2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
5 * Copyright (c) 2001,2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/smp_lock.h>
47 /* Number of mounted filesystems which have compression enabled. */
48 static unsigned long ntfs_nr_compression_users
;
50 /* A global default upcase table and a corresponding reference count. */
51 static ntfschar
*default_upcase
= NULL
;
52 static unsigned long ntfs_nr_upcase_users
= 0;
54 /* Error constants/strings used in inode.c::ntfs_show_options(). */
56 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
57 ON_ERRORS_PANIC
= 0x01,
58 ON_ERRORS_REMOUNT_RO
= 0x02,
59 ON_ERRORS_CONTINUE
= 0x04,
60 /* Optional, can be combined with any of the above. */
61 ON_ERRORS_RECOVER
= 0x10,
64 const option_t on_errors_arr
[] = {
65 { ON_ERRORS_PANIC
, "panic" },
66 { ON_ERRORS_REMOUNT_RO
, "remount-ro", },
67 { ON_ERRORS_CONTINUE
, "continue", },
68 { ON_ERRORS_RECOVER
, "recover" },
75 * Copied from old ntfs driver (which copied from vfat driver).
77 static int simple_getbool(char *s
, bool *setval
)
80 if (!strcmp(s
, "1") || !strcmp(s
, "yes") || !strcmp(s
, "true"))
82 else if (!strcmp(s
, "0") || !strcmp(s
, "no") ||
93 * parse_options - parse the (re)mount options
95 * @opt: string containing the (re)mount options
97 * Parse the recognized options in @opt for the ntfs volume described by @vol.
99 static bool parse_options(ntfs_volume
*vol
, char *opt
)
102 static char *utf8
= "utf8";
103 int errors
= 0, sloppy
= 0;
104 uid_t uid
= (uid_t
)-1;
105 gid_t gid
= (gid_t
)-1;
106 mode_t fmask
= (mode_t
)-1, dmask
= (mode_t
)-1;
107 int mft_zone_multiplier
= -1, on_errors
= -1;
108 int show_sys_files
= -1, case_sensitive
= -1, disable_sparse
= -1;
109 struct nls_table
*nls_map
= NULL
, *old_nls
;
111 /* I am lazy... (-8 */
112 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
113 if (!strcmp(p, option)) { \
115 variable = default_value; \
117 variable = simple_strtoul(ov = v, &v, 0); \
122 #define NTFS_GETOPT(option, variable) \
123 if (!strcmp(p, option)) { \
126 variable = simple_strtoul(ov = v, &v, 0); \
130 #define NTFS_GETOPT_OCTAL(option, variable) \
131 if (!strcmp(p, option)) { \
134 variable = simple_strtoul(ov = v, &v, 8); \
138 #define NTFS_GETOPT_BOOL(option, variable) \
139 if (!strcmp(p, option)) { \
141 if (!simple_getbool(v, &val)) \
145 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
146 if (!strcmp(p, option)) { \
151 if (variable == -1) \
153 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
154 if (!strcmp(opt_array[_i].str, v)) { \
155 variable |= opt_array[_i].val; \
158 if (!opt_array[_i].str || !*opt_array[_i].str) \
162 goto no_mount_options
;
163 ntfs_debug("Entering with mount options string: %s", opt
);
164 while ((p
= strsep(&opt
, ","))) {
165 if ((v
= strchr(p
, '=')))
167 NTFS_GETOPT("uid", uid
)
168 else NTFS_GETOPT("gid", gid
)
169 else NTFS_GETOPT_OCTAL("umask", fmask
= dmask
)
170 else NTFS_GETOPT_OCTAL("fmask", fmask
)
171 else NTFS_GETOPT_OCTAL("dmask", dmask
)
172 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier
)
173 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy
, true)
174 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files
)
175 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive
)
176 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse
)
177 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors
,
179 else if (!strcmp(p
, "posix") || !strcmp(p
, "show_inodes"))
180 ntfs_warning(vol
->sb
, "Ignoring obsolete option %s.",
182 else if (!strcmp(p
, "nls") || !strcmp(p
, "iocharset")) {
183 if (!strcmp(p
, "iocharset"))
184 ntfs_warning(vol
->sb
, "Option iocharset is "
185 "deprecated. Please use "
186 "option nls=<charsetname> in "
192 nls_map
= load_nls(v
);
195 ntfs_error(vol
->sb
, "NLS character set "
199 ntfs_error(vol
->sb
, "NLS character set %s not "
200 "found. Using previous one %s.",
201 v
, old_nls
->charset
);
203 } else /* nls_map */ {
206 } else if (!strcmp(p
, "utf8")) {
208 ntfs_warning(vol
->sb
, "Option utf8 is no longer "
209 "supported, using option nls=utf8. Please "
210 "use option nls=utf8 in the future and "
211 "make sure utf8 is compiled either as a "
212 "module or into the kernel.");
215 else if (!simple_getbool(v
, &val
))
222 ntfs_error(vol
->sb
, "Unrecognized mount option %s.", p
);
223 if (errors
< INT_MAX
)
226 #undef NTFS_GETOPT_OPTIONS_ARRAY
227 #undef NTFS_GETOPT_BOOL
229 #undef NTFS_GETOPT_WITH_DEFAULT
232 if (errors
&& !sloppy
)
235 ntfs_warning(vol
->sb
, "Sloppy option given. Ignoring "
236 "unrecognized mount option(s) and continuing.");
237 /* Keep this first! */
238 if (on_errors
!= -1) {
240 ntfs_error(vol
->sb
, "Invalid errors option argument "
241 "or bug in options parser.");
246 if (vol
->nls_map
&& vol
->nls_map
!= nls_map
) {
247 ntfs_error(vol
->sb
, "Cannot change NLS character set "
250 } /* else (!vol->nls_map) */
251 ntfs_debug("Using NLS character set %s.", nls_map
->charset
);
252 vol
->nls_map
= nls_map
;
253 } else /* (!nls_map) */ {
255 vol
->nls_map
= load_nls_default();
257 ntfs_error(vol
->sb
, "Failed to load default "
258 "NLS character set.");
261 ntfs_debug("Using default NLS character set (%s).",
262 vol
->nls_map
->charset
);
265 if (mft_zone_multiplier
!= -1) {
266 if (vol
->mft_zone_multiplier
&& vol
->mft_zone_multiplier
!=
267 mft_zone_multiplier
) {
268 ntfs_error(vol
->sb
, "Cannot change mft_zone_multiplier "
272 if (mft_zone_multiplier
< 1 || mft_zone_multiplier
> 4) {
273 ntfs_error(vol
->sb
, "Invalid mft_zone_multiplier. "
274 "Using default value, i.e. 1.");
275 mft_zone_multiplier
= 1;
277 vol
->mft_zone_multiplier
= mft_zone_multiplier
;
279 if (!vol
->mft_zone_multiplier
)
280 vol
->mft_zone_multiplier
= 1;
282 vol
->on_errors
= on_errors
;
283 if (!vol
->on_errors
|| vol
->on_errors
== ON_ERRORS_RECOVER
)
284 vol
->on_errors
|= ON_ERRORS_CONTINUE
;
285 if (uid
!= (uid_t
)-1)
287 if (gid
!= (gid_t
)-1)
289 if (fmask
!= (mode_t
)-1)
291 if (dmask
!= (mode_t
)-1)
293 if (show_sys_files
!= -1) {
295 NVolSetShowSystemFiles(vol
);
297 NVolClearShowSystemFiles(vol
);
299 if (case_sensitive
!= -1) {
301 NVolSetCaseSensitive(vol
);
303 NVolClearCaseSensitive(vol
);
305 if (disable_sparse
!= -1) {
307 NVolClearSparseEnabled(vol
);
309 if (!NVolSparseEnabled(vol
) &&
310 vol
->major_ver
&& vol
->major_ver
< 3)
311 ntfs_warning(vol
->sb
, "Not enabling sparse "
312 "support due to NTFS volume "
313 "version %i.%i (need at least "
314 "version 3.0).", vol
->major_ver
,
317 NVolSetSparseEnabled(vol
);
322 ntfs_error(vol
->sb
, "The %s option requires an argument.", p
);
325 ntfs_error(vol
->sb
, "The %s option requires a boolean argument.", p
);
328 ntfs_error(vol
->sb
, "Invalid %s option argument: %s", p
, ov
);
335 * ntfs_write_volume_flags - write new flags to the volume information flags
336 * @vol: ntfs volume on which to modify the flags
337 * @flags: new flags value for the volume information flags
339 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
340 * instead (see below).
342 * Replace the volume information flags on the volume @vol with the value
343 * supplied in @flags. Note, this overwrites the volume information flags, so
344 * make sure to combine the flags you want to modify with the old flags and use
345 * the result when calling ntfs_write_volume_flags().
347 * Return 0 on success and -errno on error.
349 static int ntfs_write_volume_flags(ntfs_volume
*vol
, const VOLUME_FLAGS flags
)
351 ntfs_inode
*ni
= NTFS_I(vol
->vol_ino
);
353 VOLUME_INFORMATION
*vi
;
354 ntfs_attr_search_ctx
*ctx
;
357 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
358 le16_to_cpu(vol
->vol_flags
), le16_to_cpu(flags
));
359 if (vol
->vol_flags
== flags
)
362 m
= map_mft_record(ni
);
367 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
370 goto put_unm_err_out
;
372 err
= ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
375 goto put_unm_err_out
;
376 vi
= (VOLUME_INFORMATION
*)((u8
*)ctx
->attr
+
377 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
378 vol
->vol_flags
= vi
->flags
= flags
;
379 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
380 mark_mft_record_dirty(ctx
->ntfs_ino
);
381 ntfs_attr_put_search_ctx(ctx
);
382 unmap_mft_record(ni
);
388 ntfs_attr_put_search_ctx(ctx
);
389 unmap_mft_record(ni
);
391 ntfs_error(vol
->sb
, "Failed with error code %i.", -err
);
396 * ntfs_set_volume_flags - set bits in the volume information flags
397 * @vol: ntfs volume on which to modify the flags
398 * @flags: flags to set on the volume
400 * Set the bits in @flags in the volume information flags on the volume @vol.
402 * Return 0 on success and -errno on error.
404 static inline int ntfs_set_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
406 flags
&= VOLUME_FLAGS_MASK
;
407 return ntfs_write_volume_flags(vol
, vol
->vol_flags
| flags
);
411 * ntfs_clear_volume_flags - clear bits in the volume information flags
412 * @vol: ntfs volume on which to modify the flags
413 * @flags: flags to clear on the volume
415 * Clear the bits in @flags in the volume information flags on the volume @vol.
417 * Return 0 on success and -errno on error.
419 static inline int ntfs_clear_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
421 flags
&= VOLUME_FLAGS_MASK
;
422 flags
= vol
->vol_flags
& cpu_to_le16(~le16_to_cpu(flags
));
423 return ntfs_write_volume_flags(vol
, flags
);
429 * ntfs_remount - change the mount options of a mounted ntfs filesystem
430 * @sb: superblock of mounted ntfs filesystem
431 * @flags: remount flags
432 * @opt: remount options string
434 * Change the mount options of an already mounted ntfs filesystem.
436 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
437 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
438 * @sb->s_flags are not changed.
440 static int ntfs_remount(struct super_block
*sb
, int *flags
, char *opt
)
442 ntfs_volume
*vol
= NTFS_SB(sb
);
444 ntfs_debug("Entering with remount options string: %s", opt
);
448 /* For read-only compiled driver, enforce read-only flag. */
452 * For the read-write compiled driver, if we are remounting read-write,
453 * make sure there are no volume errors and that no unsupported volume
454 * flags are set. Also, empty the logfile journal as it would become
455 * stale as soon as something is written to the volume and mark the
456 * volume dirty so that chkdsk is run if the volume is not umounted
457 * cleanly. Finally, mark the quotas out of date so Windows rescans
458 * the volume on boot and updates them.
460 * When remounting read-only, mark the volume clean if no volume errors
463 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
464 static const char *es
= ". Cannot remount read-write.";
466 /* Remounting read-write. */
467 if (NVolErrors(vol
)) {
468 ntfs_error(sb
, "Volume has errors and is read-only%s",
473 if (vol
->vol_flags
& VOLUME_IS_DIRTY
) {
474 ntfs_error(sb
, "Volume is dirty and read-only%s", es
);
478 if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
479 ntfs_error(sb
, "Volume has been modified by chkdsk "
480 "and is read-only%s", es
);
484 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
485 ntfs_error(sb
, "Volume has unsupported flags set "
486 "(0x%x) and is read-only%s",
487 (unsigned)le16_to_cpu(vol
->vol_flags
),
492 if (ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
493 ntfs_error(sb
, "Failed to set dirty bit in volume "
494 "information flags%s", es
);
499 // TODO: Enable this code once we start modifying anything that
500 // is different between NTFS 1.2 and 3.x...
501 /* Set NT4 compatibility flag on newer NTFS version volumes. */
502 if ((vol
->major_ver
> 1)) {
503 if (ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
504 ntfs_error(sb
, "Failed to set NT4 "
505 "compatibility flag%s", es
);
511 if (!ntfs_empty_logfile(vol
->logfile_ino
)) {
512 ntfs_error(sb
, "Failed to empty journal $LogFile%s",
518 if (!ntfs_mark_quotas_out_of_date(vol
)) {
519 ntfs_error(sb
, "Failed to mark quotas out of date%s",
525 if (!ntfs_stamp_usnjrnl(vol
)) {
526 ntfs_error(sb
, "Failed to stamp transation log "
532 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
533 /* Remounting read-only. */
534 if (!NVolErrors(vol
)) {
535 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
536 ntfs_warning(sb
, "Failed to clear dirty bit "
537 "in volume information "
538 "flags. Run chkdsk.");
543 // TODO: Deal with *flags.
545 if (!parse_options(vol
, opt
)) {
555 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
556 * @sb: Super block of the device to which @b belongs.
557 * @b: Boot sector of device @sb to check.
558 * @silent: If 'true', all output will be silenced.
560 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
561 * sector. Returns 'true' if it is valid and 'false' if not.
563 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
566 static bool is_boot_sector_ntfs(const struct super_block
*sb
,
567 const NTFS_BOOT_SECTOR
*b
, const bool silent
)
570 * Check that checksum == sum of u32 values from b to the checksum
571 * field. If checksum is zero, no checking is done. We will work when
572 * the checksum test fails, since some utilities update the boot sector
573 * ignoring the checksum which leaves the checksum out-of-date. We
574 * report a warning if this is the case.
576 if ((void*)b
< (void*)&b
->checksum
&& b
->checksum
&& !silent
) {
580 for (i
= 0, u
= (le32
*)b
; u
< (le32
*)(&b
->checksum
); ++u
)
581 i
+= le32_to_cpup(u
);
582 if (le32_to_cpu(b
->checksum
) != i
)
583 ntfs_warning(sb
, "Invalid boot sector checksum.");
585 /* Check OEMidentifier is "NTFS " */
586 if (b
->oem_id
!= magicNTFS
)
588 /* Check bytes per sector value is between 256 and 4096. */
589 if (le16_to_cpu(b
->bpb
.bytes_per_sector
) < 0x100 ||
590 le16_to_cpu(b
->bpb
.bytes_per_sector
) > 0x1000)
592 /* Check sectors per cluster value is valid. */
593 switch (b
->bpb
.sectors_per_cluster
) {
594 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
599 /* Check the cluster size is not above the maximum (64kiB). */
600 if ((u32
)le16_to_cpu(b
->bpb
.bytes_per_sector
) *
601 b
->bpb
.sectors_per_cluster
> NTFS_MAX_CLUSTER_SIZE
)
603 /* Check reserved/unused fields are really zero. */
604 if (le16_to_cpu(b
->bpb
.reserved_sectors
) ||
605 le16_to_cpu(b
->bpb
.root_entries
) ||
606 le16_to_cpu(b
->bpb
.sectors
) ||
607 le16_to_cpu(b
->bpb
.sectors_per_fat
) ||
608 le32_to_cpu(b
->bpb
.large_sectors
) || b
->bpb
.fats
)
610 /* Check clusters per file mft record value is valid. */
611 if ((u8
)b
->clusters_per_mft_record
< 0xe1 ||
612 (u8
)b
->clusters_per_mft_record
> 0xf7)
613 switch (b
->clusters_per_mft_record
) {
614 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
619 /* Check clusters per index block value is valid. */
620 if ((u8
)b
->clusters_per_index_record
< 0xe1 ||
621 (u8
)b
->clusters_per_index_record
> 0xf7)
622 switch (b
->clusters_per_index_record
) {
623 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
629 * Check for valid end of sector marker. We will work without it, but
630 * many BIOSes will refuse to boot from a bootsector if the magic is
631 * incorrect, so we emit a warning.
633 if (!silent
&& b
->end_of_sector_marker
!= cpu_to_le16(0xaa55))
634 ntfs_warning(sb
, "Invalid end of sector marker.");
641 * read_ntfs_boot_sector - read the NTFS boot sector of a device
642 * @sb: super block of device to read the boot sector from
643 * @silent: if true, suppress all output
645 * Reads the boot sector from the device and validates it. If that fails, tries
646 * to read the backup boot sector, first from the end of the device a-la NT4 and
647 * later and then from the middle of the device a-la NT3.51 and before.
649 * If a valid boot sector is found but it is not the primary boot sector, we
650 * repair the primary boot sector silently (unless the device is read-only or
651 * the primary boot sector is not accessible).
653 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
654 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
655 * to their respective values.
657 * Return the unlocked buffer head containing the boot sector or NULL on error.
659 static struct buffer_head
*read_ntfs_boot_sector(struct super_block
*sb
,
662 const char *read_err_str
= "Unable to read %s boot sector.";
663 struct buffer_head
*bh_primary
, *bh_backup
;
664 sector_t nr_blocks
= NTFS_SB(sb
)->nr_blocks
;
666 /* Try to read primary boot sector. */
667 if ((bh_primary
= sb_bread(sb
, 0))) {
668 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
669 bh_primary
->b_data
, silent
))
672 ntfs_error(sb
, "Primary boot sector is invalid.");
674 ntfs_error(sb
, read_err_str
, "primary");
675 if (!(NTFS_SB(sb
)->on_errors
& ON_ERRORS_RECOVER
)) {
679 ntfs_error(sb
, "Mount option errors=recover not used. "
680 "Aborting without trying to recover.");
683 /* Try to read NT4+ backup boot sector. */
684 if ((bh_backup
= sb_bread(sb
, nr_blocks
- 1))) {
685 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
686 bh_backup
->b_data
, silent
))
687 goto hotfix_primary_boot_sector
;
690 ntfs_error(sb
, read_err_str
, "backup");
691 /* Try to read NT3.51- backup boot sector. */
692 if ((bh_backup
= sb_bread(sb
, nr_blocks
>> 1))) {
693 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
694 bh_backup
->b_data
, silent
))
695 goto hotfix_primary_boot_sector
;
697 ntfs_error(sb
, "Could not find a valid backup boot "
701 ntfs_error(sb
, read_err_str
, "backup");
702 /* We failed. Cleanup and return. */
706 hotfix_primary_boot_sector
:
709 * If we managed to read sector zero and the volume is not
710 * read-only, copy the found, valid backup boot sector to the
711 * primary boot sector. Note we only copy the actual boot
712 * sector structure, not the actual whole device sector as that
713 * may be bigger and would potentially damage the $Boot system
714 * file (FIXME: Would be nice to know if the backup boot sector
715 * on a large sector device contains the whole boot loader or
716 * just the first 512 bytes).
718 if (!(sb
->s_flags
& MS_RDONLY
)) {
719 ntfs_warning(sb
, "Hot-fix: Recovering invalid primary "
720 "boot sector from backup copy.");
721 memcpy(bh_primary
->b_data
, bh_backup
->b_data
,
723 mark_buffer_dirty(bh_primary
);
724 sync_dirty_buffer(bh_primary
);
725 if (buffer_uptodate(bh_primary
)) {
729 ntfs_error(sb
, "Hot-fix: Device write error while "
730 "recovering primary boot sector.");
732 ntfs_warning(sb
, "Hot-fix: Recovery of primary boot "
733 "sector failed: Read-only mount.");
737 ntfs_warning(sb
, "Using backup boot sector.");
742 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
743 * @vol: volume structure to initialise with data from boot sector
744 * @b: boot sector to parse
746 * Parse the ntfs boot sector @b and store all imporant information therein in
747 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
749 static bool parse_ntfs_boot_sector(ntfs_volume
*vol
, const NTFS_BOOT_SECTOR
*b
)
751 unsigned int sectors_per_cluster_bits
, nr_hidden_sects
;
752 int clusters_per_mft_record
, clusters_per_index_record
;
755 vol
->sector_size
= le16_to_cpu(b
->bpb
.bytes_per_sector
);
756 vol
->sector_size_bits
= ffs(vol
->sector_size
) - 1;
757 ntfs_debug("vol->sector_size = %i (0x%x)", vol
->sector_size
,
759 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol
->sector_size_bits
,
760 vol
->sector_size_bits
);
761 if (vol
->sector_size
< vol
->sb
->s_blocksize
) {
762 ntfs_error(vol
->sb
, "Sector size (%i) is smaller than the "
763 "device block size (%lu). This is not "
764 "supported. Sorry.", vol
->sector_size
,
765 vol
->sb
->s_blocksize
);
768 ntfs_debug("sectors_per_cluster = 0x%x", b
->bpb
.sectors_per_cluster
);
769 sectors_per_cluster_bits
= ffs(b
->bpb
.sectors_per_cluster
) - 1;
770 ntfs_debug("sectors_per_cluster_bits = 0x%x",
771 sectors_per_cluster_bits
);
772 nr_hidden_sects
= le32_to_cpu(b
->bpb
.hidden_sectors
);
773 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects
);
774 vol
->cluster_size
= vol
->sector_size
<< sectors_per_cluster_bits
;
775 vol
->cluster_size_mask
= vol
->cluster_size
- 1;
776 vol
->cluster_size_bits
= ffs(vol
->cluster_size
) - 1;
777 ntfs_debug("vol->cluster_size = %i (0x%x)", vol
->cluster_size
,
779 ntfs_debug("vol->cluster_size_mask = 0x%x", vol
->cluster_size_mask
);
780 ntfs_debug("vol->cluster_size_bits = %i", vol
->cluster_size_bits
);
781 if (vol
->cluster_size
< vol
->sector_size
) {
782 ntfs_error(vol
->sb
, "Cluster size (%i) is smaller than the "
783 "sector size (%i). This is not supported. "
784 "Sorry.", vol
->cluster_size
, vol
->sector_size
);
787 clusters_per_mft_record
= b
->clusters_per_mft_record
;
788 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
789 clusters_per_mft_record
, clusters_per_mft_record
);
790 if (clusters_per_mft_record
> 0)
791 vol
->mft_record_size
= vol
->cluster_size
<<
792 (ffs(clusters_per_mft_record
) - 1);
795 * When mft_record_size < cluster_size, clusters_per_mft_record
796 * = -log2(mft_record_size) bytes. mft_record_size normaly is
797 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
799 vol
->mft_record_size
= 1 << -clusters_per_mft_record
;
800 vol
->mft_record_size_mask
= vol
->mft_record_size
- 1;
801 vol
->mft_record_size_bits
= ffs(vol
->mft_record_size
) - 1;
802 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol
->mft_record_size
,
803 vol
->mft_record_size
);
804 ntfs_debug("vol->mft_record_size_mask = 0x%x",
805 vol
->mft_record_size_mask
);
806 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
807 vol
->mft_record_size_bits
, vol
->mft_record_size_bits
);
809 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
810 * we store $MFT/$DATA, the table of mft records in the page cache.
812 if (vol
->mft_record_size
> PAGE_CACHE_SIZE
) {
813 ntfs_error(vol
->sb
, "Mft record size (%i) exceeds the "
814 "PAGE_CACHE_SIZE on your system (%lu). "
815 "This is not supported. Sorry.",
816 vol
->mft_record_size
, PAGE_CACHE_SIZE
);
819 /* We cannot support mft record sizes below the sector size. */
820 if (vol
->mft_record_size
< vol
->sector_size
) {
821 ntfs_error(vol
->sb
, "Mft record size (%i) is smaller than the "
822 "sector size (%i). This is not supported. "
823 "Sorry.", vol
->mft_record_size
,
827 clusters_per_index_record
= b
->clusters_per_index_record
;
828 ntfs_debug("clusters_per_index_record = %i (0x%x)",
829 clusters_per_index_record
, clusters_per_index_record
);
830 if (clusters_per_index_record
> 0)
831 vol
->index_record_size
= vol
->cluster_size
<<
832 (ffs(clusters_per_index_record
) - 1);
835 * When index_record_size < cluster_size,
836 * clusters_per_index_record = -log2(index_record_size) bytes.
837 * index_record_size normaly equals 4096 bytes, which is
838 * encoded as 0xF4 (-12 in decimal).
840 vol
->index_record_size
= 1 << -clusters_per_index_record
;
841 vol
->index_record_size_mask
= vol
->index_record_size
- 1;
842 vol
->index_record_size_bits
= ffs(vol
->index_record_size
) - 1;
843 ntfs_debug("vol->index_record_size = %i (0x%x)",
844 vol
->index_record_size
, vol
->index_record_size
);
845 ntfs_debug("vol->index_record_size_mask = 0x%x",
846 vol
->index_record_size_mask
);
847 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
848 vol
->index_record_size_bits
,
849 vol
->index_record_size_bits
);
850 /* We cannot support index record sizes below the sector size. */
851 if (vol
->index_record_size
< vol
->sector_size
) {
852 ntfs_error(vol
->sb
, "Index record size (%i) is smaller than "
853 "the sector size (%i). This is not "
854 "supported. Sorry.", vol
->index_record_size
,
859 * Get the size of the volume in clusters and check for 64-bit-ness.
860 * Windows currently only uses 32 bits to save the clusters so we do
861 * the same as it is much faster on 32-bit CPUs.
863 ll
= sle64_to_cpu(b
->number_of_sectors
) >> sectors_per_cluster_bits
;
864 if ((u64
)ll
>= 1ULL << 32) {
865 ntfs_error(vol
->sb
, "Cannot handle 64-bit clusters. Sorry.");
868 vol
->nr_clusters
= ll
;
869 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol
->nr_clusters
);
871 * On an architecture where unsigned long is 32-bits, we restrict the
872 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
873 * will hopefully optimize the whole check away.
875 if (sizeof(unsigned long) < 8) {
876 if ((ll
<< vol
->cluster_size_bits
) >= (1ULL << 41)) {
877 ntfs_error(vol
->sb
, "Volume size (%lluTiB) is too "
878 "large for this architecture. "
879 "Maximum supported is 2TiB. Sorry.",
880 (unsigned long long)ll
>> (40 -
881 vol
->cluster_size_bits
));
885 ll
= sle64_to_cpu(b
->mft_lcn
);
886 if (ll
>= vol
->nr_clusters
) {
887 ntfs_error(vol
->sb
, "MFT LCN (%lli, 0x%llx) is beyond end of "
888 "volume. Weird.", (unsigned long long)ll
,
889 (unsigned long long)ll
);
893 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol
->mft_lcn
);
894 ll
= sle64_to_cpu(b
->mftmirr_lcn
);
895 if (ll
>= vol
->nr_clusters
) {
896 ntfs_error(vol
->sb
, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
897 "of volume. Weird.", (unsigned long long)ll
,
898 (unsigned long long)ll
);
901 vol
->mftmirr_lcn
= ll
;
902 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol
->mftmirr_lcn
);
905 * Work out the size of the mft mirror in number of mft records. If the
906 * cluster size is less than or equal to the size taken by four mft
907 * records, the mft mirror stores the first four mft records. If the
908 * cluster size is bigger than the size taken by four mft records, the
909 * mft mirror contains as many mft records as will fit into one
912 if (vol
->cluster_size
<= (4 << vol
->mft_record_size_bits
))
913 vol
->mftmirr_size
= 4;
915 vol
->mftmirr_size
= vol
->cluster_size
>>
916 vol
->mft_record_size_bits
;
917 ntfs_debug("vol->mftmirr_size = %i", vol
->mftmirr_size
);
919 vol
->serial_no
= le64_to_cpu(b
->volume_serial_number
);
920 ntfs_debug("vol->serial_no = 0x%llx",
921 (unsigned long long)vol
->serial_no
);
926 * ntfs_setup_allocators - initialize the cluster and mft allocators
927 * @vol: volume structure for which to setup the allocators
929 * Setup the cluster (lcn) and mft allocators to the starting values.
931 static void ntfs_setup_allocators(ntfs_volume
*vol
)
934 LCN mft_zone_size
, mft_lcn
;
937 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
938 vol
->mft_zone_multiplier
);
940 /* Determine the size of the MFT zone. */
941 mft_zone_size
= vol
->nr_clusters
;
942 switch (vol
->mft_zone_multiplier
) { /* % of volume size in clusters */
944 mft_zone_size
>>= 1; /* 50% */
947 mft_zone_size
= (mft_zone_size
+
948 (mft_zone_size
>> 1)) >> 2; /* 37.5% */
951 mft_zone_size
>>= 2; /* 25% */
955 mft_zone_size
>>= 3; /* 12.5% */
958 /* Setup the mft zone. */
959 vol
->mft_zone_start
= vol
->mft_zone_pos
= vol
->mft_lcn
;
960 ntfs_debug("vol->mft_zone_pos = 0x%llx",
961 (unsigned long long)vol
->mft_zone_pos
);
963 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
964 * source) and if the actual mft_lcn is in the expected place or even
965 * further to the front of the volume, extend the mft_zone to cover the
966 * beginning of the volume as well. This is in order to protect the
967 * area reserved for the mft bitmap as well within the mft_zone itself.
968 * On non-standard volumes we do not protect it as the overhead would
969 * be higher than the speed increase we would get by doing it.
971 mft_lcn
= (8192 + 2 * vol
->cluster_size
- 1) / vol
->cluster_size
;
972 if (mft_lcn
* vol
->cluster_size
< 16 * 1024)
973 mft_lcn
= (16 * 1024 + vol
->cluster_size
- 1) /
975 if (vol
->mft_zone_start
<= mft_lcn
)
976 vol
->mft_zone_start
= 0;
977 ntfs_debug("vol->mft_zone_start = 0x%llx",
978 (unsigned long long)vol
->mft_zone_start
);
980 * Need to cap the mft zone on non-standard volumes so that it does
981 * not point outside the boundaries of the volume. We do this by
982 * halving the zone size until we are inside the volume.
984 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
985 while (vol
->mft_zone_end
>= vol
->nr_clusters
) {
987 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
989 ntfs_debug("vol->mft_zone_end = 0x%llx",
990 (unsigned long long)vol
->mft_zone_end
);
992 * Set the current position within each data zone to the start of the
995 vol
->data1_zone_pos
= vol
->mft_zone_end
;
996 ntfs_debug("vol->data1_zone_pos = 0x%llx",
997 (unsigned long long)vol
->data1_zone_pos
);
998 vol
->data2_zone_pos
= 0;
999 ntfs_debug("vol->data2_zone_pos = 0x%llx",
1000 (unsigned long long)vol
->data2_zone_pos
);
1002 /* Set the mft data allocation position to mft record 24. */
1003 vol
->mft_data_pos
= 24;
1004 ntfs_debug("vol->mft_data_pos = 0x%llx",
1005 (unsigned long long)vol
->mft_data_pos
);
1006 #endif /* NTFS_RW */
1012 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1013 * @vol: ntfs super block describing device whose mft mirror to load
1015 * Return 'true' on success or 'false' on error.
1017 static bool load_and_init_mft_mirror(ntfs_volume
*vol
)
1019 struct inode
*tmp_ino
;
1022 ntfs_debug("Entering.");
1023 /* Get mft mirror inode. */
1024 tmp_ino
= ntfs_iget(vol
->sb
, FILE_MFTMirr
);
1025 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1026 if (!IS_ERR(tmp_ino
))
1028 /* Caller will display error message. */
1032 * Re-initialize some specifics about $MFTMirr's inode as
1033 * ntfs_read_inode() will have set up the default ones.
1035 /* Set uid and gid to root. */
1036 tmp_ino
->i_uid
= tmp_ino
->i_gid
= 0;
1037 /* Regular file. No access for anyone. */
1038 tmp_ino
->i_mode
= S_IFREG
;
1039 /* No VFS initiated operations allowed for $MFTMirr. */
1040 tmp_ino
->i_op
= &ntfs_empty_inode_ops
;
1041 tmp_ino
->i_fop
= &ntfs_empty_file_ops
;
1042 /* Put in our special address space operations. */
1043 tmp_ino
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1044 tmp_ni
= NTFS_I(tmp_ino
);
1045 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1046 NInoSetMstProtected(tmp_ni
);
1047 NInoSetSparseDisabled(tmp_ni
);
1049 * Set up our little cheat allowing us to reuse the async read io
1050 * completion handler for directories.
1052 tmp_ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1053 tmp_ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1054 vol
->mftmirr_ino
= tmp_ino
;
1055 ntfs_debug("Done.");
1060 * check_mft_mirror - compare contents of the mft mirror with the mft
1061 * @vol: ntfs super block describing device whose mft mirror to check
1063 * Return 'true' on success or 'false' on error.
1065 * Note, this function also results in the mft mirror runlist being completely
1066 * mapped into memory. The mft mirror write code requires this and will BUG()
1067 * should it find an unmapped runlist element.
1069 static bool check_mft_mirror(ntfs_volume
*vol
)
1071 struct super_block
*sb
= vol
->sb
;
1072 ntfs_inode
*mirr_ni
;
1073 struct page
*mft_page
, *mirr_page
;
1075 runlist_element
*rl
, rl2
[2];
1077 int mrecs_per_page
, i
;
1079 ntfs_debug("Entering.");
1080 /* Compare contents of $MFT and $MFTMirr. */
1081 mrecs_per_page
= PAGE_CACHE_SIZE
/ vol
->mft_record_size
;
1082 BUG_ON(!mrecs_per_page
);
1083 BUG_ON(!vol
->mftmirr_size
);
1084 mft_page
= mirr_page
= NULL
;
1085 kmft
= kmirr
= NULL
;
1090 /* Switch pages if necessary. */
1091 if (!(i
% mrecs_per_page
)) {
1093 ntfs_unmap_page(mft_page
);
1094 ntfs_unmap_page(mirr_page
);
1096 /* Get the $MFT page. */
1097 mft_page
= ntfs_map_page(vol
->mft_ino
->i_mapping
,
1099 if (IS_ERR(mft_page
)) {
1100 ntfs_error(sb
, "Failed to read $MFT.");
1103 kmft
= page_address(mft_page
);
1104 /* Get the $MFTMirr page. */
1105 mirr_page
= ntfs_map_page(vol
->mftmirr_ino
->i_mapping
,
1107 if (IS_ERR(mirr_page
)) {
1108 ntfs_error(sb
, "Failed to read $MFTMirr.");
1111 kmirr
= page_address(mirr_page
);
1114 /* Do not check the record if it is not in use. */
1115 if (((MFT_RECORD
*)kmft
)->flags
& MFT_RECORD_IN_USE
) {
1116 /* Make sure the record is ok. */
1117 if (ntfs_is_baad_recordp((le32
*)kmft
)) {
1118 ntfs_error(sb
, "Incomplete multi sector "
1119 "transfer detected in mft "
1122 ntfs_unmap_page(mirr_page
);
1124 ntfs_unmap_page(mft_page
);
1128 /* Do not check the mirror record if it is not in use. */
1129 if (((MFT_RECORD
*)kmirr
)->flags
& MFT_RECORD_IN_USE
) {
1130 if (ntfs_is_baad_recordp((le32
*)kmirr
)) {
1131 ntfs_error(sb
, "Incomplete multi sector "
1132 "transfer detected in mft "
1133 "mirror record %i.", i
);
1137 /* Get the amount of data in the current record. */
1138 bytes
= le32_to_cpu(((MFT_RECORD
*)kmft
)->bytes_in_use
);
1139 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1140 bytes
> vol
->mft_record_size
||
1141 ntfs_is_baad_recordp((le32
*)kmft
)) {
1142 bytes
= le32_to_cpu(((MFT_RECORD
*)kmirr
)->bytes_in_use
);
1143 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1144 bytes
> vol
->mft_record_size
||
1145 ntfs_is_baad_recordp((le32
*)kmirr
))
1146 bytes
= vol
->mft_record_size
;
1148 /* Compare the two records. */
1149 if (memcmp(kmft
, kmirr
, bytes
)) {
1150 ntfs_error(sb
, "$MFT and $MFTMirr (record %i) do not "
1151 "match. Run ntfsfix or chkdsk.", i
);
1154 kmft
+= vol
->mft_record_size
;
1155 kmirr
+= vol
->mft_record_size
;
1156 } while (++i
< vol
->mftmirr_size
);
1157 /* Release the last pages. */
1158 ntfs_unmap_page(mft_page
);
1159 ntfs_unmap_page(mirr_page
);
1161 /* Construct the mft mirror runlist by hand. */
1163 rl2
[0].lcn
= vol
->mftmirr_lcn
;
1164 rl2
[0].length
= (vol
->mftmirr_size
* vol
->mft_record_size
+
1165 vol
->cluster_size
- 1) / vol
->cluster_size
;
1166 rl2
[1].vcn
= rl2
[0].length
;
1167 rl2
[1].lcn
= LCN_ENOENT
;
1170 * Because we have just read all of the mft mirror, we know we have
1171 * mapped the full runlist for it.
1173 mirr_ni
= NTFS_I(vol
->mftmirr_ino
);
1174 down_read(&mirr_ni
->runlist
.lock
);
1175 rl
= mirr_ni
->runlist
.rl
;
1176 /* Compare the two runlists. They must be identical. */
1179 if (rl2
[i
].vcn
!= rl
[i
].vcn
|| rl2
[i
].lcn
!= rl
[i
].lcn
||
1180 rl2
[i
].length
!= rl
[i
].length
) {
1181 ntfs_error(sb
, "$MFTMirr location mismatch. "
1183 up_read(&mirr_ni
->runlist
.lock
);
1186 } while (rl2
[i
++].length
);
1187 up_read(&mirr_ni
->runlist
.lock
);
1188 ntfs_debug("Done.");
1193 * load_and_check_logfile - load and check the logfile inode for a volume
1194 * @vol: ntfs super block describing device whose logfile to load
1196 * Return 'true' on success or 'false' on error.
1198 static bool load_and_check_logfile(ntfs_volume
*vol
,
1199 RESTART_PAGE_HEADER
**rp
)
1201 struct inode
*tmp_ino
;
1203 ntfs_debug("Entering.");
1204 tmp_ino
= ntfs_iget(vol
->sb
, FILE_LogFile
);
1205 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1206 if (!IS_ERR(tmp_ino
))
1208 /* Caller will display error message. */
1211 if (!ntfs_check_logfile(tmp_ino
, rp
)) {
1213 /* ntfs_check_logfile() will have displayed error output. */
1216 NInoSetSparseDisabled(NTFS_I(tmp_ino
));
1217 vol
->logfile_ino
= tmp_ino
;
1218 ntfs_debug("Done.");
1222 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1225 * check_windows_hibernation_status - check if Windows is suspended on a volume
1226 * @vol: ntfs super block of device to check
1228 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1229 * looking for the file hiberfil.sys in the root directory of the volume. If
1230 * the file is not present Windows is definitely not suspended.
1232 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1233 * definitely suspended (this volume is not the system volume). Caveat: on a
1234 * system with many volumes it is possible that the < 4kiB check is bogus but
1235 * for now this should do fine.
1237 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1238 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1239 * Windows is definitely suspended. If it is completely full of zeroes,
1240 * Windows is definitely not hibernated. Any other case is treated as if
1241 * Windows is suspended. This caters for the above mentioned caveat of a
1242 * system with many volumes where no "hibr" magic would be present and there is
1245 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1246 * hibernated on the volume, and -errno on error.
1248 static int check_windows_hibernation_status(ntfs_volume
*vol
)
1255 ntfs_name
*name
= NULL
;
1257 static const ntfschar hiberfil
[13] = { cpu_to_le16('h'),
1258 cpu_to_le16('i'), cpu_to_le16('b'),
1259 cpu_to_le16('e'), cpu_to_le16('r'),
1260 cpu_to_le16('f'), cpu_to_le16('i'),
1261 cpu_to_le16('l'), cpu_to_le16('.'),
1262 cpu_to_le16('s'), cpu_to_le16('y'),
1263 cpu_to_le16('s'), 0 };
1265 ntfs_debug("Entering.");
1267 * Find the inode number for the hibernation file by looking up the
1268 * filename hiberfil.sys in the root directory.
1270 mutex_lock(&vol
->root_ino
->i_mutex
);
1271 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->root_ino
), hiberfil
, 12,
1273 mutex_unlock(&vol
->root_ino
->i_mutex
);
1274 if (IS_ERR_MREF(mref
)) {
1275 ret
= MREF_ERR(mref
);
1276 /* If the file does not exist, Windows is not hibernated. */
1277 if (ret
== -ENOENT
) {
1278 ntfs_debug("hiberfil.sys not present. Windows is not "
1279 "hibernated on the volume.");
1282 /* A real error occured. */
1283 ntfs_error(vol
->sb
, "Failed to find inode number for "
1287 /* We do not care for the type of match that was found. */
1289 /* Get the inode. */
1290 vi
= ntfs_iget(vol
->sb
, MREF(mref
));
1291 if (IS_ERR(vi
) || is_bad_inode(vi
)) {
1294 ntfs_error(vol
->sb
, "Failed to load hiberfil.sys.");
1295 return IS_ERR(vi
) ? PTR_ERR(vi
) : -EIO
;
1297 if (unlikely(i_size_read(vi
) < NTFS_HIBERFIL_HEADER_SIZE
)) {
1298 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1299 "Windows is hibernated on the volume. This "
1300 "is not the system volume.", i_size_read(vi
));
1304 page
= ntfs_map_page(vi
->i_mapping
, 0);
1306 ntfs_error(vol
->sb
, "Failed to read from hiberfil.sys.");
1307 ret
= PTR_ERR(page
);
1310 kaddr
= (u32
*)page_address(page
);
1311 if (*(le32
*)kaddr
== cpu_to_le32(0x72626968)/*'hibr'*/) {
1312 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1313 "hibernated on the volume. This is the "
1317 kend
= kaddr
+ NTFS_HIBERFIL_HEADER_SIZE
/sizeof(*kaddr
);
1319 if (unlikely(*kaddr
)) {
1320 ntfs_debug("hiberfil.sys is larger than 4kiB "
1321 "(0x%llx), does not contain the "
1322 "\"hibr\" magic, and does not have a "
1323 "zero header. Windows is hibernated "
1324 "on the volume. This is not the "
1325 "system volume.", i_size_read(vi
));
1328 } while (++kaddr
< kend
);
1329 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1330 "hibernated on the volume. This is the system "
1334 ntfs_unmap_page(page
);
1341 * load_and_init_quota - load and setup the quota file for a volume if present
1342 * @vol: ntfs super block describing device whose quota file to load
1344 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1345 * leave vol->quota_ino as NULL and return success.
1347 static bool load_and_init_quota(ntfs_volume
*vol
)
1350 struct inode
*tmp_ino
;
1351 ntfs_name
*name
= NULL
;
1352 static const ntfschar Quota
[7] = { cpu_to_le16('$'),
1353 cpu_to_le16('Q'), cpu_to_le16('u'),
1354 cpu_to_le16('o'), cpu_to_le16('t'),
1355 cpu_to_le16('a'), 0 };
1356 static ntfschar Q
[3] = { cpu_to_le16('$'),
1357 cpu_to_le16('Q'), 0 };
1359 ntfs_debug("Entering.");
1361 * Find the inode number for the quota file by looking up the filename
1362 * $Quota in the extended system files directory $Extend.
1364 mutex_lock(&vol
->extend_ino
->i_mutex
);
1365 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), Quota
, 6,
1367 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1368 if (IS_ERR_MREF(mref
)) {
1370 * If the file does not exist, quotas are disabled and have
1371 * never been enabled on this volume, just return success.
1373 if (MREF_ERR(mref
) == -ENOENT
) {
1374 ntfs_debug("$Quota not present. Volume does not have "
1377 * No need to try to set quotas out of date if they are
1380 NVolSetQuotaOutOfDate(vol
);
1383 /* A real error occured. */
1384 ntfs_error(vol
->sb
, "Failed to find inode number for $Quota.");
1387 /* We do not care for the type of match that was found. */
1389 /* Get the inode. */
1390 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1391 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1392 if (!IS_ERR(tmp_ino
))
1394 ntfs_error(vol
->sb
, "Failed to load $Quota.");
1397 vol
->quota_ino
= tmp_ino
;
1398 /* Get the $Q index allocation attribute. */
1399 tmp_ino
= ntfs_index_iget(vol
->quota_ino
, Q
, 2);
1400 if (IS_ERR(tmp_ino
)) {
1401 ntfs_error(vol
->sb
, "Failed to load $Quota/$Q index.");
1404 vol
->quota_q_ino
= tmp_ino
;
1405 ntfs_debug("Done.");
1410 * load_and_init_usnjrnl - load and setup the transaction log if present
1411 * @vol: ntfs super block describing device whose usnjrnl file to load
1413 * Return 'true' on success or 'false' on error.
1415 * If $UsnJrnl is not present or in the process of being disabled, we set
1416 * NVolUsnJrnlStamped() and return success.
1418 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1419 * i.e. transaction logging has only just been enabled or the journal has been
1420 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1421 * and return success.
1423 static bool load_and_init_usnjrnl(ntfs_volume
*vol
)
1426 struct inode
*tmp_ino
;
1429 ntfs_name
*name
= NULL
;
1431 static const ntfschar UsnJrnl
[9] = { cpu_to_le16('$'),
1432 cpu_to_le16('U'), cpu_to_le16('s'),
1433 cpu_to_le16('n'), cpu_to_le16('J'),
1434 cpu_to_le16('r'), cpu_to_le16('n'),
1435 cpu_to_le16('l'), 0 };
1436 static ntfschar Max
[5] = { cpu_to_le16('$'),
1437 cpu_to_le16('M'), cpu_to_le16('a'),
1438 cpu_to_le16('x'), 0 };
1439 static ntfschar J
[3] = { cpu_to_le16('$'),
1440 cpu_to_le16('J'), 0 };
1442 ntfs_debug("Entering.");
1444 * Find the inode number for the transaction log file by looking up the
1445 * filename $UsnJrnl in the extended system files directory $Extend.
1447 mutex_lock(&vol
->extend_ino
->i_mutex
);
1448 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), UsnJrnl
, 8,
1450 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1451 if (IS_ERR_MREF(mref
)) {
1453 * If the file does not exist, transaction logging is disabled,
1454 * just return success.
1456 if (MREF_ERR(mref
) == -ENOENT
) {
1457 ntfs_debug("$UsnJrnl not present. Volume does not "
1458 "have transaction logging enabled.");
1461 * No need to try to stamp the transaction log if
1462 * transaction logging is not enabled.
1464 NVolSetUsnJrnlStamped(vol
);
1467 /* A real error occured. */
1468 ntfs_error(vol
->sb
, "Failed to find inode number for "
1472 /* We do not care for the type of match that was found. */
1474 /* Get the inode. */
1475 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1476 if (unlikely(IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
))) {
1477 if (!IS_ERR(tmp_ino
))
1479 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl.");
1482 vol
->usnjrnl_ino
= tmp_ino
;
1484 * If the transaction log is in the process of being deleted, we can
1487 if (unlikely(vol
->vol_flags
& VOLUME_DELETE_USN_UNDERWAY
)) {
1488 ntfs_debug("$UsnJrnl in the process of being disabled. "
1489 "Volume does not have transaction logging "
1493 /* Get the $DATA/$Max attribute. */
1494 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, Max
, 4);
1495 if (IS_ERR(tmp_ino
)) {
1496 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$Max "
1500 vol
->usnjrnl_max_ino
= tmp_ino
;
1501 if (unlikely(i_size_read(tmp_ino
) < sizeof(USN_HEADER
))) {
1502 ntfs_error(vol
->sb
, "Found corrupt $UsnJrnl/$DATA/$Max "
1503 "attribute (size is 0x%llx but should be at "
1504 "least 0x%zx bytes).", i_size_read(tmp_ino
),
1505 sizeof(USN_HEADER
));
1508 /* Get the $DATA/$J attribute. */
1509 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, J
, 2);
1510 if (IS_ERR(tmp_ino
)) {
1511 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$J "
1515 vol
->usnjrnl_j_ino
= tmp_ino
;
1516 /* Verify $J is non-resident and sparse. */
1517 tmp_ni
= NTFS_I(vol
->usnjrnl_j_ino
);
1518 if (unlikely(!NInoNonResident(tmp_ni
) || !NInoSparse(tmp_ni
))) {
1519 ntfs_error(vol
->sb
, "$UsnJrnl/$DATA/$J attribute is resident "
1520 "and/or not sparse.");
1523 /* Read the USN_HEADER from $DATA/$Max. */
1524 page
= ntfs_map_page(vol
->usnjrnl_max_ino
->i_mapping
, 0);
1526 ntfs_error(vol
->sb
, "Failed to read from $UsnJrnl/$DATA/$Max "
1530 uh
= (USN_HEADER
*)page_address(page
);
1531 /* Sanity check the $Max. */
1532 if (unlikely(sle64_to_cpu(uh
->allocation_delta
) >
1533 sle64_to_cpu(uh
->maximum_size
))) {
1534 ntfs_error(vol
->sb
, "Allocation delta (0x%llx) exceeds "
1535 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1536 (long long)sle64_to_cpu(uh
->allocation_delta
),
1537 (long long)sle64_to_cpu(uh
->maximum_size
));
1538 ntfs_unmap_page(page
);
1542 * If the transaction log has been stamped and nothing has been written
1543 * to it since, we do not need to stamp it.
1545 if (unlikely(sle64_to_cpu(uh
->lowest_valid_usn
) >=
1546 i_size_read(vol
->usnjrnl_j_ino
))) {
1547 if (likely(sle64_to_cpu(uh
->lowest_valid_usn
) ==
1548 i_size_read(vol
->usnjrnl_j_ino
))) {
1549 ntfs_unmap_page(page
);
1550 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1551 "logged since it was last stamped. "
1552 "Treating this as if the volume does "
1553 "not have transaction logging "
1557 ntfs_error(vol
->sb
, "$UsnJrnl has lowest valid usn (0x%llx) "
1558 "which is out of bounds (0x%llx). $UsnJrnl "
1560 (long long)sle64_to_cpu(uh
->lowest_valid_usn
),
1561 i_size_read(vol
->usnjrnl_j_ino
));
1562 ntfs_unmap_page(page
);
1565 ntfs_unmap_page(page
);
1566 ntfs_debug("Done.");
1571 * load_and_init_attrdef - load the attribute definitions table for a volume
1572 * @vol: ntfs super block describing device whose attrdef to load
1574 * Return 'true' on success or 'false' on error.
1576 static bool load_and_init_attrdef(ntfs_volume
*vol
)
1579 struct super_block
*sb
= vol
->sb
;
1582 pgoff_t index
, max_index
;
1585 ntfs_debug("Entering.");
1586 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1587 ino
= ntfs_iget(sb
, FILE_AttrDef
);
1588 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1593 NInoSetSparseDisabled(NTFS_I(ino
));
1594 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1595 i_size
= i_size_read(ino
);
1596 if (i_size
<= 0 || i_size
> 0x7fffffff)
1598 vol
->attrdef
= (ATTR_DEF
*)ntfs_malloc_nofs(i_size
);
1602 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1603 size
= PAGE_CACHE_SIZE
;
1604 while (index
< max_index
) {
1605 /* Read the attrdef table and copy it into the linear buffer. */
1606 read_partial_attrdef_page
:
1607 page
= ntfs_map_page(ino
->i_mapping
, index
);
1609 goto free_iput_failed
;
1610 memcpy((u8
*)vol
->attrdef
+ (index
++ << PAGE_CACHE_SHIFT
),
1611 page_address(page
), size
);
1612 ntfs_unmap_page(page
);
1614 if (size
== PAGE_CACHE_SIZE
) {
1615 size
= i_size
& ~PAGE_CACHE_MASK
;
1617 goto read_partial_attrdef_page
;
1619 vol
->attrdef_size
= i_size
;
1620 ntfs_debug("Read %llu bytes from $AttrDef.", i_size
);
1624 ntfs_free(vol
->attrdef
);
1625 vol
->attrdef
= NULL
;
1629 ntfs_error(sb
, "Failed to initialize attribute definition table.");
1633 #endif /* NTFS_RW */
1636 * load_and_init_upcase - load the upcase table for an ntfs volume
1637 * @vol: ntfs super block describing device whose upcase to load
1639 * Return 'true' on success or 'false' on error.
1641 static bool load_and_init_upcase(ntfs_volume
*vol
)
1644 struct super_block
*sb
= vol
->sb
;
1647 pgoff_t index
, max_index
;
1651 ntfs_debug("Entering.");
1652 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1653 ino
= ntfs_iget(sb
, FILE_UpCase
);
1654 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1660 * The upcase size must not be above 64k Unicode characters, must not
1661 * be zero and must be a multiple of sizeof(ntfschar).
1663 i_size
= i_size_read(ino
);
1664 if (!i_size
|| i_size
& (sizeof(ntfschar
) - 1) ||
1665 i_size
> 64ULL * 1024 * sizeof(ntfschar
))
1666 goto iput_upcase_failed
;
1667 vol
->upcase
= (ntfschar
*)ntfs_malloc_nofs(i_size
);
1669 goto iput_upcase_failed
;
1671 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1672 size
= PAGE_CACHE_SIZE
;
1673 while (index
< max_index
) {
1674 /* Read the upcase table and copy it into the linear buffer. */
1675 read_partial_upcase_page
:
1676 page
= ntfs_map_page(ino
->i_mapping
, index
);
1678 goto iput_upcase_failed
;
1679 memcpy((char*)vol
->upcase
+ (index
++ << PAGE_CACHE_SHIFT
),
1680 page_address(page
), size
);
1681 ntfs_unmap_page(page
);
1683 if (size
== PAGE_CACHE_SIZE
) {
1684 size
= i_size
& ~PAGE_CACHE_MASK
;
1686 goto read_partial_upcase_page
;
1688 vol
->upcase_len
= i_size
>> UCHAR_T_SIZE_BITS
;
1689 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1690 i_size
, 64 * 1024 * sizeof(ntfschar
));
1692 mutex_lock(&ntfs_lock
);
1693 if (!default_upcase
) {
1694 ntfs_debug("Using volume specified $UpCase since default is "
1696 mutex_unlock(&ntfs_lock
);
1699 max
= default_upcase_len
;
1700 if (max
> vol
->upcase_len
)
1701 max
= vol
->upcase_len
;
1702 for (i
= 0; i
< max
; i
++)
1703 if (vol
->upcase
[i
] != default_upcase
[i
])
1706 ntfs_free(vol
->upcase
);
1707 vol
->upcase
= default_upcase
;
1708 vol
->upcase_len
= max
;
1709 ntfs_nr_upcase_users
++;
1710 mutex_unlock(&ntfs_lock
);
1711 ntfs_debug("Volume specified $UpCase matches default. Using "
1715 mutex_unlock(&ntfs_lock
);
1716 ntfs_debug("Using volume specified $UpCase since it does not match "
1721 ntfs_free(vol
->upcase
);
1724 mutex_lock(&ntfs_lock
);
1725 if (default_upcase
) {
1726 vol
->upcase
= default_upcase
;
1727 vol
->upcase_len
= default_upcase_len
;
1728 ntfs_nr_upcase_users
++;
1729 mutex_unlock(&ntfs_lock
);
1730 ntfs_error(sb
, "Failed to load $UpCase from the volume. Using "
1734 mutex_unlock(&ntfs_lock
);
1735 ntfs_error(sb
, "Failed to initialize upcase table.");
1740 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1741 * their own special locking rules:
1743 static struct lock_class_key
1744 lcnbmp_runlist_lock_key
, lcnbmp_mrec_lock_key
,
1745 mftbmp_runlist_lock_key
, mftbmp_mrec_lock_key
;
1748 * load_system_files - open the system files using normal functions
1749 * @vol: ntfs super block describing device whose system files to load
1751 * Open the system files with normal access functions and complete setting up
1752 * the ntfs super block @vol.
1754 * Return 'true' on success or 'false' on error.
1756 static bool load_system_files(ntfs_volume
*vol
)
1758 struct super_block
*sb
= vol
->sb
;
1760 VOLUME_INFORMATION
*vi
;
1761 ntfs_attr_search_ctx
*ctx
;
1763 RESTART_PAGE_HEADER
*rp
;
1765 #endif /* NTFS_RW */
1767 ntfs_debug("Entering.");
1769 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1770 if (!load_and_init_mft_mirror(vol
) || !check_mft_mirror(vol
)) {
1771 static const char *es1
= "Failed to load $MFTMirr";
1772 static const char *es2
= "$MFTMirr does not match $MFT";
1773 static const char *es3
= ". Run ntfsfix and/or chkdsk.";
1775 /* If a read-write mount, convert it to a read-only mount. */
1776 if (!(sb
->s_flags
& MS_RDONLY
)) {
1777 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1778 ON_ERRORS_CONTINUE
))) {
1779 ntfs_error(sb
, "%s and neither on_errors="
1780 "continue nor on_errors="
1781 "remount-ro was specified%s",
1782 !vol
->mftmirr_ino
? es1
: es2
,
1784 goto iput_mirr_err_out
;
1786 sb
->s_flags
|= MS_RDONLY
;
1787 ntfs_error(sb
, "%s. Mounting read-only%s",
1788 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1790 ntfs_warning(sb
, "%s. Will not be able to remount "
1792 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1793 /* This will prevent a read-write remount. */
1796 #endif /* NTFS_RW */
1797 /* Get mft bitmap attribute inode. */
1798 vol
->mftbmp_ino
= ntfs_attr_iget(vol
->mft_ino
, AT_BITMAP
, NULL
, 0);
1799 if (IS_ERR(vol
->mftbmp_ino
)) {
1800 ntfs_error(sb
, "Failed to load $MFT/$BITMAP attribute.");
1801 goto iput_mirr_err_out
;
1803 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->runlist
.lock
,
1804 &mftbmp_runlist_lock_key
);
1805 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->mrec_lock
,
1806 &mftbmp_mrec_lock_key
);
1807 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1808 if (!load_and_init_upcase(vol
))
1809 goto iput_mftbmp_err_out
;
1812 * Read attribute definitions table and setup @vol->attrdef and
1813 * @vol->attrdef_size.
1815 if (!load_and_init_attrdef(vol
))
1816 goto iput_upcase_err_out
;
1817 #endif /* NTFS_RW */
1819 * Get the cluster allocation bitmap inode and verify the size, no
1820 * need for any locking at this stage as we are already running
1821 * exclusively as we are mount in progress task.
1823 vol
->lcnbmp_ino
= ntfs_iget(sb
, FILE_Bitmap
);
1824 if (IS_ERR(vol
->lcnbmp_ino
) || is_bad_inode(vol
->lcnbmp_ino
)) {
1825 if (!IS_ERR(vol
->lcnbmp_ino
))
1826 iput(vol
->lcnbmp_ino
);
1829 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->runlist
.lock
,
1830 &lcnbmp_runlist_lock_key
);
1831 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->mrec_lock
,
1832 &lcnbmp_mrec_lock_key
);
1834 NInoSetSparseDisabled(NTFS_I(vol
->lcnbmp_ino
));
1835 if ((vol
->nr_clusters
+ 7) >> 3 > i_size_read(vol
->lcnbmp_ino
)) {
1836 iput(vol
->lcnbmp_ino
);
1838 ntfs_error(sb
, "Failed to load $Bitmap.");
1839 goto iput_attrdef_err_out
;
1842 * Get the volume inode and setup our cache of the volume flags and
1845 vol
->vol_ino
= ntfs_iget(sb
, FILE_Volume
);
1846 if (IS_ERR(vol
->vol_ino
) || is_bad_inode(vol
->vol_ino
)) {
1847 if (!IS_ERR(vol
->vol_ino
))
1850 ntfs_error(sb
, "Failed to load $Volume.");
1851 goto iput_lcnbmp_err_out
;
1853 m
= map_mft_record(NTFS_I(vol
->vol_ino
));
1859 if (!(ctx
= ntfs_attr_get_search_ctx(NTFS_I(vol
->vol_ino
), m
))) {
1860 ntfs_error(sb
, "Failed to get attribute search context.");
1861 goto get_ctx_vol_failed
;
1863 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
1864 ctx
) || ctx
->attr
->non_resident
|| ctx
->attr
->flags
) {
1866 ntfs_attr_put_search_ctx(ctx
);
1868 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1869 goto iput_volume_failed
;
1871 vi
= (VOLUME_INFORMATION
*)((char*)ctx
->attr
+
1872 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
1873 /* Some bounds checks. */
1874 if ((u8
*)vi
< (u8
*)ctx
->attr
|| (u8
*)vi
+
1875 le32_to_cpu(ctx
->attr
->data
.resident
.value_length
) >
1876 (u8
*)ctx
->attr
+ le32_to_cpu(ctx
->attr
->length
))
1878 /* Copy the volume flags and version to the ntfs_volume structure. */
1879 vol
->vol_flags
= vi
->flags
;
1880 vol
->major_ver
= vi
->major_ver
;
1881 vol
->minor_ver
= vi
->minor_ver
;
1882 ntfs_attr_put_search_ctx(ctx
);
1883 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1884 printk(KERN_INFO
"NTFS volume version %i.%i.\n", vol
->major_ver
,
1886 if (vol
->major_ver
< 3 && NVolSparseEnabled(vol
)) {
1887 ntfs_warning(vol
->sb
, "Disabling sparse support due to NTFS "
1888 "volume version %i.%i (need at least version "
1889 "3.0).", vol
->major_ver
, vol
->minor_ver
);
1890 NVolClearSparseEnabled(vol
);
1893 /* Make sure that no unsupported volume flags are set. */
1894 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
1895 static const char *es1a
= "Volume is dirty";
1896 static const char *es1b
= "Volume has been modified by chkdsk";
1897 static const char *es1c
= "Volume has unsupported flags set";
1898 static const char *es2a
= ". Run chkdsk and mount in Windows.";
1899 static const char *es2b
= ". Mount in Windows.";
1900 const char *es1
, *es2
;
1903 if (vol
->vol_flags
& VOLUME_IS_DIRTY
)
1905 else if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
1910 ntfs_warning(sb
, "Unsupported volume flags 0x%x "
1912 (unsigned)le16_to_cpu(vol
->vol_flags
));
1914 /* If a read-write mount, convert it to a read-only mount. */
1915 if (!(sb
->s_flags
& MS_RDONLY
)) {
1916 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1917 ON_ERRORS_CONTINUE
))) {
1918 ntfs_error(sb
, "%s and neither on_errors="
1919 "continue nor on_errors="
1920 "remount-ro was specified%s",
1922 goto iput_vol_err_out
;
1924 sb
->s_flags
|= MS_RDONLY
;
1925 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1927 ntfs_warning(sb
, "%s. Will not be able to remount "
1928 "read-write%s", es1
, es2
);
1930 * Do not set NVolErrors() because ntfs_remount() re-checks the
1931 * flags which we need to do in case any flags have changed.
1935 * Get the inode for the logfile, check it and determine if the volume
1936 * was shutdown cleanly.
1939 if (!load_and_check_logfile(vol
, &rp
) ||
1940 !ntfs_is_logfile_clean(vol
->logfile_ino
, rp
)) {
1941 static const char *es1a
= "Failed to load $LogFile";
1942 static const char *es1b
= "$LogFile is not clean";
1943 static const char *es2
= ". Mount in Windows.";
1946 es1
= !vol
->logfile_ino
? es1a
: es1b
;
1947 /* If a read-write mount, convert it to a read-only mount. */
1948 if (!(sb
->s_flags
& MS_RDONLY
)) {
1949 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1950 ON_ERRORS_CONTINUE
))) {
1951 ntfs_error(sb
, "%s and neither on_errors="
1952 "continue nor on_errors="
1953 "remount-ro was specified%s",
1955 if (vol
->logfile_ino
) {
1959 goto iput_logfile_err_out
;
1961 sb
->s_flags
|= MS_RDONLY
;
1962 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1964 ntfs_warning(sb
, "%s. Will not be able to remount "
1965 "read-write%s", es1
, es2
);
1966 /* This will prevent a read-write remount. */
1970 #endif /* NTFS_RW */
1971 /* Get the root directory inode so we can do path lookups. */
1972 vol
->root_ino
= ntfs_iget(sb
, FILE_root
);
1973 if (IS_ERR(vol
->root_ino
) || is_bad_inode(vol
->root_ino
)) {
1974 if (!IS_ERR(vol
->root_ino
))
1975 iput(vol
->root_ino
);
1976 ntfs_error(sb
, "Failed to load root directory.");
1977 goto iput_logfile_err_out
;
1981 * Check if Windows is suspended to disk on the target volume. If it
1982 * is hibernated, we must not write *anything* to the disk so set
1983 * NVolErrors() without setting the dirty volume flag and mount
1984 * read-only. This will prevent read-write remounting and it will also
1985 * prevent all writes.
1987 err
= check_windows_hibernation_status(vol
);
1988 if (unlikely(err
)) {
1989 static const char *es1a
= "Failed to determine if Windows is "
1991 static const char *es1b
= "Windows is hibernated";
1992 static const char *es2
= ". Run chkdsk.";
1995 es1
= err
< 0 ? es1a
: es1b
;
1996 /* If a read-write mount, convert it to a read-only mount. */
1997 if (!(sb
->s_flags
& MS_RDONLY
)) {
1998 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1999 ON_ERRORS_CONTINUE
))) {
2000 ntfs_error(sb
, "%s and neither on_errors="
2001 "continue nor on_errors="
2002 "remount-ro was specified%s",
2004 goto iput_root_err_out
;
2006 sb
->s_flags
|= MS_RDONLY
;
2007 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2009 ntfs_warning(sb
, "%s. Will not be able to remount "
2010 "read-write%s", es1
, es2
);
2011 /* This will prevent a read-write remount. */
2014 /* If (still) a read-write mount, mark the volume dirty. */
2015 if (!(sb
->s_flags
& MS_RDONLY
) &&
2016 ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
2017 static const char *es1
= "Failed to set dirty bit in volume "
2018 "information flags";
2019 static const char *es2
= ". Run chkdsk.";
2021 /* Convert to a read-only mount. */
2022 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2023 ON_ERRORS_CONTINUE
))) {
2024 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2025 "on_errors=remount-ro was specified%s",
2027 goto iput_root_err_out
;
2029 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2030 sb
->s_flags
|= MS_RDONLY
;
2032 * Do not set NVolErrors() because ntfs_remount() might manage
2033 * to set the dirty flag in which case all would be well.
2037 // TODO: Enable this code once we start modifying anything that is
2038 // different between NTFS 1.2 and 3.x...
2040 * If (still) a read-write mount, set the NT4 compatibility flag on
2041 * newer NTFS version volumes.
2043 if (!(sb
->s_flags
& MS_RDONLY
) && (vol
->major_ver
> 1) &&
2044 ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
2045 static const char *es1
= "Failed to set NT4 compatibility flag";
2046 static const char *es2
= ". Run chkdsk.";
2048 /* Convert to a read-only mount. */
2049 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2050 ON_ERRORS_CONTINUE
))) {
2051 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2052 "on_errors=remount-ro was specified%s",
2054 goto iput_root_err_out
;
2056 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2057 sb
->s_flags
|= MS_RDONLY
;
2061 /* If (still) a read-write mount, empty the logfile. */
2062 if (!(sb
->s_flags
& MS_RDONLY
) &&
2063 !ntfs_empty_logfile(vol
->logfile_ino
)) {
2064 static const char *es1
= "Failed to empty $LogFile";
2065 static const char *es2
= ". Mount in Windows.";
2067 /* Convert to a read-only mount. */
2068 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2069 ON_ERRORS_CONTINUE
))) {
2070 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2071 "on_errors=remount-ro was specified%s",
2073 goto iput_root_err_out
;
2075 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2076 sb
->s_flags
|= MS_RDONLY
;
2079 #endif /* NTFS_RW */
2080 /* If on NTFS versions before 3.0, we are done. */
2081 if (unlikely(vol
->major_ver
< 3))
2083 /* NTFS 3.0+ specific initialization. */
2084 /* Get the security descriptors inode. */
2085 vol
->secure_ino
= ntfs_iget(sb
, FILE_Secure
);
2086 if (IS_ERR(vol
->secure_ino
) || is_bad_inode(vol
->secure_ino
)) {
2087 if (!IS_ERR(vol
->secure_ino
))
2088 iput(vol
->secure_ino
);
2089 ntfs_error(sb
, "Failed to load $Secure.");
2090 goto iput_root_err_out
;
2092 // TODO: Initialize security.
2093 /* Get the extended system files' directory inode. */
2094 vol
->extend_ino
= ntfs_iget(sb
, FILE_Extend
);
2095 if (IS_ERR(vol
->extend_ino
) || is_bad_inode(vol
->extend_ino
)) {
2096 if (!IS_ERR(vol
->extend_ino
))
2097 iput(vol
->extend_ino
);
2098 ntfs_error(sb
, "Failed to load $Extend.");
2099 goto iput_sec_err_out
;
2102 /* Find the quota file, load it if present, and set it up. */
2103 if (!load_and_init_quota(vol
)) {
2104 static const char *es1
= "Failed to load $Quota";
2105 static const char *es2
= ". Run chkdsk.";
2107 /* If a read-write mount, convert it to a read-only mount. */
2108 if (!(sb
->s_flags
& MS_RDONLY
)) {
2109 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2110 ON_ERRORS_CONTINUE
))) {
2111 ntfs_error(sb
, "%s and neither on_errors="
2112 "continue nor on_errors="
2113 "remount-ro was specified%s",
2115 goto iput_quota_err_out
;
2117 sb
->s_flags
|= MS_RDONLY
;
2118 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2120 ntfs_warning(sb
, "%s. Will not be able to remount "
2121 "read-write%s", es1
, es2
);
2122 /* This will prevent a read-write remount. */
2125 /* If (still) a read-write mount, mark the quotas out of date. */
2126 if (!(sb
->s_flags
& MS_RDONLY
) &&
2127 !ntfs_mark_quotas_out_of_date(vol
)) {
2128 static const char *es1
= "Failed to mark quotas out of date";
2129 static const char *es2
= ". Run chkdsk.";
2131 /* Convert to a read-only mount. */
2132 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2133 ON_ERRORS_CONTINUE
))) {
2134 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2135 "on_errors=remount-ro was specified%s",
2137 goto iput_quota_err_out
;
2139 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2140 sb
->s_flags
|= MS_RDONLY
;
2144 * Find the transaction log file ($UsnJrnl), load it if present, check
2145 * it, and set it up.
2147 if (!load_and_init_usnjrnl(vol
)) {
2148 static const char *es1
= "Failed to load $UsnJrnl";
2149 static const char *es2
= ". Run chkdsk.";
2151 /* If a read-write mount, convert it to a read-only mount. */
2152 if (!(sb
->s_flags
& MS_RDONLY
)) {
2153 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2154 ON_ERRORS_CONTINUE
))) {
2155 ntfs_error(sb
, "%s and neither on_errors="
2156 "continue nor on_errors="
2157 "remount-ro was specified%s",
2159 goto iput_usnjrnl_err_out
;
2161 sb
->s_flags
|= MS_RDONLY
;
2162 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2164 ntfs_warning(sb
, "%s. Will not be able to remount "
2165 "read-write%s", es1
, es2
);
2166 /* This will prevent a read-write remount. */
2169 /* If (still) a read-write mount, stamp the transaction log. */
2170 if (!(sb
->s_flags
& MS_RDONLY
) && !ntfs_stamp_usnjrnl(vol
)) {
2171 static const char *es1
= "Failed to stamp transaction log "
2173 static const char *es2
= ". Run chkdsk.";
2175 /* Convert to a read-only mount. */
2176 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2177 ON_ERRORS_CONTINUE
))) {
2178 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2179 "on_errors=remount-ro was specified%s",
2181 goto iput_usnjrnl_err_out
;
2183 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2184 sb
->s_flags
|= MS_RDONLY
;
2187 #endif /* NTFS_RW */
2190 iput_usnjrnl_err_out
:
2191 if (vol
->usnjrnl_j_ino
)
2192 iput(vol
->usnjrnl_j_ino
);
2193 if (vol
->usnjrnl_max_ino
)
2194 iput(vol
->usnjrnl_max_ino
);
2195 if (vol
->usnjrnl_ino
)
2196 iput(vol
->usnjrnl_ino
);
2198 if (vol
->quota_q_ino
)
2199 iput(vol
->quota_q_ino
);
2201 iput(vol
->quota_ino
);
2202 iput(vol
->extend_ino
);
2203 #endif /* NTFS_RW */
2205 iput(vol
->secure_ino
);
2207 iput(vol
->root_ino
);
2208 iput_logfile_err_out
:
2210 if (vol
->logfile_ino
)
2211 iput(vol
->logfile_ino
);
2213 #endif /* NTFS_RW */
2215 iput_lcnbmp_err_out
:
2216 iput(vol
->lcnbmp_ino
);
2217 iput_attrdef_err_out
:
2218 vol
->attrdef_size
= 0;
2220 ntfs_free(vol
->attrdef
);
2221 vol
->attrdef
= NULL
;
2224 iput_upcase_err_out
:
2225 #endif /* NTFS_RW */
2226 vol
->upcase_len
= 0;
2227 mutex_lock(&ntfs_lock
);
2228 if (vol
->upcase
== default_upcase
) {
2229 ntfs_nr_upcase_users
--;
2232 mutex_unlock(&ntfs_lock
);
2234 ntfs_free(vol
->upcase
);
2237 iput_mftbmp_err_out
:
2238 iput(vol
->mftbmp_ino
);
2241 if (vol
->mftmirr_ino
)
2242 iput(vol
->mftmirr_ino
);
2243 #endif /* NTFS_RW */
2248 * ntfs_put_super - called by the vfs to unmount a volume
2249 * @sb: vfs superblock of volume to unmount
2251 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2252 * the volume is being unmounted (umount system call has been invoked) and it
2253 * releases all inodes and memory belonging to the NTFS specific part of the
2256 static void ntfs_put_super(struct super_block
*sb
)
2258 ntfs_volume
*vol
= NTFS_SB(sb
);
2260 ntfs_debug("Entering.");
2266 * Commit all inodes while they are still open in case some of them
2267 * cause others to be dirtied.
2269 ntfs_commit_inode(vol
->vol_ino
);
2271 /* NTFS 3.0+ specific. */
2272 if (vol
->major_ver
>= 3) {
2273 if (vol
->usnjrnl_j_ino
)
2274 ntfs_commit_inode(vol
->usnjrnl_j_ino
);
2275 if (vol
->usnjrnl_max_ino
)
2276 ntfs_commit_inode(vol
->usnjrnl_max_ino
);
2277 if (vol
->usnjrnl_ino
)
2278 ntfs_commit_inode(vol
->usnjrnl_ino
);
2279 if (vol
->quota_q_ino
)
2280 ntfs_commit_inode(vol
->quota_q_ino
);
2282 ntfs_commit_inode(vol
->quota_ino
);
2283 if (vol
->extend_ino
)
2284 ntfs_commit_inode(vol
->extend_ino
);
2285 if (vol
->secure_ino
)
2286 ntfs_commit_inode(vol
->secure_ino
);
2289 ntfs_commit_inode(vol
->root_ino
);
2291 down_write(&vol
->lcnbmp_lock
);
2292 ntfs_commit_inode(vol
->lcnbmp_ino
);
2293 up_write(&vol
->lcnbmp_lock
);
2295 down_write(&vol
->mftbmp_lock
);
2296 ntfs_commit_inode(vol
->mftbmp_ino
);
2297 up_write(&vol
->mftbmp_lock
);
2299 if (vol
->logfile_ino
)
2300 ntfs_commit_inode(vol
->logfile_ino
);
2302 if (vol
->mftmirr_ino
)
2303 ntfs_commit_inode(vol
->mftmirr_ino
);
2304 ntfs_commit_inode(vol
->mft_ino
);
2307 * If a read-write mount and no volume errors have occured, mark the
2308 * volume clean. Also, re-commit all affected inodes.
2310 if (!(sb
->s_flags
& MS_RDONLY
)) {
2311 if (!NVolErrors(vol
)) {
2312 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
2313 ntfs_warning(sb
, "Failed to clear dirty bit "
2314 "in volume information "
2315 "flags. Run chkdsk.");
2316 ntfs_commit_inode(vol
->vol_ino
);
2317 ntfs_commit_inode(vol
->root_ino
);
2318 if (vol
->mftmirr_ino
)
2319 ntfs_commit_inode(vol
->mftmirr_ino
);
2320 ntfs_commit_inode(vol
->mft_ino
);
2322 ntfs_warning(sb
, "Volume has errors. Leaving volume "
2323 "marked dirty. Run chkdsk.");
2326 #endif /* NTFS_RW */
2329 vol
->vol_ino
= NULL
;
2331 /* NTFS 3.0+ specific clean up. */
2332 if (vol
->major_ver
>= 3) {
2334 if (vol
->usnjrnl_j_ino
) {
2335 iput(vol
->usnjrnl_j_ino
);
2336 vol
->usnjrnl_j_ino
= NULL
;
2338 if (vol
->usnjrnl_max_ino
) {
2339 iput(vol
->usnjrnl_max_ino
);
2340 vol
->usnjrnl_max_ino
= NULL
;
2342 if (vol
->usnjrnl_ino
) {
2343 iput(vol
->usnjrnl_ino
);
2344 vol
->usnjrnl_ino
= NULL
;
2346 if (vol
->quota_q_ino
) {
2347 iput(vol
->quota_q_ino
);
2348 vol
->quota_q_ino
= NULL
;
2350 if (vol
->quota_ino
) {
2351 iput(vol
->quota_ino
);
2352 vol
->quota_ino
= NULL
;
2354 #endif /* NTFS_RW */
2355 if (vol
->extend_ino
) {
2356 iput(vol
->extend_ino
);
2357 vol
->extend_ino
= NULL
;
2359 if (vol
->secure_ino
) {
2360 iput(vol
->secure_ino
);
2361 vol
->secure_ino
= NULL
;
2365 iput(vol
->root_ino
);
2366 vol
->root_ino
= NULL
;
2368 down_write(&vol
->lcnbmp_lock
);
2369 iput(vol
->lcnbmp_ino
);
2370 vol
->lcnbmp_ino
= NULL
;
2371 up_write(&vol
->lcnbmp_lock
);
2373 down_write(&vol
->mftbmp_lock
);
2374 iput(vol
->mftbmp_ino
);
2375 vol
->mftbmp_ino
= NULL
;
2376 up_write(&vol
->mftbmp_lock
);
2379 if (vol
->logfile_ino
) {
2380 iput(vol
->logfile_ino
);
2381 vol
->logfile_ino
= NULL
;
2383 if (vol
->mftmirr_ino
) {
2384 /* Re-commit the mft mirror and mft just in case. */
2385 ntfs_commit_inode(vol
->mftmirr_ino
);
2386 ntfs_commit_inode(vol
->mft_ino
);
2387 iput(vol
->mftmirr_ino
);
2388 vol
->mftmirr_ino
= NULL
;
2391 * We should have no dirty inodes left, due to
2392 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2393 * the underlying mft records are written out and cleaned.
2395 ntfs_commit_inode(vol
->mft_ino
);
2396 write_inode_now(vol
->mft_ino
, 1);
2397 #endif /* NTFS_RW */
2400 vol
->mft_ino
= NULL
;
2402 /* Throw away the table of attribute definitions. */
2403 vol
->attrdef_size
= 0;
2405 ntfs_free(vol
->attrdef
);
2406 vol
->attrdef
= NULL
;
2408 vol
->upcase_len
= 0;
2410 * Destroy the global default upcase table if necessary. Also decrease
2411 * the number of upcase users if we are a user.
2413 mutex_lock(&ntfs_lock
);
2414 if (vol
->upcase
== default_upcase
) {
2415 ntfs_nr_upcase_users
--;
2418 if (!ntfs_nr_upcase_users
&& default_upcase
) {
2419 ntfs_free(default_upcase
);
2420 default_upcase
= NULL
;
2422 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
2423 free_compression_buffers();
2424 mutex_unlock(&ntfs_lock
);
2426 ntfs_free(vol
->upcase
);
2430 unload_nls(vol
->nls_map
);
2432 sb
->s_fs_info
= NULL
;
2439 * get_nr_free_clusters - return the number of free clusters on a volume
2440 * @vol: ntfs volume for which to obtain free cluster count
2442 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2443 * actually calculate the number of clusters in use instead because this
2444 * allows us to not care about partial pages as these will be just zero filled
2445 * and hence not be counted as allocated clusters.
2447 * The only particularity is that clusters beyond the end of the logical ntfs
2448 * volume will be marked as allocated to prevent errors which means we have to
2449 * discount those at the end. This is important as the cluster bitmap always
2450 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2451 * the logical volume and marked in use when they are not as they do not exist.
2453 * If any pages cannot be read we assume all clusters in the erroring pages are
2454 * in use. This means we return an underestimate on errors which is better than
2457 static s64
get_nr_free_clusters(ntfs_volume
*vol
)
2459 s64 nr_free
= vol
->nr_clusters
;
2461 struct address_space
*mapping
= vol
->lcnbmp_ino
->i_mapping
;
2463 pgoff_t index
, max_index
;
2465 ntfs_debug("Entering.");
2466 /* Serialize accesses to the cluster bitmap. */
2467 down_read(&vol
->lcnbmp_lock
);
2469 * Convert the number of bits into bytes rounded up, then convert into
2470 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2471 * full and one partial page max_index = 2.
2473 max_index
= (((vol
->nr_clusters
+ 7) >> 3) + PAGE_CACHE_SIZE
- 1) >>
2475 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2476 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2477 max_index
, PAGE_CACHE_SIZE
/ 4);
2478 for (index
= 0; index
< max_index
; index
++) {
2481 * Read the page from page cache, getting it from backing store
2482 * if necessary, and increment the use count.
2484 page
= read_mapping_page(mapping
, index
, NULL
);
2485 /* Ignore pages which errored synchronously. */
2487 ntfs_debug("read_mapping_page() error. Skipping "
2488 "page (index 0x%lx).", index
);
2489 nr_free
-= PAGE_CACHE_SIZE
* 8;
2492 kaddr
= (u32
*)kmap_atomic(page
, KM_USER0
);
2494 * For each 4 bytes, subtract the number of set bits. If this
2495 * is the last page and it is partial we don't really care as
2496 * it just means we do a little extra work but it won't affect
2497 * the result as all out of range bytes are set to zero by
2500 for (i
= 0; i
< PAGE_CACHE_SIZE
/ 4; i
++)
2501 nr_free
-= (s64
)hweight32(kaddr
[i
]);
2502 kunmap_atomic(kaddr
, KM_USER0
);
2503 page_cache_release(page
);
2505 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index
- 1);
2507 * Fixup for eventual bits outside logical ntfs volume (see function
2508 * description above).
2510 if (vol
->nr_clusters
& 63)
2511 nr_free
+= 64 - (vol
->nr_clusters
& 63);
2512 up_read(&vol
->lcnbmp_lock
);
2513 /* If errors occured we may well have gone below zero, fix this. */
2516 ntfs_debug("Exiting.");
2521 * __get_nr_free_mft_records - return the number of free inodes on a volume
2522 * @vol: ntfs volume for which to obtain free inode count
2523 * @nr_free: number of mft records in filesystem
2524 * @max_index: maximum number of pages containing set bits
2526 * Calculate the number of free mft records (inodes) on the mounted NTFS
2527 * volume @vol. We actually calculate the number of mft records in use instead
2528 * because this allows us to not care about partial pages as these will be just
2529 * zero filled and hence not be counted as allocated mft record.
2531 * If any pages cannot be read we assume all mft records in the erroring pages
2532 * are in use. This means we return an underestimate on errors which is better
2533 * than an overestimate.
2535 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2537 static unsigned long __get_nr_free_mft_records(ntfs_volume
*vol
,
2538 s64 nr_free
, const pgoff_t max_index
)
2541 struct address_space
*mapping
= vol
->mftbmp_ino
->i_mapping
;
2545 ntfs_debug("Entering.");
2546 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2547 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2548 "0x%lx.", max_index
, PAGE_CACHE_SIZE
/ 4);
2549 for (index
= 0; index
< max_index
; index
++) {
2552 * Read the page from page cache, getting it from backing store
2553 * if necessary, and increment the use count.
2555 page
= read_mapping_page(mapping
, index
, NULL
);
2556 /* Ignore pages which errored synchronously. */
2558 ntfs_debug("read_mapping_page() error. Skipping "
2559 "page (index 0x%lx).", index
);
2560 nr_free
-= PAGE_CACHE_SIZE
* 8;
2563 kaddr
= (u32
*)kmap_atomic(page
, KM_USER0
);
2565 * For each 4 bytes, subtract the number of set bits. If this
2566 * is the last page and it is partial we don't really care as
2567 * it just means we do a little extra work but it won't affect
2568 * the result as all out of range bytes are set to zero by
2571 for (i
= 0; i
< PAGE_CACHE_SIZE
/ 4; i
++)
2572 nr_free
-= (s64
)hweight32(kaddr
[i
]);
2573 kunmap_atomic(kaddr
, KM_USER0
);
2574 page_cache_release(page
);
2576 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2578 /* If errors occured we may well have gone below zero, fix this. */
2581 ntfs_debug("Exiting.");
2586 * ntfs_statfs - return information about mounted NTFS volume
2587 * @dentry: dentry from mounted volume
2588 * @sfs: statfs structure in which to return the information
2590 * Return information about the mounted NTFS volume @dentry in the statfs structure
2591 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2592 * called). We interpret the values to be correct of the moment in time at
2593 * which we are called. Most values are variable otherwise and this isn't just
2594 * the free values but the totals as well. For example we can increase the
2595 * total number of file nodes if we run out and we can keep doing this until
2596 * there is no more space on the volume left at all.
2598 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2599 * ustat system calls.
2601 * Return 0 on success or -errno on error.
2603 static int ntfs_statfs(struct dentry
*dentry
, struct kstatfs
*sfs
)
2605 struct super_block
*sb
= dentry
->d_sb
;
2607 ntfs_volume
*vol
= NTFS_SB(sb
);
2608 ntfs_inode
*mft_ni
= NTFS_I(vol
->mft_ino
);
2610 unsigned long flags
;
2612 ntfs_debug("Entering.");
2613 /* Type of filesystem. */
2614 sfs
->f_type
= NTFS_SB_MAGIC
;
2615 /* Optimal transfer block size. */
2616 sfs
->f_bsize
= PAGE_CACHE_SIZE
;
2618 * Total data blocks in filesystem in units of f_bsize and since
2619 * inodes are also stored in data blocs ($MFT is a file) this is just
2620 * the total clusters.
2622 sfs
->f_blocks
= vol
->nr_clusters
<< vol
->cluster_size_bits
>>
2624 /* Free data blocks in filesystem in units of f_bsize. */
2625 size
= get_nr_free_clusters(vol
) << vol
->cluster_size_bits
>>
2629 /* Free blocks avail to non-superuser, same as above on NTFS. */
2630 sfs
->f_bavail
= sfs
->f_bfree
= size
;
2631 /* Serialize accesses to the inode bitmap. */
2632 down_read(&vol
->mftbmp_lock
);
2633 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2634 size
= i_size_read(vol
->mft_ino
) >> vol
->mft_record_size_bits
;
2636 * Convert the maximum number of set bits into bytes rounded up, then
2637 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2638 * have one full and one partial page max_index = 2.
2640 max_index
= ((((mft_ni
->initialized_size
>> vol
->mft_record_size_bits
)
2641 + 7) >> 3) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2642 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2643 /* Number of inodes in filesystem (at this point in time). */
2644 sfs
->f_files
= size
;
2645 /* Free inodes in fs (based on current total count). */
2646 sfs
->f_ffree
= __get_nr_free_mft_records(vol
, size
, max_index
);
2647 up_read(&vol
->mftbmp_lock
);
2649 * File system id. This is extremely *nix flavour dependent and even
2650 * within Linux itself all fs do their own thing. I interpret this to
2651 * mean a unique id associated with the mounted fs and not the id
2652 * associated with the filesystem driver, the latter is already given
2653 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2654 * volume serial number splitting it into two 32-bit parts. We enter
2655 * the least significant 32-bits in f_fsid[0] and the most significant
2656 * 32-bits in f_fsid[1].
2658 sfs
->f_fsid
.val
[0] = vol
->serial_no
& 0xffffffff;
2659 sfs
->f_fsid
.val
[1] = (vol
->serial_no
>> 32) & 0xffffffff;
2660 /* Maximum length of filenames. */
2661 sfs
->f_namelen
= NTFS_MAX_NAME_LEN
;
2666 * The complete super operations.
2668 static const struct super_operations ntfs_sops
= {
2669 .alloc_inode
= ntfs_alloc_big_inode
, /* VFS: Allocate new inode. */
2670 .destroy_inode
= ntfs_destroy_big_inode
, /* VFS: Deallocate inode. */
2672 //.dirty_inode = NULL, /* VFS: Called from
2673 // __mark_inode_dirty(). */
2674 .write_inode
= ntfs_write_inode
, /* VFS: Write dirty inode to
2676 //.drop_inode = NULL, /* VFS: Called just after the
2677 // inode reference count has
2678 // been decreased to zero.
2679 // NOTE: The inode lock is
2680 // held. See fs/inode.c::
2681 // generic_drop_inode(). */
2682 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2683 // Called when i_count becomes
2684 // 0 and i_nlink is also 0. */
2685 //.write_super = NULL, /* Flush dirty super block to
2687 //.sync_fs = NULL, /* ? */
2688 //.write_super_lockfs = NULL, /* ? */
2689 //.unlockfs = NULL, /* ? */
2690 #endif /* NTFS_RW */
2691 .put_super
= ntfs_put_super
, /* Syscall: umount. */
2692 .statfs
= ntfs_statfs
, /* Syscall: statfs */
2693 .remount_fs
= ntfs_remount
, /* Syscall: mount -o remount. */
2694 .clear_inode
= ntfs_clear_big_inode
, /* VFS: Called when an inode is
2695 removed from memory. */
2696 //.umount_begin = NULL, /* Forced umount. */
2697 .show_options
= ntfs_show_options
, /* Show mount options in
2702 * ntfs_fill_super - mount an ntfs filesystem
2703 * @sb: super block of ntfs filesystem to mount
2704 * @opt: string containing the mount options
2705 * @silent: silence error output
2707 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2708 * with the mount otions in @data with the NTFS filesystem.
2710 * If @silent is true, remain silent even if errors are detected. This is used
2711 * during bootup, when the kernel tries to mount the root filesystem with all
2712 * registered filesystems one after the other until one succeeds. This implies
2713 * that all filesystems except the correct one will quite correctly and
2714 * expectedly return an error, but nobody wants to see error messages when in
2715 * fact this is what is supposed to happen.
2717 * NOTE: @sb->s_flags contains the mount options flags.
2719 static int ntfs_fill_super(struct super_block
*sb
, void *opt
, const int silent
)
2722 struct buffer_head
*bh
;
2723 struct inode
*tmp_ino
;
2724 int blocksize
, result
;
2727 * We do a pretty difficult piece of bootstrap by reading the
2728 * MFT (and other metadata) from disk into memory. We'll only
2729 * release this metadata during umount, so the locking patterns
2730 * observed during bootstrap do not count. So turn off the
2731 * observation of locking patterns (strictly for this context
2732 * only) while mounting NTFS. [The validator is still active
2733 * otherwise, even for this context: it will for example record
2734 * lock class registrations.]
2737 ntfs_debug("Entering.");
2739 sb
->s_flags
|= MS_RDONLY
;
2740 #endif /* ! NTFS_RW */
2741 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2742 sb
->s_fs_info
= kmalloc(sizeof(ntfs_volume
), GFP_NOFS
);
2746 ntfs_error(sb
, "Allocation of NTFS volume structure "
2747 "failed. Aborting mount...");
2751 /* Initialize ntfs_volume structure. */
2752 *vol
= (ntfs_volume
) {
2755 * Default is group and other don't have any access to files or
2756 * directories while owner has full access. Further, files by
2757 * default are not executable but directories are of course
2763 init_rwsem(&vol
->mftbmp_lock
);
2764 init_rwsem(&vol
->lcnbmp_lock
);
2768 /* By default, enable sparse support. */
2769 NVolSetSparseEnabled(vol
);
2771 /* Important to get the mount options dealt with now. */
2772 if (!parse_options(vol
, (char*)opt
))
2775 /* We support sector sizes up to the PAGE_CACHE_SIZE. */
2776 if (bdev_logical_block_size(sb
->s_bdev
) > PAGE_CACHE_SIZE
) {
2778 ntfs_error(sb
, "Device has unsupported sector size "
2779 "(%i). The maximum supported sector "
2780 "size on this architecture is %lu "
2782 bdev_logical_block_size(sb
->s_bdev
),
2787 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2788 * sector size, whichever is bigger.
2790 blocksize
= sb_min_blocksize(sb
, NTFS_BLOCK_SIZE
);
2791 if (blocksize
< NTFS_BLOCK_SIZE
) {
2793 ntfs_error(sb
, "Unable to set device block size.");
2796 BUG_ON(blocksize
!= sb
->s_blocksize
);
2797 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2798 blocksize
, sb
->s_blocksize_bits
);
2799 /* Determine the size of the device in units of block_size bytes. */
2800 if (!i_size_read(sb
->s_bdev
->bd_inode
)) {
2802 ntfs_error(sb
, "Unable to determine device size.");
2805 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2806 sb
->s_blocksize_bits
;
2807 /* Read the boot sector and return unlocked buffer head to it. */
2808 if (!(bh
= read_ntfs_boot_sector(sb
, silent
))) {
2810 ntfs_error(sb
, "Not an NTFS volume.");
2814 * Extract the data from the boot sector and setup the ntfs volume
2817 result
= parse_ntfs_boot_sector(vol
, (NTFS_BOOT_SECTOR
*)bh
->b_data
);
2821 ntfs_error(sb
, "Unsupported NTFS filesystem.");
2825 * If the boot sector indicates a sector size bigger than the current
2826 * device block size, switch the device block size to the sector size.
2827 * TODO: It may be possible to support this case even when the set
2828 * below fails, we would just be breaking up the i/o for each sector
2829 * into multiple blocks for i/o purposes but otherwise it should just
2830 * work. However it is safer to leave disabled until someone hits this
2831 * error message and then we can get them to try it without the setting
2832 * so we know for sure that it works.
2834 if (vol
->sector_size
> blocksize
) {
2835 blocksize
= sb_set_blocksize(sb
, vol
->sector_size
);
2836 if (blocksize
!= vol
->sector_size
) {
2838 ntfs_error(sb
, "Unable to set device block "
2839 "size to sector size (%i).",
2843 BUG_ON(blocksize
!= sb
->s_blocksize
);
2844 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2845 sb
->s_blocksize_bits
;
2846 ntfs_debug("Changed device block size to %i bytes (block size "
2847 "bits %i) to match volume sector size.",
2848 blocksize
, sb
->s_blocksize_bits
);
2850 /* Initialize the cluster and mft allocators. */
2851 ntfs_setup_allocators(vol
);
2852 /* Setup remaining fields in the super block. */
2853 sb
->s_magic
= NTFS_SB_MAGIC
;
2855 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2856 * sb->s_maxbytes = ~0ULL >> 1;
2857 * But the kernel uses a long as the page cache page index which on
2858 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2859 * defined to the maximum the page cache page index can cope with
2860 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2862 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2863 /* Ntfs measures time in 100ns intervals. */
2864 sb
->s_time_gran
= 100;
2866 * Now load the metadata required for the page cache and our address
2867 * space operations to function. We do this by setting up a specialised
2868 * read_inode method and then just calling the normal iget() to obtain
2869 * the inode for $MFT which is sufficient to allow our normal inode
2870 * operations and associated address space operations to function.
2872 sb
->s_op
= &ntfs_sops
;
2873 tmp_ino
= new_inode(sb
);
2876 ntfs_error(sb
, "Failed to load essential metadata.");
2879 tmp_ino
->i_ino
= FILE_MFT
;
2880 insert_inode_hash(tmp_ino
);
2881 if (ntfs_read_inode_mount(tmp_ino
) < 0) {
2883 ntfs_error(sb
, "Failed to load essential metadata.");
2884 goto iput_tmp_ino_err_out_now
;
2886 mutex_lock(&ntfs_lock
);
2888 * The current mount is a compression user if the cluster size is
2889 * less than or equal 4kiB.
2891 if (vol
->cluster_size
<= 4096 && !ntfs_nr_compression_users
++) {
2892 result
= allocate_compression_buffers();
2894 ntfs_error(NULL
, "Failed to allocate buffers "
2895 "for compression engine.");
2896 ntfs_nr_compression_users
--;
2897 mutex_unlock(&ntfs_lock
);
2898 goto iput_tmp_ino_err_out_now
;
2902 * Generate the global default upcase table if necessary. Also
2903 * temporarily increment the number of upcase users to avoid race
2904 * conditions with concurrent (u)mounts.
2906 if (!default_upcase
)
2907 default_upcase
= generate_default_upcase();
2908 ntfs_nr_upcase_users
++;
2909 mutex_unlock(&ntfs_lock
);
2911 * From now on, ignore @silent parameter. If we fail below this line,
2912 * it will be due to a corrupt fs or a system error, so we report it.
2915 * Open the system files with normal access functions and complete
2916 * setting up the ntfs super block.
2918 if (!load_system_files(vol
)) {
2919 ntfs_error(sb
, "Failed to load system files.");
2920 goto unl_upcase_iput_tmp_ino_err_out_now
;
2922 if ((sb
->s_root
= d_alloc_root(vol
->root_ino
))) {
2923 /* We increment i_count simulating an ntfs_iget(). */
2924 atomic_inc(&vol
->root_ino
->i_count
);
2925 ntfs_debug("Exiting, status successful.");
2926 /* Release the default upcase if it has no users. */
2927 mutex_lock(&ntfs_lock
);
2928 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
2929 ntfs_free(default_upcase
);
2930 default_upcase
= NULL
;
2932 mutex_unlock(&ntfs_lock
);
2933 sb
->s_export_op
= &ntfs_export_ops
;
2938 ntfs_error(sb
, "Failed to allocate root directory.");
2939 /* Clean up after the successful load_system_files() call from above. */
2940 // TODO: Use ntfs_put_super() instead of repeating all this code...
2941 // FIXME: Should mark the volume clean as the error is most likely
2944 vol
->vol_ino
= NULL
;
2945 /* NTFS 3.0+ specific clean up. */
2946 if (vol
->major_ver
>= 3) {
2948 if (vol
->usnjrnl_j_ino
) {
2949 iput(vol
->usnjrnl_j_ino
);
2950 vol
->usnjrnl_j_ino
= NULL
;
2952 if (vol
->usnjrnl_max_ino
) {
2953 iput(vol
->usnjrnl_max_ino
);
2954 vol
->usnjrnl_max_ino
= NULL
;
2956 if (vol
->usnjrnl_ino
) {
2957 iput(vol
->usnjrnl_ino
);
2958 vol
->usnjrnl_ino
= NULL
;
2960 if (vol
->quota_q_ino
) {
2961 iput(vol
->quota_q_ino
);
2962 vol
->quota_q_ino
= NULL
;
2964 if (vol
->quota_ino
) {
2965 iput(vol
->quota_ino
);
2966 vol
->quota_ino
= NULL
;
2968 #endif /* NTFS_RW */
2969 if (vol
->extend_ino
) {
2970 iput(vol
->extend_ino
);
2971 vol
->extend_ino
= NULL
;
2973 if (vol
->secure_ino
) {
2974 iput(vol
->secure_ino
);
2975 vol
->secure_ino
= NULL
;
2978 iput(vol
->root_ino
);
2979 vol
->root_ino
= NULL
;
2980 iput(vol
->lcnbmp_ino
);
2981 vol
->lcnbmp_ino
= NULL
;
2982 iput(vol
->mftbmp_ino
);
2983 vol
->mftbmp_ino
= NULL
;
2985 if (vol
->logfile_ino
) {
2986 iput(vol
->logfile_ino
);
2987 vol
->logfile_ino
= NULL
;
2989 if (vol
->mftmirr_ino
) {
2990 iput(vol
->mftmirr_ino
);
2991 vol
->mftmirr_ino
= NULL
;
2993 #endif /* NTFS_RW */
2994 /* Throw away the table of attribute definitions. */
2995 vol
->attrdef_size
= 0;
2997 ntfs_free(vol
->attrdef
);
2998 vol
->attrdef
= NULL
;
3000 vol
->upcase_len
= 0;
3001 mutex_lock(&ntfs_lock
);
3002 if (vol
->upcase
== default_upcase
) {
3003 ntfs_nr_upcase_users
--;
3006 mutex_unlock(&ntfs_lock
);
3008 ntfs_free(vol
->upcase
);
3012 unload_nls(vol
->nls_map
);
3013 vol
->nls_map
= NULL
;
3015 /* Error exit code path. */
3016 unl_upcase_iput_tmp_ino_err_out_now
:
3018 * Decrease the number of upcase users and destroy the global default
3019 * upcase table if necessary.
3021 mutex_lock(&ntfs_lock
);
3022 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
3023 ntfs_free(default_upcase
);
3024 default_upcase
= NULL
;
3026 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
3027 free_compression_buffers();
3028 mutex_unlock(&ntfs_lock
);
3029 iput_tmp_ino_err_out_now
:
3031 if (vol
->mft_ino
&& vol
->mft_ino
!= tmp_ino
)
3033 vol
->mft_ino
= NULL
;
3035 * This is needed to get ntfs_clear_extent_inode() called for each
3036 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
3037 * leak resources and B) a subsequent mount fails automatically due to
3038 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
3039 * method again... FIXME: Do we need to do this twice now because of
3040 * attribute inodes? I think not, so leave as is for now... (AIA)
3042 if (invalidate_inodes(sb
)) {
3043 ntfs_error(sb
, "Busy inodes left. This is most likely a NTFS "
3045 /* Copied from fs/super.c. I just love this message. (-; */
3046 printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
3047 "seconds. Have a nice day...\n");
3049 /* Errors at this stage are irrelevant. */
3052 sb
->s_fs_info
= NULL
;
3054 ntfs_debug("Failed, returning -EINVAL.");
3060 * This is a slab cache to optimize allocations and deallocations of Unicode
3061 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3062 * (255) Unicode characters + a terminating NULL Unicode character.
3064 struct kmem_cache
*ntfs_name_cache
;
3066 /* Slab caches for efficient allocation/deallocation of inodes. */
3067 struct kmem_cache
*ntfs_inode_cache
;
3068 struct kmem_cache
*ntfs_big_inode_cache
;
3070 /* Init once constructor for the inode slab cache. */
3071 static void ntfs_big_inode_init_once(void *foo
)
3073 ntfs_inode
*ni
= (ntfs_inode
*)foo
;
3075 inode_init_once(VFS_I(ni
));
3079 * Slab caches to optimize allocations and deallocations of attribute search
3080 * contexts and index contexts, respectively.
3082 struct kmem_cache
*ntfs_attr_ctx_cache
;
3083 struct kmem_cache
*ntfs_index_ctx_cache
;
3085 /* Driver wide mutex. */
3086 DEFINE_MUTEX(ntfs_lock
);
3088 static int ntfs_get_sb(struct file_system_type
*fs_type
,
3089 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
3091 return get_sb_bdev(fs_type
, flags
, dev_name
, data
, ntfs_fill_super
,
3095 static struct file_system_type ntfs_fs_type
= {
3096 .owner
= THIS_MODULE
,
3098 .get_sb
= ntfs_get_sb
,
3099 .kill_sb
= kill_block_super
,
3100 .fs_flags
= FS_REQUIRES_DEV
,
3103 /* Stable names for the slab caches. */
3104 static const char ntfs_index_ctx_cache_name
[] = "ntfs_index_ctx_cache";
3105 static const char ntfs_attr_ctx_cache_name
[] = "ntfs_attr_ctx_cache";
3106 static const char ntfs_name_cache_name
[] = "ntfs_name_cache";
3107 static const char ntfs_inode_cache_name
[] = "ntfs_inode_cache";
3108 static const char ntfs_big_inode_cache_name
[] = "ntfs_big_inode_cache";
3110 static int __init
init_ntfs_fs(void)
3114 /* This may be ugly but it results in pretty output so who cares. (-8 */
3115 printk(KERN_INFO
"NTFS driver " NTFS_VERSION
" [Flags: R/"
3129 ntfs_debug("Debug messages are enabled.");
3131 ntfs_index_ctx_cache
= kmem_cache_create(ntfs_index_ctx_cache_name
,
3132 sizeof(ntfs_index_context
), 0 /* offset */,
3133 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3134 if (!ntfs_index_ctx_cache
) {
3135 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3136 ntfs_index_ctx_cache_name
);
3139 ntfs_attr_ctx_cache
= kmem_cache_create(ntfs_attr_ctx_cache_name
,
3140 sizeof(ntfs_attr_search_ctx
), 0 /* offset */,
3141 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3142 if (!ntfs_attr_ctx_cache
) {
3143 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3144 ntfs_attr_ctx_cache_name
);
3148 ntfs_name_cache
= kmem_cache_create(ntfs_name_cache_name
,
3149 (NTFS_MAX_NAME_LEN
+1) * sizeof(ntfschar
), 0,
3150 SLAB_HWCACHE_ALIGN
, NULL
);
3151 if (!ntfs_name_cache
) {
3152 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3153 ntfs_name_cache_name
);
3157 ntfs_inode_cache
= kmem_cache_create(ntfs_inode_cache_name
,
3158 sizeof(ntfs_inode
), 0,
3159 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
3160 if (!ntfs_inode_cache
) {
3161 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3162 ntfs_inode_cache_name
);
3166 ntfs_big_inode_cache
= kmem_cache_create(ntfs_big_inode_cache_name
,
3167 sizeof(big_ntfs_inode
), 0,
3168 SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
,
3169 ntfs_big_inode_init_once
);
3170 if (!ntfs_big_inode_cache
) {
3171 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3172 ntfs_big_inode_cache_name
);
3173 goto big_inode_err_out
;
3176 /* Register the ntfs sysctls. */
3177 err
= ntfs_sysctl(1);
3179 printk(KERN_CRIT
"NTFS: Failed to register NTFS sysctls!\n");
3180 goto sysctl_err_out
;
3183 err
= register_filesystem(&ntfs_fs_type
);
3185 ntfs_debug("NTFS driver registered successfully.");
3186 return 0; /* Success! */
3188 printk(KERN_CRIT
"NTFS: Failed to register NTFS filesystem driver!\n");
3191 kmem_cache_destroy(ntfs_big_inode_cache
);
3193 kmem_cache_destroy(ntfs_inode_cache
);
3195 kmem_cache_destroy(ntfs_name_cache
);
3197 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3199 kmem_cache_destroy(ntfs_index_ctx_cache
);
3202 printk(KERN_CRIT
"NTFS: Aborting NTFS filesystem driver "
3203 "registration...\n");
3209 static void __exit
exit_ntfs_fs(void)
3211 ntfs_debug("Unregistering NTFS driver.");
3213 unregister_filesystem(&ntfs_fs_type
);
3214 kmem_cache_destroy(ntfs_big_inode_cache
);
3215 kmem_cache_destroy(ntfs_inode_cache
);
3216 kmem_cache_destroy(ntfs_name_cache
);
3217 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3218 kmem_cache_destroy(ntfs_index_ctx_cache
);
3219 /* Unregister the ntfs sysctls. */
3223 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3224 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2007 Anton Altaparmakov");
3225 MODULE_VERSION(NTFS_VERSION
);
3226 MODULE_LICENSE("GPL");
3228 module_param(debug_msgs
, bool, 0);
3229 MODULE_PARM_DESC(debug_msgs
, "Enable debug messages.");
3232 module_init(init_ntfs_fs
)
3233 module_exit(exit_ntfs_fs
)