1 The Linux Kernel Device Model
3 Patrick Mochel <mochel@digitalimplant.org>
6 Updated 31 January 2006
12 The Linux Kernel Driver Model is a unification of all the disparate driver
13 models that were previously used in the kernel. It is intended to augment the
14 bus-specific drivers for bridges and devices by consolidating a set of data
15 and operations into globally accessible data structures.
17 Traditional driver models implemented some sort of tree-like structure
18 (sometimes just a list) for the devices they control. There wasn't any
19 uniformity across the different bus types.
21 The current driver model provides a common, uniform data model for describing
22 a bus and the devices that can appear under the bus. The unified bus
23 model includes a set of common attributes which all busses carry, and a set
24 of common callbacks, such as device discovery during bus probing, bus
25 shutdown, bus power management, etc.
27 The common device and bridge interface reflects the goals of the modern
28 computer: namely the ability to do seamless device "plug and play", power
29 management, and hot plug. In particular, the model dictated by Intel and
30 Microsoft (namely ACPI) ensures that almost every device on almost any bus
31 on an x86-compatible system can work within this paradigm. Of course,
32 not every bus is able to support all such operations, although most
33 buses support most of those operations.
39 Common data fields have been moved out of individual bus layers into a common
40 data structure. These fields must still be accessed by the bus layers,
41 and sometimes by the device-specific drivers.
43 Other bus layers are encouraged to do what has been done for the PCI layer.
44 struct pci_dev now looks like this:
49 struct device dev; /* Generic device interface */
53 Note first that the struct device dev within the struct pci_dev is
54 statically allocated. This means only one allocation on device discovery.
56 Note also that that struct device dev is not necessarily defined at the
57 front of the pci_dev structure. This is to make people think about what
58 they're doing when switching between the bus driver and the global driver,
59 and to discourage meaningless and incorrect casts between the two.
61 The PCI bus layer freely accesses the fields of struct device. It knows about
62 the structure of struct pci_dev, and it should know the structure of struct
63 device. Individual PCI device drivers that have been converted to the current
64 driver model generally do not and should not touch the fields of struct device,
65 unless there is a compelling reason to do so.
67 The above abstraction prevents unnecessary pain during transitional phases.
68 If it were not done this way, then when a field was renamed or removed, every
69 downstream driver would break. On the other hand, if only the bus layer
70 (and not the device layer) accesses the struct device, it is only the bus
71 layer that needs to change.
77 By virtue of having a complete hierarchical view of all the devices in the
78 system, exporting a complete hierarchical view to userspace becomes relatively
79 easy. This has been accomplished by implementing a special purpose virtual
80 file system named sysfs.
82 Almost all mainstream Linux distros mount this filesystem automatically; you
83 can see some variation of the following in the output of the "mount" command:
87 none on /sys type sysfs (rw,noexec,nosuid,nodev)
91 The auto-mounting of sysfs is typically accomplished by an entry similar to
92 the following in the /etc/fstab file:
94 none /sys sysfs defaults 0 0
96 or something similar in the /lib/init/fstab file on Debian-based systems:
98 none /sys sysfs nodev,noexec,nosuid 0 0
100 If sysfs is not automatically mounted, you can always do it manually with:
102 # mount -t sysfs sysfs /sys
104 Whenever a device is inserted into the tree, a directory is created for it.
105 This directory may be populated at each layer of discovery - the global layer,
106 the bus layer, or the device layer.
108 The global layer currently creates two files - 'name' and 'power'. The
109 former only reports the name of the device. The latter reports the
110 current power state of the device. It will also be used to set the current
113 The bus layer may also create files for the devices it finds while probing the
114 bus. For example, the PCI layer currently creates 'irq' and 'resource' files
117 A device-specific driver may also export files in its directory to expose
118 device-specific data or tunable interfaces.
120 More information about the sysfs directory layout can be found in
121 the other documents in this directory and in the file
122 Documentation/filesystems/sysfs.txt.