4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz
;
52 EXPORT_SYMBOL(sys_tz
);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time
, time_t __user
*, tloc
)
64 time_t i
= get_seconds();
70 force_successful_syscall_return();
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 SYSCALL_DEFINE1(stime
, time_t __user
*, tptr
)
86 if (get_user(tv
.tv_sec
, tptr
))
91 err
= security_settime(&tv
, NULL
);
99 #endif /* __ARCH_WANT_SYS_TIME */
101 SYSCALL_DEFINE2(gettimeofday
, struct timeval __user
*, tv
,
102 struct timezone __user
*, tz
)
104 if (likely(tv
!= NULL
)) {
106 do_gettimeofday(&ktv
);
107 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
110 if (unlikely(tz
!= NULL
)) {
111 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
118 * Adjust the time obtained from the CMOS to be UTC time instead of
121 * This is ugly, but preferable to the alternatives. Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
123 * confusion if the program gets run more than once; it would also be
124 * hard to make the program warp the clock precisely n hours) or
125 * compile in the timezone information into the kernel. Bad, bad....
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
133 static inline void warp_clock(void)
135 struct timespec delta
, adjust
;
136 delta
.tv_sec
= sys_tz
.tz_minuteswest
* 60;
138 adjust
= timespec_add_safe(current_kernel_time(), delta
);
139 do_settimeofday(&adjust
);
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
153 int do_sys_settimeofday(struct timespec
*tv
, struct timezone
*tz
)
155 static int firsttime
= 1;
158 if (tv
&& !timespec_valid(tv
))
161 error
= security_settime(tv
, tz
);
166 /* SMP safe, global irq locking makes it work. */
168 update_vsyscall_tz();
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
180 return do_settimeofday(tv
);
185 SYSCALL_DEFINE2(settimeofday
, struct timeval __user
*, tv
,
186 struct timezone __user
*, tz
)
188 struct timeval user_tv
;
189 struct timespec new_ts
;
190 struct timezone new_tz
;
193 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
195 new_ts
.tv_sec
= user_tv
.tv_sec
;
196 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
199 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
203 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
206 SYSCALL_DEFINE1(adjtimex
, struct timex __user
*, txc_p
)
208 struct timex txc
; /* Local copy of parameter */
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
215 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
217 ret
= do_adjtimex(&txc
);
218 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
222 * current_fs_time - Return FS time
225 * Return the current time truncated to the time granularity supported by
228 struct timespec
current_fs_time(struct super_block
*sb
)
230 struct timespec now
= current_kernel_time();
231 return timespec_trunc(now
, sb
->s_time_gran
);
233 EXPORT_SYMBOL(current_fs_time
);
236 * Convert jiffies to milliseconds and back.
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
241 unsigned int inline jiffies_to_msecs(const unsigned long j
)
243 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC
/ HZ
) * j
;
245 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
248 # if BITS_PER_LONG == 32
249 return (HZ_TO_MSEC_MUL32
* j
) >> HZ_TO_MSEC_SHR32
;
251 return (j
* HZ_TO_MSEC_NUM
) / HZ_TO_MSEC_DEN
;
255 EXPORT_SYMBOL(jiffies_to_msecs
);
257 unsigned int inline jiffies_to_usecs(const unsigned long j
)
259 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC
/ HZ
) * j
;
261 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j
+ (HZ
/ USEC_PER_SEC
) - 1)/(HZ
/ USEC_PER_SEC
);
264 # if BITS_PER_LONG == 32
265 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
267 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
271 EXPORT_SYMBOL(jiffies_to_usecs
);
274 * timespec_trunc - Truncate timespec to a granularity
276 * @gran: Granularity in ns.
278 * Truncate a timespec to a granularity. gran must be smaller than a second.
279 * Always rounds down.
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283 * it doesn't handle the better resolution of the latter.
285 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
292 if (gran
<= jiffies_to_usecs(1) * 1000) {
294 } else if (gran
== 1000000000) {
297 t
.tv_nsec
-= t
.tv_nsec
% gran
;
301 EXPORT_SYMBOL(timespec_trunc
);
303 #ifndef CONFIG_GENERIC_TIME
305 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
306 * and therefore only yields usec accuracy
308 void getnstimeofday(struct timespec
*tv
)
313 tv
->tv_sec
= x
.tv_sec
;
314 tv
->tv_nsec
= x
.tv_usec
* NSEC_PER_USEC
;
316 EXPORT_SYMBOL_GPL(getnstimeofday
);
319 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
320 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
321 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
323 * [For the Julian calendar (which was used in Russia before 1917,
324 * Britain & colonies before 1752, anywhere else before 1582,
325 * and is still in use by some communities) leave out the
326 * -year/100+year/400 terms, and add 10.]
328 * This algorithm was first published by Gauss (I think).
330 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
331 * machines where long is 32-bit! (However, as time_t is signed, we
332 * will already get problems at other places on 2038-01-19 03:14:08)
335 mktime(const unsigned int year0
, const unsigned int mon0
,
336 const unsigned int day
, const unsigned int hour
,
337 const unsigned int min
, const unsigned int sec
)
339 unsigned int mon
= mon0
, year
= year0
;
341 /* 1..12 -> 11,12,1..10 */
342 if (0 >= (int) (mon
-= 2)) {
343 mon
+= 12; /* Puts Feb last since it has leap day */
347 return ((((unsigned long)
348 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
350 )*24 + hour
/* now have hours */
351 )*60 + min
/* now have minutes */
352 )*60 + sec
; /* finally seconds */
355 EXPORT_SYMBOL(mktime
);
358 * set_normalized_timespec - set timespec sec and nsec parts and normalize
360 * @ts: pointer to timespec variable to be set
361 * @sec: seconds to set
362 * @nsec: nanoseconds to set
364 * Set seconds and nanoseconds field of a timespec variable and
365 * normalize to the timespec storage format
367 * Note: The tv_nsec part is always in the range of
368 * 0 <= tv_nsec < NSEC_PER_SEC
369 * For negative values only the tv_sec field is negative !
371 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, s64 nsec
)
373 while (nsec
>= NSEC_PER_SEC
) {
375 * The following asm() prevents the compiler from
376 * optimising this loop into a modulo operation. See
377 * also __iter_div_u64_rem() in include/linux/time.h
379 asm("" : "+rm"(nsec
));
380 nsec
-= NSEC_PER_SEC
;
384 asm("" : "+rm"(nsec
));
385 nsec
+= NSEC_PER_SEC
;
391 EXPORT_SYMBOL(set_normalized_timespec
);
394 * ns_to_timespec - Convert nanoseconds to timespec
395 * @nsec: the nanoseconds value to be converted
397 * Returns the timespec representation of the nsec parameter.
399 struct timespec
ns_to_timespec(const s64 nsec
)
405 return (struct timespec
) {0, 0};
407 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
408 if (unlikely(rem
< 0)) {
416 EXPORT_SYMBOL(ns_to_timespec
);
419 * ns_to_timeval - Convert nanoseconds to timeval
420 * @nsec: the nanoseconds value to be converted
422 * Returns the timeval representation of the nsec parameter.
424 struct timeval
ns_to_timeval(const s64 nsec
)
426 struct timespec ts
= ns_to_timespec(nsec
);
429 tv
.tv_sec
= ts
.tv_sec
;
430 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
434 EXPORT_SYMBOL(ns_to_timeval
);
437 * When we convert to jiffies then we interpret incoming values
440 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
442 * - 'too large' values [that would result in larger than
443 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
445 * - all other values are converted to jiffies by either multiplying
446 * the input value by a factor or dividing it with a factor
448 * We must also be careful about 32-bit overflows.
450 unsigned long msecs_to_jiffies(const unsigned int m
)
453 * Negative value, means infinite timeout:
456 return MAX_JIFFY_OFFSET
;
458 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
460 * HZ is equal to or smaller than 1000, and 1000 is a nice
461 * round multiple of HZ, divide with the factor between them,
464 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
465 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
467 * HZ is larger than 1000, and HZ is a nice round multiple of
468 * 1000 - simply multiply with the factor between them.
470 * But first make sure the multiplication result cannot
473 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
474 return MAX_JIFFY_OFFSET
;
476 return m
* (HZ
/ MSEC_PER_SEC
);
479 * Generic case - multiply, round and divide. But first
480 * check that if we are doing a net multiplication, that
481 * we wouldn't overflow:
483 if (HZ
> MSEC_PER_SEC
&& m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
484 return MAX_JIFFY_OFFSET
;
486 return (MSEC_TO_HZ_MUL32
* m
+ MSEC_TO_HZ_ADJ32
)
490 EXPORT_SYMBOL(msecs_to_jiffies
);
492 unsigned long usecs_to_jiffies(const unsigned int u
)
494 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
495 return MAX_JIFFY_OFFSET
;
496 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
497 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
498 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
499 return u
* (HZ
/ USEC_PER_SEC
);
501 return (USEC_TO_HZ_MUL32
* u
+ USEC_TO_HZ_ADJ32
)
505 EXPORT_SYMBOL(usecs_to_jiffies
);
508 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
509 * that a remainder subtract here would not do the right thing as the
510 * resolution values don't fall on second boundries. I.e. the line:
511 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
513 * Rather, we just shift the bits off the right.
515 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
516 * value to a scaled second value.
519 timespec_to_jiffies(const struct timespec
*value
)
521 unsigned long sec
= value
->tv_sec
;
522 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
524 if (sec
>= MAX_SEC_IN_JIFFIES
){
525 sec
= MAX_SEC_IN_JIFFIES
;
528 return (((u64
)sec
* SEC_CONVERSION
) +
529 (((u64
)nsec
* NSEC_CONVERSION
) >>
530 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
533 EXPORT_SYMBOL(timespec_to_jiffies
);
536 jiffies_to_timespec(const unsigned long jiffies
, struct timespec
*value
)
539 * Convert jiffies to nanoseconds and separate with
543 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
545 value
->tv_nsec
= rem
;
547 EXPORT_SYMBOL(jiffies_to_timespec
);
549 /* Same for "timeval"
551 * Well, almost. The problem here is that the real system resolution is
552 * in nanoseconds and the value being converted is in micro seconds.
553 * Also for some machines (those that use HZ = 1024, in-particular),
554 * there is a LARGE error in the tick size in microseconds.
556 * The solution we use is to do the rounding AFTER we convert the
557 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
558 * Instruction wise, this should cost only an additional add with carry
559 * instruction above the way it was done above.
562 timeval_to_jiffies(const struct timeval
*value
)
564 unsigned long sec
= value
->tv_sec
;
565 long usec
= value
->tv_usec
;
567 if (sec
>= MAX_SEC_IN_JIFFIES
){
568 sec
= MAX_SEC_IN_JIFFIES
;
571 return (((u64
)sec
* SEC_CONVERSION
) +
572 (((u64
)usec
* USEC_CONVERSION
+ USEC_ROUND
) >>
573 (USEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
575 EXPORT_SYMBOL(timeval_to_jiffies
);
577 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
580 * Convert jiffies to nanoseconds and separate with
585 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
587 value
->tv_usec
= rem
/ NSEC_PER_USEC
;
589 EXPORT_SYMBOL(jiffies_to_timeval
);
592 * Convert jiffies/jiffies_64 to clock_t and back.
594 clock_t jiffies_to_clock_t(long x
)
596 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
598 return x
* (USER_HZ
/ HZ
);
600 return x
/ (HZ
/ USER_HZ
);
603 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
606 EXPORT_SYMBOL(jiffies_to_clock_t
);
608 unsigned long clock_t_to_jiffies(unsigned long x
)
610 #if (HZ % USER_HZ)==0
611 if (x
>= ~0UL / (HZ
/ USER_HZ
))
613 return x
* (HZ
/ USER_HZ
);
615 /* Don't worry about loss of precision here .. */
616 if (x
>= ~0UL / HZ
* USER_HZ
)
619 /* .. but do try to contain it here */
620 return div_u64((u64
)x
* HZ
, USER_HZ
);
623 EXPORT_SYMBOL(clock_t_to_jiffies
);
625 u64
jiffies_64_to_clock_t(u64 x
)
627 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
629 x
= div_u64(x
* USER_HZ
, HZ
);
631 x
= div_u64(x
, HZ
/ USER_HZ
);
637 * There are better ways that don't overflow early,
638 * but even this doesn't overflow in hundreds of years
641 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
645 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
647 u64
nsec_to_clock_t(u64 x
)
649 #if (NSEC_PER_SEC % USER_HZ) == 0
650 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
651 #elif (USER_HZ % 512) == 0
652 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
655 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
656 * overflow after 64.99 years.
657 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
659 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
664 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
668 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
669 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
670 * for scheduler, not for use in device drivers to calculate timeout value.
673 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
674 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
676 unsigned long nsecs_to_jiffies(u64 n
)
678 #if (NSEC_PER_SEC % HZ) == 0
679 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
680 return div_u64(n
, NSEC_PER_SEC
/ HZ
);
681 #elif (HZ % 512) == 0
682 /* overflow after 292 years if HZ = 1024 */
683 return div_u64(n
* HZ
/ 512, NSEC_PER_SEC
/ 512);
686 * Generic case - optimized for cases where HZ is a multiple of 3.
687 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
689 return div_u64(n
* 9, (9ull * NSEC_PER_SEC
+ HZ
/ 2) / HZ
);
693 #if (BITS_PER_LONG < 64)
694 u64
get_jiffies_64(void)
700 seq
= read_seqbegin(&xtime_lock
);
702 } while (read_seqretry(&xtime_lock
, seq
));
705 EXPORT_SYMBOL(get_jiffies_64
);
708 EXPORT_SYMBOL(jiffies
);
711 * Add two timespec values and do a safety check for overflow.
712 * It's assumed that both values are valid (>= 0)
714 struct timespec
timespec_add_safe(const struct timespec lhs
,
715 const struct timespec rhs
)
719 set_normalized_timespec(&res
, lhs
.tv_sec
+ rhs
.tv_sec
,
720 lhs
.tv_nsec
+ rhs
.tv_nsec
);
722 if (res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)
723 res
.tv_sec
= TIME_T_MAX
;