[PATCH] files: break up files struct
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / kernel / perfmon.c
blob4ad97b3b39dcc904f24a502576d62b3979edbabf
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/mm.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/rcupdate.h>
43 #include <asm/errno.h>
44 #include <asm/intrinsics.h>
45 #include <asm/page.h>
46 #include <asm/perfmon.h>
47 #include <asm/processor.h>
48 #include <asm/signal.h>
49 #include <asm/system.h>
50 #include <asm/uaccess.h>
51 #include <asm/delay.h>
53 #ifdef CONFIG_PERFMON
55 * perfmon context state
57 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
58 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
59 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
60 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
62 #define PFM_INVALID_ACTIVATION (~0UL)
65 * depth of message queue
67 #define PFM_MAX_MSGS 32
68 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
71 * type of a PMU register (bitmask).
72 * bitmask structure:
73 * bit0 : register implemented
74 * bit1 : end marker
75 * bit2-3 : reserved
76 * bit4 : pmc has pmc.pm
77 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
78 * bit6-7 : register type
79 * bit8-31: reserved
81 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
82 #define PFM_REG_IMPL 0x1 /* register implemented */
83 #define PFM_REG_END 0x2 /* end marker */
84 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
85 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
86 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
87 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
88 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
90 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
91 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
93 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
95 /* i assumed unsigned */
96 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
97 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
99 /* XXX: these assume that register i is implemented */
100 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
103 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
105 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
106 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
107 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
108 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
110 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
111 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
113 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
114 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
115 #define PFM_CTX_TASK(h) (h)->ctx_task
117 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
119 /* XXX: does not support more than 64 PMDs */
120 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
121 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
123 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
125 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
126 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
127 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
128 #define PFM_CODE_RR 0 /* requesting code range restriction */
129 #define PFM_DATA_RR 1 /* requestion data range restriction */
131 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
132 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
133 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
135 #define RDEP(x) (1UL<<(x))
138 * context protection macros
139 * in SMP:
140 * - we need to protect against CPU concurrency (spin_lock)
141 * - we need to protect against PMU overflow interrupts (local_irq_disable)
142 * in UP:
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
145 * spin_lock_irqsave()/spin_lock_irqrestore():
146 * in SMP: local_irq_disable + spin_lock
147 * in UP : local_irq_disable
149 * spin_lock()/spin_lock():
150 * in UP : removed automatically
151 * in SMP: protect against context accesses from other CPU. interrupts
152 * are not masked. This is useful for the PMU interrupt handler
153 * because we know we will not get PMU concurrency in that code.
155 #define PROTECT_CTX(c, f) \
156 do { \
157 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
158 spin_lock_irqsave(&(c)->ctx_lock, f); \
159 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
160 } while(0)
162 #define UNPROTECT_CTX(c, f) \
163 do { \
164 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
165 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
166 } while(0)
168 #define PROTECT_CTX_NOPRINT(c, f) \
169 do { \
170 spin_lock_irqsave(&(c)->ctx_lock, f); \
171 } while(0)
174 #define UNPROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
177 } while(0)
180 #define PROTECT_CTX_NOIRQ(c) \
181 do { \
182 spin_lock(&(c)->ctx_lock); \
183 } while(0)
185 #define UNPROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_unlock(&(c)->ctx_lock); \
188 } while(0)
191 #ifdef CONFIG_SMP
193 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
194 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
195 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
197 #else /* !CONFIG_SMP */
198 #define SET_ACTIVATION(t) do {} while(0)
199 #define GET_ACTIVATION(t) do {} while(0)
200 #define INC_ACTIVATION(t) do {} while(0)
201 #endif /* CONFIG_SMP */
203 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
204 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
205 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
207 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
208 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
210 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
213 * cmp0 must be the value of pmc0
215 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
217 #define PFMFS_MAGIC 0xa0b4d889
220 * debugging
222 #define PFM_DEBUGGING 1
223 #ifdef PFM_DEBUGGING
224 #define DPRINT(a) \
225 do { \
226 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
227 } while (0)
229 #define DPRINT_ovfl(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
232 } while (0)
233 #endif
236 * 64-bit software counter structure
238 * the next_reset_type is applied to the next call to pfm_reset_regs()
240 typedef struct {
241 unsigned long val; /* virtual 64bit counter value */
242 unsigned long lval; /* last reset value */
243 unsigned long long_reset; /* reset value on sampling overflow */
244 unsigned long short_reset; /* reset value on overflow */
245 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
246 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
247 unsigned long seed; /* seed for random-number generator */
248 unsigned long mask; /* mask for random-number generator */
249 unsigned int flags; /* notify/do not notify */
250 unsigned long eventid; /* overflow event identifier */
251 } pfm_counter_t;
254 * context flags
256 typedef struct {
257 unsigned int block:1; /* when 1, task will blocked on user notifications */
258 unsigned int system:1; /* do system wide monitoring */
259 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
260 unsigned int is_sampling:1; /* true if using a custom format */
261 unsigned int excl_idle:1; /* exclude idle task in system wide session */
262 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
263 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
264 unsigned int no_msg:1; /* no message sent on overflow */
265 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
266 unsigned int reserved:22;
267 } pfm_context_flags_t;
269 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
270 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
271 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
275 * perfmon context: encapsulates all the state of a monitoring session
278 typedef struct pfm_context {
279 spinlock_t ctx_lock; /* context protection */
281 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
282 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
284 struct task_struct *ctx_task; /* task to which context is attached */
286 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
288 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
290 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
291 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
292 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
294 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
295 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
296 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
298 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
300 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
301 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
302 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
303 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
305 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
307 u64 ctx_saved_psr_up; /* only contains psr.up value */
309 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
310 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
311 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
313 int ctx_fd; /* file descriptor used my this context */
314 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
316 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
317 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
318 unsigned long ctx_smpl_size; /* size of sampling buffer */
319 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
321 wait_queue_head_t ctx_msgq_wait;
322 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
323 int ctx_msgq_head;
324 int ctx_msgq_tail;
325 struct fasync_struct *ctx_async_queue;
327 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
328 } pfm_context_t;
331 * magic number used to verify that structure is really
332 * a perfmon context
334 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
336 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
338 #ifdef CONFIG_SMP
339 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
340 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
341 #else
342 #define SET_LAST_CPU(ctx, v) do {} while(0)
343 #define GET_LAST_CPU(ctx) do {} while(0)
344 #endif
347 #define ctx_fl_block ctx_flags.block
348 #define ctx_fl_system ctx_flags.system
349 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
350 #define ctx_fl_is_sampling ctx_flags.is_sampling
351 #define ctx_fl_excl_idle ctx_flags.excl_idle
352 #define ctx_fl_going_zombie ctx_flags.going_zombie
353 #define ctx_fl_trap_reason ctx_flags.trap_reason
354 #define ctx_fl_no_msg ctx_flags.no_msg
355 #define ctx_fl_can_restart ctx_flags.can_restart
357 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
358 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
361 * global information about all sessions
362 * mostly used to synchronize between system wide and per-process
364 typedef struct {
365 spinlock_t pfs_lock; /* lock the structure */
367 unsigned int pfs_task_sessions; /* number of per task sessions */
368 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
369 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
370 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
371 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
372 } pfm_session_t;
375 * information about a PMC or PMD.
376 * dep_pmd[]: a bitmask of dependent PMD registers
377 * dep_pmc[]: a bitmask of dependent PMC registers
379 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
380 typedef struct {
381 unsigned int type;
382 int pm_pos;
383 unsigned long default_value; /* power-on default value */
384 unsigned long reserved_mask; /* bitmask of reserved bits */
385 pfm_reg_check_t read_check;
386 pfm_reg_check_t write_check;
387 unsigned long dep_pmd[4];
388 unsigned long dep_pmc[4];
389 } pfm_reg_desc_t;
391 /* assume cnum is a valid monitor */
392 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
395 * This structure is initialized at boot time and contains
396 * a description of the PMU main characteristics.
398 * If the probe function is defined, detection is based
399 * on its return value:
400 * - 0 means recognized PMU
401 * - anything else means not supported
402 * When the probe function is not defined, then the pmu_family field
403 * is used and it must match the host CPU family such that:
404 * - cpu->family & config->pmu_family != 0
406 typedef struct {
407 unsigned long ovfl_val; /* overflow value for counters */
409 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
410 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
412 unsigned int num_pmcs; /* number of PMCS: computed at init time */
413 unsigned int num_pmds; /* number of PMDS: computed at init time */
414 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
415 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
417 char *pmu_name; /* PMU family name */
418 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
419 unsigned int flags; /* pmu specific flags */
420 unsigned int num_ibrs; /* number of IBRS: computed at init time */
421 unsigned int num_dbrs; /* number of DBRS: computed at init time */
422 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
423 int (*probe)(void); /* customized probe routine */
424 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
425 } pmu_config_t;
427 * PMU specific flags
429 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
432 * debug register related type definitions
434 typedef struct {
435 unsigned long ibr_mask:56;
436 unsigned long ibr_plm:4;
437 unsigned long ibr_ig:3;
438 unsigned long ibr_x:1;
439 } ibr_mask_reg_t;
441 typedef struct {
442 unsigned long dbr_mask:56;
443 unsigned long dbr_plm:4;
444 unsigned long dbr_ig:2;
445 unsigned long dbr_w:1;
446 unsigned long dbr_r:1;
447 } dbr_mask_reg_t;
449 typedef union {
450 unsigned long val;
451 ibr_mask_reg_t ibr;
452 dbr_mask_reg_t dbr;
453 } dbreg_t;
457 * perfmon command descriptions
459 typedef struct {
460 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
461 char *cmd_name;
462 int cmd_flags;
463 unsigned int cmd_narg;
464 size_t cmd_argsize;
465 int (*cmd_getsize)(void *arg, size_t *sz);
466 } pfm_cmd_desc_t;
468 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
469 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
470 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
471 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
474 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
475 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
476 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
477 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
478 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
480 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
482 typedef struct {
483 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
484 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
485 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
489 unsigned long pfm_smpl_handler_calls;
490 unsigned long pfm_smpl_handler_cycles;
491 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
492 } pfm_stats_t;
495 * perfmon internal variables
497 static pfm_stats_t pfm_stats[NR_CPUS];
498 static pfm_session_t pfm_sessions; /* global sessions information */
500 static spinlock_t pfm_alt_install_check = SPIN_LOCK_UNLOCKED;
501 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
503 static struct proc_dir_entry *perfmon_dir;
504 static pfm_uuid_t pfm_null_uuid = {0,};
506 static spinlock_t pfm_buffer_fmt_lock;
507 static LIST_HEAD(pfm_buffer_fmt_list);
509 static pmu_config_t *pmu_conf;
511 /* sysctl() controls */
512 pfm_sysctl_t pfm_sysctl;
513 EXPORT_SYMBOL(pfm_sysctl);
515 static ctl_table pfm_ctl_table[]={
516 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
517 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
518 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
519 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
520 { 0, },
522 static ctl_table pfm_sysctl_dir[] = {
523 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
524 {0,},
526 static ctl_table pfm_sysctl_root[] = {
527 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
528 {0,},
530 static struct ctl_table_header *pfm_sysctl_header;
532 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
533 static int pfm_flush(struct file *filp);
535 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
536 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
538 static inline void
539 pfm_put_task(struct task_struct *task)
541 if (task != current) put_task_struct(task);
544 static inline void
545 pfm_set_task_notify(struct task_struct *task)
547 struct thread_info *info;
549 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
550 set_bit(TIF_NOTIFY_RESUME, &info->flags);
553 static inline void
554 pfm_clear_task_notify(void)
556 clear_thread_flag(TIF_NOTIFY_RESUME);
559 static inline void
560 pfm_reserve_page(unsigned long a)
562 SetPageReserved(vmalloc_to_page((void *)a));
564 static inline void
565 pfm_unreserve_page(unsigned long a)
567 ClearPageReserved(vmalloc_to_page((void*)a));
570 static inline unsigned long
571 pfm_protect_ctx_ctxsw(pfm_context_t *x)
573 spin_lock(&(x)->ctx_lock);
574 return 0UL;
577 static inline unsigned long
578 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
580 spin_unlock(&(x)->ctx_lock);
583 static inline unsigned int
584 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
586 return do_munmap(mm, addr, len);
589 static inline unsigned long
590 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
592 return get_unmapped_area(file, addr, len, pgoff, flags);
596 static struct super_block *
597 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
599 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
602 static struct file_system_type pfm_fs_type = {
603 .name = "pfmfs",
604 .get_sb = pfmfs_get_sb,
605 .kill_sb = kill_anon_super,
608 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
609 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
610 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
611 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
612 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
615 /* forward declaration */
616 static struct file_operations pfm_file_ops;
619 * forward declarations
621 #ifndef CONFIG_SMP
622 static void pfm_lazy_save_regs (struct task_struct *ta);
623 #endif
625 void dump_pmu_state(const char *);
626 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
628 #include "perfmon_itanium.h"
629 #include "perfmon_mckinley.h"
630 #include "perfmon_generic.h"
632 static pmu_config_t *pmu_confs[]={
633 &pmu_conf_mck,
634 &pmu_conf_ita,
635 &pmu_conf_gen, /* must be last */
636 NULL
640 static int pfm_end_notify_user(pfm_context_t *ctx);
642 static inline void
643 pfm_clear_psr_pp(void)
645 ia64_rsm(IA64_PSR_PP);
646 ia64_srlz_i();
649 static inline void
650 pfm_set_psr_pp(void)
652 ia64_ssm(IA64_PSR_PP);
653 ia64_srlz_i();
656 static inline void
657 pfm_clear_psr_up(void)
659 ia64_rsm(IA64_PSR_UP);
660 ia64_srlz_i();
663 static inline void
664 pfm_set_psr_up(void)
666 ia64_ssm(IA64_PSR_UP);
667 ia64_srlz_i();
670 static inline unsigned long
671 pfm_get_psr(void)
673 unsigned long tmp;
674 tmp = ia64_getreg(_IA64_REG_PSR);
675 ia64_srlz_i();
676 return tmp;
679 static inline void
680 pfm_set_psr_l(unsigned long val)
682 ia64_setreg(_IA64_REG_PSR_L, val);
683 ia64_srlz_i();
686 static inline void
687 pfm_freeze_pmu(void)
689 ia64_set_pmc(0,1UL);
690 ia64_srlz_d();
693 static inline void
694 pfm_unfreeze_pmu(void)
696 ia64_set_pmc(0,0UL);
697 ia64_srlz_d();
700 static inline void
701 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
703 int i;
705 for (i=0; i < nibrs; i++) {
706 ia64_set_ibr(i, ibrs[i]);
707 ia64_dv_serialize_instruction();
709 ia64_srlz_i();
712 static inline void
713 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
715 int i;
717 for (i=0; i < ndbrs; i++) {
718 ia64_set_dbr(i, dbrs[i]);
719 ia64_dv_serialize_data();
721 ia64_srlz_d();
725 * PMD[i] must be a counter. no check is made
727 static inline unsigned long
728 pfm_read_soft_counter(pfm_context_t *ctx, int i)
730 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
734 * PMD[i] must be a counter. no check is made
736 static inline void
737 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
739 unsigned long ovfl_val = pmu_conf->ovfl_val;
741 ctx->ctx_pmds[i].val = val & ~ovfl_val;
743 * writing to unimplemented part is ignore, so we do not need to
744 * mask off top part
746 ia64_set_pmd(i, val & ovfl_val);
749 static pfm_msg_t *
750 pfm_get_new_msg(pfm_context_t *ctx)
752 int idx, next;
754 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
756 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
757 if (next == ctx->ctx_msgq_head) return NULL;
759 idx = ctx->ctx_msgq_tail;
760 ctx->ctx_msgq_tail = next;
762 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
764 return ctx->ctx_msgq+idx;
767 static pfm_msg_t *
768 pfm_get_next_msg(pfm_context_t *ctx)
770 pfm_msg_t *msg;
772 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
774 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
777 * get oldest message
779 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
782 * and move forward
784 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
786 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
788 return msg;
791 static void
792 pfm_reset_msgq(pfm_context_t *ctx)
794 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
795 DPRINT(("ctx=%p msgq reset\n", ctx));
798 static void *
799 pfm_rvmalloc(unsigned long size)
801 void *mem;
802 unsigned long addr;
804 size = PAGE_ALIGN(size);
805 mem = vmalloc(size);
806 if (mem) {
807 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
808 memset(mem, 0, size);
809 addr = (unsigned long)mem;
810 while (size > 0) {
811 pfm_reserve_page(addr);
812 addr+=PAGE_SIZE;
813 size-=PAGE_SIZE;
816 return mem;
819 static void
820 pfm_rvfree(void *mem, unsigned long size)
822 unsigned long addr;
824 if (mem) {
825 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
826 addr = (unsigned long) mem;
827 while ((long) size > 0) {
828 pfm_unreserve_page(addr);
829 addr+=PAGE_SIZE;
830 size-=PAGE_SIZE;
832 vfree(mem);
834 return;
837 static pfm_context_t *
838 pfm_context_alloc(void)
840 pfm_context_t *ctx;
843 * allocate context descriptor
844 * must be able to free with interrupts disabled
846 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
847 if (ctx) {
848 memset(ctx, 0, sizeof(pfm_context_t));
849 DPRINT(("alloc ctx @%p\n", ctx));
851 return ctx;
854 static void
855 pfm_context_free(pfm_context_t *ctx)
857 if (ctx) {
858 DPRINT(("free ctx @%p\n", ctx));
859 kfree(ctx);
863 static void
864 pfm_mask_monitoring(struct task_struct *task)
866 pfm_context_t *ctx = PFM_GET_CTX(task);
867 struct thread_struct *th = &task->thread;
868 unsigned long mask, val, ovfl_mask;
869 int i;
871 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
873 ovfl_mask = pmu_conf->ovfl_val;
875 * monitoring can only be masked as a result of a valid
876 * counter overflow. In UP, it means that the PMU still
877 * has an owner. Note that the owner can be different
878 * from the current task. However the PMU state belongs
879 * to the owner.
880 * In SMP, a valid overflow only happens when task is
881 * current. Therefore if we come here, we know that
882 * the PMU state belongs to the current task, therefore
883 * we can access the live registers.
885 * So in both cases, the live register contains the owner's
886 * state. We can ONLY touch the PMU registers and NOT the PSR.
888 * As a consequence to this call, the thread->pmds[] array
889 * contains stale information which must be ignored
890 * when context is reloaded AND monitoring is active (see
891 * pfm_restart).
893 mask = ctx->ctx_used_pmds[0];
894 for (i = 0; mask; i++, mask>>=1) {
895 /* skip non used pmds */
896 if ((mask & 0x1) == 0) continue;
897 val = ia64_get_pmd(i);
899 if (PMD_IS_COUNTING(i)) {
901 * we rebuild the full 64 bit value of the counter
903 ctx->ctx_pmds[i].val += (val & ovfl_mask);
904 } else {
905 ctx->ctx_pmds[i].val = val;
907 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
909 ctx->ctx_pmds[i].val,
910 val & ovfl_mask));
913 * mask monitoring by setting the privilege level to 0
914 * we cannot use psr.pp/psr.up for this, it is controlled by
915 * the user
917 * if task is current, modify actual registers, otherwise modify
918 * thread save state, i.e., what will be restored in pfm_load_regs()
920 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
921 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
922 if ((mask & 0x1) == 0UL) continue;
923 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
924 th->pmcs[i] &= ~0xfUL;
925 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
928 * make all of this visible
930 ia64_srlz_d();
934 * must always be done with task == current
936 * context must be in MASKED state when calling
938 static void
939 pfm_restore_monitoring(struct task_struct *task)
941 pfm_context_t *ctx = PFM_GET_CTX(task);
942 struct thread_struct *th = &task->thread;
943 unsigned long mask, ovfl_mask;
944 unsigned long psr, val;
945 int i, is_system;
947 is_system = ctx->ctx_fl_system;
948 ovfl_mask = pmu_conf->ovfl_val;
950 if (task != current) {
951 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
952 return;
954 if (ctx->ctx_state != PFM_CTX_MASKED) {
955 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
956 task->pid, current->pid, ctx->ctx_state);
957 return;
959 psr = pfm_get_psr();
961 * monitoring is masked via the PMC.
962 * As we restore their value, we do not want each counter to
963 * restart right away. We stop monitoring using the PSR,
964 * restore the PMC (and PMD) and then re-establish the psr
965 * as it was. Note that there can be no pending overflow at
966 * this point, because monitoring was MASKED.
968 * system-wide session are pinned and self-monitoring
970 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
971 /* disable dcr pp */
972 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
973 pfm_clear_psr_pp();
974 } else {
975 pfm_clear_psr_up();
978 * first, we restore the PMD
980 mask = ctx->ctx_used_pmds[0];
981 for (i = 0; mask; i++, mask>>=1) {
982 /* skip non used pmds */
983 if ((mask & 0x1) == 0) continue;
985 if (PMD_IS_COUNTING(i)) {
987 * we split the 64bit value according to
988 * counter width
990 val = ctx->ctx_pmds[i].val & ovfl_mask;
991 ctx->ctx_pmds[i].val &= ~ovfl_mask;
992 } else {
993 val = ctx->ctx_pmds[i].val;
995 ia64_set_pmd(i, val);
997 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
999 ctx->ctx_pmds[i].val,
1000 val));
1003 * restore the PMCs
1005 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1006 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1007 if ((mask & 0x1) == 0UL) continue;
1008 th->pmcs[i] = ctx->ctx_pmcs[i];
1009 ia64_set_pmc(i, th->pmcs[i]);
1010 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1012 ia64_srlz_d();
1015 * must restore DBR/IBR because could be modified while masked
1016 * XXX: need to optimize
1018 if (ctx->ctx_fl_using_dbreg) {
1019 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1020 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1024 * now restore PSR
1026 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1027 /* enable dcr pp */
1028 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1029 ia64_srlz_i();
1031 pfm_set_psr_l(psr);
1034 static inline void
1035 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1037 int i;
1039 ia64_srlz_d();
1041 for (i=0; mask; i++, mask>>=1) {
1042 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1047 * reload from thread state (used for ctxw only)
1049 static inline void
1050 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1052 int i;
1053 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1055 for (i=0; mask; i++, mask>>=1) {
1056 if ((mask & 0x1) == 0) continue;
1057 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1058 ia64_set_pmd(i, val);
1060 ia64_srlz_d();
1064 * propagate PMD from context to thread-state
1066 static inline void
1067 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1069 struct thread_struct *thread = &task->thread;
1070 unsigned long ovfl_val = pmu_conf->ovfl_val;
1071 unsigned long mask = ctx->ctx_all_pmds[0];
1072 unsigned long val;
1073 int i;
1075 DPRINT(("mask=0x%lx\n", mask));
1077 for (i=0; mask; i++, mask>>=1) {
1079 val = ctx->ctx_pmds[i].val;
1082 * We break up the 64 bit value into 2 pieces
1083 * the lower bits go to the machine state in the
1084 * thread (will be reloaded on ctxsw in).
1085 * The upper part stays in the soft-counter.
1087 if (PMD_IS_COUNTING(i)) {
1088 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1089 val &= ovfl_val;
1091 thread->pmds[i] = val;
1093 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1095 thread->pmds[i],
1096 ctx->ctx_pmds[i].val));
1101 * propagate PMC from context to thread-state
1103 static inline void
1104 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1106 struct thread_struct *thread = &task->thread;
1107 unsigned long mask = ctx->ctx_all_pmcs[0];
1108 int i;
1110 DPRINT(("mask=0x%lx\n", mask));
1112 for (i=0; mask; i++, mask>>=1) {
1113 /* masking 0 with ovfl_val yields 0 */
1114 thread->pmcs[i] = ctx->ctx_pmcs[i];
1115 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1121 static inline void
1122 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1124 int i;
1126 for (i=0; mask; i++, mask>>=1) {
1127 if ((mask & 0x1) == 0) continue;
1128 ia64_set_pmc(i, pmcs[i]);
1130 ia64_srlz_d();
1133 static inline int
1134 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1136 return memcmp(a, b, sizeof(pfm_uuid_t));
1139 static inline int
1140 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1142 int ret = 0;
1143 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1144 return ret;
1147 static inline int
1148 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1150 int ret = 0;
1151 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1152 return ret;
1156 static inline int
1157 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1158 int cpu, void *arg)
1160 int ret = 0;
1161 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1162 return ret;
1165 static inline int
1166 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1167 int cpu, void *arg)
1169 int ret = 0;
1170 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1171 return ret;
1174 static inline int
1175 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1177 int ret = 0;
1178 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1179 return ret;
1182 static inline int
1183 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1185 int ret = 0;
1186 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1187 return ret;
1190 static pfm_buffer_fmt_t *
1191 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1193 struct list_head * pos;
1194 pfm_buffer_fmt_t * entry;
1196 list_for_each(pos, &pfm_buffer_fmt_list) {
1197 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1198 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1199 return entry;
1201 return NULL;
1205 * find a buffer format based on its uuid
1207 static pfm_buffer_fmt_t *
1208 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1210 pfm_buffer_fmt_t * fmt;
1211 spin_lock(&pfm_buffer_fmt_lock);
1212 fmt = __pfm_find_buffer_fmt(uuid);
1213 spin_unlock(&pfm_buffer_fmt_lock);
1214 return fmt;
1218 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1220 int ret = 0;
1222 /* some sanity checks */
1223 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1225 /* we need at least a handler */
1226 if (fmt->fmt_handler == NULL) return -EINVAL;
1229 * XXX: need check validity of fmt_arg_size
1232 spin_lock(&pfm_buffer_fmt_lock);
1234 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1235 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1236 ret = -EBUSY;
1237 goto out;
1239 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1240 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1242 out:
1243 spin_unlock(&pfm_buffer_fmt_lock);
1244 return ret;
1246 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1249 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1251 pfm_buffer_fmt_t *fmt;
1252 int ret = 0;
1254 spin_lock(&pfm_buffer_fmt_lock);
1256 fmt = __pfm_find_buffer_fmt(uuid);
1257 if (!fmt) {
1258 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1259 ret = -EINVAL;
1260 goto out;
1262 list_del_init(&fmt->fmt_list);
1263 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1265 out:
1266 spin_unlock(&pfm_buffer_fmt_lock);
1267 return ret;
1270 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1272 extern void update_pal_halt_status(int);
1274 static int
1275 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1277 unsigned long flags;
1279 * validy checks on cpu_mask have been done upstream
1281 LOCK_PFS(flags);
1283 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1284 pfm_sessions.pfs_sys_sessions,
1285 pfm_sessions.pfs_task_sessions,
1286 pfm_sessions.pfs_sys_use_dbregs,
1287 is_syswide,
1288 cpu));
1290 if (is_syswide) {
1292 * cannot mix system wide and per-task sessions
1294 if (pfm_sessions.pfs_task_sessions > 0UL) {
1295 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1296 pfm_sessions.pfs_task_sessions));
1297 goto abort;
1300 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1302 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1304 pfm_sessions.pfs_sys_session[cpu] = task;
1306 pfm_sessions.pfs_sys_sessions++ ;
1308 } else {
1309 if (pfm_sessions.pfs_sys_sessions) goto abort;
1310 pfm_sessions.pfs_task_sessions++;
1313 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1314 pfm_sessions.pfs_sys_sessions,
1315 pfm_sessions.pfs_task_sessions,
1316 pfm_sessions.pfs_sys_use_dbregs,
1317 is_syswide,
1318 cpu));
1321 * disable default_idle() to go to PAL_HALT
1323 update_pal_halt_status(0);
1325 UNLOCK_PFS(flags);
1327 return 0;
1329 error_conflict:
1330 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1331 pfm_sessions.pfs_sys_session[cpu]->pid,
1332 cpu));
1333 abort:
1334 UNLOCK_PFS(flags);
1336 return -EBUSY;
1340 static int
1341 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1343 unsigned long flags;
1345 * validy checks on cpu_mask have been done upstream
1347 LOCK_PFS(flags);
1349 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1350 pfm_sessions.pfs_sys_sessions,
1351 pfm_sessions.pfs_task_sessions,
1352 pfm_sessions.pfs_sys_use_dbregs,
1353 is_syswide,
1354 cpu));
1357 if (is_syswide) {
1358 pfm_sessions.pfs_sys_session[cpu] = NULL;
1360 * would not work with perfmon+more than one bit in cpu_mask
1362 if (ctx && ctx->ctx_fl_using_dbreg) {
1363 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1364 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1365 } else {
1366 pfm_sessions.pfs_sys_use_dbregs--;
1369 pfm_sessions.pfs_sys_sessions--;
1370 } else {
1371 pfm_sessions.pfs_task_sessions--;
1373 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1374 pfm_sessions.pfs_sys_sessions,
1375 pfm_sessions.pfs_task_sessions,
1376 pfm_sessions.pfs_sys_use_dbregs,
1377 is_syswide,
1378 cpu));
1381 * if possible, enable default_idle() to go into PAL_HALT
1383 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1384 update_pal_halt_status(1);
1386 UNLOCK_PFS(flags);
1388 return 0;
1392 * removes virtual mapping of the sampling buffer.
1393 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1394 * a PROTECT_CTX() section.
1396 static int
1397 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1399 int r;
1401 /* sanity checks */
1402 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1403 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1404 return -EINVAL;
1407 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1410 * does the actual unmapping
1412 down_write(&task->mm->mmap_sem);
1414 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1416 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1418 up_write(&task->mm->mmap_sem);
1419 if (r !=0) {
1420 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1423 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1425 return 0;
1429 * free actual physical storage used by sampling buffer
1431 #if 0
1432 static int
1433 pfm_free_smpl_buffer(pfm_context_t *ctx)
1435 pfm_buffer_fmt_t *fmt;
1437 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1440 * we won't use the buffer format anymore
1442 fmt = ctx->ctx_buf_fmt;
1444 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1445 ctx->ctx_smpl_hdr,
1446 ctx->ctx_smpl_size,
1447 ctx->ctx_smpl_vaddr));
1449 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1452 * free the buffer
1454 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1456 ctx->ctx_smpl_hdr = NULL;
1457 ctx->ctx_smpl_size = 0UL;
1459 return 0;
1461 invalid_free:
1462 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1463 return -EINVAL;
1465 #endif
1467 static inline void
1468 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1470 if (fmt == NULL) return;
1472 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1477 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1478 * no real gain from having the whole whorehouse mounted. So we don't need
1479 * any operations on the root directory. However, we need a non-trivial
1480 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1482 static struct vfsmount *pfmfs_mnt;
1484 static int __init
1485 init_pfm_fs(void)
1487 int err = register_filesystem(&pfm_fs_type);
1488 if (!err) {
1489 pfmfs_mnt = kern_mount(&pfm_fs_type);
1490 err = PTR_ERR(pfmfs_mnt);
1491 if (IS_ERR(pfmfs_mnt))
1492 unregister_filesystem(&pfm_fs_type);
1493 else
1494 err = 0;
1496 return err;
1499 static void __exit
1500 exit_pfm_fs(void)
1502 unregister_filesystem(&pfm_fs_type);
1503 mntput(pfmfs_mnt);
1506 static ssize_t
1507 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1509 pfm_context_t *ctx;
1510 pfm_msg_t *msg;
1511 ssize_t ret;
1512 unsigned long flags;
1513 DECLARE_WAITQUEUE(wait, current);
1514 if (PFM_IS_FILE(filp) == 0) {
1515 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1516 return -EINVAL;
1519 ctx = (pfm_context_t *)filp->private_data;
1520 if (ctx == NULL) {
1521 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1522 return -EINVAL;
1526 * check even when there is no message
1528 if (size < sizeof(pfm_msg_t)) {
1529 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1530 return -EINVAL;
1533 PROTECT_CTX(ctx, flags);
1536 * put ourselves on the wait queue
1538 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1541 for(;;) {
1543 * check wait queue
1546 set_current_state(TASK_INTERRUPTIBLE);
1548 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1550 ret = 0;
1551 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1553 UNPROTECT_CTX(ctx, flags);
1556 * check non-blocking read
1558 ret = -EAGAIN;
1559 if(filp->f_flags & O_NONBLOCK) break;
1562 * check pending signals
1564 if(signal_pending(current)) {
1565 ret = -EINTR;
1566 break;
1569 * no message, so wait
1571 schedule();
1573 PROTECT_CTX(ctx, flags);
1575 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1576 set_current_state(TASK_RUNNING);
1577 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579 if (ret < 0) goto abort;
1581 ret = -EINVAL;
1582 msg = pfm_get_next_msg(ctx);
1583 if (msg == NULL) {
1584 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1585 goto abort_locked;
1588 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1590 ret = -EFAULT;
1591 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1593 abort_locked:
1594 UNPROTECT_CTX(ctx, flags);
1595 abort:
1596 return ret;
1599 static ssize_t
1600 pfm_write(struct file *file, const char __user *ubuf,
1601 size_t size, loff_t *ppos)
1603 DPRINT(("pfm_write called\n"));
1604 return -EINVAL;
1607 static unsigned int
1608 pfm_poll(struct file *filp, poll_table * wait)
1610 pfm_context_t *ctx;
1611 unsigned long flags;
1612 unsigned int mask = 0;
1614 if (PFM_IS_FILE(filp) == 0) {
1615 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1616 return 0;
1619 ctx = (pfm_context_t *)filp->private_data;
1620 if (ctx == NULL) {
1621 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1622 return 0;
1626 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1628 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1630 PROTECT_CTX(ctx, flags);
1632 if (PFM_CTXQ_EMPTY(ctx) == 0)
1633 mask = POLLIN | POLLRDNORM;
1635 UNPROTECT_CTX(ctx, flags);
1637 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1639 return mask;
1642 static int
1643 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1645 DPRINT(("pfm_ioctl called\n"));
1646 return -EINVAL;
1650 * interrupt cannot be masked when coming here
1652 static inline int
1653 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1655 int ret;
1657 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1659 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1660 current->pid,
1663 ctx->ctx_async_queue, ret));
1665 return ret;
1668 static int
1669 pfm_fasync(int fd, struct file *filp, int on)
1671 pfm_context_t *ctx;
1672 int ret;
1674 if (PFM_IS_FILE(filp) == 0) {
1675 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1676 return -EBADF;
1679 ctx = (pfm_context_t *)filp->private_data;
1680 if (ctx == NULL) {
1681 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1682 return -EBADF;
1685 * we cannot mask interrupts during this call because this may
1686 * may go to sleep if memory is not readily avalaible.
1688 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1689 * done in caller. Serialization of this function is ensured by caller.
1691 ret = pfm_do_fasync(fd, filp, ctx, on);
1694 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1697 ctx->ctx_async_queue, ret));
1699 return ret;
1702 #ifdef CONFIG_SMP
1704 * this function is exclusively called from pfm_close().
1705 * The context is not protected at that time, nor are interrupts
1706 * on the remote CPU. That's necessary to avoid deadlocks.
1708 static void
1709 pfm_syswide_force_stop(void *info)
1711 pfm_context_t *ctx = (pfm_context_t *)info;
1712 struct pt_regs *regs = ia64_task_regs(current);
1713 struct task_struct *owner;
1714 unsigned long flags;
1715 int ret;
1717 if (ctx->ctx_cpu != smp_processor_id()) {
1718 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1719 ctx->ctx_cpu,
1720 smp_processor_id());
1721 return;
1723 owner = GET_PMU_OWNER();
1724 if (owner != ctx->ctx_task) {
1725 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1726 smp_processor_id(),
1727 owner->pid, ctx->ctx_task->pid);
1728 return;
1730 if (GET_PMU_CTX() != ctx) {
1731 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1732 smp_processor_id(),
1733 GET_PMU_CTX(), ctx);
1734 return;
1737 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1739 * the context is already protected in pfm_close(), we simply
1740 * need to mask interrupts to avoid a PMU interrupt race on
1741 * this CPU
1743 local_irq_save(flags);
1745 ret = pfm_context_unload(ctx, NULL, 0, regs);
1746 if (ret) {
1747 DPRINT(("context_unload returned %d\n", ret));
1751 * unmask interrupts, PMU interrupts are now spurious here
1753 local_irq_restore(flags);
1756 static void
1757 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1759 int ret;
1761 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1762 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1763 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1765 #endif /* CONFIG_SMP */
1768 * called for each close(). Partially free resources.
1769 * When caller is self-monitoring, the context is unloaded.
1771 static int
1772 pfm_flush(struct file *filp)
1774 pfm_context_t *ctx;
1775 struct task_struct *task;
1776 struct pt_regs *regs;
1777 unsigned long flags;
1778 unsigned long smpl_buf_size = 0UL;
1779 void *smpl_buf_vaddr = NULL;
1780 int state, is_system;
1782 if (PFM_IS_FILE(filp) == 0) {
1783 DPRINT(("bad magic for\n"));
1784 return -EBADF;
1787 ctx = (pfm_context_t *)filp->private_data;
1788 if (ctx == NULL) {
1789 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1790 return -EBADF;
1794 * remove our file from the async queue, if we use this mode.
1795 * This can be done without the context being protected. We come
1796 * here when the context has become unreacheable by other tasks.
1798 * We may still have active monitoring at this point and we may
1799 * end up in pfm_overflow_handler(). However, fasync_helper()
1800 * operates with interrupts disabled and it cleans up the
1801 * queue. If the PMU handler is called prior to entering
1802 * fasync_helper() then it will send a signal. If it is
1803 * invoked after, it will find an empty queue and no
1804 * signal will be sent. In both case, we are safe
1806 if (filp->f_flags & FASYNC) {
1807 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1808 pfm_do_fasync (-1, filp, ctx, 0);
1811 PROTECT_CTX(ctx, flags);
1813 state = ctx->ctx_state;
1814 is_system = ctx->ctx_fl_system;
1816 task = PFM_CTX_TASK(ctx);
1817 regs = ia64_task_regs(task);
1819 DPRINT(("ctx_state=%d is_current=%d\n",
1820 state,
1821 task == current ? 1 : 0));
1824 * if state == UNLOADED, then task is NULL
1828 * we must stop and unload because we are losing access to the context.
1830 if (task == current) {
1831 #ifdef CONFIG_SMP
1833 * the task IS the owner but it migrated to another CPU: that's bad
1834 * but we must handle this cleanly. Unfortunately, the kernel does
1835 * not provide a mechanism to block migration (while the context is loaded).
1837 * We need to release the resource on the ORIGINAL cpu.
1839 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1841 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1843 * keep context protected but unmask interrupt for IPI
1845 local_irq_restore(flags);
1847 pfm_syswide_cleanup_other_cpu(ctx);
1850 * restore interrupt masking
1852 local_irq_save(flags);
1855 * context is unloaded at this point
1857 } else
1858 #endif /* CONFIG_SMP */
1861 DPRINT(("forcing unload\n"));
1863 * stop and unload, returning with state UNLOADED
1864 * and session unreserved.
1866 pfm_context_unload(ctx, NULL, 0, regs);
1868 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1873 * remove virtual mapping, if any, for the calling task.
1874 * cannot reset ctx field until last user is calling close().
1876 * ctx_smpl_vaddr must never be cleared because it is needed
1877 * by every task with access to the context
1879 * When called from do_exit(), the mm context is gone already, therefore
1880 * mm is NULL, i.e., the VMA is already gone and we do not have to
1881 * do anything here
1883 if (ctx->ctx_smpl_vaddr && current->mm) {
1884 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1885 smpl_buf_size = ctx->ctx_smpl_size;
1888 UNPROTECT_CTX(ctx, flags);
1891 * if there was a mapping, then we systematically remove it
1892 * at this point. Cannot be done inside critical section
1893 * because some VM function reenables interrupts.
1896 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1898 return 0;
1901 * called either on explicit close() or from exit_files().
1902 * Only the LAST user of the file gets to this point, i.e., it is
1903 * called only ONCE.
1905 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1906 * (fput()),i.e, last task to access the file. Nobody else can access the
1907 * file at this point.
1909 * When called from exit_files(), the VMA has been freed because exit_mm()
1910 * is executed before exit_files().
1912 * When called from exit_files(), the current task is not yet ZOMBIE but we
1913 * flush the PMU state to the context.
1915 static int
1916 pfm_close(struct inode *inode, struct file *filp)
1918 pfm_context_t *ctx;
1919 struct task_struct *task;
1920 struct pt_regs *regs;
1921 DECLARE_WAITQUEUE(wait, current);
1922 unsigned long flags;
1923 unsigned long smpl_buf_size = 0UL;
1924 void *smpl_buf_addr = NULL;
1925 int free_possible = 1;
1926 int state, is_system;
1928 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1930 if (PFM_IS_FILE(filp) == 0) {
1931 DPRINT(("bad magic\n"));
1932 return -EBADF;
1935 ctx = (pfm_context_t *)filp->private_data;
1936 if (ctx == NULL) {
1937 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1938 return -EBADF;
1941 PROTECT_CTX(ctx, flags);
1943 state = ctx->ctx_state;
1944 is_system = ctx->ctx_fl_system;
1946 task = PFM_CTX_TASK(ctx);
1947 regs = ia64_task_regs(task);
1949 DPRINT(("ctx_state=%d is_current=%d\n",
1950 state,
1951 task == current ? 1 : 0));
1954 * if task == current, then pfm_flush() unloaded the context
1956 if (state == PFM_CTX_UNLOADED) goto doit;
1959 * context is loaded/masked and task != current, we need to
1960 * either force an unload or go zombie
1964 * The task is currently blocked or will block after an overflow.
1965 * we must force it to wakeup to get out of the
1966 * MASKED state and transition to the unloaded state by itself.
1968 * This situation is only possible for per-task mode
1970 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1973 * set a "partial" zombie state to be checked
1974 * upon return from down() in pfm_handle_work().
1976 * We cannot use the ZOMBIE state, because it is checked
1977 * by pfm_load_regs() which is called upon wakeup from down().
1978 * In such case, it would free the context and then we would
1979 * return to pfm_handle_work() which would access the
1980 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1981 * but visible to pfm_handle_work().
1983 * For some window of time, we have a zombie context with
1984 * ctx_state = MASKED and not ZOMBIE
1986 ctx->ctx_fl_going_zombie = 1;
1989 * force task to wake up from MASKED state
1991 up(&ctx->ctx_restart_sem);
1993 DPRINT(("waking up ctx_state=%d\n", state));
1996 * put ourself to sleep waiting for the other
1997 * task to report completion
1999 * the context is protected by mutex, therefore there
2000 * is no risk of being notified of completion before
2001 * begin actually on the waitq.
2003 set_current_state(TASK_INTERRUPTIBLE);
2004 add_wait_queue(&ctx->ctx_zombieq, &wait);
2006 UNPROTECT_CTX(ctx, flags);
2009 * XXX: check for signals :
2010 * - ok for explicit close
2011 * - not ok when coming from exit_files()
2013 schedule();
2016 PROTECT_CTX(ctx, flags);
2019 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2020 set_current_state(TASK_RUNNING);
2023 * context is unloaded at this point
2025 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2027 else if (task != current) {
2028 #ifdef CONFIG_SMP
2030 * switch context to zombie state
2032 ctx->ctx_state = PFM_CTX_ZOMBIE;
2034 DPRINT(("zombie ctx for [%d]\n", task->pid));
2036 * cannot free the context on the spot. deferred until
2037 * the task notices the ZOMBIE state
2039 free_possible = 0;
2040 #else
2041 pfm_context_unload(ctx, NULL, 0, regs);
2042 #endif
2045 doit:
2046 /* reload state, may have changed during opening of critical section */
2047 state = ctx->ctx_state;
2050 * the context is still attached to a task (possibly current)
2051 * we cannot destroy it right now
2055 * we must free the sampling buffer right here because
2056 * we cannot rely on it being cleaned up later by the
2057 * monitored task. It is not possible to free vmalloc'ed
2058 * memory in pfm_load_regs(). Instead, we remove the buffer
2059 * now. should there be subsequent PMU overflow originally
2060 * meant for sampling, the will be converted to spurious
2061 * and that's fine because the monitoring tools is gone anyway.
2063 if (ctx->ctx_smpl_hdr) {
2064 smpl_buf_addr = ctx->ctx_smpl_hdr;
2065 smpl_buf_size = ctx->ctx_smpl_size;
2066 /* no more sampling */
2067 ctx->ctx_smpl_hdr = NULL;
2068 ctx->ctx_fl_is_sampling = 0;
2071 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2072 state,
2073 free_possible,
2074 smpl_buf_addr,
2075 smpl_buf_size));
2077 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2080 * UNLOADED that the session has already been unreserved.
2082 if (state == PFM_CTX_ZOMBIE) {
2083 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2087 * disconnect file descriptor from context must be done
2088 * before we unlock.
2090 filp->private_data = NULL;
2093 * if we free on the spot, the context is now completely unreacheable
2094 * from the callers side. The monitored task side is also cut, so we
2095 * can freely cut.
2097 * If we have a deferred free, only the caller side is disconnected.
2099 UNPROTECT_CTX(ctx, flags);
2102 * All memory free operations (especially for vmalloc'ed memory)
2103 * MUST be done with interrupts ENABLED.
2105 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2108 * return the memory used by the context
2110 if (free_possible) pfm_context_free(ctx);
2112 return 0;
2115 static int
2116 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2118 DPRINT(("pfm_no_open called\n"));
2119 return -ENXIO;
2124 static struct file_operations pfm_file_ops = {
2125 .llseek = no_llseek,
2126 .read = pfm_read,
2127 .write = pfm_write,
2128 .poll = pfm_poll,
2129 .ioctl = pfm_ioctl,
2130 .open = pfm_no_open, /* special open code to disallow open via /proc */
2131 .fasync = pfm_fasync,
2132 .release = pfm_close,
2133 .flush = pfm_flush
2136 static int
2137 pfmfs_delete_dentry(struct dentry *dentry)
2139 return 1;
2142 static struct dentry_operations pfmfs_dentry_operations = {
2143 .d_delete = pfmfs_delete_dentry,
2147 static int
2148 pfm_alloc_fd(struct file **cfile)
2150 int fd, ret = 0;
2151 struct file *file = NULL;
2152 struct inode * inode;
2153 char name[32];
2154 struct qstr this;
2156 fd = get_unused_fd();
2157 if (fd < 0) return -ENFILE;
2159 ret = -ENFILE;
2161 file = get_empty_filp();
2162 if (!file) goto out;
2165 * allocate a new inode
2167 inode = new_inode(pfmfs_mnt->mnt_sb);
2168 if (!inode) goto out;
2170 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2172 inode->i_mode = S_IFCHR|S_IRUGO;
2173 inode->i_uid = current->fsuid;
2174 inode->i_gid = current->fsgid;
2176 sprintf(name, "[%lu]", inode->i_ino);
2177 this.name = name;
2178 this.len = strlen(name);
2179 this.hash = inode->i_ino;
2181 ret = -ENOMEM;
2184 * allocate a new dcache entry
2186 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2187 if (!file->f_dentry) goto out;
2189 file->f_dentry->d_op = &pfmfs_dentry_operations;
2191 d_add(file->f_dentry, inode);
2192 file->f_vfsmnt = mntget(pfmfs_mnt);
2193 file->f_mapping = inode->i_mapping;
2195 file->f_op = &pfm_file_ops;
2196 file->f_mode = FMODE_READ;
2197 file->f_flags = O_RDONLY;
2198 file->f_pos = 0;
2201 * may have to delay until context is attached?
2203 fd_install(fd, file);
2206 * the file structure we will use
2208 *cfile = file;
2210 return fd;
2211 out:
2212 if (file) put_filp(file);
2213 put_unused_fd(fd);
2214 return ret;
2217 static void
2218 pfm_free_fd(int fd, struct file *file)
2220 struct files_struct *files = current->files;
2221 struct fdtable *fdt = files_fdtable(files);
2224 * there ie no fd_uninstall(), so we do it here
2226 spin_lock(&files->file_lock);
2227 rcu_assign_pointer(fdt->fd[fd], NULL);
2228 spin_unlock(&files->file_lock);
2230 if (file)
2231 put_filp(file);
2232 put_unused_fd(fd);
2235 static int
2236 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2238 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2240 while (size > 0) {
2241 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2244 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2245 return -ENOMEM;
2247 addr += PAGE_SIZE;
2248 buf += PAGE_SIZE;
2249 size -= PAGE_SIZE;
2251 return 0;
2255 * allocate a sampling buffer and remaps it into the user address space of the task
2257 static int
2258 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2260 struct mm_struct *mm = task->mm;
2261 struct vm_area_struct *vma = NULL;
2262 unsigned long size;
2263 void *smpl_buf;
2267 * the fixed header + requested size and align to page boundary
2269 size = PAGE_ALIGN(rsize);
2271 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2274 * check requested size to avoid Denial-of-service attacks
2275 * XXX: may have to refine this test
2276 * Check against address space limit.
2278 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2279 * return -ENOMEM;
2281 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2282 return -ENOMEM;
2285 * We do the easy to undo allocations first.
2287 * pfm_rvmalloc(), clears the buffer, so there is no leak
2289 smpl_buf = pfm_rvmalloc(size);
2290 if (smpl_buf == NULL) {
2291 DPRINT(("Can't allocate sampling buffer\n"));
2292 return -ENOMEM;
2295 DPRINT(("smpl_buf @%p\n", smpl_buf));
2297 /* allocate vma */
2298 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2299 if (!vma) {
2300 DPRINT(("Cannot allocate vma\n"));
2301 goto error_kmem;
2303 memset(vma, 0, sizeof(*vma));
2306 * partially initialize the vma for the sampling buffer
2308 vma->vm_mm = mm;
2309 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2310 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2313 * Now we have everything we need and we can initialize
2314 * and connect all the data structures
2317 ctx->ctx_smpl_hdr = smpl_buf;
2318 ctx->ctx_smpl_size = size; /* aligned size */
2321 * Let's do the difficult operations next.
2323 * now we atomically find some area in the address space and
2324 * remap the buffer in it.
2326 down_write(&task->mm->mmap_sem);
2328 /* find some free area in address space, must have mmap sem held */
2329 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2330 if (vma->vm_start == 0UL) {
2331 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2332 up_write(&task->mm->mmap_sem);
2333 goto error;
2335 vma->vm_end = vma->vm_start + size;
2336 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2338 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2340 /* can only be applied to current task, need to have the mm semaphore held when called */
2341 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2342 DPRINT(("Can't remap buffer\n"));
2343 up_write(&task->mm->mmap_sem);
2344 goto error;
2348 * now insert the vma in the vm list for the process, must be
2349 * done with mmap lock held
2351 insert_vm_struct(mm, vma);
2353 mm->total_vm += size >> PAGE_SHIFT;
2354 vm_stat_account(vma);
2355 up_write(&task->mm->mmap_sem);
2358 * keep track of user level virtual address
2360 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2361 *(unsigned long *)user_vaddr = vma->vm_start;
2363 return 0;
2365 error:
2366 kmem_cache_free(vm_area_cachep, vma);
2367 error_kmem:
2368 pfm_rvfree(smpl_buf, size);
2370 return -ENOMEM;
2374 * XXX: do something better here
2376 static int
2377 pfm_bad_permissions(struct task_struct *task)
2379 /* inspired by ptrace_attach() */
2380 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2381 current->uid,
2382 current->gid,
2383 task->euid,
2384 task->suid,
2385 task->uid,
2386 task->egid,
2387 task->sgid));
2389 return ((current->uid != task->euid)
2390 || (current->uid != task->suid)
2391 || (current->uid != task->uid)
2392 || (current->gid != task->egid)
2393 || (current->gid != task->sgid)
2394 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2397 static int
2398 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2400 int ctx_flags;
2402 /* valid signal */
2404 ctx_flags = pfx->ctx_flags;
2406 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2409 * cannot block in this mode
2411 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2412 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2413 return -EINVAL;
2415 } else {
2417 /* probably more to add here */
2419 return 0;
2422 static int
2423 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2424 unsigned int cpu, pfarg_context_t *arg)
2426 pfm_buffer_fmt_t *fmt = NULL;
2427 unsigned long size = 0UL;
2428 void *uaddr = NULL;
2429 void *fmt_arg = NULL;
2430 int ret = 0;
2431 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2433 /* invoke and lock buffer format, if found */
2434 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2435 if (fmt == NULL) {
2436 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2437 return -EINVAL;
2441 * buffer argument MUST be contiguous to pfarg_context_t
2443 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2445 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2447 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2449 if (ret) goto error;
2451 /* link buffer format and context */
2452 ctx->ctx_buf_fmt = fmt;
2455 * check if buffer format wants to use perfmon buffer allocation/mapping service
2457 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2458 if (ret) goto error;
2460 if (size) {
2462 * buffer is always remapped into the caller's address space
2464 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2465 if (ret) goto error;
2467 /* keep track of user address of buffer */
2468 arg->ctx_smpl_vaddr = uaddr;
2470 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2472 error:
2473 return ret;
2476 static void
2477 pfm_reset_pmu_state(pfm_context_t *ctx)
2479 int i;
2482 * install reset values for PMC.
2484 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2485 if (PMC_IS_IMPL(i) == 0) continue;
2486 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2487 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2490 * PMD registers are set to 0UL when the context in memset()
2494 * On context switched restore, we must restore ALL pmc and ALL pmd even
2495 * when they are not actively used by the task. In UP, the incoming process
2496 * may otherwise pick up left over PMC, PMD state from the previous process.
2497 * As opposed to PMD, stale PMC can cause harm to the incoming
2498 * process because they may change what is being measured.
2499 * Therefore, we must systematically reinstall the entire
2500 * PMC state. In SMP, the same thing is possible on the
2501 * same CPU but also on between 2 CPUs.
2503 * The problem with PMD is information leaking especially
2504 * to user level when psr.sp=0
2506 * There is unfortunately no easy way to avoid this problem
2507 * on either UP or SMP. This definitively slows down the
2508 * pfm_load_regs() function.
2512 * bitmask of all PMCs accessible to this context
2514 * PMC0 is treated differently.
2516 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2519 * bitmask of all PMDs that are accesible to this context
2521 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2523 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2526 * useful in case of re-enable after disable
2528 ctx->ctx_used_ibrs[0] = 0UL;
2529 ctx->ctx_used_dbrs[0] = 0UL;
2532 static int
2533 pfm_ctx_getsize(void *arg, size_t *sz)
2535 pfarg_context_t *req = (pfarg_context_t *)arg;
2536 pfm_buffer_fmt_t *fmt;
2538 *sz = 0;
2540 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2542 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2543 if (fmt == NULL) {
2544 DPRINT(("cannot find buffer format\n"));
2545 return -EINVAL;
2547 /* get just enough to copy in user parameters */
2548 *sz = fmt->fmt_arg_size;
2549 DPRINT(("arg_size=%lu\n", *sz));
2551 return 0;
2557 * cannot attach if :
2558 * - kernel task
2559 * - task not owned by caller
2560 * - task incompatible with context mode
2562 static int
2563 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2566 * no kernel task or task not owner by caller
2568 if (task->mm == NULL) {
2569 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2570 return -EPERM;
2572 if (pfm_bad_permissions(task)) {
2573 DPRINT(("no permission to attach to [%d]\n", task->pid));
2574 return -EPERM;
2577 * cannot block in self-monitoring mode
2579 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2580 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2581 return -EINVAL;
2584 if (task->exit_state == EXIT_ZOMBIE) {
2585 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2586 return -EBUSY;
2590 * always ok for self
2592 if (task == current) return 0;
2594 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2595 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2596 return -EBUSY;
2599 * make sure the task is off any CPU
2601 wait_task_inactive(task);
2603 /* more to come... */
2605 return 0;
2608 static int
2609 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2611 struct task_struct *p = current;
2612 int ret;
2614 /* XXX: need to add more checks here */
2615 if (pid < 2) return -EPERM;
2617 if (pid != current->pid) {
2619 read_lock(&tasklist_lock);
2621 p = find_task_by_pid(pid);
2623 /* make sure task cannot go away while we operate on it */
2624 if (p) get_task_struct(p);
2626 read_unlock(&tasklist_lock);
2628 if (p == NULL) return -ESRCH;
2631 ret = pfm_task_incompatible(ctx, p);
2632 if (ret == 0) {
2633 *task = p;
2634 } else if (p != current) {
2635 pfm_put_task(p);
2637 return ret;
2642 static int
2643 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2645 pfarg_context_t *req = (pfarg_context_t *)arg;
2646 struct file *filp;
2647 int ctx_flags;
2648 int ret;
2650 /* let's check the arguments first */
2651 ret = pfarg_is_sane(current, req);
2652 if (ret < 0) return ret;
2654 ctx_flags = req->ctx_flags;
2656 ret = -ENOMEM;
2658 ctx = pfm_context_alloc();
2659 if (!ctx) goto error;
2661 ret = pfm_alloc_fd(&filp);
2662 if (ret < 0) goto error_file;
2664 req->ctx_fd = ctx->ctx_fd = ret;
2667 * attach context to file
2669 filp->private_data = ctx;
2672 * does the user want to sample?
2674 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2675 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2676 if (ret) goto buffer_error;
2680 * init context protection lock
2682 spin_lock_init(&ctx->ctx_lock);
2685 * context is unloaded
2687 ctx->ctx_state = PFM_CTX_UNLOADED;
2690 * initialization of context's flags
2692 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2693 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2694 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2695 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2697 * will move to set properties
2698 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2702 * init restart semaphore to locked
2704 sema_init(&ctx->ctx_restart_sem, 0);
2707 * activation is used in SMP only
2709 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2710 SET_LAST_CPU(ctx, -1);
2713 * initialize notification message queue
2715 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2716 init_waitqueue_head(&ctx->ctx_msgq_wait);
2717 init_waitqueue_head(&ctx->ctx_zombieq);
2719 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2720 ctx,
2721 ctx_flags,
2722 ctx->ctx_fl_system,
2723 ctx->ctx_fl_block,
2724 ctx->ctx_fl_excl_idle,
2725 ctx->ctx_fl_no_msg,
2726 ctx->ctx_fd));
2729 * initialize soft PMU state
2731 pfm_reset_pmu_state(ctx);
2733 return 0;
2735 buffer_error:
2736 pfm_free_fd(ctx->ctx_fd, filp);
2738 if (ctx->ctx_buf_fmt) {
2739 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2741 error_file:
2742 pfm_context_free(ctx);
2744 error:
2745 return ret;
2748 static inline unsigned long
2749 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2751 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2752 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2753 extern unsigned long carta_random32 (unsigned long seed);
2755 if (reg->flags & PFM_REGFL_RANDOM) {
2756 new_seed = carta_random32(old_seed);
2757 val -= (old_seed & mask); /* counter values are negative numbers! */
2758 if ((mask >> 32) != 0)
2759 /* construct a full 64-bit random value: */
2760 new_seed |= carta_random32(old_seed >> 32) << 32;
2761 reg->seed = new_seed;
2763 reg->lval = val;
2764 return val;
2767 static void
2768 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2770 unsigned long mask = ovfl_regs[0];
2771 unsigned long reset_others = 0UL;
2772 unsigned long val;
2773 int i;
2776 * now restore reset value on sampling overflowed counters
2778 mask >>= PMU_FIRST_COUNTER;
2779 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2781 if ((mask & 0x1UL) == 0UL) continue;
2783 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2784 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2786 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2790 * Now take care of resetting the other registers
2792 for(i = 0; reset_others; i++, reset_others >>= 1) {
2794 if ((reset_others & 0x1) == 0) continue;
2796 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2798 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2799 is_long_reset ? "long" : "short", i, val));
2803 static void
2804 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2806 unsigned long mask = ovfl_regs[0];
2807 unsigned long reset_others = 0UL;
2808 unsigned long val;
2809 int i;
2811 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2813 if (ctx->ctx_state == PFM_CTX_MASKED) {
2814 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2815 return;
2819 * now restore reset value on sampling overflowed counters
2821 mask >>= PMU_FIRST_COUNTER;
2822 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2824 if ((mask & 0x1UL) == 0UL) continue;
2826 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2827 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2829 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2831 pfm_write_soft_counter(ctx, i, val);
2835 * Now take care of resetting the other registers
2837 for(i = 0; reset_others; i++, reset_others >>= 1) {
2839 if ((reset_others & 0x1) == 0) continue;
2841 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2843 if (PMD_IS_COUNTING(i)) {
2844 pfm_write_soft_counter(ctx, i, val);
2845 } else {
2846 ia64_set_pmd(i, val);
2848 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2849 is_long_reset ? "long" : "short", i, val));
2851 ia64_srlz_d();
2854 static int
2855 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2857 struct thread_struct *thread = NULL;
2858 struct task_struct *task;
2859 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2860 unsigned long value, pmc_pm;
2861 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2862 unsigned int cnum, reg_flags, flags, pmc_type;
2863 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2864 int is_monitor, is_counting, state;
2865 int ret = -EINVAL;
2866 pfm_reg_check_t wr_func;
2867 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2869 state = ctx->ctx_state;
2870 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2871 is_system = ctx->ctx_fl_system;
2872 task = ctx->ctx_task;
2873 impl_pmds = pmu_conf->impl_pmds[0];
2875 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2877 if (is_loaded) {
2878 thread = &task->thread;
2880 * In system wide and when the context is loaded, access can only happen
2881 * when the caller is running on the CPU being monitored by the session.
2882 * It does not have to be the owner (ctx_task) of the context per se.
2884 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2885 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2886 return -EBUSY;
2888 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2890 expert_mode = pfm_sysctl.expert_mode;
2892 for (i = 0; i < count; i++, req++) {
2894 cnum = req->reg_num;
2895 reg_flags = req->reg_flags;
2896 value = req->reg_value;
2897 smpl_pmds = req->reg_smpl_pmds[0];
2898 reset_pmds = req->reg_reset_pmds[0];
2899 flags = 0;
2902 if (cnum >= PMU_MAX_PMCS) {
2903 DPRINT(("pmc%u is invalid\n", cnum));
2904 goto error;
2907 pmc_type = pmu_conf->pmc_desc[cnum].type;
2908 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2909 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2910 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2913 * we reject all non implemented PMC as well
2914 * as attempts to modify PMC[0-3] which are used
2915 * as status registers by the PMU
2917 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2918 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2919 goto error;
2921 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2923 * If the PMC is a monitor, then if the value is not the default:
2924 * - system-wide session: PMCx.pm=1 (privileged monitor)
2925 * - per-task : PMCx.pm=0 (user monitor)
2927 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2928 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2929 cnum,
2930 pmc_pm,
2931 is_system));
2932 goto error;
2935 if (is_counting) {
2937 * enforce generation of overflow interrupt. Necessary on all
2938 * CPUs.
2940 value |= 1 << PMU_PMC_OI;
2942 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2943 flags |= PFM_REGFL_OVFL_NOTIFY;
2946 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2948 /* verify validity of smpl_pmds */
2949 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2950 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2951 goto error;
2954 /* verify validity of reset_pmds */
2955 if ((reset_pmds & impl_pmds) != reset_pmds) {
2956 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2957 goto error;
2959 } else {
2960 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2961 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2962 goto error;
2964 /* eventid on non-counting monitors are ignored */
2968 * execute write checker, if any
2970 if (likely(expert_mode == 0 && wr_func)) {
2971 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2972 if (ret) goto error;
2973 ret = -EINVAL;
2977 * no error on this register
2979 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2982 * Now we commit the changes to the software state
2986 * update overflow information
2988 if (is_counting) {
2990 * full flag update each time a register is programmed
2992 ctx->ctx_pmds[cnum].flags = flags;
2994 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2995 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2996 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2999 * Mark all PMDS to be accessed as used.
3001 * We do not keep track of PMC because we have to
3002 * systematically restore ALL of them.
3004 * We do not update the used_monitors mask, because
3005 * if we have not programmed them, then will be in
3006 * a quiescent state, therefore we will not need to
3007 * mask/restore then when context is MASKED.
3009 CTX_USED_PMD(ctx, reset_pmds);
3010 CTX_USED_PMD(ctx, smpl_pmds);
3012 * make sure we do not try to reset on
3013 * restart because we have established new values
3015 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3018 * Needed in case the user does not initialize the equivalent
3019 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3020 * possible leak here.
3022 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3025 * keep track of the monitor PMC that we are using.
3026 * we save the value of the pmc in ctx_pmcs[] and if
3027 * the monitoring is not stopped for the context we also
3028 * place it in the saved state area so that it will be
3029 * picked up later by the context switch code.
3031 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3033 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3034 * monitoring needs to be stopped.
3036 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3039 * update context state
3041 ctx->ctx_pmcs[cnum] = value;
3043 if (is_loaded) {
3045 * write thread state
3047 if (is_system == 0) thread->pmcs[cnum] = value;
3050 * write hardware register if we can
3052 if (can_access_pmu) {
3053 ia64_set_pmc(cnum, value);
3055 #ifdef CONFIG_SMP
3056 else {
3058 * per-task SMP only here
3060 * we are guaranteed that the task is not running on the other CPU,
3061 * we indicate that this PMD will need to be reloaded if the task
3062 * is rescheduled on the CPU it ran last on.
3064 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3066 #endif
3069 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3070 cnum,
3071 value,
3072 is_loaded,
3073 can_access_pmu,
3074 flags,
3075 ctx->ctx_all_pmcs[0],
3076 ctx->ctx_used_pmds[0],
3077 ctx->ctx_pmds[cnum].eventid,
3078 smpl_pmds,
3079 reset_pmds,
3080 ctx->ctx_reload_pmcs[0],
3081 ctx->ctx_used_monitors[0],
3082 ctx->ctx_ovfl_regs[0]));
3086 * make sure the changes are visible
3088 if (can_access_pmu) ia64_srlz_d();
3090 return 0;
3091 error:
3092 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3093 return ret;
3096 static int
3097 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3099 struct thread_struct *thread = NULL;
3100 struct task_struct *task;
3101 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3102 unsigned long value, hw_value, ovfl_mask;
3103 unsigned int cnum;
3104 int i, can_access_pmu = 0, state;
3105 int is_counting, is_loaded, is_system, expert_mode;
3106 int ret = -EINVAL;
3107 pfm_reg_check_t wr_func;
3110 state = ctx->ctx_state;
3111 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3112 is_system = ctx->ctx_fl_system;
3113 ovfl_mask = pmu_conf->ovfl_val;
3114 task = ctx->ctx_task;
3116 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3119 * on both UP and SMP, we can only write to the PMC when the task is
3120 * the owner of the local PMU.
3122 if (likely(is_loaded)) {
3123 thread = &task->thread;
3125 * In system wide and when the context is loaded, access can only happen
3126 * when the caller is running on the CPU being monitored by the session.
3127 * It does not have to be the owner (ctx_task) of the context per se.
3129 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3130 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3131 return -EBUSY;
3133 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3135 expert_mode = pfm_sysctl.expert_mode;
3137 for (i = 0; i < count; i++, req++) {
3139 cnum = req->reg_num;
3140 value = req->reg_value;
3142 if (!PMD_IS_IMPL(cnum)) {
3143 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3144 goto abort_mission;
3146 is_counting = PMD_IS_COUNTING(cnum);
3147 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3150 * execute write checker, if any
3152 if (unlikely(expert_mode == 0 && wr_func)) {
3153 unsigned long v = value;
3155 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3156 if (ret) goto abort_mission;
3158 value = v;
3159 ret = -EINVAL;
3163 * no error on this register
3165 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3168 * now commit changes to software state
3170 hw_value = value;
3173 * update virtualized (64bits) counter
3175 if (is_counting) {
3177 * write context state
3179 ctx->ctx_pmds[cnum].lval = value;
3182 * when context is load we use the split value
3184 if (is_loaded) {
3185 hw_value = value & ovfl_mask;
3186 value = value & ~ovfl_mask;
3190 * update reset values (not just for counters)
3192 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3193 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3196 * update randomization parameters (not just for counters)
3198 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3199 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3202 * update context value
3204 ctx->ctx_pmds[cnum].val = value;
3207 * Keep track of what we use
3209 * We do not keep track of PMC because we have to
3210 * systematically restore ALL of them.
3212 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3215 * mark this PMD register used as well
3217 CTX_USED_PMD(ctx, RDEP(cnum));
3220 * make sure we do not try to reset on
3221 * restart because we have established new values
3223 if (is_counting && state == PFM_CTX_MASKED) {
3224 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3227 if (is_loaded) {
3229 * write thread state
3231 if (is_system == 0) thread->pmds[cnum] = hw_value;
3234 * write hardware register if we can
3236 if (can_access_pmu) {
3237 ia64_set_pmd(cnum, hw_value);
3238 } else {
3239 #ifdef CONFIG_SMP
3241 * we are guaranteed that the task is not running on the other CPU,
3242 * we indicate that this PMD will need to be reloaded if the task
3243 * is rescheduled on the CPU it ran last on.
3245 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3246 #endif
3250 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3251 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3252 cnum,
3253 value,
3254 is_loaded,
3255 can_access_pmu,
3256 hw_value,
3257 ctx->ctx_pmds[cnum].val,
3258 ctx->ctx_pmds[cnum].short_reset,
3259 ctx->ctx_pmds[cnum].long_reset,
3260 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3261 ctx->ctx_pmds[cnum].seed,
3262 ctx->ctx_pmds[cnum].mask,
3263 ctx->ctx_used_pmds[0],
3264 ctx->ctx_pmds[cnum].reset_pmds[0],
3265 ctx->ctx_reload_pmds[0],
3266 ctx->ctx_all_pmds[0],
3267 ctx->ctx_ovfl_regs[0]));
3271 * make changes visible
3273 if (can_access_pmu) ia64_srlz_d();
3275 return 0;
3277 abort_mission:
3279 * for now, we have only one possibility for error
3281 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3282 return ret;
3286 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3287 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3288 * interrupt is delivered during the call, it will be kept pending until we leave, making
3289 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3290 * guaranteed to return consistent data to the user, it may simply be old. It is not
3291 * trivial to treat the overflow while inside the call because you may end up in
3292 * some module sampling buffer code causing deadlocks.
3294 static int
3295 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3297 struct thread_struct *thread = NULL;
3298 struct task_struct *task;
3299 unsigned long val = 0UL, lval, ovfl_mask, sval;
3300 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3301 unsigned int cnum, reg_flags = 0;
3302 int i, can_access_pmu = 0, state;
3303 int is_loaded, is_system, is_counting, expert_mode;
3304 int ret = -EINVAL;
3305 pfm_reg_check_t rd_func;
3308 * access is possible when loaded only for
3309 * self-monitoring tasks or in UP mode
3312 state = ctx->ctx_state;
3313 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3314 is_system = ctx->ctx_fl_system;
3315 ovfl_mask = pmu_conf->ovfl_val;
3316 task = ctx->ctx_task;
3318 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3320 if (likely(is_loaded)) {
3321 thread = &task->thread;
3323 * In system wide and when the context is loaded, access can only happen
3324 * when the caller is running on the CPU being monitored by the session.
3325 * It does not have to be the owner (ctx_task) of the context per se.
3327 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3328 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3329 return -EBUSY;
3332 * this can be true when not self-monitoring only in UP
3334 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3336 if (can_access_pmu) ia64_srlz_d();
3338 expert_mode = pfm_sysctl.expert_mode;
3340 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3341 is_loaded,
3342 can_access_pmu,
3343 state));
3346 * on both UP and SMP, we can only read the PMD from the hardware register when
3347 * the task is the owner of the local PMU.
3350 for (i = 0; i < count; i++, req++) {
3352 cnum = req->reg_num;
3353 reg_flags = req->reg_flags;
3355 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3357 * we can only read the register that we use. That includes
3358 * the one we explicitely initialize AND the one we want included
3359 * in the sampling buffer (smpl_regs).
3361 * Having this restriction allows optimization in the ctxsw routine
3362 * without compromising security (leaks)
3364 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3366 sval = ctx->ctx_pmds[cnum].val;
3367 lval = ctx->ctx_pmds[cnum].lval;
3368 is_counting = PMD_IS_COUNTING(cnum);
3371 * If the task is not the current one, then we check if the
3372 * PMU state is still in the local live register due to lazy ctxsw.
3373 * If true, then we read directly from the registers.
3375 if (can_access_pmu){
3376 val = ia64_get_pmd(cnum);
3377 } else {
3379 * context has been saved
3380 * if context is zombie, then task does not exist anymore.
3381 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3383 val = is_loaded ? thread->pmds[cnum] : 0UL;
3385 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3387 if (is_counting) {
3389 * XXX: need to check for overflow when loaded
3391 val &= ovfl_mask;
3392 val += sval;
3396 * execute read checker, if any
3398 if (unlikely(expert_mode == 0 && rd_func)) {
3399 unsigned long v = val;
3400 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3401 if (ret) goto error;
3402 val = v;
3403 ret = -EINVAL;
3406 PFM_REG_RETFLAG_SET(reg_flags, 0);
3408 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3411 * update register return value, abort all if problem during copy.
3412 * we only modify the reg_flags field. no check mode is fine because
3413 * access has been verified upfront in sys_perfmonctl().
3415 req->reg_value = val;
3416 req->reg_flags = reg_flags;
3417 req->reg_last_reset_val = lval;
3420 return 0;
3422 error:
3423 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3424 return ret;
3428 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3430 pfm_context_t *ctx;
3432 if (req == NULL) return -EINVAL;
3434 ctx = GET_PMU_CTX();
3436 if (ctx == NULL) return -EINVAL;
3439 * for now limit to current task, which is enough when calling
3440 * from overflow handler
3442 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3444 return pfm_write_pmcs(ctx, req, nreq, regs);
3446 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3449 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3451 pfm_context_t *ctx;
3453 if (req == NULL) return -EINVAL;
3455 ctx = GET_PMU_CTX();
3457 if (ctx == NULL) return -EINVAL;
3460 * for now limit to current task, which is enough when calling
3461 * from overflow handler
3463 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3465 return pfm_read_pmds(ctx, req, nreq, regs);
3467 EXPORT_SYMBOL(pfm_mod_read_pmds);
3470 * Only call this function when a process it trying to
3471 * write the debug registers (reading is always allowed)
3474 pfm_use_debug_registers(struct task_struct *task)
3476 pfm_context_t *ctx = task->thread.pfm_context;
3477 unsigned long flags;
3478 int ret = 0;
3480 if (pmu_conf->use_rr_dbregs == 0) return 0;
3482 DPRINT(("called for [%d]\n", task->pid));
3485 * do it only once
3487 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3490 * Even on SMP, we do not need to use an atomic here because
3491 * the only way in is via ptrace() and this is possible only when the
3492 * process is stopped. Even in the case where the ctxsw out is not totally
3493 * completed by the time we come here, there is no way the 'stopped' process
3494 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3495 * So this is always safe.
3497 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3499 LOCK_PFS(flags);
3502 * We cannot allow setting breakpoints when system wide monitoring
3503 * sessions are using the debug registers.
3505 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3506 ret = -1;
3507 else
3508 pfm_sessions.pfs_ptrace_use_dbregs++;
3510 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3511 pfm_sessions.pfs_ptrace_use_dbregs,
3512 pfm_sessions.pfs_sys_use_dbregs,
3513 task->pid, ret));
3515 UNLOCK_PFS(flags);
3517 return ret;
3521 * This function is called for every task that exits with the
3522 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3523 * able to use the debug registers for debugging purposes via
3524 * ptrace(). Therefore we know it was not using them for
3525 * perfmormance monitoring, so we only decrement the number
3526 * of "ptraced" debug register users to keep the count up to date
3529 pfm_release_debug_registers(struct task_struct *task)
3531 unsigned long flags;
3532 int ret;
3534 if (pmu_conf->use_rr_dbregs == 0) return 0;
3536 LOCK_PFS(flags);
3537 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3538 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3539 ret = -1;
3540 } else {
3541 pfm_sessions.pfs_ptrace_use_dbregs--;
3542 ret = 0;
3544 UNLOCK_PFS(flags);
3546 return ret;
3549 static int
3550 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3552 struct task_struct *task;
3553 pfm_buffer_fmt_t *fmt;
3554 pfm_ovfl_ctrl_t rst_ctrl;
3555 int state, is_system;
3556 int ret = 0;
3558 state = ctx->ctx_state;
3559 fmt = ctx->ctx_buf_fmt;
3560 is_system = ctx->ctx_fl_system;
3561 task = PFM_CTX_TASK(ctx);
3563 switch(state) {
3564 case PFM_CTX_MASKED:
3565 break;
3566 case PFM_CTX_LOADED:
3567 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3568 /* fall through */
3569 case PFM_CTX_UNLOADED:
3570 case PFM_CTX_ZOMBIE:
3571 DPRINT(("invalid state=%d\n", state));
3572 return -EBUSY;
3573 default:
3574 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3575 return -EINVAL;
3579 * In system wide and when the context is loaded, access can only happen
3580 * when the caller is running on the CPU being monitored by the session.
3581 * It does not have to be the owner (ctx_task) of the context per se.
3583 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3584 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3585 return -EBUSY;
3588 /* sanity check */
3589 if (unlikely(task == NULL)) {
3590 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3591 return -EINVAL;
3594 if (task == current || is_system) {
3596 fmt = ctx->ctx_buf_fmt;
3598 DPRINT(("restarting self %d ovfl=0x%lx\n",
3599 task->pid,
3600 ctx->ctx_ovfl_regs[0]));
3602 if (CTX_HAS_SMPL(ctx)) {
3604 prefetch(ctx->ctx_smpl_hdr);
3606 rst_ctrl.bits.mask_monitoring = 0;
3607 rst_ctrl.bits.reset_ovfl_pmds = 0;
3609 if (state == PFM_CTX_LOADED)
3610 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3611 else
3612 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3613 } else {
3614 rst_ctrl.bits.mask_monitoring = 0;
3615 rst_ctrl.bits.reset_ovfl_pmds = 1;
3618 if (ret == 0) {
3619 if (rst_ctrl.bits.reset_ovfl_pmds)
3620 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3622 if (rst_ctrl.bits.mask_monitoring == 0) {
3623 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3625 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3626 } else {
3627 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3629 // cannot use pfm_stop_monitoring(task, regs);
3633 * clear overflowed PMD mask to remove any stale information
3635 ctx->ctx_ovfl_regs[0] = 0UL;
3638 * back to LOADED state
3640 ctx->ctx_state = PFM_CTX_LOADED;
3643 * XXX: not really useful for self monitoring
3645 ctx->ctx_fl_can_restart = 0;
3647 return 0;
3651 * restart another task
3655 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3656 * one is seen by the task.
3658 if (state == PFM_CTX_MASKED) {
3659 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3661 * will prevent subsequent restart before this one is
3662 * seen by other task
3664 ctx->ctx_fl_can_restart = 0;
3668 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3669 * the task is blocked or on its way to block. That's the normal
3670 * restart path. If the monitoring is not masked, then the task
3671 * can be actively monitoring and we cannot directly intervene.
3672 * Therefore we use the trap mechanism to catch the task and
3673 * force it to reset the buffer/reset PMDs.
3675 * if non-blocking, then we ensure that the task will go into
3676 * pfm_handle_work() before returning to user mode.
3678 * We cannot explicitely reset another task, it MUST always
3679 * be done by the task itself. This works for system wide because
3680 * the tool that is controlling the session is logically doing
3681 * "self-monitoring".
3683 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3684 DPRINT(("unblocking [%d] \n", task->pid));
3685 up(&ctx->ctx_restart_sem);
3686 } else {
3687 DPRINT(("[%d] armed exit trap\n", task->pid));
3689 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3691 PFM_SET_WORK_PENDING(task, 1);
3693 pfm_set_task_notify(task);
3696 * XXX: send reschedule if task runs on another CPU
3699 return 0;
3702 static int
3703 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705 unsigned int m = *(unsigned int *)arg;
3707 pfm_sysctl.debug = m == 0 ? 0 : 1;
3709 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3711 if (m == 0) {
3712 memset(pfm_stats, 0, sizeof(pfm_stats));
3713 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3715 return 0;
3719 * arg can be NULL and count can be zero for this function
3721 static int
3722 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3724 struct thread_struct *thread = NULL;
3725 struct task_struct *task;
3726 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3727 unsigned long flags;
3728 dbreg_t dbreg;
3729 unsigned int rnum;
3730 int first_time;
3731 int ret = 0, state;
3732 int i, can_access_pmu = 0;
3733 int is_system, is_loaded;
3735 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3737 state = ctx->ctx_state;
3738 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3739 is_system = ctx->ctx_fl_system;
3740 task = ctx->ctx_task;
3742 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3745 * on both UP and SMP, we can only write to the PMC when the task is
3746 * the owner of the local PMU.
3748 if (is_loaded) {
3749 thread = &task->thread;
3751 * In system wide and when the context is loaded, access can only happen
3752 * when the caller is running on the CPU being monitored by the session.
3753 * It does not have to be the owner (ctx_task) of the context per se.
3755 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3756 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3757 return -EBUSY;
3759 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3763 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3764 * ensuring that no real breakpoint can be installed via this call.
3766 * IMPORTANT: regs can be NULL in this function
3769 first_time = ctx->ctx_fl_using_dbreg == 0;
3772 * don't bother if we are loaded and task is being debugged
3774 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3775 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3776 return -EBUSY;
3780 * check for debug registers in system wide mode
3782 * If though a check is done in pfm_context_load(),
3783 * we must repeat it here, in case the registers are
3784 * written after the context is loaded
3786 if (is_loaded) {
3787 LOCK_PFS(flags);
3789 if (first_time && is_system) {
3790 if (pfm_sessions.pfs_ptrace_use_dbregs)
3791 ret = -EBUSY;
3792 else
3793 pfm_sessions.pfs_sys_use_dbregs++;
3795 UNLOCK_PFS(flags);
3798 if (ret != 0) return ret;
3801 * mark ourself as user of the debug registers for
3802 * perfmon purposes.
3804 ctx->ctx_fl_using_dbreg = 1;
3807 * clear hardware registers to make sure we don't
3808 * pick up stale state.
3810 * for a system wide session, we do not use
3811 * thread.dbr, thread.ibr because this process
3812 * never leaves the current CPU and the state
3813 * is shared by all processes running on it
3815 if (first_time && can_access_pmu) {
3816 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3817 for (i=0; i < pmu_conf->num_ibrs; i++) {
3818 ia64_set_ibr(i, 0UL);
3819 ia64_dv_serialize_instruction();
3821 ia64_srlz_i();
3822 for (i=0; i < pmu_conf->num_dbrs; i++) {
3823 ia64_set_dbr(i, 0UL);
3824 ia64_dv_serialize_data();
3826 ia64_srlz_d();
3830 * Now install the values into the registers
3832 for (i = 0; i < count; i++, req++) {
3834 rnum = req->dbreg_num;
3835 dbreg.val = req->dbreg_value;
3837 ret = -EINVAL;
3839 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3840 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3841 rnum, dbreg.val, mode, i, count));
3843 goto abort_mission;
3847 * make sure we do not install enabled breakpoint
3849 if (rnum & 0x1) {
3850 if (mode == PFM_CODE_RR)
3851 dbreg.ibr.ibr_x = 0;
3852 else
3853 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3856 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3859 * Debug registers, just like PMC, can only be modified
3860 * by a kernel call. Moreover, perfmon() access to those
3861 * registers are centralized in this routine. The hardware
3862 * does not modify the value of these registers, therefore,
3863 * if we save them as they are written, we can avoid having
3864 * to save them on context switch out. This is made possible
3865 * by the fact that when perfmon uses debug registers, ptrace()
3866 * won't be able to modify them concurrently.
3868 if (mode == PFM_CODE_RR) {
3869 CTX_USED_IBR(ctx, rnum);
3871 if (can_access_pmu) {
3872 ia64_set_ibr(rnum, dbreg.val);
3873 ia64_dv_serialize_instruction();
3876 ctx->ctx_ibrs[rnum] = dbreg.val;
3878 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3879 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3880 } else {
3881 CTX_USED_DBR(ctx, rnum);
3883 if (can_access_pmu) {
3884 ia64_set_dbr(rnum, dbreg.val);
3885 ia64_dv_serialize_data();
3887 ctx->ctx_dbrs[rnum] = dbreg.val;
3889 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3890 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3894 return 0;
3896 abort_mission:
3898 * in case it was our first attempt, we undo the global modifications
3900 if (first_time) {
3901 LOCK_PFS(flags);
3902 if (ctx->ctx_fl_system) {
3903 pfm_sessions.pfs_sys_use_dbregs--;
3905 UNLOCK_PFS(flags);
3906 ctx->ctx_fl_using_dbreg = 0;
3909 * install error return flag
3911 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3913 return ret;
3916 static int
3917 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3919 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3922 static int
3923 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3925 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3929 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3931 pfm_context_t *ctx;
3933 if (req == NULL) return -EINVAL;
3935 ctx = GET_PMU_CTX();
3937 if (ctx == NULL) return -EINVAL;
3940 * for now limit to current task, which is enough when calling
3941 * from overflow handler
3943 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3945 return pfm_write_ibrs(ctx, req, nreq, regs);
3947 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3950 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3952 pfm_context_t *ctx;
3954 if (req == NULL) return -EINVAL;
3956 ctx = GET_PMU_CTX();
3958 if (ctx == NULL) return -EINVAL;
3961 * for now limit to current task, which is enough when calling
3962 * from overflow handler
3964 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3966 return pfm_write_dbrs(ctx, req, nreq, regs);
3968 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3971 static int
3972 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3974 pfarg_features_t *req = (pfarg_features_t *)arg;
3976 req->ft_version = PFM_VERSION;
3977 return 0;
3980 static int
3981 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3983 struct pt_regs *tregs;
3984 struct task_struct *task = PFM_CTX_TASK(ctx);
3985 int state, is_system;
3987 state = ctx->ctx_state;
3988 is_system = ctx->ctx_fl_system;
3991 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3993 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3996 * In system wide and when the context is loaded, access can only happen
3997 * when the caller is running on the CPU being monitored by the session.
3998 * It does not have to be the owner (ctx_task) of the context per se.
4000 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4001 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4002 return -EBUSY;
4004 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4005 PFM_CTX_TASK(ctx)->pid,
4006 state,
4007 is_system));
4009 * in system mode, we need to update the PMU directly
4010 * and the user level state of the caller, which may not
4011 * necessarily be the creator of the context.
4013 if (is_system) {
4015 * Update local PMU first
4017 * disable dcr pp
4019 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4020 ia64_srlz_i();
4023 * update local cpuinfo
4025 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4028 * stop monitoring, does srlz.i
4030 pfm_clear_psr_pp();
4033 * stop monitoring in the caller
4035 ia64_psr(regs)->pp = 0;
4037 return 0;
4040 * per-task mode
4043 if (task == current) {
4044 /* stop monitoring at kernel level */
4045 pfm_clear_psr_up();
4048 * stop monitoring at the user level
4050 ia64_psr(regs)->up = 0;
4051 } else {
4052 tregs = ia64_task_regs(task);
4055 * stop monitoring at the user level
4057 ia64_psr(tregs)->up = 0;
4060 * monitoring disabled in kernel at next reschedule
4062 ctx->ctx_saved_psr_up = 0;
4063 DPRINT(("task=[%d]\n", task->pid));
4065 return 0;
4069 static int
4070 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4072 struct pt_regs *tregs;
4073 int state, is_system;
4075 state = ctx->ctx_state;
4076 is_system = ctx->ctx_fl_system;
4078 if (state != PFM_CTX_LOADED) return -EINVAL;
4081 * In system wide and when the context is loaded, access can only happen
4082 * when the caller is running on the CPU being monitored by the session.
4083 * It does not have to be the owner (ctx_task) of the context per se.
4085 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4086 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4087 return -EBUSY;
4091 * in system mode, we need to update the PMU directly
4092 * and the user level state of the caller, which may not
4093 * necessarily be the creator of the context.
4095 if (is_system) {
4098 * set user level psr.pp for the caller
4100 ia64_psr(regs)->pp = 1;
4103 * now update the local PMU and cpuinfo
4105 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4108 * start monitoring at kernel level
4110 pfm_set_psr_pp();
4112 /* enable dcr pp */
4113 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4114 ia64_srlz_i();
4116 return 0;
4120 * per-process mode
4123 if (ctx->ctx_task == current) {
4125 /* start monitoring at kernel level */
4126 pfm_set_psr_up();
4129 * activate monitoring at user level
4131 ia64_psr(regs)->up = 1;
4133 } else {
4134 tregs = ia64_task_regs(ctx->ctx_task);
4137 * start monitoring at the kernel level the next
4138 * time the task is scheduled
4140 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4143 * activate monitoring at user level
4145 ia64_psr(tregs)->up = 1;
4147 return 0;
4150 static int
4151 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4153 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4154 unsigned int cnum;
4155 int i;
4156 int ret = -EINVAL;
4158 for (i = 0; i < count; i++, req++) {
4160 cnum = req->reg_num;
4162 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4164 req->reg_value = PMC_DFL_VAL(cnum);
4166 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4168 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4170 return 0;
4172 abort_mission:
4173 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4174 return ret;
4177 static int
4178 pfm_check_task_exist(pfm_context_t *ctx)
4180 struct task_struct *g, *t;
4181 int ret = -ESRCH;
4183 read_lock(&tasklist_lock);
4185 do_each_thread (g, t) {
4186 if (t->thread.pfm_context == ctx) {
4187 ret = 0;
4188 break;
4190 } while_each_thread (g, t);
4192 read_unlock(&tasklist_lock);
4194 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4196 return ret;
4199 static int
4200 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4202 struct task_struct *task;
4203 struct thread_struct *thread;
4204 struct pfm_context_t *old;
4205 unsigned long flags;
4206 #ifndef CONFIG_SMP
4207 struct task_struct *owner_task = NULL;
4208 #endif
4209 pfarg_load_t *req = (pfarg_load_t *)arg;
4210 unsigned long *pmcs_source, *pmds_source;
4211 int the_cpu;
4212 int ret = 0;
4213 int state, is_system, set_dbregs = 0;
4215 state = ctx->ctx_state;
4216 is_system = ctx->ctx_fl_system;
4218 * can only load from unloaded or terminated state
4220 if (state != PFM_CTX_UNLOADED) {
4221 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4222 req->load_pid,
4223 ctx->ctx_state));
4224 return -EBUSY;
4227 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4229 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4230 DPRINT(("cannot use blocking mode on self\n"));
4231 return -EINVAL;
4234 ret = pfm_get_task(ctx, req->load_pid, &task);
4235 if (ret) {
4236 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4237 return ret;
4240 ret = -EINVAL;
4243 * system wide is self monitoring only
4245 if (is_system && task != current) {
4246 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4247 req->load_pid));
4248 goto error;
4251 thread = &task->thread;
4253 ret = 0;
4255 * cannot load a context which is using range restrictions,
4256 * into a task that is being debugged.
4258 if (ctx->ctx_fl_using_dbreg) {
4259 if (thread->flags & IA64_THREAD_DBG_VALID) {
4260 ret = -EBUSY;
4261 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4262 goto error;
4264 LOCK_PFS(flags);
4266 if (is_system) {
4267 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4268 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4269 ret = -EBUSY;
4270 } else {
4271 pfm_sessions.pfs_sys_use_dbregs++;
4272 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4273 set_dbregs = 1;
4277 UNLOCK_PFS(flags);
4279 if (ret) goto error;
4283 * SMP system-wide monitoring implies self-monitoring.
4285 * The programming model expects the task to
4286 * be pinned on a CPU throughout the session.
4287 * Here we take note of the current CPU at the
4288 * time the context is loaded. No call from
4289 * another CPU will be allowed.
4291 * The pinning via shed_setaffinity()
4292 * must be done by the calling task prior
4293 * to this call.
4295 * systemwide: keep track of CPU this session is supposed to run on
4297 the_cpu = ctx->ctx_cpu = smp_processor_id();
4299 ret = -EBUSY;
4301 * now reserve the session
4303 ret = pfm_reserve_session(current, is_system, the_cpu);
4304 if (ret) goto error;
4307 * task is necessarily stopped at this point.
4309 * If the previous context was zombie, then it got removed in
4310 * pfm_save_regs(). Therefore we should not see it here.
4311 * If we see a context, then this is an active context
4313 * XXX: needs to be atomic
4315 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4316 thread->pfm_context, ctx));
4318 ret = -EBUSY;
4319 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4320 if (old != NULL) {
4321 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4322 goto error_unres;
4325 pfm_reset_msgq(ctx);
4327 ctx->ctx_state = PFM_CTX_LOADED;
4330 * link context to task
4332 ctx->ctx_task = task;
4334 if (is_system) {
4336 * we load as stopped
4338 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4339 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4341 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4342 } else {
4343 thread->flags |= IA64_THREAD_PM_VALID;
4347 * propagate into thread-state
4349 pfm_copy_pmds(task, ctx);
4350 pfm_copy_pmcs(task, ctx);
4352 pmcs_source = thread->pmcs;
4353 pmds_source = thread->pmds;
4356 * always the case for system-wide
4358 if (task == current) {
4360 if (is_system == 0) {
4362 /* allow user level control */
4363 ia64_psr(regs)->sp = 0;
4364 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4366 SET_LAST_CPU(ctx, smp_processor_id());
4367 INC_ACTIVATION();
4368 SET_ACTIVATION(ctx);
4369 #ifndef CONFIG_SMP
4371 * push the other task out, if any
4373 owner_task = GET_PMU_OWNER();
4374 if (owner_task) pfm_lazy_save_regs(owner_task);
4375 #endif
4378 * load all PMD from ctx to PMU (as opposed to thread state)
4379 * restore all PMC from ctx to PMU
4381 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4382 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4384 ctx->ctx_reload_pmcs[0] = 0UL;
4385 ctx->ctx_reload_pmds[0] = 0UL;
4388 * guaranteed safe by earlier check against DBG_VALID
4390 if (ctx->ctx_fl_using_dbreg) {
4391 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4392 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4395 * set new ownership
4397 SET_PMU_OWNER(task, ctx);
4399 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4400 } else {
4402 * when not current, task MUST be stopped, so this is safe
4404 regs = ia64_task_regs(task);
4406 /* force a full reload */
4407 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4408 SET_LAST_CPU(ctx, -1);
4410 /* initial saved psr (stopped) */
4411 ctx->ctx_saved_psr_up = 0UL;
4412 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4415 ret = 0;
4417 error_unres:
4418 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4419 error:
4421 * we must undo the dbregs setting (for system-wide)
4423 if (ret && set_dbregs) {
4424 LOCK_PFS(flags);
4425 pfm_sessions.pfs_sys_use_dbregs--;
4426 UNLOCK_PFS(flags);
4429 * release task, there is now a link with the context
4431 if (is_system == 0 && task != current) {
4432 pfm_put_task(task);
4434 if (ret == 0) {
4435 ret = pfm_check_task_exist(ctx);
4436 if (ret) {
4437 ctx->ctx_state = PFM_CTX_UNLOADED;
4438 ctx->ctx_task = NULL;
4442 return ret;
4446 * in this function, we do not need to increase the use count
4447 * for the task via get_task_struct(), because we hold the
4448 * context lock. If the task were to disappear while having
4449 * a context attached, it would go through pfm_exit_thread()
4450 * which also grabs the context lock and would therefore be blocked
4451 * until we are here.
4453 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4455 static int
4456 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4458 struct task_struct *task = PFM_CTX_TASK(ctx);
4459 struct pt_regs *tregs;
4460 int prev_state, is_system;
4461 int ret;
4463 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4465 prev_state = ctx->ctx_state;
4466 is_system = ctx->ctx_fl_system;
4469 * unload only when necessary
4471 if (prev_state == PFM_CTX_UNLOADED) {
4472 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4473 return 0;
4477 * clear psr and dcr bits
4479 ret = pfm_stop(ctx, NULL, 0, regs);
4480 if (ret) return ret;
4482 ctx->ctx_state = PFM_CTX_UNLOADED;
4485 * in system mode, we need to update the PMU directly
4486 * and the user level state of the caller, which may not
4487 * necessarily be the creator of the context.
4489 if (is_system) {
4492 * Update cpuinfo
4494 * local PMU is taken care of in pfm_stop()
4496 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4497 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4500 * save PMDs in context
4501 * release ownership
4503 pfm_flush_pmds(current, ctx);
4506 * at this point we are done with the PMU
4507 * so we can unreserve the resource.
4509 if (prev_state != PFM_CTX_ZOMBIE)
4510 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4513 * disconnect context from task
4515 task->thread.pfm_context = NULL;
4517 * disconnect task from context
4519 ctx->ctx_task = NULL;
4522 * There is nothing more to cleanup here.
4524 return 0;
4528 * per-task mode
4530 tregs = task == current ? regs : ia64_task_regs(task);
4532 if (task == current) {
4534 * cancel user level control
4536 ia64_psr(regs)->sp = 1;
4538 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4541 * save PMDs to context
4542 * release ownership
4544 pfm_flush_pmds(task, ctx);
4547 * at this point we are done with the PMU
4548 * so we can unreserve the resource.
4550 * when state was ZOMBIE, we have already unreserved.
4552 if (prev_state != PFM_CTX_ZOMBIE)
4553 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4556 * reset activation counter and psr
4558 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4559 SET_LAST_CPU(ctx, -1);
4562 * PMU state will not be restored
4564 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4567 * break links between context and task
4569 task->thread.pfm_context = NULL;
4570 ctx->ctx_task = NULL;
4572 PFM_SET_WORK_PENDING(task, 0);
4574 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4575 ctx->ctx_fl_can_restart = 0;
4576 ctx->ctx_fl_going_zombie = 0;
4578 DPRINT(("disconnected [%d] from context\n", task->pid));
4580 return 0;
4585 * called only from exit_thread(): task == current
4586 * we come here only if current has a context attached (loaded or masked)
4588 void
4589 pfm_exit_thread(struct task_struct *task)
4591 pfm_context_t *ctx;
4592 unsigned long flags;
4593 struct pt_regs *regs = ia64_task_regs(task);
4594 int ret, state;
4595 int free_ok = 0;
4597 ctx = PFM_GET_CTX(task);
4599 PROTECT_CTX(ctx, flags);
4601 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4603 state = ctx->ctx_state;
4604 switch(state) {
4605 case PFM_CTX_UNLOADED:
4607 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4608 * be in unloaded state
4610 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4611 break;
4612 case PFM_CTX_LOADED:
4613 case PFM_CTX_MASKED:
4614 ret = pfm_context_unload(ctx, NULL, 0, regs);
4615 if (ret) {
4616 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4618 DPRINT(("ctx unloaded for current state was %d\n", state));
4620 pfm_end_notify_user(ctx);
4621 break;
4622 case PFM_CTX_ZOMBIE:
4623 ret = pfm_context_unload(ctx, NULL, 0, regs);
4624 if (ret) {
4625 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4627 free_ok = 1;
4628 break;
4629 default:
4630 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4631 break;
4633 UNPROTECT_CTX(ctx, flags);
4635 { u64 psr = pfm_get_psr();
4636 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4637 BUG_ON(GET_PMU_OWNER());
4638 BUG_ON(ia64_psr(regs)->up);
4639 BUG_ON(ia64_psr(regs)->pp);
4643 * All memory free operations (especially for vmalloc'ed memory)
4644 * MUST be done with interrupts ENABLED.
4646 if (free_ok) pfm_context_free(ctx);
4650 * functions MUST be listed in the increasing order of their index (see permfon.h)
4652 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4653 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4654 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4655 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4656 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4658 static pfm_cmd_desc_t pfm_cmd_tab[]={
4659 /* 0 */PFM_CMD_NONE,
4660 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4661 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4662 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4664 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4665 /* 6 */PFM_CMD_NONE,
4666 /* 7 */PFM_CMD_NONE,
4667 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4668 /* 9 */PFM_CMD_NONE,
4669 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4670 /* 11 */PFM_CMD_NONE,
4671 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4672 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4673 /* 14 */PFM_CMD_NONE,
4674 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4675 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4676 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4677 /* 18 */PFM_CMD_NONE,
4678 /* 19 */PFM_CMD_NONE,
4679 /* 20 */PFM_CMD_NONE,
4680 /* 21 */PFM_CMD_NONE,
4681 /* 22 */PFM_CMD_NONE,
4682 /* 23 */PFM_CMD_NONE,
4683 /* 24 */PFM_CMD_NONE,
4684 /* 25 */PFM_CMD_NONE,
4685 /* 26 */PFM_CMD_NONE,
4686 /* 27 */PFM_CMD_NONE,
4687 /* 28 */PFM_CMD_NONE,
4688 /* 29 */PFM_CMD_NONE,
4689 /* 30 */PFM_CMD_NONE,
4690 /* 31 */PFM_CMD_NONE,
4691 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4692 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4694 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4696 static int
4697 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4699 struct task_struct *task;
4700 int state, old_state;
4702 recheck:
4703 state = ctx->ctx_state;
4704 task = ctx->ctx_task;
4706 if (task == NULL) {
4707 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4708 return 0;
4711 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4712 ctx->ctx_fd,
4713 state,
4714 task->pid,
4715 task->state, PFM_CMD_STOPPED(cmd)));
4718 * self-monitoring always ok.
4720 * for system-wide the caller can either be the creator of the
4721 * context (to one to which the context is attached to) OR
4722 * a task running on the same CPU as the session.
4724 if (task == current || ctx->ctx_fl_system) return 0;
4727 * we are monitoring another thread
4729 switch(state) {
4730 case PFM_CTX_UNLOADED:
4732 * if context is UNLOADED we are safe to go
4734 return 0;
4735 case PFM_CTX_ZOMBIE:
4737 * no command can operate on a zombie context
4739 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4740 return -EINVAL;
4741 case PFM_CTX_MASKED:
4743 * PMU state has been saved to software even though
4744 * the thread may still be running.
4746 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4750 * context is LOADED or MASKED. Some commands may need to have
4751 * the task stopped.
4753 * We could lift this restriction for UP but it would mean that
4754 * the user has no guarantee the task would not run between
4755 * two successive calls to perfmonctl(). That's probably OK.
4756 * If this user wants to ensure the task does not run, then
4757 * the task must be stopped.
4759 if (PFM_CMD_STOPPED(cmd)) {
4760 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4761 DPRINT(("[%d] task not in stopped state\n", task->pid));
4762 return -EBUSY;
4765 * task is now stopped, wait for ctxsw out
4767 * This is an interesting point in the code.
4768 * We need to unprotect the context because
4769 * the pfm_save_regs() routines needs to grab
4770 * the same lock. There are danger in doing
4771 * this because it leaves a window open for
4772 * another task to get access to the context
4773 * and possibly change its state. The one thing
4774 * that is not possible is for the context to disappear
4775 * because we are protected by the VFS layer, i.e.,
4776 * get_fd()/put_fd().
4778 old_state = state;
4780 UNPROTECT_CTX(ctx, flags);
4782 wait_task_inactive(task);
4784 PROTECT_CTX(ctx, flags);
4787 * we must recheck to verify if state has changed
4789 if (ctx->ctx_state != old_state) {
4790 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4791 goto recheck;
4794 return 0;
4798 * system-call entry point (must return long)
4800 asmlinkage long
4801 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4803 struct file *file = NULL;
4804 pfm_context_t *ctx = NULL;
4805 unsigned long flags = 0UL;
4806 void *args_k = NULL;
4807 long ret; /* will expand int return types */
4808 size_t base_sz, sz, xtra_sz = 0;
4809 int narg, completed_args = 0, call_made = 0, cmd_flags;
4810 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4811 int (*getsize)(void *arg, size_t *sz);
4812 #define PFM_MAX_ARGSIZE 4096
4815 * reject any call if perfmon was disabled at initialization
4817 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4819 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4820 DPRINT(("invalid cmd=%d\n", cmd));
4821 return -EINVAL;
4824 func = pfm_cmd_tab[cmd].cmd_func;
4825 narg = pfm_cmd_tab[cmd].cmd_narg;
4826 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4827 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4828 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4830 if (unlikely(func == NULL)) {
4831 DPRINT(("invalid cmd=%d\n", cmd));
4832 return -EINVAL;
4835 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4836 PFM_CMD_NAME(cmd),
4837 cmd,
4838 narg,
4839 base_sz,
4840 count));
4843 * check if number of arguments matches what the command expects
4845 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4846 return -EINVAL;
4848 restart_args:
4849 sz = xtra_sz + base_sz*count;
4851 * limit abuse to min page size
4853 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4854 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4855 return -E2BIG;
4859 * allocate default-sized argument buffer
4861 if (likely(count && args_k == NULL)) {
4862 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4863 if (args_k == NULL) return -ENOMEM;
4866 ret = -EFAULT;
4869 * copy arguments
4871 * assume sz = 0 for command without parameters
4873 if (sz && copy_from_user(args_k, arg, sz)) {
4874 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4875 goto error_args;
4879 * check if command supports extra parameters
4881 if (completed_args == 0 && getsize) {
4883 * get extra parameters size (based on main argument)
4885 ret = (*getsize)(args_k, &xtra_sz);
4886 if (ret) goto error_args;
4888 completed_args = 1;
4890 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4892 /* retry if necessary */
4893 if (likely(xtra_sz)) goto restart_args;
4896 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4898 ret = -EBADF;
4900 file = fget(fd);
4901 if (unlikely(file == NULL)) {
4902 DPRINT(("invalid fd %d\n", fd));
4903 goto error_args;
4905 if (unlikely(PFM_IS_FILE(file) == 0)) {
4906 DPRINT(("fd %d not related to perfmon\n", fd));
4907 goto error_args;
4910 ctx = (pfm_context_t *)file->private_data;
4911 if (unlikely(ctx == NULL)) {
4912 DPRINT(("no context for fd %d\n", fd));
4913 goto error_args;
4915 prefetch(&ctx->ctx_state);
4917 PROTECT_CTX(ctx, flags);
4920 * check task is stopped
4922 ret = pfm_check_task_state(ctx, cmd, flags);
4923 if (unlikely(ret)) goto abort_locked;
4925 skip_fd:
4926 ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
4928 call_made = 1;
4930 abort_locked:
4931 if (likely(ctx)) {
4932 DPRINT(("context unlocked\n"));
4933 UNPROTECT_CTX(ctx, flags);
4934 fput(file);
4937 /* copy argument back to user, if needed */
4938 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4940 error_args:
4941 if (args_k) kfree(args_k);
4943 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4945 return ret;
4948 static void
4949 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4951 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4952 pfm_ovfl_ctrl_t rst_ctrl;
4953 int state;
4954 int ret = 0;
4956 state = ctx->ctx_state;
4958 * Unlock sampling buffer and reset index atomically
4959 * XXX: not really needed when blocking
4961 if (CTX_HAS_SMPL(ctx)) {
4963 rst_ctrl.bits.mask_monitoring = 0;
4964 rst_ctrl.bits.reset_ovfl_pmds = 0;
4966 if (state == PFM_CTX_LOADED)
4967 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4968 else
4969 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4970 } else {
4971 rst_ctrl.bits.mask_monitoring = 0;
4972 rst_ctrl.bits.reset_ovfl_pmds = 1;
4975 if (ret == 0) {
4976 if (rst_ctrl.bits.reset_ovfl_pmds) {
4977 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4979 if (rst_ctrl.bits.mask_monitoring == 0) {
4980 DPRINT(("resuming monitoring\n"));
4981 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4982 } else {
4983 DPRINT(("stopping monitoring\n"));
4984 //pfm_stop_monitoring(current, regs);
4986 ctx->ctx_state = PFM_CTX_LOADED;
4991 * context MUST BE LOCKED when calling
4992 * can only be called for current
4994 static void
4995 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4997 int ret;
4999 DPRINT(("entering for [%d]\n", current->pid));
5001 ret = pfm_context_unload(ctx, NULL, 0, regs);
5002 if (ret) {
5003 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5007 * and wakeup controlling task, indicating we are now disconnected
5009 wake_up_interruptible(&ctx->ctx_zombieq);
5012 * given that context is still locked, the controlling
5013 * task will only get access when we return from
5014 * pfm_handle_work().
5018 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5020 * pfm_handle_work() can be called with interrupts enabled
5021 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5022 * call may sleep, therefore we must re-enable interrupts
5023 * to avoid deadlocks. It is safe to do so because this function
5024 * is called ONLY when returning to user level (PUStk=1), in which case
5025 * there is no risk of kernel stack overflow due to deep
5026 * interrupt nesting.
5028 void
5029 pfm_handle_work(void)
5031 pfm_context_t *ctx;
5032 struct pt_regs *regs;
5033 unsigned long flags, dummy_flags;
5034 unsigned long ovfl_regs;
5035 unsigned int reason;
5036 int ret;
5038 ctx = PFM_GET_CTX(current);
5039 if (ctx == NULL) {
5040 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5041 return;
5044 PROTECT_CTX(ctx, flags);
5046 PFM_SET_WORK_PENDING(current, 0);
5048 pfm_clear_task_notify();
5050 regs = ia64_task_regs(current);
5053 * extract reason for being here and clear
5055 reason = ctx->ctx_fl_trap_reason;
5056 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5057 ovfl_regs = ctx->ctx_ovfl_regs[0];
5059 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5062 * must be done before we check for simple-reset mode
5064 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5067 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5068 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5071 * restore interrupt mask to what it was on entry.
5072 * Could be enabled/diasbled.
5074 UNPROTECT_CTX(ctx, flags);
5077 * force interrupt enable because of down_interruptible()
5079 local_irq_enable();
5081 DPRINT(("before block sleeping\n"));
5084 * may go through without blocking on SMP systems
5085 * if restart has been received already by the time we call down()
5087 ret = down_interruptible(&ctx->ctx_restart_sem);
5089 DPRINT(("after block sleeping ret=%d\n", ret));
5092 * lock context and mask interrupts again
5093 * We save flags into a dummy because we may have
5094 * altered interrupts mask compared to entry in this
5095 * function.
5097 PROTECT_CTX(ctx, dummy_flags);
5100 * we need to read the ovfl_regs only after wake-up
5101 * because we may have had pfm_write_pmds() in between
5102 * and that can changed PMD values and therefore
5103 * ovfl_regs is reset for these new PMD values.
5105 ovfl_regs = ctx->ctx_ovfl_regs[0];
5107 if (ctx->ctx_fl_going_zombie) {
5108 do_zombie:
5109 DPRINT(("context is zombie, bailing out\n"));
5110 pfm_context_force_terminate(ctx, regs);
5111 goto nothing_to_do;
5114 * in case of interruption of down() we don't restart anything
5116 if (ret < 0) goto nothing_to_do;
5118 skip_blocking:
5119 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5120 ctx->ctx_ovfl_regs[0] = 0UL;
5122 nothing_to_do:
5124 * restore flags as they were upon entry
5126 UNPROTECT_CTX(ctx, flags);
5129 static int
5130 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5132 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5133 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5134 return 0;
5137 DPRINT(("waking up somebody\n"));
5139 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5142 * safe, we are not in intr handler, nor in ctxsw when
5143 * we come here
5145 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5147 return 0;
5150 static int
5151 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5153 pfm_msg_t *msg = NULL;
5155 if (ctx->ctx_fl_no_msg == 0) {
5156 msg = pfm_get_new_msg(ctx);
5157 if (msg == NULL) {
5158 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5159 return -1;
5162 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5163 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5164 msg->pfm_ovfl_msg.msg_active_set = 0;
5165 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5166 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5167 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5169 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5172 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5173 msg,
5174 ctx->ctx_fl_no_msg,
5175 ctx->ctx_fd,
5176 ovfl_pmds));
5178 return pfm_notify_user(ctx, msg);
5181 static int
5182 pfm_end_notify_user(pfm_context_t *ctx)
5184 pfm_msg_t *msg;
5186 msg = pfm_get_new_msg(ctx);
5187 if (msg == NULL) {
5188 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5189 return -1;
5191 /* no leak */
5192 memset(msg, 0, sizeof(*msg));
5194 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5195 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5196 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5198 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5199 msg,
5200 ctx->ctx_fl_no_msg,
5201 ctx->ctx_fd));
5203 return pfm_notify_user(ctx, msg);
5207 * main overflow processing routine.
5208 * it can be called from the interrupt path or explicitely during the context switch code
5210 static void
5211 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5213 pfm_ovfl_arg_t *ovfl_arg;
5214 unsigned long mask;
5215 unsigned long old_val, ovfl_val, new_val;
5216 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5217 unsigned long tstamp;
5218 pfm_ovfl_ctrl_t ovfl_ctrl;
5219 unsigned int i, has_smpl;
5220 int must_notify = 0;
5222 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5225 * sanity test. Should never happen
5227 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5229 tstamp = ia64_get_itc();
5230 mask = pmc0 >> PMU_FIRST_COUNTER;
5231 ovfl_val = pmu_conf->ovfl_val;
5232 has_smpl = CTX_HAS_SMPL(ctx);
5234 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5235 "used_pmds=0x%lx\n",
5236 pmc0,
5237 task ? task->pid: -1,
5238 (regs ? regs->cr_iip : 0),
5239 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5240 ctx->ctx_used_pmds[0]));
5244 * first we update the virtual counters
5245 * assume there was a prior ia64_srlz_d() issued
5247 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5249 /* skip pmd which did not overflow */
5250 if ((mask & 0x1) == 0) continue;
5253 * Note that the pmd is not necessarily 0 at this point as qualified events
5254 * may have happened before the PMU was frozen. The residual count is not
5255 * taken into consideration here but will be with any read of the pmd via
5256 * pfm_read_pmds().
5258 old_val = new_val = ctx->ctx_pmds[i].val;
5259 new_val += 1 + ovfl_val;
5260 ctx->ctx_pmds[i].val = new_val;
5263 * check for overflow condition
5265 if (likely(old_val > new_val)) {
5266 ovfl_pmds |= 1UL << i;
5267 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5270 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5272 new_val,
5273 old_val,
5274 ia64_get_pmd(i) & ovfl_val,
5275 ovfl_pmds,
5276 ovfl_notify));
5280 * there was no 64-bit overflow, nothing else to do
5282 if (ovfl_pmds == 0UL) return;
5285 * reset all control bits
5287 ovfl_ctrl.val = 0;
5288 reset_pmds = 0UL;
5291 * if a sampling format module exists, then we "cache" the overflow by
5292 * calling the module's handler() routine.
5294 if (has_smpl) {
5295 unsigned long start_cycles, end_cycles;
5296 unsigned long pmd_mask;
5297 int j, k, ret = 0;
5298 int this_cpu = smp_processor_id();
5300 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5301 ovfl_arg = &ctx->ctx_ovfl_arg;
5303 prefetch(ctx->ctx_smpl_hdr);
5305 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5307 mask = 1UL << i;
5309 if ((pmd_mask & 0x1) == 0) continue;
5311 ovfl_arg->ovfl_pmd = (unsigned char )i;
5312 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5313 ovfl_arg->active_set = 0;
5314 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5315 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5317 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5318 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5319 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5322 * copy values of pmds of interest. Sampling format may copy them
5323 * into sampling buffer.
5325 if (smpl_pmds) {
5326 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5327 if ((smpl_pmds & 0x1) == 0) continue;
5328 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5329 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5333 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5335 start_cycles = ia64_get_itc();
5338 * call custom buffer format record (handler) routine
5340 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5342 end_cycles = ia64_get_itc();
5345 * For those controls, we take the union because they have
5346 * an all or nothing behavior.
5348 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5349 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5350 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5352 * build the bitmask of pmds to reset now
5354 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5356 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5359 * when the module cannot handle the rest of the overflows, we abort right here
5361 if (ret && pmd_mask) {
5362 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5363 pmd_mask<<PMU_FIRST_COUNTER));
5366 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5368 ovfl_pmds &= ~reset_pmds;
5369 } else {
5371 * when no sampling module is used, then the default
5372 * is to notify on overflow if requested by user
5374 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5375 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5376 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5377 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5379 * if needed, we reset all overflowed pmds
5381 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5384 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5387 * reset the requested PMD registers using the short reset values
5389 if (reset_pmds) {
5390 unsigned long bm = reset_pmds;
5391 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5394 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5396 * keep track of what to reset when unblocking
5398 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5401 * check for blocking context
5403 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5405 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5408 * set the perfmon specific checking pending work for the task
5410 PFM_SET_WORK_PENDING(task, 1);
5413 * when coming from ctxsw, current still points to the
5414 * previous task, therefore we must work with task and not current.
5416 pfm_set_task_notify(task);
5419 * defer until state is changed (shorten spin window). the context is locked
5420 * anyway, so the signal receiver would come spin for nothing.
5422 must_notify = 1;
5425 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5426 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5427 PFM_GET_WORK_PENDING(task),
5428 ctx->ctx_fl_trap_reason,
5429 ovfl_pmds,
5430 ovfl_notify,
5431 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5433 * in case monitoring must be stopped, we toggle the psr bits
5435 if (ovfl_ctrl.bits.mask_monitoring) {
5436 pfm_mask_monitoring(task);
5437 ctx->ctx_state = PFM_CTX_MASKED;
5438 ctx->ctx_fl_can_restart = 1;
5442 * send notification now
5444 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5446 return;
5448 sanity_check:
5449 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5450 smp_processor_id(),
5451 task ? task->pid : -1,
5452 pmc0);
5453 return;
5455 stop_monitoring:
5457 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5458 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5459 * come here as zombie only if the task is the current task. In which case, we
5460 * can access the PMU hardware directly.
5462 * Note that zombies do have PM_VALID set. So here we do the minimal.
5464 * In case the context was zombified it could not be reclaimed at the time
5465 * the monitoring program exited. At this point, the PMU reservation has been
5466 * returned, the sampiing buffer has been freed. We must convert this call
5467 * into a spurious interrupt. However, we must also avoid infinite overflows
5468 * by stopping monitoring for this task. We can only come here for a per-task
5469 * context. All we need to do is to stop monitoring using the psr bits which
5470 * are always task private. By re-enabling secure montioring, we ensure that
5471 * the monitored task will not be able to re-activate monitoring.
5472 * The task will eventually be context switched out, at which point the context
5473 * will be reclaimed (that includes releasing ownership of the PMU).
5475 * So there might be a window of time where the number of per-task session is zero
5476 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5477 * context. This is safe because if a per-task session comes in, it will push this one
5478 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5479 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5480 * also push our zombie context out.
5482 * Overall pretty hairy stuff....
5484 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5485 pfm_clear_psr_up();
5486 ia64_psr(regs)->up = 0;
5487 ia64_psr(regs)->sp = 1;
5488 return;
5491 static int
5492 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5494 struct task_struct *task;
5495 pfm_context_t *ctx;
5496 unsigned long flags;
5497 u64 pmc0;
5498 int this_cpu = smp_processor_id();
5499 int retval = 0;
5501 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5504 * srlz.d done before arriving here
5506 pmc0 = ia64_get_pmc(0);
5508 task = GET_PMU_OWNER();
5509 ctx = GET_PMU_CTX();
5512 * if we have some pending bits set
5513 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5515 if (PMC0_HAS_OVFL(pmc0) && task) {
5517 * we assume that pmc0.fr is always set here
5520 /* sanity check */
5521 if (!ctx) goto report_spurious1;
5523 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5524 goto report_spurious2;
5526 PROTECT_CTX_NOPRINT(ctx, flags);
5528 pfm_overflow_handler(task, ctx, pmc0, regs);
5530 UNPROTECT_CTX_NOPRINT(ctx, flags);
5532 } else {
5533 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5534 retval = -1;
5537 * keep it unfrozen at all times
5539 pfm_unfreeze_pmu();
5541 return retval;
5543 report_spurious1:
5544 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5545 this_cpu, task->pid);
5546 pfm_unfreeze_pmu();
5547 return -1;
5548 report_spurious2:
5549 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5550 this_cpu,
5551 task->pid);
5552 pfm_unfreeze_pmu();
5553 return -1;
5556 static irqreturn_t
5557 pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5559 unsigned long start_cycles, total_cycles;
5560 unsigned long min, max;
5561 int this_cpu;
5562 int ret;
5564 this_cpu = get_cpu();
5565 if (likely(!pfm_alt_intr_handler)) {
5566 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5567 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5569 start_cycles = ia64_get_itc();
5571 ret = pfm_do_interrupt_handler(irq, arg, regs);
5573 total_cycles = ia64_get_itc();
5576 * don't measure spurious interrupts
5578 if (likely(ret == 0)) {
5579 total_cycles -= start_cycles;
5581 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5582 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5584 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5587 else {
5588 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5591 put_cpu_no_resched();
5592 return IRQ_HANDLED;
5596 * /proc/perfmon interface, for debug only
5599 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5601 static void *
5602 pfm_proc_start(struct seq_file *m, loff_t *pos)
5604 if (*pos == 0) {
5605 return PFM_PROC_SHOW_HEADER;
5608 while (*pos <= NR_CPUS) {
5609 if (cpu_online(*pos - 1)) {
5610 return (void *)*pos;
5612 ++*pos;
5614 return NULL;
5617 static void *
5618 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5620 ++*pos;
5621 return pfm_proc_start(m, pos);
5624 static void
5625 pfm_proc_stop(struct seq_file *m, void *v)
5629 static void
5630 pfm_proc_show_header(struct seq_file *m)
5632 struct list_head * pos;
5633 pfm_buffer_fmt_t * entry;
5634 unsigned long flags;
5636 seq_printf(m,
5637 "perfmon version : %u.%u\n"
5638 "model : %s\n"
5639 "fastctxsw : %s\n"
5640 "expert mode : %s\n"
5641 "ovfl_mask : 0x%lx\n"
5642 "PMU flags : 0x%x\n",
5643 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5644 pmu_conf->pmu_name,
5645 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5646 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5647 pmu_conf->ovfl_val,
5648 pmu_conf->flags);
5650 LOCK_PFS(flags);
5652 seq_printf(m,
5653 "proc_sessions : %u\n"
5654 "sys_sessions : %u\n"
5655 "sys_use_dbregs : %u\n"
5656 "ptrace_use_dbregs : %u\n",
5657 pfm_sessions.pfs_task_sessions,
5658 pfm_sessions.pfs_sys_sessions,
5659 pfm_sessions.pfs_sys_use_dbregs,
5660 pfm_sessions.pfs_ptrace_use_dbregs);
5662 UNLOCK_PFS(flags);
5664 spin_lock(&pfm_buffer_fmt_lock);
5666 list_for_each(pos, &pfm_buffer_fmt_list) {
5667 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5668 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5669 entry->fmt_uuid[0],
5670 entry->fmt_uuid[1],
5671 entry->fmt_uuid[2],
5672 entry->fmt_uuid[3],
5673 entry->fmt_uuid[4],
5674 entry->fmt_uuid[5],
5675 entry->fmt_uuid[6],
5676 entry->fmt_uuid[7],
5677 entry->fmt_uuid[8],
5678 entry->fmt_uuid[9],
5679 entry->fmt_uuid[10],
5680 entry->fmt_uuid[11],
5681 entry->fmt_uuid[12],
5682 entry->fmt_uuid[13],
5683 entry->fmt_uuid[14],
5684 entry->fmt_uuid[15],
5685 entry->fmt_name);
5687 spin_unlock(&pfm_buffer_fmt_lock);
5691 static int
5692 pfm_proc_show(struct seq_file *m, void *v)
5694 unsigned long psr;
5695 unsigned int i;
5696 int cpu;
5698 if (v == PFM_PROC_SHOW_HEADER) {
5699 pfm_proc_show_header(m);
5700 return 0;
5703 /* show info for CPU (v - 1) */
5705 cpu = (long)v - 1;
5706 seq_printf(m,
5707 "CPU%-2d overflow intrs : %lu\n"
5708 "CPU%-2d overflow cycles : %lu\n"
5709 "CPU%-2d overflow min : %lu\n"
5710 "CPU%-2d overflow max : %lu\n"
5711 "CPU%-2d smpl handler calls : %lu\n"
5712 "CPU%-2d smpl handler cycles : %lu\n"
5713 "CPU%-2d spurious intrs : %lu\n"
5714 "CPU%-2d replay intrs : %lu\n"
5715 "CPU%-2d syst_wide : %d\n"
5716 "CPU%-2d dcr_pp : %d\n"
5717 "CPU%-2d exclude idle : %d\n"
5718 "CPU%-2d owner : %d\n"
5719 "CPU%-2d context : %p\n"
5720 "CPU%-2d activations : %lu\n",
5721 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5722 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5723 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5724 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5725 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5726 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5727 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5728 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5729 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5730 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5731 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5732 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5733 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5734 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5736 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5738 psr = pfm_get_psr();
5740 ia64_srlz_d();
5742 seq_printf(m,
5743 "CPU%-2d psr : 0x%lx\n"
5744 "CPU%-2d pmc0 : 0x%lx\n",
5745 cpu, psr,
5746 cpu, ia64_get_pmc(0));
5748 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5749 if (PMC_IS_COUNTING(i) == 0) continue;
5750 seq_printf(m,
5751 "CPU%-2d pmc%u : 0x%lx\n"
5752 "CPU%-2d pmd%u : 0x%lx\n",
5753 cpu, i, ia64_get_pmc(i),
5754 cpu, i, ia64_get_pmd(i));
5757 return 0;
5760 struct seq_operations pfm_seq_ops = {
5761 .start = pfm_proc_start,
5762 .next = pfm_proc_next,
5763 .stop = pfm_proc_stop,
5764 .show = pfm_proc_show
5767 static int
5768 pfm_proc_open(struct inode *inode, struct file *file)
5770 return seq_open(file, &pfm_seq_ops);
5775 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5776 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5777 * is active or inactive based on mode. We must rely on the value in
5778 * local_cpu_data->pfm_syst_info
5780 void
5781 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5783 struct pt_regs *regs;
5784 unsigned long dcr;
5785 unsigned long dcr_pp;
5787 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5790 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5791 * on every CPU, so we can rely on the pid to identify the idle task.
5793 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5794 regs = ia64_task_regs(task);
5795 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5796 return;
5799 * if monitoring has started
5801 if (dcr_pp) {
5802 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5804 * context switching in?
5806 if (is_ctxswin) {
5807 /* mask monitoring for the idle task */
5808 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5809 pfm_clear_psr_pp();
5810 ia64_srlz_i();
5811 return;
5814 * context switching out
5815 * restore monitoring for next task
5817 * Due to inlining this odd if-then-else construction generates
5818 * better code.
5820 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5821 pfm_set_psr_pp();
5822 ia64_srlz_i();
5826 #ifdef CONFIG_SMP
5828 static void
5829 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5831 struct task_struct *task = ctx->ctx_task;
5833 ia64_psr(regs)->up = 0;
5834 ia64_psr(regs)->sp = 1;
5836 if (GET_PMU_OWNER() == task) {
5837 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5838 SET_PMU_OWNER(NULL, NULL);
5842 * disconnect the task from the context and vice-versa
5844 PFM_SET_WORK_PENDING(task, 0);
5846 task->thread.pfm_context = NULL;
5847 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5849 DPRINT(("force cleanup for [%d]\n", task->pid));
5854 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5856 void
5857 pfm_save_regs(struct task_struct *task)
5859 pfm_context_t *ctx;
5860 struct thread_struct *t;
5861 unsigned long flags;
5862 u64 psr;
5865 ctx = PFM_GET_CTX(task);
5866 if (ctx == NULL) return;
5867 t = &task->thread;
5870 * we always come here with interrupts ALREADY disabled by
5871 * the scheduler. So we simply need to protect against concurrent
5872 * access, not CPU concurrency.
5874 flags = pfm_protect_ctx_ctxsw(ctx);
5876 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5877 struct pt_regs *regs = ia64_task_regs(task);
5879 pfm_clear_psr_up();
5881 pfm_force_cleanup(ctx, regs);
5883 BUG_ON(ctx->ctx_smpl_hdr);
5885 pfm_unprotect_ctx_ctxsw(ctx, flags);
5887 pfm_context_free(ctx);
5888 return;
5892 * save current PSR: needed because we modify it
5894 ia64_srlz_d();
5895 psr = pfm_get_psr();
5897 BUG_ON(psr & (IA64_PSR_I));
5900 * stop monitoring:
5901 * This is the last instruction which may generate an overflow
5903 * We do not need to set psr.sp because, it is irrelevant in kernel.
5904 * It will be restored from ipsr when going back to user level
5906 pfm_clear_psr_up();
5909 * keep a copy of psr.up (for reload)
5911 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5914 * release ownership of this PMU.
5915 * PM interrupts are masked, so nothing
5916 * can happen.
5918 SET_PMU_OWNER(NULL, NULL);
5921 * we systematically save the PMD as we have no
5922 * guarantee we will be schedule at that same
5923 * CPU again.
5925 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5928 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5929 * we will need it on the restore path to check
5930 * for pending overflow.
5932 t->pmcs[0] = ia64_get_pmc(0);
5935 * unfreeze PMU if had pending overflows
5937 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5940 * finally, allow context access.
5941 * interrupts will still be masked after this call.
5943 pfm_unprotect_ctx_ctxsw(ctx, flags);
5946 #else /* !CONFIG_SMP */
5947 void
5948 pfm_save_regs(struct task_struct *task)
5950 pfm_context_t *ctx;
5951 u64 psr;
5953 ctx = PFM_GET_CTX(task);
5954 if (ctx == NULL) return;
5957 * save current PSR: needed because we modify it
5959 psr = pfm_get_psr();
5961 BUG_ON(psr & (IA64_PSR_I));
5964 * stop monitoring:
5965 * This is the last instruction which may generate an overflow
5967 * We do not need to set psr.sp because, it is irrelevant in kernel.
5968 * It will be restored from ipsr when going back to user level
5970 pfm_clear_psr_up();
5973 * keep a copy of psr.up (for reload)
5975 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5978 static void
5979 pfm_lazy_save_regs (struct task_struct *task)
5981 pfm_context_t *ctx;
5982 struct thread_struct *t;
5983 unsigned long flags;
5985 { u64 psr = pfm_get_psr();
5986 BUG_ON(psr & IA64_PSR_UP);
5989 ctx = PFM_GET_CTX(task);
5990 t = &task->thread;
5993 * we need to mask PMU overflow here to
5994 * make sure that we maintain pmc0 until
5995 * we save it. overflow interrupts are
5996 * treated as spurious if there is no
5997 * owner.
5999 * XXX: I don't think this is necessary
6001 PROTECT_CTX(ctx,flags);
6004 * release ownership of this PMU.
6005 * must be done before we save the registers.
6007 * after this call any PMU interrupt is treated
6008 * as spurious.
6010 SET_PMU_OWNER(NULL, NULL);
6013 * save all the pmds we use
6015 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6018 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6019 * it is needed to check for pended overflow
6020 * on the restore path
6022 t->pmcs[0] = ia64_get_pmc(0);
6025 * unfreeze PMU if had pending overflows
6027 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6030 * now get can unmask PMU interrupts, they will
6031 * be treated as purely spurious and we will not
6032 * lose any information
6034 UNPROTECT_CTX(ctx,flags);
6036 #endif /* CONFIG_SMP */
6038 #ifdef CONFIG_SMP
6040 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6042 void
6043 pfm_load_regs (struct task_struct *task)
6045 pfm_context_t *ctx;
6046 struct thread_struct *t;
6047 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6048 unsigned long flags;
6049 u64 psr, psr_up;
6050 int need_irq_resend;
6052 ctx = PFM_GET_CTX(task);
6053 if (unlikely(ctx == NULL)) return;
6055 BUG_ON(GET_PMU_OWNER());
6057 t = &task->thread;
6059 * possible on unload
6061 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6064 * we always come here with interrupts ALREADY disabled by
6065 * the scheduler. So we simply need to protect against concurrent
6066 * access, not CPU concurrency.
6068 flags = pfm_protect_ctx_ctxsw(ctx);
6069 psr = pfm_get_psr();
6071 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6073 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6074 BUG_ON(psr & IA64_PSR_I);
6076 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6077 struct pt_regs *regs = ia64_task_regs(task);
6079 BUG_ON(ctx->ctx_smpl_hdr);
6081 pfm_force_cleanup(ctx, regs);
6083 pfm_unprotect_ctx_ctxsw(ctx, flags);
6086 * this one (kmalloc'ed) is fine with interrupts disabled
6088 pfm_context_free(ctx);
6090 return;
6094 * we restore ALL the debug registers to avoid picking up
6095 * stale state.
6097 if (ctx->ctx_fl_using_dbreg) {
6098 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6099 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6102 * retrieve saved psr.up
6104 psr_up = ctx->ctx_saved_psr_up;
6107 * if we were the last user of the PMU on that CPU,
6108 * then nothing to do except restore psr
6110 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6113 * retrieve partial reload masks (due to user modifications)
6115 pmc_mask = ctx->ctx_reload_pmcs[0];
6116 pmd_mask = ctx->ctx_reload_pmds[0];
6118 } else {
6120 * To avoid leaking information to the user level when psr.sp=0,
6121 * we must reload ALL implemented pmds (even the ones we don't use).
6122 * In the kernel we only allow PFM_READ_PMDS on registers which
6123 * we initialized or requested (sampling) so there is no risk there.
6125 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6128 * ALL accessible PMCs are systematically reloaded, unused registers
6129 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6130 * up stale configuration.
6132 * PMC0 is never in the mask. It is always restored separately.
6134 pmc_mask = ctx->ctx_all_pmcs[0];
6137 * when context is MASKED, we will restore PMC with plm=0
6138 * and PMD with stale information, but that's ok, nothing
6139 * will be captured.
6141 * XXX: optimize here
6143 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6144 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6147 * check for pending overflow at the time the state
6148 * was saved.
6150 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6152 * reload pmc0 with the overflow information
6153 * On McKinley PMU, this will trigger a PMU interrupt
6155 ia64_set_pmc(0, t->pmcs[0]);
6156 ia64_srlz_d();
6157 t->pmcs[0] = 0UL;
6160 * will replay the PMU interrupt
6162 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6164 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6168 * we just did a reload, so we reset the partial reload fields
6170 ctx->ctx_reload_pmcs[0] = 0UL;
6171 ctx->ctx_reload_pmds[0] = 0UL;
6173 SET_LAST_CPU(ctx, smp_processor_id());
6176 * dump activation value for this PMU
6178 INC_ACTIVATION();
6180 * record current activation for this context
6182 SET_ACTIVATION(ctx);
6185 * establish new ownership.
6187 SET_PMU_OWNER(task, ctx);
6190 * restore the psr.up bit. measurement
6191 * is active again.
6192 * no PMU interrupt can happen at this point
6193 * because we still have interrupts disabled.
6195 if (likely(psr_up)) pfm_set_psr_up();
6198 * allow concurrent access to context
6200 pfm_unprotect_ctx_ctxsw(ctx, flags);
6202 #else /* !CONFIG_SMP */
6204 * reload PMU state for UP kernels
6205 * in 2.5 we come here with interrupts disabled
6207 void
6208 pfm_load_regs (struct task_struct *task)
6210 struct thread_struct *t;
6211 pfm_context_t *ctx;
6212 struct task_struct *owner;
6213 unsigned long pmd_mask, pmc_mask;
6214 u64 psr, psr_up;
6215 int need_irq_resend;
6217 owner = GET_PMU_OWNER();
6218 ctx = PFM_GET_CTX(task);
6219 t = &task->thread;
6220 psr = pfm_get_psr();
6222 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6223 BUG_ON(psr & IA64_PSR_I);
6226 * we restore ALL the debug registers to avoid picking up
6227 * stale state.
6229 * This must be done even when the task is still the owner
6230 * as the registers may have been modified via ptrace()
6231 * (not perfmon) by the previous task.
6233 if (ctx->ctx_fl_using_dbreg) {
6234 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6235 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6239 * retrieved saved psr.up
6241 psr_up = ctx->ctx_saved_psr_up;
6242 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6245 * short path, our state is still there, just
6246 * need to restore psr and we go
6248 * we do not touch either PMC nor PMD. the psr is not touched
6249 * by the overflow_handler. So we are safe w.r.t. to interrupt
6250 * concurrency even without interrupt masking.
6252 if (likely(owner == task)) {
6253 if (likely(psr_up)) pfm_set_psr_up();
6254 return;
6258 * someone else is still using the PMU, first push it out and
6259 * then we'll be able to install our stuff !
6261 * Upon return, there will be no owner for the current PMU
6263 if (owner) pfm_lazy_save_regs(owner);
6266 * To avoid leaking information to the user level when psr.sp=0,
6267 * we must reload ALL implemented pmds (even the ones we don't use).
6268 * In the kernel we only allow PFM_READ_PMDS on registers which
6269 * we initialized or requested (sampling) so there is no risk there.
6271 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6274 * ALL accessible PMCs are systematically reloaded, unused registers
6275 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6276 * up stale configuration.
6278 * PMC0 is never in the mask. It is always restored separately
6280 pmc_mask = ctx->ctx_all_pmcs[0];
6282 pfm_restore_pmds(t->pmds, pmd_mask);
6283 pfm_restore_pmcs(t->pmcs, pmc_mask);
6286 * check for pending overflow at the time the state
6287 * was saved.
6289 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6291 * reload pmc0 with the overflow information
6292 * On McKinley PMU, this will trigger a PMU interrupt
6294 ia64_set_pmc(0, t->pmcs[0]);
6295 ia64_srlz_d();
6297 t->pmcs[0] = 0UL;
6300 * will replay the PMU interrupt
6302 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6304 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6308 * establish new ownership.
6310 SET_PMU_OWNER(task, ctx);
6313 * restore the psr.up bit. measurement
6314 * is active again.
6315 * no PMU interrupt can happen at this point
6316 * because we still have interrupts disabled.
6318 if (likely(psr_up)) pfm_set_psr_up();
6320 #endif /* CONFIG_SMP */
6323 * this function assumes monitoring is stopped
6325 static void
6326 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6328 u64 pmc0;
6329 unsigned long mask2, val, pmd_val, ovfl_val;
6330 int i, can_access_pmu = 0;
6331 int is_self;
6334 * is the caller the task being monitored (or which initiated the
6335 * session for system wide measurements)
6337 is_self = ctx->ctx_task == task ? 1 : 0;
6340 * can access PMU is task is the owner of the PMU state on the current CPU
6341 * or if we are running on the CPU bound to the context in system-wide mode
6342 * (that is not necessarily the task the context is attached to in this mode).
6343 * In system-wide we always have can_access_pmu true because a task running on an
6344 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6346 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6347 if (can_access_pmu) {
6349 * Mark the PMU as not owned
6350 * This will cause the interrupt handler to do nothing in case an overflow
6351 * interrupt was in-flight
6352 * This also guarantees that pmc0 will contain the final state
6353 * It virtually gives us full control on overflow processing from that point
6354 * on.
6356 SET_PMU_OWNER(NULL, NULL);
6357 DPRINT(("releasing ownership\n"));
6360 * read current overflow status:
6362 * we are guaranteed to read the final stable state
6364 ia64_srlz_d();
6365 pmc0 = ia64_get_pmc(0); /* slow */
6368 * reset freeze bit, overflow status information destroyed
6370 pfm_unfreeze_pmu();
6371 } else {
6372 pmc0 = task->thread.pmcs[0];
6374 * clear whatever overflow status bits there were
6376 task->thread.pmcs[0] = 0;
6378 ovfl_val = pmu_conf->ovfl_val;
6380 * we save all the used pmds
6381 * we take care of overflows for counting PMDs
6383 * XXX: sampling situation is not taken into account here
6385 mask2 = ctx->ctx_used_pmds[0];
6387 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6389 for (i = 0; mask2; i++, mask2>>=1) {
6391 /* skip non used pmds */
6392 if ((mask2 & 0x1) == 0) continue;
6395 * can access PMU always true in system wide mode
6397 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6399 if (PMD_IS_COUNTING(i)) {
6400 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6401 task->pid,
6403 ctx->ctx_pmds[i].val,
6404 val & ovfl_val));
6407 * we rebuild the full 64 bit value of the counter
6409 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6412 * now everything is in ctx_pmds[] and we need
6413 * to clear the saved context from save_regs() such that
6414 * pfm_read_pmds() gets the correct value
6416 pmd_val = 0UL;
6419 * take care of overflow inline
6421 if (pmc0 & (1UL << i)) {
6422 val += 1 + ovfl_val;
6423 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6427 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6429 if (is_self) task->thread.pmds[i] = pmd_val;
6431 ctx->ctx_pmds[i].val = val;
6435 static struct irqaction perfmon_irqaction = {
6436 .handler = pfm_interrupt_handler,
6437 .flags = SA_INTERRUPT,
6438 .name = "perfmon"
6441 static void
6442 pfm_alt_save_pmu_state(void *data)
6444 struct pt_regs *regs;
6446 regs = ia64_task_regs(current);
6448 DPRINT(("called\n"));
6451 * should not be necessary but
6452 * let's take not risk
6454 pfm_clear_psr_up();
6455 pfm_clear_psr_pp();
6456 ia64_psr(regs)->pp = 0;
6459 * This call is required
6460 * May cause a spurious interrupt on some processors
6462 pfm_freeze_pmu();
6464 ia64_srlz_d();
6467 void
6468 pfm_alt_restore_pmu_state(void *data)
6470 struct pt_regs *regs;
6472 regs = ia64_task_regs(current);
6474 DPRINT(("called\n"));
6477 * put PMU back in state expected
6478 * by perfmon
6480 pfm_clear_psr_up();
6481 pfm_clear_psr_pp();
6482 ia64_psr(regs)->pp = 0;
6485 * perfmon runs with PMU unfrozen at all times
6487 pfm_unfreeze_pmu();
6489 ia64_srlz_d();
6493 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6495 int ret, i;
6496 int reserve_cpu;
6498 /* some sanity checks */
6499 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6501 /* do the easy test first */
6502 if (pfm_alt_intr_handler) return -EBUSY;
6504 /* one at a time in the install or remove, just fail the others */
6505 if (!spin_trylock(&pfm_alt_install_check)) {
6506 return -EBUSY;
6509 /* reserve our session */
6510 for_each_online_cpu(reserve_cpu) {
6511 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6512 if (ret) goto cleanup_reserve;
6515 /* save the current system wide pmu states */
6516 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6517 if (ret) {
6518 DPRINT(("on_each_cpu() failed: %d\n", ret));
6519 goto cleanup_reserve;
6522 /* officially change to the alternate interrupt handler */
6523 pfm_alt_intr_handler = hdl;
6525 spin_unlock(&pfm_alt_install_check);
6527 return 0;
6529 cleanup_reserve:
6530 for_each_online_cpu(i) {
6531 /* don't unreserve more than we reserved */
6532 if (i >= reserve_cpu) break;
6534 pfm_unreserve_session(NULL, 1, i);
6537 spin_unlock(&pfm_alt_install_check);
6539 return ret;
6541 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6544 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6546 int i;
6547 int ret;
6549 if (hdl == NULL) return -EINVAL;
6551 /* cannot remove someone else's handler! */
6552 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6554 /* one at a time in the install or remove, just fail the others */
6555 if (!spin_trylock(&pfm_alt_install_check)) {
6556 return -EBUSY;
6559 pfm_alt_intr_handler = NULL;
6561 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6562 if (ret) {
6563 DPRINT(("on_each_cpu() failed: %d\n", ret));
6566 for_each_online_cpu(i) {
6567 pfm_unreserve_session(NULL, 1, i);
6570 spin_unlock(&pfm_alt_install_check);
6572 return 0;
6574 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6577 * perfmon initialization routine, called from the initcall() table
6579 static int init_pfm_fs(void);
6581 static int __init
6582 pfm_probe_pmu(void)
6584 pmu_config_t **p;
6585 int family;
6587 family = local_cpu_data->family;
6588 p = pmu_confs;
6590 while(*p) {
6591 if ((*p)->probe) {
6592 if ((*p)->probe() == 0) goto found;
6593 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6594 goto found;
6596 p++;
6598 return -1;
6599 found:
6600 pmu_conf = *p;
6601 return 0;
6604 static struct file_operations pfm_proc_fops = {
6605 .open = pfm_proc_open,
6606 .read = seq_read,
6607 .llseek = seq_lseek,
6608 .release = seq_release,
6611 int __init
6612 pfm_init(void)
6614 unsigned int n, n_counters, i;
6616 printk("perfmon: version %u.%u IRQ %u\n",
6617 PFM_VERSION_MAJ,
6618 PFM_VERSION_MIN,
6619 IA64_PERFMON_VECTOR);
6621 if (pfm_probe_pmu()) {
6622 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6623 local_cpu_data->family);
6624 return -ENODEV;
6628 * compute the number of implemented PMD/PMC from the
6629 * description tables
6631 n = 0;
6632 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6633 if (PMC_IS_IMPL(i) == 0) continue;
6634 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6635 n++;
6637 pmu_conf->num_pmcs = n;
6639 n = 0; n_counters = 0;
6640 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6641 if (PMD_IS_IMPL(i) == 0) continue;
6642 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6643 n++;
6644 if (PMD_IS_COUNTING(i)) n_counters++;
6646 pmu_conf->num_pmds = n;
6647 pmu_conf->num_counters = n_counters;
6650 * sanity checks on the number of debug registers
6652 if (pmu_conf->use_rr_dbregs) {
6653 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6654 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6655 pmu_conf = NULL;
6656 return -1;
6658 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6659 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6660 pmu_conf = NULL;
6661 return -1;
6665 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6666 pmu_conf->pmu_name,
6667 pmu_conf->num_pmcs,
6668 pmu_conf->num_pmds,
6669 pmu_conf->num_counters,
6670 ffz(pmu_conf->ovfl_val));
6672 /* sanity check */
6673 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6674 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6675 pmu_conf = NULL;
6676 return -1;
6680 * create /proc/perfmon (mostly for debugging purposes)
6682 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6683 if (perfmon_dir == NULL) {
6684 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6685 pmu_conf = NULL;
6686 return -1;
6689 * install customized file operations for /proc/perfmon entry
6691 perfmon_dir->proc_fops = &pfm_proc_fops;
6694 * create /proc/sys/kernel/perfmon (for debugging purposes)
6696 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6699 * initialize all our spinlocks
6701 spin_lock_init(&pfm_sessions.pfs_lock);
6702 spin_lock_init(&pfm_buffer_fmt_lock);
6704 init_pfm_fs();
6706 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6708 return 0;
6711 __initcall(pfm_init);
6714 * this function is called before pfm_init()
6716 void
6717 pfm_init_percpu (void)
6720 * make sure no measurement is active
6721 * (may inherit programmed PMCs from EFI).
6723 pfm_clear_psr_pp();
6724 pfm_clear_psr_up();
6727 * we run with the PMU not frozen at all times
6729 pfm_unfreeze_pmu();
6731 if (smp_processor_id() == 0)
6732 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6734 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6735 ia64_srlz_d();
6739 * used for debug purposes only
6741 void
6742 dump_pmu_state(const char *from)
6744 struct task_struct *task;
6745 struct thread_struct *t;
6746 struct pt_regs *regs;
6747 pfm_context_t *ctx;
6748 unsigned long psr, dcr, info, flags;
6749 int i, this_cpu;
6751 local_irq_save(flags);
6753 this_cpu = smp_processor_id();
6754 regs = ia64_task_regs(current);
6755 info = PFM_CPUINFO_GET();
6756 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6758 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6759 local_irq_restore(flags);
6760 return;
6763 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6764 this_cpu,
6765 from,
6766 current->pid,
6767 regs->cr_iip,
6768 current->comm);
6770 task = GET_PMU_OWNER();
6771 ctx = GET_PMU_CTX();
6773 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6775 psr = pfm_get_psr();
6777 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6778 this_cpu,
6779 ia64_get_pmc(0),
6780 psr & IA64_PSR_PP ? 1 : 0,
6781 psr & IA64_PSR_UP ? 1 : 0,
6782 dcr & IA64_DCR_PP ? 1 : 0,
6783 info,
6784 ia64_psr(regs)->up,
6785 ia64_psr(regs)->pp);
6787 ia64_psr(regs)->up = 0;
6788 ia64_psr(regs)->pp = 0;
6790 t = &current->thread;
6792 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6793 if (PMC_IS_IMPL(i) == 0) continue;
6794 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6797 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6798 if (PMD_IS_IMPL(i) == 0) continue;
6799 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6802 if (ctx) {
6803 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6804 this_cpu,
6805 ctx->ctx_state,
6806 ctx->ctx_smpl_vaddr,
6807 ctx->ctx_smpl_hdr,
6808 ctx->ctx_msgq_head,
6809 ctx->ctx_msgq_tail,
6810 ctx->ctx_saved_psr_up);
6812 local_irq_restore(flags);
6816 * called from process.c:copy_thread(). task is new child.
6818 void
6819 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6821 struct thread_struct *thread;
6823 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6825 thread = &task->thread;
6828 * cut links inherited from parent (current)
6830 thread->pfm_context = NULL;
6832 PFM_SET_WORK_PENDING(task, 0);
6835 * the psr bits are already set properly in copy_threads()
6838 #else /* !CONFIG_PERFMON */
6839 asmlinkage long
6840 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6842 return -ENOSYS;
6844 #endif /* CONFIG_PERFMON */