approximation, should be ok.
486 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
487 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
491 * The cfqd->service_tree holds all pending cfq_queue's that have
492 * requests waiting to be processed. It is sorted in the order that
493 * we will service the queues.
495 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
498 struct rb_node
**p
, *parent
;
499 struct cfq_queue
*__cfqq
;
500 unsigned long rb_key
;
503 if (cfq_class_idle(cfqq
)) {
504 rb_key
= CFQ_IDLE_DELAY
;
505 parent
= rb_last(&cfqd
->service_tree
.rb
);
506 if (parent
&& parent
!= &cfqq
->rb_node
) {
507 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
508 rb_key
+= __cfqq
->rb_key
;
511 } else if (!add_front
) {
512 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
513 rb_key
+= cfqq
->slice_resid
;
514 cfqq
->slice_resid
= 0;
518 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
520 * same position, nothing more to do
522 if (rb_key
== cfqq
->rb_key
)
525 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
530 p
= &cfqd
->service_tree
.rb
.rb_node
;
535 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
538 * sort RT queues first, we always want to give
539 * preference to them. IDLE queues goes to the back.
540 * after that, sort on the next service time.
542 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
544 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
546 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
548 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
550 else if (rb_key
< __cfqq
->rb_key
)
555 if (n
== &(*p
)->rb_right
)
562 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
564 cfqq
->rb_key
= rb_key
;
565 rb_link_node(&cfqq
->rb_node
, parent
, p
);
566 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
569 static struct cfq_queue
*
570 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
571 sector_t sector
, struct rb_node
**ret_parent
,
572 struct rb_node
***rb_link
)
574 struct rb_node
**p
, *parent
;
575 struct cfq_queue
*cfqq
= NULL
;
583 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
586 * Sort strictly based on sector. Smallest to the left,
587 * largest to the right.
589 if (sector
> blk_rq_pos(cfqq
->next_rq
))
591 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
599 *ret_parent
= parent
;
605 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
607 struct rb_node
**p
, *parent
;
608 struct cfq_queue
*__cfqq
;
611 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
615 if (cfq_class_idle(cfqq
))
620 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
621 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
622 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
624 rb_link_node(&cfqq
->p_node
, parent
, p
);
625 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
631 * Update cfqq's position in the service tree.
633 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
636 * Resorting requires the cfqq to be on the RR list already.
638 if (cfq_cfqq_on_rr(cfqq
)) {
639 cfq_service_tree_add(cfqd
, cfqq
, 0);
640 cfq_prio_tree_add(cfqd
, cfqq
);
645 * add to busy list of queues for service, trying to be fair in ordering
646 * the pending list according to last request service
648 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
650 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
651 BUG_ON(cfq_cfqq_on_rr(cfqq
));
652 cfq_mark_cfqq_on_rr(cfqq
);
655 cfq_resort_rr_list(cfqd
, cfqq
);
659 * Called when the cfqq no longer has requests pending, remove it from
662 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
664 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
665 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
666 cfq_clear_cfqq_on_rr(cfqq
);
668 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
669 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
671 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
675 BUG_ON(!cfqd
->busy_queues
);
680 * rb tree support functions
682 static void cfq_del_rq_rb(struct request
*rq
)
684 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
685 struct cfq_data
*cfqd
= cfqq
->cfqd
;
686 const int sync
= rq_is_sync(rq
);
688 BUG_ON(!cfqq
->queued
[sync
]);
689 cfqq
->queued
[sync
]--;
691 elv_rb_del(&cfqq
->sort_list
, rq
);
693 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
694 cfq_del_cfqq_rr(cfqd
, cfqq
);
697 static void cfq_add_rq_rb(struct request
*rq
)
699 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
700 struct cfq_data
*cfqd
= cfqq
->cfqd
;
701 struct request
*__alias
, *prev
;
703 cfqq
->queued
[rq_is_sync(rq
)]++;
706 * looks a little odd, but the first insert might return an alias.
707 * if that happens, put the alias on the dispatch list
709 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
710 cfq_dispatch_insert(cfqd
->queue
, __alias
);
712 if (!cfq_cfqq_on_rr(cfqq
))
713 cfq_add_cfqq_rr(cfqd
, cfqq
);
716 * check if this request is a better next-serve candidate
718 prev
= cfqq
->next_rq
;
719 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
722 * adjust priority tree position, if ->next_rq changes
724 if (prev
!= cfqq
->next_rq
)
725 cfq_prio_tree_add(cfqd
, cfqq
);
727 BUG_ON(!cfqq
->next_rq
);
730 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
732 elv_rb_del(&cfqq
->sort_list
, rq
);
733 cfqq
->queued
[rq_is_sync(rq
)]--;
737 static struct request
*
738 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
740 struct task_struct
*tsk
= current
;
741 struct cfq_io_context
*cic
;
742 struct cfq_queue
*cfqq
;
744 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
748 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
750 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
752 return elv_rb_find(&cfqq
->sort_list
, sector
);
758 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
760 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
762 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
763 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
766 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
769 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
771 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
772 const int sync
= rq_is_sync(rq
);
774 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
775 cfqd
->rq_in_driver
[sync
]--;
776 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
780 static void cfq_remove_request(struct request
*rq
)
782 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
784 if (cfqq
->next_rq
== rq
)
785 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
787 list_del_init(&rq
->queuelist
);
790 cfqq
->cfqd
->rq_queued
--;
791 if (rq_is_meta(rq
)) {
792 WARN_ON(!cfqq
->meta_pending
);
793 cfqq
->meta_pending
--;
797 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
800 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
801 struct request
*__rq
;
803 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
804 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
806 return ELEVATOR_FRONT_MERGE
;
809 return ELEVATOR_NO_MERGE
;
812 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
815 if (type
== ELEVATOR_FRONT_MERGE
) {
816 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
818 cfq_reposition_rq_rb(cfqq
, req
);
823 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
824 struct request
*next
)
827 * reposition in fifo if next is older than rq
829 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
830 time_before(next
->start_time
, rq
->start_time
))
831 list_move(&rq
->queuelist
, &next
->queuelist
);
833 cfq_remove_request(next
);
836 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
839 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
840 struct cfq_io_context
*cic
;
841 struct cfq_queue
*cfqq
;
844 * Disallow merge of a sync bio into an async request.
846 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
850 * Lookup the cfqq that this bio will be queued with. Allow
851 * merge only if rq is queued there.
853 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
857 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
858 if (cfqq
== RQ_CFQQ(rq
))
864 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
865 struct cfq_queue
*cfqq
)
868 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
870 cfqq
->slice_dispatch
= 0;
872 cfq_clear_cfqq_wait_request(cfqq
);
873 cfq_clear_cfqq_must_dispatch(cfqq
);
874 cfq_clear_cfqq_must_alloc_slice(cfqq
);
875 cfq_clear_cfqq_fifo_expire(cfqq
);
876 cfq_mark_cfqq_slice_new(cfqq
);
878 del_timer(&cfqd
->idle_slice_timer
);
881 cfqd
->active_queue
= cfqq
;
885 * current cfqq expired its slice (or was too idle), select new one
888 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
891 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
893 if (cfq_cfqq_wait_request(cfqq
))
894 del_timer(&cfqd
->idle_slice_timer
);
896 cfq_clear_cfqq_wait_request(cfqq
);
899 * store what was left of this slice, if the queue idled/timed out
901 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
902 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
903 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
906 cfq_resort_rr_list(cfqd
, cfqq
);
908 if (cfqq
== cfqd
->active_queue
)
909 cfqd
->active_queue
= NULL
;
911 if (cfqd
->active_cic
) {
912 put_io_context(cfqd
->active_cic
->ioc
);
913 cfqd
->active_cic
= NULL
;
917 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
919 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
922 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
926 * Get next queue for service. Unless we have a queue preemption,
927 * we'll simply select the first cfqq in the service tree.
929 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
931 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
934 return cfq_rb_first(&cfqd
->service_tree
);
938 * Get and set a new active queue for service.
940 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
941 struct cfq_queue
*cfqq
)
944 cfqq
= cfq_get_next_queue(cfqd
);
946 cfq_clear_cfqq_coop(cfqq
);
949 __cfq_set_active_queue(cfqd
, cfqq
);
953 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
956 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
957 return blk_rq_pos(rq
) - cfqd
->last_position
;
959 return cfqd
->last_position
- blk_rq_pos(rq
);
962 #define CIC_SEEK_THR 8 * 1024
963 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
965 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
967 struct cfq_io_context
*cic
= cfqd
->active_cic
;
968 sector_t sdist
= cic
->seek_mean
;
970 if (!sample_valid(cic
->seek_samples
))
971 sdist
= CIC_SEEK_THR
;
973 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
976 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
977 struct cfq_queue
*cur_cfqq
)
979 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
980 struct rb_node
*parent
, *node
;
981 struct cfq_queue
*__cfqq
;
982 sector_t sector
= cfqd
->last_position
;
984 if (RB_EMPTY_ROOT(root
))
988 * First, if we find a request starting at the end of the last
989 * request, choose it.
991 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
996 * If the exact sector wasn't found, the parent of the NULL leaf
997 * will contain the closest sector.
999 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1000 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1003 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1004 node
= rb_next(&__cfqq
->p_node
);
1006 node
= rb_prev(&__cfqq
->p_node
);
1010 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1011 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1019 * cur_cfqq - passed in so that we don't decide that the current queue is
1020 * closely cooperating with itself.
1022 * So, basically we're assuming that that cur_cfqq has dispatched at least
1023 * one request, and that cfqd->last_position reflects a position on the disk
1024 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1027 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1028 struct cfq_queue
*cur_cfqq
,
1031 struct cfq_queue
*cfqq
;
1034 * A valid cfq_io_context is necessary to compare requests against
1035 * the seek_mean of the current cfqq.
1037 if (!cfqd
->active_cic
)
1041 * We should notice if some of the queues are cooperating, eg
1042 * working closely on the same area of the disk. In that case,
1043 * we can group them together and don't waste time idling.
1045 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1049 if (cfq_cfqq_coop(cfqq
))
1053 cfq_mark_cfqq_coop(cfqq
);
1057 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1059 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1060 struct cfq_io_context
*cic
;
1064 * SSD device without seek penalty, disable idling. But only do so
1065 * for devices that support queuing, otherwise we still have a problem
1066 * with sync vs async workloads.
1068 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1071 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1072 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1075 * idle is disabled, either manually or by past process history
1077 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1081 * still requests with the driver, don't idle
1083 if (rq_in_driver(cfqd
))
1087 * task has exited, don't wait
1089 cic
= cfqd
->active_cic
;
1090 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1093 cfq_mark_cfqq_wait_request(cfqq
);
1096 * we don't want to idle for seeks, but we do want to allow
1097 * fair distribution of slice time for a process doing back-to-back
1098 * seeks. so allow a little bit of time for him to submit a new rq
1100 sl
= cfqd
->cfq_slice_idle
;
1101 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
1102 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1104 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1105 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1109 * Move request from internal lists to the request queue dispatch list.
1111 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1113 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1114 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1116 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1118 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1119 cfq_remove_request(rq
);
1121 elv_dispatch_sort(q
, rq
);
1123 if (cfq_cfqq_sync(cfqq
))
1124 cfqd
->sync_flight
++;
1128 * return expired entry, or NULL to just start from scratch in rbtree
1130 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1132 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1136 if (cfq_cfqq_fifo_expire(cfqq
))
1139 cfq_mark_cfqq_fifo_expire(cfqq
);
1141 if (list_empty(&cfqq
->fifo
))
1144 fifo
= cfq_cfqq_sync(cfqq
);
1145 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1147 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
1150 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
1155 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1157 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1159 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1161 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1165 * Select a queue for service. If we have a current active queue,
1166 * check whether to continue servicing it, or retrieve and set a new one.
1168 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1170 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1172 cfqq
= cfqd
->active_queue
;
1177 * The active queue has run out of time, expire it and select new.
1179 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1183 * The active queue has requests and isn't expired, allow it to
1186 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1190 * If another queue has a request waiting within our mean seek
1191 * distance, let it run. The expire code will check for close
1192 * cooperators and put the close queue at the front of the service
1195 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
, 0);
1200 * No requests pending. If the active queue still has requests in
1201 * flight or is idling for a new request, allow either of these
1202 * conditions to happen (or time out) before selecting a new queue.
1204 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1205 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1211 cfq_slice_expired(cfqd
, 0);
1213 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1218 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1222 while (cfqq
->next_rq
) {
1223 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1227 BUG_ON(!list_empty(&cfqq
->fifo
));
1232 * Drain our current requests. Used for barriers and when switching
1233 * io schedulers on-the-fly.
1235 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1237 struct cfq_queue
*cfqq
;
1240 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1241 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1243 cfq_slice_expired(cfqd
, 0);
1245 BUG_ON(cfqd
->busy_queues
);
1247 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
1252 * Dispatch a request from cfqq, moving them to the request queue
1255 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1259 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1262 * follow expired path, else get first next available
1264 rq
= cfq_check_fifo(cfqq
);
1269 * insert request into driver dispatch list
1271 cfq_dispatch_insert(cfqd
->queue
, rq
);
1273 if (!cfqd
->active_cic
) {
1274 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1276 atomic_long_inc(&cic
->ioc
->refcount
);
1277 cfqd
->active_cic
= cic
;
1282 * Find the cfqq that we need to service and move a request from that to the
1285 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1287 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1288 struct cfq_queue
*cfqq
;
1289 unsigned int max_dispatch
;
1291 if (!cfqd
->busy_queues
)
1294 if (unlikely(force
))
1295 return cfq_forced_dispatch(cfqd
);
1297 cfqq
= cfq_select_queue(cfqd
);
1302 * Drain async requests before we start sync IO
1304 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
1308 * If this is an async queue and we have sync IO in flight, let it wait
1310 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1313 max_dispatch
= cfqd
->cfq_quantum
;
1314 if (cfq_class_idle(cfqq
))
1318 * Does this cfqq already have too much IO in flight?
1320 if (cfqq
->dispatched
>= max_dispatch
) {
1322 * idle queue must always only have a single IO in flight
1324 if (cfq_class_idle(cfqq
))
1328 * We have other queues, don't allow more IO from this one
1330 if (cfqd
->busy_queues
> 1)
1334 * Sole queue user, allow bigger slice
1340 * Async queues must wait a bit before being allowed dispatch.
1341 * We also ramp up the dispatch depth gradually for async IO,
1342 * based on the last sync IO we serviced
1344 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
1345 unsigned long last_sync
= jiffies
- cfqd
->last_end_sync_rq
;
1348 depth
= last_sync
/ cfqd
->cfq_slice
[1];
1349 if (!depth
&& !cfqq
->dispatched
)
1351 if (depth
< max_dispatch
)
1352 max_dispatch
= depth
;
1355 if (cfqq
->dispatched
>= max_dispatch
)
1359 * Dispatch a request from this cfqq
1361 cfq_dispatch_request(cfqd
, cfqq
);
1362 cfqq
->slice_dispatch
++;
1363 cfq_clear_cfqq_must_dispatch(cfqq
);
1366 * expire an async queue immediately if it has used up its slice. idle
1367 * queue always expire after 1 dispatch round.
1369 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1370 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1371 cfq_class_idle(cfqq
))) {
1372 cfqq
->slice_end
= jiffies
+ 1;
1373 cfq_slice_expired(cfqd
, 0);
1376 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
1381 * task holds one reference to the queue, dropped when task exits. each rq
1382 * in-flight on this queue also holds a reference, dropped when rq is freed.
1384 * queue lock must be held here.
1386 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1388 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1390 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1392 if (!atomic_dec_and_test(&cfqq
->ref
))
1395 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1396 BUG_ON(rb_first(&cfqq
->sort_list
));
1397 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1398 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1400 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1401 __cfq_slice_expired(cfqd
, cfqq
, 0);
1402 cfq_schedule_dispatch(cfqd
, 0);
1405 kmem_cache_free(cfq_pool
, cfqq
);
1409 * Must always be called with the rcu_read_lock() held
1412 __call_for_each_cic(struct io_context
*ioc
,
1413 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1415 struct cfq_io_context
*cic
;
1416 struct hlist_node
*n
;
1418 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1423 * Call func for each cic attached to this ioc.
1426 call_for_each_cic(struct io_context
*ioc
,
1427 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1430 __call_for_each_cic(ioc
, func
);
1434 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1436 struct cfq_io_context
*cic
;
1438 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1440 kmem_cache_free(cfq_ioc_pool
, cic
);
1441 elv_ioc_count_dec(cfq_ioc_count
);
1445 * CFQ scheduler is exiting, grab exit lock and check
1446 * the pending io context count. If it hits zero,
1447 * complete ioc_gone and set it back to NULL
1449 spin_lock(&ioc_gone_lock
);
1450 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
1454 spin_unlock(&ioc_gone_lock
);
1458 static void cfq_cic_free(struct cfq_io_context
*cic
)
1460 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1463 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1465 unsigned long flags
;
1467 BUG_ON(!cic
->dead_key
);
1469 spin_lock_irqsave(&ioc
->lock
, flags
);
1470 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1471 hlist_del_rcu(&cic
->cic_list
);
1472 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1478 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1479 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1480 * and ->trim() which is called with the task lock held
1482 static void cfq_free_io_context(struct io_context
*ioc
)
1485 * ioc->refcount is zero here, or we are called from elv_unregister(),
1486 * so no more cic's are allowed to be linked into this ioc. So it
1487 * should be ok to iterate over the known list, we will see all cic's
1488 * since no new ones are added.
1490 __call_for_each_cic(ioc
, cic_free_func
);
1493 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1495 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1496 __cfq_slice_expired(cfqd
, cfqq
, 0);
1497 cfq_schedule_dispatch(cfqd
, 0);
1500 cfq_put_queue(cfqq
);
1503 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1504 struct cfq_io_context
*cic
)
1506 struct io_context
*ioc
= cic
->ioc
;
1508 list_del_init(&cic
->queue_list
);
1511 * Make sure key == NULL is seen for dead queues
1514 cic
->dead_key
= (unsigned long) cic
->key
;
1517 if (ioc
->ioc_data
== cic
)
1518 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1520 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1521 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1522 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1525 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1526 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1527 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1531 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1532 struct cfq_io_context
*cic
)
1534 struct cfq_data
*cfqd
= cic
->key
;
1537 struct request_queue
*q
= cfqd
->queue
;
1538 unsigned long flags
;
1540 spin_lock_irqsave(q
->queue_lock
, flags
);
1543 * Ensure we get a fresh copy of the ->key to prevent
1544 * race between exiting task and queue
1546 smp_read_barrier_depends();
1548 __cfq_exit_single_io_context(cfqd
, cic
);
1550 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1555 * The process that ioc belongs to has exited, we need to clean up
1556 * and put the internal structures we have that belongs to that process.
1558 static void cfq_exit_io_context(struct io_context
*ioc
)
1560 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1563 static struct cfq_io_context
*
1564 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1566 struct cfq_io_context
*cic
;
1568 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1571 cic
->last_end_request
= jiffies
;
1572 INIT_LIST_HEAD(&cic
->queue_list
);
1573 INIT_HLIST_NODE(&cic
->cic_list
);
1574 cic
->dtor
= cfq_free_io_context
;
1575 cic
->exit
= cfq_exit_io_context
;
1576 elv_ioc_count_inc(cfq_ioc_count
);
1582 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1584 struct task_struct
*tsk
= current
;
1587 if (!cfq_cfqq_prio_changed(cfqq
))
1590 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1591 switch (ioprio_class
) {
1593 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1594 case IOPRIO_CLASS_NONE
:
1596 * no prio set, inherit CPU scheduling settings
1598 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1599 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1601 case IOPRIO_CLASS_RT
:
1602 cfqq
->ioprio
= task_ioprio(ioc
);
1603 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1605 case IOPRIO_CLASS_BE
:
1606 cfqq
->ioprio
= task_ioprio(ioc
);
1607 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1609 case IOPRIO_CLASS_IDLE
:
1610 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1612 cfq_clear_cfqq_idle_window(cfqq
);
1617 * keep track of original prio settings in case we have to temporarily
1618 * elevate the priority of this queue
1620 cfqq
->org_ioprio
= cfqq
->ioprio
;
1621 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1622 cfq_clear_cfqq_prio_changed(cfqq
);
1625 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1627 struct cfq_data
*cfqd
= cic
->key
;
1628 struct cfq_queue
*cfqq
;
1629 unsigned long flags
;
1631 if (unlikely(!cfqd
))
1634 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1636 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1638 struct cfq_queue
*new_cfqq
;
1639 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1642 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1643 cfq_put_queue(cfqq
);
1647 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1649 cfq_mark_cfqq_prio_changed(cfqq
);
1651 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1654 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1656 call_for_each_cic(ioc
, changed_ioprio
);
1657 ioc
->ioprio_changed
= 0;
1660 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1661 pid_t pid
, int is_sync
)
1663 RB_CLEAR_NODE(&cfqq
->rb_node
);
1664 RB_CLEAR_NODE(&cfqq
->p_node
);
1665 INIT_LIST_HEAD(&cfqq
->fifo
);
1667 atomic_set(&cfqq
->ref
, 0);
1670 cfq_mark_cfqq_prio_changed(cfqq
);
1673 if (!cfq_class_idle(cfqq
))
1674 cfq_mark_cfqq_idle_window(cfqq
);
1675 cfq_mark_cfqq_sync(cfqq
);
1680 static struct cfq_queue
*
1681 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1682 struct io_context
*ioc
, gfp_t gfp_mask
)
1684 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1685 struct cfq_io_context
*cic
;
1688 cic
= cfq_cic_lookup(cfqd
, ioc
);
1689 /* cic always exists here */
1690 cfqq
= cic_to_cfqq(cic
, is_sync
);
1693 * Always try a new alloc if we fell back to the OOM cfqq
1694 * originally, since it should just be a temporary situation.
1696 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
1701 } else if (gfp_mask
& __GFP_WAIT
) {
1702 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1703 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1704 gfp_mask
| __GFP_ZERO
,
1706 spin_lock_irq(cfqd
->queue
->queue_lock
);
1710 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1711 gfp_mask
| __GFP_ZERO
,
1716 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
1717 cfq_init_prio_data(cfqq
, ioc
);
1718 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1720 cfqq
= &cfqd
->oom_cfqq
;
1724 kmem_cache_free(cfq_pool
, new_cfqq
);
1729 static struct cfq_queue
**
1730 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1732 switch (ioprio_class
) {
1733 case IOPRIO_CLASS_RT
:
1734 return &cfqd
->async_cfqq
[0][ioprio
];
1735 case IOPRIO_CLASS_BE
:
1736 return &cfqd
->async_cfqq
[1][ioprio
];
1737 case IOPRIO_CLASS_IDLE
:
1738 return &cfqd
->async_idle_cfqq
;
1744 static struct cfq_queue
*
1745 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1748 const int ioprio
= task_ioprio(ioc
);
1749 const int ioprio_class
= task_ioprio_class(ioc
);
1750 struct cfq_queue
**async_cfqq
= NULL
;
1751 struct cfq_queue
*cfqq
= NULL
;
1754 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1759 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1762 * pin the queue now that it's allocated, scheduler exit will prune it
1764 if (!is_sync
&& !(*async_cfqq
)) {
1765 atomic_inc(&cfqq
->ref
);
1769 atomic_inc(&cfqq
->ref
);
1774 * We drop cfq io contexts lazily, so we may find a dead one.
1777 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1778 struct cfq_io_context
*cic
)
1780 unsigned long flags
;
1782 WARN_ON(!list_empty(&cic
->queue_list
));
1784 spin_lock_irqsave(&ioc
->lock
, flags
);
1786 BUG_ON(ioc
->ioc_data
== cic
);
1788 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1789 hlist_del_rcu(&cic
->cic_list
);
1790 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1795 static struct cfq_io_context
*
1796 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1798 struct cfq_io_context
*cic
;
1799 unsigned long flags
;
1808 * we maintain a last-hit cache, to avoid browsing over the tree
1810 cic
= rcu_dereference(ioc
->ioc_data
);
1811 if (cic
&& cic
->key
== cfqd
) {
1817 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1821 /* ->key must be copied to avoid race with cfq_exit_queue() */
1824 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1829 spin_lock_irqsave(&ioc
->lock
, flags
);
1830 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1831 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1839 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1840 * the process specific cfq io context when entered from the block layer.
1841 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1843 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1844 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1846 unsigned long flags
;
1849 ret
= radix_tree_preload(gfp_mask
);
1854 spin_lock_irqsave(&ioc
->lock
, flags
);
1855 ret
= radix_tree_insert(&ioc
->radix_root
,
1856 (unsigned long) cfqd
, cic
);
1858 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1859 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1861 radix_tree_preload_end();
1864 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1865 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1866 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1871 printk(KERN_ERR
"cfq: cic link failed!\n");
1877 * Setup general io context and cfq io context. There can be several cfq
1878 * io contexts per general io context, if this process is doing io to more
1879 * than one device managed by cfq.
1881 static struct cfq_io_context
*
1882 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1884 struct io_context
*ioc
= NULL
;
1885 struct cfq_io_context
*cic
;
1887 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1889 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1893 cic
= cfq_cic_lookup(cfqd
, ioc
);
1897 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1901 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1905 smp_read_barrier_depends();
1906 if (unlikely(ioc
->ioprio_changed
))
1907 cfq_ioc_set_ioprio(ioc
);
1913 put_io_context(ioc
);
1918 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1920 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1921 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1923 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1924 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1925 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1929 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1935 if (!cic
->last_request_pos
)
1937 else if (cic
->last_request_pos
< blk_rq_pos(rq
))
1938 sdist
= blk_rq_pos(rq
) - cic
->last_request_pos
;
1940 sdist
= cic
->last_request_pos
- blk_rq_pos(rq
);
1943 * Don't allow the seek distance to get too large from the
1944 * odd fragment, pagein, etc
1946 if (cic
->seek_samples
<= 60) /* second&third seek */
1947 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1949 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1951 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1952 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1953 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1954 do_div(total
, cic
->seek_samples
);
1955 cic
->seek_mean
= (sector_t
)total
;
1959 * Disable idle window if the process thinks too long or seeks so much that
1963 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1964 struct cfq_io_context
*cic
)
1966 int old_idle
, enable_idle
;
1969 * Don't idle for async or idle io prio class
1971 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1974 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1976 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1977 (!cfqd
->cfq_latency
&& cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1979 else if (sample_valid(cic
->ttime_samples
)) {
1980 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1986 if (old_idle
!= enable_idle
) {
1987 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1989 cfq_mark_cfqq_idle_window(cfqq
);
1991 cfq_clear_cfqq_idle_window(cfqq
);
1996 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1997 * no or if we aren't sure, a 1 will cause a preempt.
2000 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
2003 struct cfq_queue
*cfqq
;
2005 cfqq
= cfqd
->active_queue
;
2009 if (cfq_slice_used(cfqq
))
2012 if (cfq_class_idle(new_cfqq
))
2015 if (cfq_class_idle(cfqq
))
2019 * if the new request is sync, but the currently running queue is
2020 * not, let the sync request have priority.
2022 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2026 * So both queues are sync. Let the new request get disk time if
2027 * it's a metadata request and the current queue is doing regular IO.
2029 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2033 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2035 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2038 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2042 * if this request is as-good as one we would expect from the
2043 * current cfqq, let it preempt
2045 if (cfq_rq_close(cfqd
, rq
))
2052 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2053 * let it have half of its nominal slice.
2055 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2057 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2058 cfq_slice_expired(cfqd
, 1);
2061 * Put the new queue at the front of the of the current list,
2062 * so we know that it will be selected next.
2064 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2066 cfq_service_tree_add(cfqd
, cfqq
, 1);
2068 cfqq
->slice_end
= 0;
2069 cfq_mark_cfqq_slice_new(cfqq
);
2073 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2074 * something we should do about it
2077 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2080 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2084 cfqq
->meta_pending
++;
2086 cfq_update_io_thinktime(cfqd
, cic
);
2087 cfq_update_io_seektime(cfqd
, cic
, rq
);
2088 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2090 cic
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2092 if (cfqq
== cfqd
->active_queue
) {
2094 * Remember that we saw a request from this process, but
2095 * don't start queuing just yet. Otherwise we risk seeing lots
2096 * of tiny requests, because we disrupt the normal plugging
2097 * and merging. If the request is already larger than a single
2098 * page, let it rip immediately. For that case we assume that
2099 * merging is already done. Ditto for a busy system that
2100 * has other work pending, don't risk delaying until the
2101 * idle timer unplug to continue working.
2103 if (cfq_cfqq_wait_request(cfqq
)) {
2104 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2105 cfqd
->busy_queues
> 1) {
2106 del_timer(&cfqd
->idle_slice_timer
);
2107 __blk_run_queue(cfqd
->queue
);
2109 cfq_mark_cfqq_must_dispatch(cfqq
);
2111 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2113 * not the active queue - expire current slice if it is
2114 * idle and has expired it's mean thinktime or this new queue
2115 * has some old slice time left and is of higher priority or
2116 * this new queue is RT and the current one is BE
2118 cfq_preempt_queue(cfqd
, cfqq
);
2119 __blk_run_queue(cfqd
->queue
);
2123 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2125 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2126 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2128 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2129 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2133 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2135 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2139 * Update hw_tag based on peak queue depth over 50 samples under
2142 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2144 if (rq_in_driver(cfqd
) > cfqd
->rq_in_driver_peak
)
2145 cfqd
->rq_in_driver_peak
= rq_in_driver(cfqd
);
2147 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2148 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
2151 if (cfqd
->hw_tag_samples
++ < 50)
2154 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2159 cfqd
->hw_tag_samples
= 0;
2160 cfqd
->rq_in_driver_peak
= 0;
2163 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2165 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2166 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2167 const int sync
= rq_is_sync(rq
);
2171 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2173 cfq_update_hw_tag(cfqd
);
2175 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
2176 WARN_ON(!cfqq
->dispatched
);
2177 cfqd
->rq_in_driver
[sync
]--;
2180 if (cfq_cfqq_sync(cfqq
))
2181 cfqd
->sync_flight
--;
2184 RQ_CIC(rq
)->last_end_request
= now
;
2185 cfqd
->last_end_sync_rq
= now
;
2189 * If this is the active queue, check if it needs to be expired,
2190 * or if we want to idle in case it has no pending requests.
2192 if (cfqd
->active_queue
== cfqq
) {
2193 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2195 if (cfq_cfqq_slice_new(cfqq
)) {
2196 cfq_set_prio_slice(cfqd
, cfqq
);
2197 cfq_clear_cfqq_slice_new(cfqq
);
2200 * If there are no requests waiting in this queue, and
2201 * there are other queues ready to issue requests, AND
2202 * those other queues are issuing requests within our
2203 * mean seek distance, give them a chance to run instead
2206 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2207 cfq_slice_expired(cfqd
, 1);
2208 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
, 1) &&
2209 sync
&& !rq_noidle(rq
))
2210 cfq_arm_slice_timer(cfqd
);
2213 if (!rq_in_driver(cfqd
))
2214 cfq_schedule_dispatch(cfqd
, 0);
2218 * we temporarily boost lower priority queues if they are holding fs exclusive
2219 * resources. they are boosted to normal prio (CLASS_BE/4)
2221 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2223 if (has_fs_excl()) {
2225 * boost idle prio on transactions that would lock out other
2226 * users of the filesystem
2228 if (cfq_class_idle(cfqq
))
2229 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2230 if (cfqq
->ioprio
> IOPRIO_NORM
)
2231 cfqq
->ioprio
= IOPRIO_NORM
;
2234 * check if we need to unboost the queue
2236 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2237 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2238 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2239 cfqq
->ioprio
= cfqq
->org_ioprio
;
2243 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2245 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
2246 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2247 return ELV_MQUEUE_MUST
;
2250 return ELV_MQUEUE_MAY
;
2253 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2255 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2256 struct task_struct
*tsk
= current
;
2257 struct cfq_io_context
*cic
;
2258 struct cfq_queue
*cfqq
;
2261 * don't force setup of a queue from here, as a call to may_queue
2262 * does not necessarily imply that a request actually will be queued.
2263 * so just lookup a possibly existing queue, or return 'may queue'
2266 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2268 return ELV_MQUEUE_MAY
;
2270 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2272 cfq_init_prio_data(cfqq
, cic
->ioc
);
2273 cfq_prio_boost(cfqq
);
2275 return __cfq_may_queue(cfqq
);
2278 return ELV_MQUEUE_MAY
;
2282 * queue lock held here
2284 static void cfq_put_request(struct request
*rq
)
2286 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2289 const int rw
= rq_data_dir(rq
);
2291 BUG_ON(!cfqq
->allocated
[rw
]);
2292 cfqq
->allocated
[rw
]--;
2294 put_io_context(RQ_CIC(rq
)->ioc
);
2296 rq
->elevator_private
= NULL
;
2297 rq
->elevator_private2
= NULL
;
2299 cfq_put_queue(cfqq
);
2304 * Allocate cfq data structures associated with this request.
2307 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2309 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2310 struct cfq_io_context
*cic
;
2311 const int rw
= rq_data_dir(rq
);
2312 const int is_sync
= rq_is_sync(rq
);
2313 struct cfq_queue
*cfqq
;
2314 unsigned long flags
;
2316 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2318 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2320 spin_lock_irqsave(q
->queue_lock
, flags
);
2325 cfqq
= cic_to_cfqq(cic
, is_sync
);
2326 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2327 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2328 cic_set_cfqq(cic
, cfqq
, is_sync
);
2331 cfqq
->allocated
[rw
]++;
2332 atomic_inc(&cfqq
->ref
);
2334 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2336 rq
->elevator_private
= cic
;
2337 rq
->elevator_private2
= cfqq
;
2342 put_io_context(cic
->ioc
);
2344 cfq_schedule_dispatch(cfqd
, 0);
2345 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2346 cfq_log(cfqd
, "set_request fail");
2350 static void cfq_kick_queue(struct work_struct
*work
)
2352 struct cfq_data
*cfqd
=
2353 container_of(work
, struct cfq_data
, unplug_work
.work
);
2354 struct request_queue
*q
= cfqd
->queue
;
2356 spin_lock_irq(q
->queue_lock
);
2357 __blk_run_queue(cfqd
->queue
);
2358 spin_unlock_irq(q
->queue_lock
);
2362 * Timer running if the active_queue is currently idling inside its time slice
2364 static void cfq_idle_slice_timer(unsigned long data
)
2366 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2367 struct cfq_queue
*cfqq
;
2368 unsigned long flags
;
2371 cfq_log(cfqd
, "idle timer fired");
2373 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2375 cfqq
= cfqd
->active_queue
;
2380 * We saw a request before the queue expired, let it through
2382 if (cfq_cfqq_must_dispatch(cfqq
))
2388 if (cfq_slice_used(cfqq
))
2392 * only expire and reinvoke request handler, if there are
2393 * other queues with pending requests
2395 if (!cfqd
->busy_queues
)
2399 * not expired and it has a request pending, let it dispatch
2401 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2405 cfq_slice_expired(cfqd
, timed_out
);
2407 cfq_schedule_dispatch(cfqd
, 0);
2409 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2412 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2414 del_timer_sync(&cfqd
->idle_slice_timer
);
2415 cancel_delayed_work_sync(&cfqd
->unplug_work
);
2418 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2422 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2423 if (cfqd
->async_cfqq
[0][i
])
2424 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2425 if (cfqd
->async_cfqq
[1][i
])
2426 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2429 if (cfqd
->async_idle_cfqq
)
2430 cfq_put_queue(cfqd
->async_idle_cfqq
);
2433 static void cfq_exit_queue(struct elevator_queue
*e
)
2435 struct cfq_data
*cfqd
= e
->elevator_data
;
2436 struct request_queue
*q
= cfqd
->queue
;
2438 cfq_shutdown_timer_wq(cfqd
);
2440 spin_lock_irq(q
->queue_lock
);
2442 if (cfqd
->active_queue
)
2443 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2445 while (!list_empty(&cfqd
->cic_list
)) {
2446 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2447 struct cfq_io_context
,
2450 __cfq_exit_single_io_context(cfqd
, cic
);
2453 cfq_put_async_queues(cfqd
);
2455 spin_unlock_irq(q
->queue_lock
);
2457 cfq_shutdown_timer_wq(cfqd
);
2462 static void *cfq_init_queue(struct request_queue
*q
)
2464 struct cfq_data
*cfqd
;
2467 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2471 cfqd
->service_tree
= CFQ_RB_ROOT
;
2474 * Not strictly needed (since RB_ROOT just clears the node and we
2475 * zeroed cfqd on alloc), but better be safe in case someone decides
2476 * to add magic to the rb code
2478 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2479 cfqd
->prio_trees
[i
] = RB_ROOT
;
2482 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2483 * Grab a permanent reference to it, so that the normal code flow
2484 * will not attempt to free it.
2486 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
2487 atomic_inc(&cfqd
->oom_cfqq
.ref
);
2489 INIT_LIST_HEAD(&cfqd
->cic_list
);
2493 init_timer(&cfqd
->idle_slice_timer
);
2494 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2495 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2497 INIT_DELAYED_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2499 cfqd
->cfq_quantum
= cfq_quantum
;
2500 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2501 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2502 cfqd
->cfq_back_max
= cfq_back_max
;
2503 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2504 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2505 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2506 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2507 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2508 cfqd
->cfq_latency
= 1;
2510 cfqd
->last_end_sync_rq
= jiffies
;
2514 static void cfq_slab_kill(void)
2517 * Caller already ensured that pending RCU callbacks are completed,
2518 * so we should have no busy allocations at this point.
2521 kmem_cache_destroy(cfq_pool
);
2523 kmem_cache_destroy(cfq_ioc_pool
);
2526 static int __init
cfq_slab_setup(void)
2528 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2532 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2543 * sysfs parts below -->
2546 cfq_var_show(unsigned int var
, char *page
)
2548 return sprintf(page
, "%d\n", var
);
2552 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2554 char *p
= (char *) page
;
2556 *var
= simple_strtoul(p
, &p
, 10);
2560 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2561 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2563 struct cfq_data *cfqd = e->elevator_data; \
2564 unsigned int __data = __VAR; \
2566 __data = jiffies_to_msecs(__data); \
2567 return cfq_var_show(__data, (page)); \
2569 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2570 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2571 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2572 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2573 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2574 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2575 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2576 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2577 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2578 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
2579 #undef SHOW_FUNCTION
2581 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2582 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2584 struct cfq_data *cfqd = e->elevator_data; \
2585 unsigned int __data; \
2586 int ret = cfq_var_store(&__data, (page), count); \
2587 if (__data < (MIN)) \
2589 else if (__data > (MAX)) \
2592 *(__PTR) = msecs_to_jiffies(__data); \
2594 *(__PTR) = __data; \
2597 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2598 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2600 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2602 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2603 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2605 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2606 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2607 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2608 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2610 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
2611 #undef STORE_FUNCTION
2613 #define CFQ_ATTR(name) \
2614 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2616 static struct elv_fs_entry cfq_attrs
[] = {
2618 CFQ_ATTR(fifo_expire_sync
),
2619 CFQ_ATTR(fifo_expire_async
),
2620 CFQ_ATTR(back_seek_max
),
2621 CFQ_ATTR(back_seek_penalty
),
2622 CFQ_ATTR(slice_sync
),
2623 CFQ_ATTR(slice_async
),
2624 CFQ_ATTR(slice_async_rq
),
2625 CFQ_ATTR(slice_idle
),
2626 CFQ_ATTR(low_latency
),
2630 static struct elevator_type iosched_cfq
= {
2632 .elevator_merge_fn
= cfq_merge
,
2633 .elevator_merged_fn
= cfq_merged_request
,
2634 .elevator_merge_req_fn
= cfq_merged_requests
,
2635 .elevator_allow_merge_fn
= cfq_allow_merge
,
2636 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2637 .elevator_add_req_fn
= cfq_insert_request
,
2638 .elevator_activate_req_fn
= cfq_activate_request
,
2639 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2640 .elevator_queue_empty_fn
= cfq_queue_empty
,
2641 .elevator_completed_req_fn
= cfq_completed_request
,
2642 .elevator_former_req_fn
= elv_rb_former_request
,
2643 .elevator_latter_req_fn
= elv_rb_latter_request
,
2644 .elevator_set_req_fn
= cfq_set_request
,
2645 .elevator_put_req_fn
= cfq_put_request
,
2646 .elevator_may_queue_fn
= cfq_may_queue
,
2647 .elevator_init_fn
= cfq_init_queue
,
2648 .elevator_exit_fn
= cfq_exit_queue
,
2649 .trim
= cfq_free_io_context
,
2651 .elevator_attrs
= cfq_attrs
,
2652 .elevator_name
= "cfq",
2653 .elevator_owner
= THIS_MODULE
,
2656 static int __init
cfq_init(void)
2659 * could be 0 on HZ < 1000 setups
2661 if (!cfq_slice_async
)
2662 cfq_slice_async
= 1;
2663 if (!cfq_slice_idle
)
2666 if (cfq_slab_setup())
2669 elv_register(&iosched_cfq
);
2674 static void __exit
cfq_exit(void)
2676 DECLARE_COMPLETION_ONSTACK(all_gone
);
2677 elv_unregister(&iosched_cfq
);
2678 ioc_gone
= &all_gone
;
2679 /* ioc_gone's update must be visible before reading ioc_count */
2683 * this also protects us from entering cfq_slab_kill() with
2684 * pending RCU callbacks
2686 if (elv_ioc_count_read(cfq_ioc_count
))
2687 wait_for_completion(&all_gone
);
2691 module_init(cfq_init
);
2692 module_exit(cfq_exit
);
2694 MODULE_AUTHOR("Jens Axboe");
2695 MODULE_LICENSE("GPL");
2696 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");