2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity
= 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 unsigned int sysctl_sched_wakeup_granularity
= 10000000UL;
84 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
101 #else /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
105 return container_of(cfs_rq
, struct rq
, cfs
);
108 #define entity_is_task(se) 1
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
112 static inline struct task_struct
*task_of(struct sched_entity
*se
)
114 return container_of(se
, struct task_struct
, se
);
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
122 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
124 s64 delta
= (s64
)(vruntime
- min_vruntime
);
126 min_vruntime
= vruntime
;
131 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
133 s64 delta
= (s64
)(vruntime
- min_vruntime
);
135 min_vruntime
= vruntime
;
140 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
142 return se
->vruntime
- cfs_rq
->min_vruntime
;
146 * Enqueue an entity into the rb-tree:
148 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
150 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
151 struct rb_node
*parent
= NULL
;
152 struct sched_entity
*entry
;
153 s64 key
= entity_key(cfs_rq
, se
);
157 * Find the right place in the rbtree:
161 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
166 if (key
< entity_key(cfs_rq
, entry
)) {
167 link
= &parent
->rb_left
;
169 link
= &parent
->rb_right
;
175 * Maintain a cache of leftmost tree entries (it is frequently
179 cfs_rq
->rb_leftmost
= &se
->run_node
;
181 rb_link_node(&se
->run_node
, parent
, link
);
182 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
185 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
187 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
188 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
190 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
193 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
195 return cfs_rq
->rb_leftmost
;
198 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
200 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
203 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
205 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
206 struct sched_entity
*se
= NULL
;
207 struct rb_node
*parent
;
211 se
= rb_entry(parent
, struct sched_entity
, run_node
);
212 link
= &parent
->rb_right
;
218 /**************************************************************
219 * Scheduling class statistics methods:
222 #ifdef CONFIG_SCHED_DEBUG
223 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
224 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
227 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
232 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
233 sysctl_sched_min_granularity
);
240 * The idea is to set a period in which each task runs once.
242 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
243 * this period because otherwise the slices get too small.
245 * p = (nr <= nl) ? l : l*nr/nl
247 static u64
__sched_period(unsigned long nr_running
)
249 u64 period
= sysctl_sched_latency
;
250 unsigned long nr_latency
= sched_nr_latency
;
252 if (unlikely(nr_running
> nr_latency
)) {
253 period
= sysctl_sched_min_granularity
;
254 period
*= nr_running
;
261 * We calculate the wall-time slice from the period by taking a part
262 * proportional to the weight.
266 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
268 u64 slice
= __sched_period(cfs_rq
->nr_running
);
270 slice
*= se
->load
.weight
;
271 do_div(slice
, cfs_rq
->load
.weight
);
277 * We calculate the vruntime slice.
281 static u64
__sched_vslice(unsigned long rq_weight
, unsigned long nr_running
)
283 u64 vslice
= __sched_period(nr_running
);
285 vslice
*= NICE_0_LOAD
;
286 do_div(vslice
, rq_weight
);
291 static u64
sched_vslice(struct cfs_rq
*cfs_rq
)
293 return __sched_vslice(cfs_rq
->load
.weight
, cfs_rq
->nr_running
);
296 static u64
sched_vslice_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
298 return __sched_vslice(cfs_rq
->load
.weight
+ se
->load
.weight
,
299 cfs_rq
->nr_running
+ 1);
303 * Update the current task's runtime statistics. Skip current tasks that
304 * are not in our scheduling class.
307 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
308 unsigned long delta_exec
)
310 unsigned long delta_exec_weighted
;
313 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
315 curr
->sum_exec_runtime
+= delta_exec
;
316 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
317 delta_exec_weighted
= delta_exec
;
318 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
)) {
319 delta_exec_weighted
= calc_delta_fair(delta_exec_weighted
,
322 curr
->vruntime
+= delta_exec_weighted
;
325 * maintain cfs_rq->min_vruntime to be a monotonic increasing
326 * value tracking the leftmost vruntime in the tree.
328 if (first_fair(cfs_rq
)) {
329 vruntime
= min_vruntime(curr
->vruntime
,
330 __pick_next_entity(cfs_rq
)->vruntime
);
332 vruntime
= curr
->vruntime
;
334 cfs_rq
->min_vruntime
=
335 max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
338 static void update_curr(struct cfs_rq
*cfs_rq
)
340 struct sched_entity
*curr
= cfs_rq
->curr
;
341 u64 now
= rq_of(cfs_rq
)->clock
;
342 unsigned long delta_exec
;
348 * Get the amount of time the current task was running
349 * since the last time we changed load (this cannot
350 * overflow on 32 bits):
352 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
354 __update_curr(cfs_rq
, curr
, delta_exec
);
355 curr
->exec_start
= now
;
357 if (entity_is_task(curr
)) {
358 struct task_struct
*curtask
= task_of(curr
);
360 cpuacct_charge(curtask
, delta_exec
);
365 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
367 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
371 * Task is being enqueued - update stats:
373 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
376 * Are we enqueueing a waiting task? (for current tasks
377 * a dequeue/enqueue event is a NOP)
379 if (se
!= cfs_rq
->curr
)
380 update_stats_wait_start(cfs_rq
, se
);
384 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
386 schedstat_set(se
->wait_max
, max(se
->wait_max
,
387 rq_of(cfs_rq
)->clock
- se
->wait_start
));
388 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
389 schedstat_set(se
->wait_sum
, se
->wait_sum
+
390 rq_of(cfs_rq
)->clock
- se
->wait_start
);
391 schedstat_set(se
->wait_start
, 0);
395 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
398 * Mark the end of the wait period if dequeueing a
401 if (se
!= cfs_rq
->curr
)
402 update_stats_wait_end(cfs_rq
, se
);
406 * We are picking a new current task - update its stats:
409 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
412 * We are starting a new run period:
414 se
->exec_start
= rq_of(cfs_rq
)->clock
;
417 /**************************************************
418 * Scheduling class queueing methods:
422 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
424 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
425 cfs_rq
->nr_running
++;
430 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
432 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
433 cfs_rq
->nr_running
--;
437 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
439 #ifdef CONFIG_SCHEDSTATS
440 if (se
->sleep_start
) {
441 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
442 struct task_struct
*tsk
= task_of(se
);
447 if (unlikely(delta
> se
->sleep_max
))
448 se
->sleep_max
= delta
;
451 se
->sum_sleep_runtime
+= delta
;
453 account_scheduler_latency(tsk
, delta
>> 10, 1);
455 if (se
->block_start
) {
456 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
457 struct task_struct
*tsk
= task_of(se
);
462 if (unlikely(delta
> se
->block_max
))
463 se
->block_max
= delta
;
466 se
->sum_sleep_runtime
+= delta
;
469 * Blocking time is in units of nanosecs, so shift by 20 to
470 * get a milliseconds-range estimation of the amount of
471 * time that the task spent sleeping:
473 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
475 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
478 account_scheduler_latency(tsk
, delta
>> 10, 0);
483 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
485 #ifdef CONFIG_SCHED_DEBUG
486 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
491 if (d
> 3*sysctl_sched_latency
)
492 schedstat_inc(cfs_rq
, nr_spread_over
);
497 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
501 vruntime
= cfs_rq
->min_vruntime
;
503 if (sched_feat(TREE_AVG
)) {
504 struct sched_entity
*last
= __pick_last_entity(cfs_rq
);
506 vruntime
+= last
->vruntime
;
509 } else if (sched_feat(APPROX_AVG
) && cfs_rq
->nr_running
)
510 vruntime
+= sched_vslice(cfs_rq
)/2;
513 * The 'current' period is already promised to the current tasks,
514 * however the extra weight of the new task will slow them down a
515 * little, place the new task so that it fits in the slot that
516 * stays open at the end.
518 if (initial
&& sched_feat(START_DEBIT
))
519 vruntime
+= sched_vslice_add(cfs_rq
, se
);
522 /* sleeps upto a single latency don't count. */
523 if (sched_feat(NEW_FAIR_SLEEPERS
))
524 vruntime
-= sysctl_sched_latency
;
526 /* ensure we never gain time by being placed backwards. */
527 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
530 se
->vruntime
= vruntime
;
534 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
537 * Update run-time statistics of the 'current'.
542 place_entity(cfs_rq
, se
, 0);
543 enqueue_sleeper(cfs_rq
, se
);
546 update_stats_enqueue(cfs_rq
, se
);
547 check_spread(cfs_rq
, se
);
548 if (se
!= cfs_rq
->curr
)
549 __enqueue_entity(cfs_rq
, se
);
550 account_entity_enqueue(cfs_rq
, se
);
554 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
557 * Update run-time statistics of the 'current'.
561 update_stats_dequeue(cfs_rq
, se
);
563 #ifdef CONFIG_SCHEDSTATS
564 if (entity_is_task(se
)) {
565 struct task_struct
*tsk
= task_of(se
);
567 if (tsk
->state
& TASK_INTERRUPTIBLE
)
568 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
569 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
570 se
->block_start
= rq_of(cfs_rq
)->clock
;
575 if (se
!= cfs_rq
->curr
)
576 __dequeue_entity(cfs_rq
, se
);
577 account_entity_dequeue(cfs_rq
, se
);
581 * Preempt the current task with a newly woken task if needed:
584 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
586 unsigned long ideal_runtime
, delta_exec
;
588 ideal_runtime
= sched_slice(cfs_rq
, curr
);
589 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
590 if (delta_exec
> ideal_runtime
)
591 resched_task(rq_of(cfs_rq
)->curr
);
595 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
597 /* 'current' is not kept within the tree. */
600 * Any task has to be enqueued before it get to execute on
601 * a CPU. So account for the time it spent waiting on the
604 update_stats_wait_end(cfs_rq
, se
);
605 __dequeue_entity(cfs_rq
, se
);
608 update_stats_curr_start(cfs_rq
, se
);
610 #ifdef CONFIG_SCHEDSTATS
612 * Track our maximum slice length, if the CPU's load is at
613 * least twice that of our own weight (i.e. dont track it
614 * when there are only lesser-weight tasks around):
616 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
617 se
->slice_max
= max(se
->slice_max
,
618 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
621 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
624 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
626 struct sched_entity
*se
= NULL
;
628 if (first_fair(cfs_rq
)) {
629 se
= __pick_next_entity(cfs_rq
);
630 set_next_entity(cfs_rq
, se
);
636 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
639 * If still on the runqueue then deactivate_task()
640 * was not called and update_curr() has to be done:
645 check_spread(cfs_rq
, prev
);
647 update_stats_wait_start(cfs_rq
, prev
);
648 /* Put 'current' back into the tree. */
649 __enqueue_entity(cfs_rq
, prev
);
655 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
658 * Update run-time statistics of the 'current'.
662 #ifdef CONFIG_SCHED_HRTICK
664 * queued ticks are scheduled to match the slice, so don't bother
665 * validating it and just reschedule.
668 return resched_task(rq_of(cfs_rq
)->curr
);
670 * don't let the period tick interfere with the hrtick preemption
672 if (!sched_feat(DOUBLE_TICK
) &&
673 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
677 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
678 check_preempt_tick(cfs_rq
, curr
);
681 /**************************************************
682 * CFS operations on tasks:
685 #ifdef CONFIG_FAIR_GROUP_SCHED
687 /* Walk up scheduling entities hierarchy */
688 #define for_each_sched_entity(se) \
689 for (; se; se = se->parent)
691 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
696 /* runqueue on which this entity is (to be) queued */
697 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
702 /* runqueue "owned" by this group */
703 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
708 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
709 * another cpu ('this_cpu')
711 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
713 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
716 /* Iterate thr' all leaf cfs_rq's on a runqueue */
717 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
718 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
720 /* Do the two (enqueued) entities belong to the same group ? */
722 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
724 if (se
->cfs_rq
== pse
->cfs_rq
)
730 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
735 #define GROUP_IMBALANCE_PCT 20
737 #else /* CONFIG_FAIR_GROUP_SCHED */
739 #define for_each_sched_entity(se) \
740 for (; se; se = NULL)
742 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
744 return &task_rq(p
)->cfs
;
747 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
749 struct task_struct
*p
= task_of(se
);
750 struct rq
*rq
= task_rq(p
);
755 /* runqueue "owned" by this group */
756 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
761 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
763 return &cpu_rq(this_cpu
)->cfs
;
766 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
767 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
770 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
775 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
780 #endif /* CONFIG_FAIR_GROUP_SCHED */
782 #ifdef CONFIG_SCHED_HRTICK
783 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
785 int requeue
= rq
->curr
== p
;
786 struct sched_entity
*se
= &p
->se
;
787 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
789 WARN_ON(task_rq(p
) != rq
);
791 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
792 u64 slice
= sched_slice(cfs_rq
, se
);
793 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
794 s64 delta
= slice
- ran
;
803 * Don't schedule slices shorter than 10000ns, that just
804 * doesn't make sense. Rely on vruntime for fairness.
807 delta
= max(10000LL, delta
);
809 hrtick_start(rq
, delta
, requeue
);
814 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
820 * The enqueue_task method is called before nr_running is
821 * increased. Here we update the fair scheduling stats and
822 * then put the task into the rbtree:
824 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
826 struct cfs_rq
*cfs_rq
;
827 struct sched_entity
*se
= &p
->se
,
828 *topse
= NULL
; /* Highest schedulable entity */
831 for_each_sched_entity(se
) {
837 cfs_rq
= cfs_rq_of(se
);
838 enqueue_entity(cfs_rq
, se
, wakeup
);
841 /* Increment cpu load if we just enqueued the first task of a group on
842 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
843 * at the highest grouping level.
846 inc_cpu_load(rq
, topse
->load
.weight
);
848 hrtick_start_fair(rq
, rq
->curr
);
852 * The dequeue_task method is called before nr_running is
853 * decreased. We remove the task from the rbtree and
854 * update the fair scheduling stats:
856 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
858 struct cfs_rq
*cfs_rq
;
859 struct sched_entity
*se
= &p
->se
,
860 *topse
= NULL
; /* Highest schedulable entity */
863 for_each_sched_entity(se
) {
865 cfs_rq
= cfs_rq_of(se
);
866 dequeue_entity(cfs_rq
, se
, sleep
);
867 /* Don't dequeue parent if it has other entities besides us */
868 if (cfs_rq
->load
.weight
) {
869 if (parent_entity(se
))
875 /* Decrement cpu load if we just dequeued the last task of a group on
876 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
877 * at the highest grouping level.
880 dec_cpu_load(rq
, topse
->load
.weight
);
882 hrtick_start_fair(rq
, rq
->curr
);
886 * sched_yield() support is very simple - we dequeue and enqueue.
888 * If compat_yield is turned on then we requeue to the end of the tree.
890 static void yield_task_fair(struct rq
*rq
)
892 struct task_struct
*curr
= rq
->curr
;
893 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
894 struct sched_entity
*rightmost
, *se
= &curr
->se
;
897 * Are we the only task in the tree?
899 if (unlikely(cfs_rq
->nr_running
== 1))
902 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
903 __update_rq_clock(rq
);
905 * Update run-time statistics of the 'current'.
912 * Find the rightmost entry in the rbtree:
914 rightmost
= __pick_last_entity(cfs_rq
);
916 * Already in the rightmost position?
918 if (unlikely(rightmost
->vruntime
< se
->vruntime
))
922 * Minimally necessary key value to be last in the tree:
923 * Upon rescheduling, sched_class::put_prev_task() will place
924 * 'current' within the tree based on its new key value.
926 se
->vruntime
= rightmost
->vruntime
+ 1;
930 * wake_idle() will wake a task on an idle cpu if task->cpu is
931 * not idle and an idle cpu is available. The span of cpus to
932 * search starts with cpus closest then further out as needed,
933 * so we always favor a closer, idle cpu.
935 * Returns the CPU we should wake onto.
937 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
938 static int wake_idle(int cpu
, struct task_struct
*p
)
941 struct sched_domain
*sd
;
945 * If it is idle, then it is the best cpu to run this task.
947 * This cpu is also the best, if it has more than one task already.
948 * Siblings must be also busy(in most cases) as they didn't already
949 * pickup the extra load from this cpu and hence we need not check
950 * sibling runqueue info. This will avoid the checks and cache miss
951 * penalities associated with that.
953 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
956 for_each_domain(cpu
, sd
) {
957 if (sd
->flags
& SD_WAKE_IDLE
) {
958 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
959 for_each_cpu_mask(i
, tmp
) {
961 if (i
!= task_cpu(p
)) {
975 static inline int wake_idle(int cpu
, struct task_struct
*p
)
982 static int select_task_rq_fair(struct task_struct
*p
, int sync
)
986 struct sched_domain
*sd
, *this_sd
= NULL
;
991 this_cpu
= smp_processor_id();
997 for_each_domain(this_cpu
, sd
) {
998 if (cpu_isset(cpu
, sd
->span
)) {
1004 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1008 * Check for affine wakeup and passive balancing possibilities.
1011 int idx
= this_sd
->wake_idx
;
1012 unsigned int imbalance
;
1013 unsigned long load
, this_load
;
1015 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1017 load
= source_load(cpu
, idx
);
1018 this_load
= target_load(this_cpu
, idx
);
1020 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1022 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1023 unsigned long tl
= this_load
;
1024 unsigned long tl_per_task
;
1027 * Attract cache-cold tasks on sync wakeups:
1029 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1032 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1033 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1036 * If sync wakeup then subtract the (maximum possible)
1037 * effect of the currently running task from the load
1038 * of the current CPU:
1041 tl
-= current
->se
.load
.weight
;
1044 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1045 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1047 * This domain has SD_WAKE_AFFINE and
1048 * p is cache cold in this domain, and
1049 * there is no bad imbalance.
1051 schedstat_inc(this_sd
, ttwu_move_affine
);
1052 schedstat_inc(p
, se
.nr_wakeups_affine
);
1058 * Start passive balancing when half the imbalance_pct
1061 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1062 if (imbalance
*this_load
<= 100*load
) {
1063 schedstat_inc(this_sd
, ttwu_move_balance
);
1064 schedstat_inc(p
, se
.nr_wakeups_passive
);
1070 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1072 return wake_idle(new_cpu
, p
);
1074 #endif /* CONFIG_SMP */
1078 * Preempt the current task with a newly woken task if needed:
1080 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
1082 struct task_struct
*curr
= rq
->curr
;
1083 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1084 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1087 if (unlikely(rt_prio(p
->prio
))) {
1088 update_rq_clock(rq
);
1089 update_curr(cfs_rq
);
1094 * Batch tasks do not preempt (their preemption is driven by
1097 if (unlikely(p
->policy
== SCHED_BATCH
))
1100 if (!sched_feat(WAKEUP_PREEMPT
))
1103 while (!is_same_group(se
, pse
)) {
1104 se
= parent_entity(se
);
1105 pse
= parent_entity(pse
);
1108 gran
= sysctl_sched_wakeup_granularity
;
1110 * More easily preempt - nice tasks, while not making
1111 * it harder for + nice tasks.
1113 if (unlikely(se
->load
.weight
> NICE_0_LOAD
))
1114 gran
= calc_delta_fair(gran
, &se
->load
);
1116 if (pse
->vruntime
+ gran
< se
->vruntime
)
1120 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1122 struct task_struct
*p
;
1123 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1124 struct sched_entity
*se
;
1126 if (unlikely(!cfs_rq
->nr_running
))
1130 se
= pick_next_entity(cfs_rq
);
1131 cfs_rq
= group_cfs_rq(se
);
1135 hrtick_start_fair(rq
, p
);
1141 * Account for a descheduled task:
1143 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1145 struct sched_entity
*se
= &prev
->se
;
1146 struct cfs_rq
*cfs_rq
;
1148 for_each_sched_entity(se
) {
1149 cfs_rq
= cfs_rq_of(se
);
1150 put_prev_entity(cfs_rq
, se
);
1155 /**************************************************
1156 * Fair scheduling class load-balancing methods:
1160 * Load-balancing iterator. Note: while the runqueue stays locked
1161 * during the whole iteration, the current task might be
1162 * dequeued so the iterator has to be dequeue-safe. Here we
1163 * achieve that by always pre-iterating before returning
1166 static struct task_struct
*
1167 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
1169 struct task_struct
*p
;
1174 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
1175 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
1180 static struct task_struct
*load_balance_start_fair(void *arg
)
1182 struct cfs_rq
*cfs_rq
= arg
;
1184 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
1187 static struct task_struct
*load_balance_next_fair(void *arg
)
1189 struct cfs_rq
*cfs_rq
= arg
;
1191 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
1194 static unsigned long
1195 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1196 unsigned long max_load_move
,
1197 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1198 int *all_pinned
, int *this_best_prio
)
1200 struct cfs_rq
*busy_cfs_rq
;
1201 long rem_load_move
= max_load_move
;
1202 struct rq_iterator cfs_rq_iterator
;
1203 unsigned long load_moved
;
1205 cfs_rq_iterator
.start
= load_balance_start_fair
;
1206 cfs_rq_iterator
.next
= load_balance_next_fair
;
1208 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1209 #ifdef CONFIG_FAIR_GROUP_SCHED
1210 struct cfs_rq
*this_cfs_rq
= busy_cfs_rq
->tg
->cfs_rq
[this_cpu
];
1211 unsigned long maxload
, task_load
, group_weight
;
1212 unsigned long thisload
, per_task_load
;
1213 struct sched_entity
*se
= busy_cfs_rq
->tg
->se
[busiest
->cpu
];
1215 task_load
= busy_cfs_rq
->load
.weight
;
1216 group_weight
= se
->load
.weight
;
1219 * 'group_weight' is contributed by tasks of total weight
1220 * 'task_load'. To move 'rem_load_move' worth of weight only,
1221 * we need to move a maximum task load of:
1223 * maxload = (remload / group_weight) * task_load;
1225 maxload
= (rem_load_move
* task_load
) / group_weight
;
1227 if (!maxload
|| !task_load
)
1230 per_task_load
= task_load
/ busy_cfs_rq
->nr_running
;
1232 * balance_tasks will try to forcibly move atleast one task if
1233 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1234 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1236 if (100 * maxload
< GROUP_IMBALANCE_PCT
* per_task_load
)
1239 /* Disable priority-based load balance */
1240 *this_best_prio
= 0;
1241 thisload
= this_cfs_rq
->load
.weight
;
1243 # define maxload rem_load_move
1246 * pass busy_cfs_rq argument into
1247 * load_balance_[start|next]_fair iterators
1249 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1250 load_moved
= balance_tasks(this_rq
, this_cpu
, busiest
,
1251 maxload
, sd
, idle
, all_pinned
,
1255 #ifdef CONFIG_FAIR_GROUP_SCHED
1257 * load_moved holds the task load that was moved. The
1258 * effective (group) weight moved would be:
1259 * load_moved_eff = load_moved/task_load * group_weight;
1261 load_moved
= (group_weight
* load_moved
) / task_load
;
1263 /* Adjust shares on both cpus to reflect load_moved */
1264 group_weight
-= load_moved
;
1265 set_se_shares(se
, group_weight
);
1267 se
= busy_cfs_rq
->tg
->se
[this_cpu
];
1269 group_weight
= load_moved
;
1271 group_weight
= se
->load
.weight
+ load_moved
;
1272 set_se_shares(se
, group_weight
);
1275 rem_load_move
-= load_moved
;
1277 if (rem_load_move
<= 0)
1281 return max_load_move
- rem_load_move
;
1285 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1286 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1288 struct cfs_rq
*busy_cfs_rq
;
1289 struct rq_iterator cfs_rq_iterator
;
1291 cfs_rq_iterator
.start
= load_balance_start_fair
;
1292 cfs_rq_iterator
.next
= load_balance_next_fair
;
1294 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1296 * pass busy_cfs_rq argument into
1297 * load_balance_[start|next]_fair iterators
1299 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1300 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1310 * scheduler tick hitting a task of our scheduling class:
1312 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1314 struct cfs_rq
*cfs_rq
;
1315 struct sched_entity
*se
= &curr
->se
;
1317 for_each_sched_entity(se
) {
1318 cfs_rq
= cfs_rq_of(se
);
1319 entity_tick(cfs_rq
, se
, queued
);
1323 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1326 * Share the fairness runtime between parent and child, thus the
1327 * total amount of pressure for CPU stays equal - new tasks
1328 * get a chance to run but frequent forkers are not allowed to
1329 * monopolize the CPU. Note: the parent runqueue is locked,
1330 * the child is not running yet.
1332 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1334 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1335 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1336 int this_cpu
= smp_processor_id();
1338 sched_info_queued(p
);
1340 update_curr(cfs_rq
);
1341 place_entity(cfs_rq
, se
, 1);
1343 /* 'curr' will be NULL if the child belongs to a different group */
1344 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1345 curr
&& curr
->vruntime
< se
->vruntime
) {
1347 * Upon rescheduling, sched_class::put_prev_task() will place
1348 * 'current' within the tree based on its new key value.
1350 swap(curr
->vruntime
, se
->vruntime
);
1353 enqueue_task_fair(rq
, p
, 0);
1354 resched_task(rq
->curr
);
1358 * Priority of the task has changed. Check to see if we preempt
1361 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1362 int oldprio
, int running
)
1365 * Reschedule if we are currently running on this runqueue and
1366 * our priority decreased, or if we are not currently running on
1367 * this runqueue and our priority is higher than the current's
1370 if (p
->prio
> oldprio
)
1371 resched_task(rq
->curr
);
1373 check_preempt_curr(rq
, p
);
1377 * We switched to the sched_fair class.
1379 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1383 * We were most likely switched from sched_rt, so
1384 * kick off the schedule if running, otherwise just see
1385 * if we can still preempt the current task.
1388 resched_task(rq
->curr
);
1390 check_preempt_curr(rq
, p
);
1393 /* Account for a task changing its policy or group.
1395 * This routine is mostly called to set cfs_rq->curr field when a task
1396 * migrates between groups/classes.
1398 static void set_curr_task_fair(struct rq
*rq
)
1400 struct sched_entity
*se
= &rq
->curr
->se
;
1402 for_each_sched_entity(se
)
1403 set_next_entity(cfs_rq_of(se
), se
);
1407 * All the scheduling class methods:
1409 static const struct sched_class fair_sched_class
= {
1410 .next
= &idle_sched_class
,
1411 .enqueue_task
= enqueue_task_fair
,
1412 .dequeue_task
= dequeue_task_fair
,
1413 .yield_task
= yield_task_fair
,
1415 .select_task_rq
= select_task_rq_fair
,
1416 #endif /* CONFIG_SMP */
1418 .check_preempt_curr
= check_preempt_wakeup
,
1420 .pick_next_task
= pick_next_task_fair
,
1421 .put_prev_task
= put_prev_task_fair
,
1424 .load_balance
= load_balance_fair
,
1425 .move_one_task
= move_one_task_fair
,
1428 .set_curr_task
= set_curr_task_fair
,
1429 .task_tick
= task_tick_fair
,
1430 .task_new
= task_new_fair
,
1432 .prio_changed
= prio_changed_fair
,
1433 .switched_to
= switched_to_fair
,
1436 #ifdef CONFIG_SCHED_DEBUG
1437 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1439 struct cfs_rq
*cfs_rq
;
1441 #ifdef CONFIG_FAIR_GROUP_SCHED
1442 print_cfs_rq(m
, cpu
, &cpu_rq(cpu
)->cfs
);
1445 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1446 print_cfs_rq(m
, cpu
, cfs_rq
);