rt2x00: Optimize get_duration / get_duration_res
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / super.c
blob8780efbf40ac64fbf901fd448998361823c38be3
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include "ubifs.h"
39 /* Slab cache for UBIFS inodes */
40 struct kmem_cache *ubifs_inode_slab;
42 /* UBIFS TNC shrinker description */
43 static struct shrinker ubifs_shrinker_info = {
44 .shrink = ubifs_shrinker,
45 .seeks = DEFAULT_SEEKS,
48 /**
49 * validate_inode - validate inode.
50 * @c: UBIFS file-system description object
51 * @inode: the inode to validate
53 * This is a helper function for 'ubifs_iget()' which validates various fields
54 * of a newly built inode to make sure they contain sane values and prevent
55 * possible vulnerabilities. Returns zero if the inode is all right and
56 * a non-zero error code if not.
58 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
60 int err;
61 const struct ubifs_inode *ui = ubifs_inode(inode);
63 if (inode->i_size > c->max_inode_sz) {
64 ubifs_err("inode is too large (%lld)",
65 (long long)inode->i_size);
66 return 1;
69 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
70 ubifs_err("unknown compression type %d", ui->compr_type);
71 return 2;
74 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
75 return 3;
77 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
78 return 4;
80 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
81 return 5;
83 if (!ubifs_compr_present(ui->compr_type)) {
84 ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 "compiled in", inode->i_ino,
86 ubifs_compr_name(ui->compr_type));
89 err = dbg_check_dir_size(c, inode);
90 return err;
93 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
95 int err;
96 union ubifs_key key;
97 struct ubifs_ino_node *ino;
98 struct ubifs_info *c = sb->s_fs_info;
99 struct inode *inode;
100 struct ubifs_inode *ui;
102 dbg_gen("inode %lu", inum);
104 inode = iget_locked(sb, inum);
105 if (!inode)
106 return ERR_PTR(-ENOMEM);
107 if (!(inode->i_state & I_NEW))
108 return inode;
109 ui = ubifs_inode(inode);
111 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
112 if (!ino) {
113 err = -ENOMEM;
114 goto out;
117 ino_key_init(c, &key, inode->i_ino);
119 err = ubifs_tnc_lookup(c, &key, ino);
120 if (err)
121 goto out_ino;
123 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
124 inode->i_nlink = le32_to_cpu(ino->nlink);
125 inode->i_uid = le32_to_cpu(ino->uid);
126 inode->i_gid = le32_to_cpu(ino->gid);
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
151 /* Disable read-ahead */
152 inode->i_mapping->backing_dev_info = &c->bdi;
154 switch (inode->i_mode & S_IFMT) {
155 case S_IFREG:
156 inode->i_mapping->a_ops = &ubifs_file_address_operations;
157 inode->i_op = &ubifs_file_inode_operations;
158 inode->i_fop = &ubifs_file_operations;
159 if (ui->xattr) {
160 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
161 if (!ui->data) {
162 err = -ENOMEM;
163 goto out_ino;
165 memcpy(ui->data, ino->data, ui->data_len);
166 ((char *)ui->data)[ui->data_len] = '\0';
167 } else if (ui->data_len != 0) {
168 err = 10;
169 goto out_invalid;
171 break;
172 case S_IFDIR:
173 inode->i_op = &ubifs_dir_inode_operations;
174 inode->i_fop = &ubifs_dir_operations;
175 if (ui->data_len != 0) {
176 err = 11;
177 goto out_invalid;
179 break;
180 case S_IFLNK:
181 inode->i_op = &ubifs_symlink_inode_operations;
182 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
183 err = 12;
184 goto out_invalid;
186 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
187 if (!ui->data) {
188 err = -ENOMEM;
189 goto out_ino;
191 memcpy(ui->data, ino->data, ui->data_len);
192 ((char *)ui->data)[ui->data_len] = '\0';
193 break;
194 case S_IFBLK:
195 case S_IFCHR:
197 dev_t rdev;
198 union ubifs_dev_desc *dev;
200 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
201 if (!ui->data) {
202 err = -ENOMEM;
203 goto out_ino;
206 dev = (union ubifs_dev_desc *)ino->data;
207 if (ui->data_len == sizeof(dev->new))
208 rdev = new_decode_dev(le32_to_cpu(dev->new));
209 else if (ui->data_len == sizeof(dev->huge))
210 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
211 else {
212 err = 13;
213 goto out_invalid;
215 memcpy(ui->data, ino->data, ui->data_len);
216 inode->i_op = &ubifs_file_inode_operations;
217 init_special_inode(inode, inode->i_mode, rdev);
218 break;
220 case S_IFSOCK:
221 case S_IFIFO:
222 inode->i_op = &ubifs_file_inode_operations;
223 init_special_inode(inode, inode->i_mode, 0);
224 if (ui->data_len != 0) {
225 err = 14;
226 goto out_invalid;
228 break;
229 default:
230 err = 15;
231 goto out_invalid;
234 kfree(ino);
235 ubifs_set_inode_flags(inode);
236 unlock_new_inode(inode);
237 return inode;
239 out_invalid:
240 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
241 dbg_dump_node(c, ino);
242 dbg_dump_inode(c, inode);
243 err = -EINVAL;
244 out_ino:
245 kfree(ino);
246 out:
247 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
248 iget_failed(inode);
249 return ERR_PTR(err);
252 static struct inode *ubifs_alloc_inode(struct super_block *sb)
254 struct ubifs_inode *ui;
256 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
257 if (!ui)
258 return NULL;
260 memset((void *)ui + sizeof(struct inode), 0,
261 sizeof(struct ubifs_inode) - sizeof(struct inode));
262 mutex_init(&ui->ui_mutex);
263 spin_lock_init(&ui->ui_lock);
264 return &ui->vfs_inode;
267 static void ubifs_destroy_inode(struct inode *inode)
269 struct ubifs_inode *ui = ubifs_inode(inode);
271 kfree(ui->data);
272 kmem_cache_free(ubifs_inode_slab, inode);
276 * Note, Linux write-back code calls this without 'i_mutex'.
278 static int ubifs_write_inode(struct inode *inode, int wait)
280 int err = 0;
281 struct ubifs_info *c = inode->i_sb->s_fs_info;
282 struct ubifs_inode *ui = ubifs_inode(inode);
284 ubifs_assert(!ui->xattr);
285 if (is_bad_inode(inode))
286 return 0;
288 mutex_lock(&ui->ui_mutex);
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
294 * 'ubifs_link()'.
296 if (!ui->dirty) {
297 mutex_unlock(&ui->ui_mutex);
298 return 0;
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 if (inode->i_nlink) {
308 err = ubifs_jnl_write_inode(c, inode);
309 if (err)
310 ubifs_err("can't write inode %lu, error %d",
311 inode->i_ino, err);
314 ui->dirty = 0;
315 mutex_unlock(&ui->ui_mutex);
316 ubifs_release_dirty_inode_budget(c, ui);
317 return err;
320 static void ubifs_delete_inode(struct inode *inode)
322 int err;
323 struct ubifs_info *c = inode->i_sb->s_fs_info;
324 struct ubifs_inode *ui = ubifs_inode(inode);
326 if (ui->xattr)
328 * Extended attribute inode deletions are fully handled in
329 * 'ubifs_removexattr()'. These inodes are special and have
330 * limited usage, so there is nothing to do here.
332 goto out;
334 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
335 ubifs_assert(!atomic_read(&inode->i_count));
336 ubifs_assert(inode->i_nlink == 0);
338 truncate_inode_pages(&inode->i_data, 0);
339 if (is_bad_inode(inode))
340 goto out;
342 ui->ui_size = inode->i_size = 0;
343 err = ubifs_jnl_delete_inode(c, inode);
344 if (err)
346 * Worst case we have a lost orphan inode wasting space, so a
347 * simple error message is OK here.
349 ubifs_err("can't delete inode %lu, error %d",
350 inode->i_ino, err);
352 out:
353 if (ui->dirty)
354 ubifs_release_dirty_inode_budget(c, ui);
355 clear_inode(inode);
358 static void ubifs_dirty_inode(struct inode *inode)
360 struct ubifs_inode *ui = ubifs_inode(inode);
362 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
363 if (!ui->dirty) {
364 ui->dirty = 1;
365 dbg_gen("inode %lu", inode->i_ino);
369 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
371 struct ubifs_info *c = dentry->d_sb->s_fs_info;
372 unsigned long long free;
373 __le32 *uuid = (__le32 *)c->uuid;
375 free = ubifs_get_free_space(c);
376 dbg_gen("free space %lld bytes (%lld blocks)",
377 free, free >> UBIFS_BLOCK_SHIFT);
379 buf->f_type = UBIFS_SUPER_MAGIC;
380 buf->f_bsize = UBIFS_BLOCK_SIZE;
381 buf->f_blocks = c->block_cnt;
382 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
383 if (free > c->report_rp_size)
384 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
385 else
386 buf->f_bavail = 0;
387 buf->f_files = 0;
388 buf->f_ffree = 0;
389 buf->f_namelen = UBIFS_MAX_NLEN;
390 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
391 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
392 return 0;
395 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
397 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
399 if (c->mount_opts.unmount_mode == 2)
400 seq_printf(s, ",fast_unmount");
401 else if (c->mount_opts.unmount_mode == 1)
402 seq_printf(s, ",norm_unmount");
404 if (c->mount_opts.bulk_read == 2)
405 seq_printf(s, ",bulk_read");
406 else if (c->mount_opts.bulk_read == 1)
407 seq_printf(s, ",no_bulk_read");
409 if (c->mount_opts.chk_data_crc == 2)
410 seq_printf(s, ",chk_data_crc");
411 else if (c->mount_opts.chk_data_crc == 1)
412 seq_printf(s, ",no_chk_data_crc");
414 return 0;
417 static int ubifs_sync_fs(struct super_block *sb, int wait)
419 struct ubifs_info *c = sb->s_fs_info;
420 int i, ret = 0, err;
421 long long bud_bytes;
423 if (c->jheads) {
424 for (i = 0; i < c->jhead_cnt; i++) {
425 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
426 if (err && !ret)
427 ret = err;
430 /* Commit the journal unless it has too little data */
431 spin_lock(&c->buds_lock);
432 bud_bytes = c->bud_bytes;
433 spin_unlock(&c->buds_lock);
434 if (bud_bytes > c->leb_size) {
435 err = ubifs_run_commit(c);
436 if (err)
437 return err;
442 * We ought to call sync for c->ubi but it does not have one. If it had
443 * it would in turn call mtd->sync, however mtd operations are
444 * synchronous anyway, so we don't lose any sleep here.
446 return ret;
450 * init_constants_early - initialize UBIFS constants.
451 * @c: UBIFS file-system description object
453 * This function initialize UBIFS constants which do not need the superblock to
454 * be read. It also checks that the UBI volume satisfies basic UBIFS
455 * requirements. Returns zero in case of success and a negative error code in
456 * case of failure.
458 static int init_constants_early(struct ubifs_info *c)
460 if (c->vi.corrupted) {
461 ubifs_warn("UBI volume is corrupted - read-only mode");
462 c->ro_media = 1;
465 if (c->di.ro_mode) {
466 ubifs_msg("read-only UBI device");
467 c->ro_media = 1;
470 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
471 ubifs_msg("static UBI volume - read-only mode");
472 c->ro_media = 1;
475 c->leb_cnt = c->vi.size;
476 c->leb_size = c->vi.usable_leb_size;
477 c->half_leb_size = c->leb_size / 2;
478 c->min_io_size = c->di.min_io_size;
479 c->min_io_shift = fls(c->min_io_size) - 1;
481 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
482 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
483 c->leb_size, UBIFS_MIN_LEB_SZ);
484 return -EINVAL;
487 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
488 ubifs_err("too few LEBs (%d), min. is %d",
489 c->leb_cnt, UBIFS_MIN_LEB_CNT);
490 return -EINVAL;
493 if (!is_power_of_2(c->min_io_size)) {
494 ubifs_err("bad min. I/O size %d", c->min_io_size);
495 return -EINVAL;
499 * UBIFS aligns all node to 8-byte boundary, so to make function in
500 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
501 * less than 8.
503 if (c->min_io_size < 8) {
504 c->min_io_size = 8;
505 c->min_io_shift = 3;
508 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
509 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
512 * Initialize node length ranges which are mostly needed for node
513 * length validation.
515 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
516 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
517 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
518 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
519 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
520 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
522 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
523 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
524 c->ranges[UBIFS_ORPH_NODE].min_len =
525 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
526 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
527 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
528 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
529 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
530 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
531 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
532 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
534 * Minimum indexing node size is amended later when superblock is
535 * read and the key length is known.
537 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
539 * Maximum indexing node size is amended later when superblock is
540 * read and the fanout is known.
542 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
545 * Initialize dead and dark LEB space watermarks.
547 * Dead space is the space which cannot be used. Its watermark is
548 * equivalent to min. I/O unit or minimum node size if it is greater
549 * then min. I/O unit.
551 * Dark space is the space which might be used, or might not, depending
552 * on which node should be written to the LEB. Its watermark is
553 * equivalent to maximum UBIFS node size.
555 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
556 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
559 * Calculate how many bytes would be wasted at the end of LEB if it was
560 * fully filled with data nodes of maximum size. This is used in
561 * calculations when reporting free space.
563 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
564 /* Buffer size for bulk-reads */
565 c->bulk_read_buf_size = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
566 if (c->bulk_read_buf_size > c->leb_size)
567 c->bulk_read_buf_size = c->leb_size;
568 if (c->bulk_read_buf_size > 128 * 1024) {
569 /* Check if we can kmalloc more than 128KiB */
570 void *try = kmalloc(c->bulk_read_buf_size, GFP_KERNEL);
572 kfree(try);
573 if (!try)
574 c->bulk_read_buf_size = 128 * 1024;
576 return 0;
580 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
581 * @c: UBIFS file-system description object
582 * @lnum: LEB the write-buffer was synchronized to
583 * @free: how many free bytes left in this LEB
584 * @pad: how many bytes were padded
586 * This is a callback function which is called by the I/O unit when the
587 * write-buffer is synchronized. We need this to correctly maintain space
588 * accounting in bud logical eraseblocks. This function returns zero in case of
589 * success and a negative error code in case of failure.
591 * This function actually belongs to the journal, but we keep it here because
592 * we want to keep it static.
594 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
596 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
600 * init_constants_late - initialize UBIFS constants.
601 * @c: UBIFS file-system description object
603 * This is a helper function which initializes various UBIFS constants after
604 * the superblock has been read. It also checks various UBIFS parameters and
605 * makes sure they are all right. Returns zero in case of success and a
606 * negative error code in case of failure.
608 static int init_constants_late(struct ubifs_info *c)
610 int tmp, err;
611 uint64_t tmp64;
613 c->main_bytes = (long long)c->main_lebs * c->leb_size;
614 c->max_znode_sz = sizeof(struct ubifs_znode) +
615 c->fanout * sizeof(struct ubifs_zbranch);
617 tmp = ubifs_idx_node_sz(c, 1);
618 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
619 c->min_idx_node_sz = ALIGN(tmp, 8);
621 tmp = ubifs_idx_node_sz(c, c->fanout);
622 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
623 c->max_idx_node_sz = ALIGN(tmp, 8);
625 /* Make sure LEB size is large enough to fit full commit */
626 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
627 tmp = ALIGN(tmp, c->min_io_size);
628 if (tmp > c->leb_size) {
629 dbg_err("too small LEB size %d, at least %d needed",
630 c->leb_size, tmp);
631 return -EINVAL;
635 * Make sure that the log is large enough to fit reference nodes for
636 * all buds plus one reserved LEB.
638 tmp64 = c->max_bud_bytes;
639 tmp = do_div(tmp64, c->leb_size);
640 c->max_bud_cnt = tmp64 + !!tmp;
641 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
642 tmp /= c->leb_size;
643 tmp += 1;
644 if (c->log_lebs < tmp) {
645 dbg_err("too small log %d LEBs, required min. %d LEBs",
646 c->log_lebs, tmp);
647 return -EINVAL;
651 * When budgeting we assume worst-case scenarios when the pages are not
652 * be compressed and direntries are of the maximum size.
654 * Note, data, which may be stored in inodes is budgeted separately, so
655 * it is not included into 'c->inode_budget'.
657 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
658 c->inode_budget = UBIFS_INO_NODE_SZ;
659 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
662 * When the amount of flash space used by buds becomes
663 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
664 * The writers are unblocked when the commit is finished. To avoid
665 * writers to be blocked UBIFS initiates background commit in advance,
666 * when number of bud bytes becomes above the limit defined below.
668 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
671 * Ensure minimum journal size. All the bytes in the journal heads are
672 * considered to be used, when calculating the current journal usage.
673 * Consequently, if the journal is too small, UBIFS will treat it as
674 * always full.
676 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
677 if (c->bg_bud_bytes < tmp64)
678 c->bg_bud_bytes = tmp64;
679 if (c->max_bud_bytes < tmp64 + c->leb_size)
680 c->max_bud_bytes = tmp64 + c->leb_size;
682 err = ubifs_calc_lpt_geom(c);
683 if (err)
684 return err;
686 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
689 * Calculate total amount of FS blocks. This number is not used
690 * internally because it does not make much sense for UBIFS, but it is
691 * necessary to report something for the 'statfs()' call.
693 * Subtract the LEB reserved for GC, the LEB which is reserved for
694 * deletions, and assume only one journal head is available.
696 tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1;
697 tmp64 *= (uint64_t)c->leb_size - c->leb_overhead;
698 tmp64 = ubifs_reported_space(c, tmp64);
699 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
701 return 0;
705 * take_gc_lnum - reserve GC LEB.
706 * @c: UBIFS file-system description object
708 * This function ensures that the LEB reserved for garbage collection is
709 * unmapped and is marked as "taken" in lprops. We also have to set free space
710 * to LEB size and dirty space to zero, because lprops may contain out-of-date
711 * information if the file-system was un-mounted before it has been committed.
712 * This function returns zero in case of success and a negative error code in
713 * case of failure.
715 static int take_gc_lnum(struct ubifs_info *c)
717 int err;
719 if (c->gc_lnum == -1) {
720 ubifs_err("no LEB for GC");
721 return -EINVAL;
724 err = ubifs_leb_unmap(c, c->gc_lnum);
725 if (err)
726 return err;
728 /* And we have to tell lprops that this LEB is taken */
729 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
730 LPROPS_TAKEN, 0, 0);
731 return err;
735 * alloc_wbufs - allocate write-buffers.
736 * @c: UBIFS file-system description object
738 * This helper function allocates and initializes UBIFS write-buffers. Returns
739 * zero in case of success and %-ENOMEM in case of failure.
741 static int alloc_wbufs(struct ubifs_info *c)
743 int i, err;
745 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
746 GFP_KERNEL);
747 if (!c->jheads)
748 return -ENOMEM;
750 /* Initialize journal heads */
751 for (i = 0; i < c->jhead_cnt; i++) {
752 INIT_LIST_HEAD(&c->jheads[i].buds_list);
753 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
754 if (err)
755 return err;
757 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
758 c->jheads[i].wbuf.jhead = i;
761 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
763 * Garbage Collector head likely contains long-term data and
764 * does not need to be synchronized by timer.
766 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
767 c->jheads[GCHD].wbuf.timeout = 0;
769 return 0;
773 * free_wbufs - free write-buffers.
774 * @c: UBIFS file-system description object
776 static void free_wbufs(struct ubifs_info *c)
778 int i;
780 if (c->jheads) {
781 for (i = 0; i < c->jhead_cnt; i++) {
782 kfree(c->jheads[i].wbuf.buf);
783 kfree(c->jheads[i].wbuf.inodes);
785 kfree(c->jheads);
786 c->jheads = NULL;
791 * free_orphans - free orphans.
792 * @c: UBIFS file-system description object
794 static void free_orphans(struct ubifs_info *c)
796 struct ubifs_orphan *orph;
798 while (c->orph_dnext) {
799 orph = c->orph_dnext;
800 c->orph_dnext = orph->dnext;
801 list_del(&orph->list);
802 kfree(orph);
805 while (!list_empty(&c->orph_list)) {
806 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
807 list_del(&orph->list);
808 kfree(orph);
809 dbg_err("orphan list not empty at unmount");
812 vfree(c->orph_buf);
813 c->orph_buf = NULL;
817 * free_buds - free per-bud objects.
818 * @c: UBIFS file-system description object
820 static void free_buds(struct ubifs_info *c)
822 struct rb_node *this = c->buds.rb_node;
823 struct ubifs_bud *bud;
825 while (this) {
826 if (this->rb_left)
827 this = this->rb_left;
828 else if (this->rb_right)
829 this = this->rb_right;
830 else {
831 bud = rb_entry(this, struct ubifs_bud, rb);
832 this = rb_parent(this);
833 if (this) {
834 if (this->rb_left == &bud->rb)
835 this->rb_left = NULL;
836 else
837 this->rb_right = NULL;
839 kfree(bud);
845 * check_volume_empty - check if the UBI volume is empty.
846 * @c: UBIFS file-system description object
848 * This function checks if the UBIFS volume is empty by looking if its LEBs are
849 * mapped or not. The result of checking is stored in the @c->empty variable.
850 * Returns zero in case of success and a negative error code in case of
851 * failure.
853 static int check_volume_empty(struct ubifs_info *c)
855 int lnum, err;
857 c->empty = 1;
858 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
859 err = ubi_is_mapped(c->ubi, lnum);
860 if (unlikely(err < 0))
861 return err;
862 if (err == 1) {
863 c->empty = 0;
864 break;
867 cond_resched();
870 return 0;
874 * UBIFS mount options.
876 * Opt_fast_unmount: do not run a journal commit before un-mounting
877 * Opt_norm_unmount: run a journal commit before un-mounting
878 * Opt_bulk_read: enable bulk-reads
879 * Opt_no_bulk_read: disable bulk-reads
880 * Opt_chk_data_crc: check CRCs when reading data nodes
881 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
882 * Opt_err: just end of array marker
884 enum {
885 Opt_fast_unmount,
886 Opt_norm_unmount,
887 Opt_bulk_read,
888 Opt_no_bulk_read,
889 Opt_chk_data_crc,
890 Opt_no_chk_data_crc,
891 Opt_err,
894 static const match_table_t tokens = {
895 {Opt_fast_unmount, "fast_unmount"},
896 {Opt_norm_unmount, "norm_unmount"},
897 {Opt_bulk_read, "bulk_read"},
898 {Opt_no_bulk_read, "no_bulk_read"},
899 {Opt_chk_data_crc, "chk_data_crc"},
900 {Opt_no_chk_data_crc, "no_chk_data_crc"},
901 {Opt_err, NULL},
905 * ubifs_parse_options - parse mount parameters.
906 * @c: UBIFS file-system description object
907 * @options: parameters to parse
908 * @is_remount: non-zero if this is FS re-mount
910 * This function parses UBIFS mount options and returns zero in case success
911 * and a negative error code in case of failure.
913 static int ubifs_parse_options(struct ubifs_info *c, char *options,
914 int is_remount)
916 char *p;
917 substring_t args[MAX_OPT_ARGS];
919 if (!options)
920 return 0;
922 while ((p = strsep(&options, ","))) {
923 int token;
925 if (!*p)
926 continue;
928 token = match_token(p, tokens, args);
929 switch (token) {
930 case Opt_fast_unmount:
931 c->mount_opts.unmount_mode = 2;
932 c->fast_unmount = 1;
933 break;
934 case Opt_norm_unmount:
935 c->mount_opts.unmount_mode = 1;
936 c->fast_unmount = 0;
937 break;
938 case Opt_bulk_read:
939 c->mount_opts.bulk_read = 2;
940 c->bulk_read = 1;
941 break;
942 case Opt_no_bulk_read:
943 c->mount_opts.bulk_read = 1;
944 c->bulk_read = 0;
945 break;
946 case Opt_chk_data_crc:
947 c->mount_opts.chk_data_crc = 2;
948 c->no_chk_data_crc = 0;
949 break;
950 case Opt_no_chk_data_crc:
951 c->mount_opts.chk_data_crc = 1;
952 c->no_chk_data_crc = 1;
953 break;
954 default:
955 ubifs_err("unrecognized mount option \"%s\" "
956 "or missing value", p);
957 return -EINVAL;
961 return 0;
965 * destroy_journal - destroy journal data structures.
966 * @c: UBIFS file-system description object
968 * This function destroys journal data structures including those that may have
969 * been created by recovery functions.
971 static void destroy_journal(struct ubifs_info *c)
973 while (!list_empty(&c->unclean_leb_list)) {
974 struct ubifs_unclean_leb *ucleb;
976 ucleb = list_entry(c->unclean_leb_list.next,
977 struct ubifs_unclean_leb, list);
978 list_del(&ucleb->list);
979 kfree(ucleb);
981 while (!list_empty(&c->old_buds)) {
982 struct ubifs_bud *bud;
984 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
985 list_del(&bud->list);
986 kfree(bud);
988 ubifs_destroy_idx_gc(c);
989 ubifs_destroy_size_tree(c);
990 ubifs_tnc_close(c);
991 free_buds(c);
995 * mount_ubifs - mount UBIFS file-system.
996 * @c: UBIFS file-system description object
998 * This function mounts UBIFS file system. Returns zero in case of success and
999 * a negative error code in case of failure.
1001 * Note, the function does not de-allocate resources it it fails half way
1002 * through, and the caller has to do this instead.
1004 static int mount_ubifs(struct ubifs_info *c)
1006 struct super_block *sb = c->vfs_sb;
1007 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1008 long long x;
1009 size_t sz;
1011 err = init_constants_early(c);
1012 if (err)
1013 return err;
1015 #ifdef CONFIG_UBIFS_FS_DEBUG
1016 c->dbg_buf = vmalloc(c->leb_size);
1017 if (!c->dbg_buf)
1018 return -ENOMEM;
1019 #endif
1021 err = check_volume_empty(c);
1022 if (err)
1023 goto out_free;
1025 if (c->empty && (mounted_read_only || c->ro_media)) {
1027 * This UBI volume is empty, and read-only, or the file system
1028 * is mounted read-only - we cannot format it.
1030 ubifs_err("can't format empty UBI volume: read-only %s",
1031 c->ro_media ? "UBI volume" : "mount");
1032 err = -EROFS;
1033 goto out_free;
1036 if (c->ro_media && !mounted_read_only) {
1037 ubifs_err("cannot mount read-write - read-only media");
1038 err = -EROFS;
1039 goto out_free;
1043 * The requirement for the buffer is that it should fit indexing B-tree
1044 * height amount of integers. We assume the height if the TNC tree will
1045 * never exceed 64.
1047 err = -ENOMEM;
1048 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1049 if (!c->bottom_up_buf)
1050 goto out_free;
1052 c->sbuf = vmalloc(c->leb_size);
1053 if (!c->sbuf)
1054 goto out_free;
1056 if (!mounted_read_only) {
1057 c->ileb_buf = vmalloc(c->leb_size);
1058 if (!c->ileb_buf)
1059 goto out_free;
1062 c->always_chk_crc = 1;
1064 err = ubifs_read_superblock(c);
1065 if (err)
1066 goto out_free;
1069 * Make sure the compressor which is set as the default on in the
1070 * superblock was actually compiled in.
1072 if (!ubifs_compr_present(c->default_compr)) {
1073 ubifs_warn("'%s' compressor is set by superblock, but not "
1074 "compiled in", ubifs_compr_name(c->default_compr));
1075 c->default_compr = UBIFS_COMPR_NONE;
1078 dbg_failure_mode_registration(c);
1080 err = init_constants_late(c);
1081 if (err)
1082 goto out_dereg;
1084 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1085 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1086 c->cbuf = kmalloc(sz, GFP_NOFS);
1087 if (!c->cbuf) {
1088 err = -ENOMEM;
1089 goto out_dereg;
1092 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1093 if (!mounted_read_only) {
1094 err = alloc_wbufs(c);
1095 if (err)
1096 goto out_cbuf;
1098 /* Create background thread */
1099 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1100 if (IS_ERR(c->bgt)) {
1101 err = PTR_ERR(c->bgt);
1102 c->bgt = NULL;
1103 ubifs_err("cannot spawn \"%s\", error %d",
1104 c->bgt_name, err);
1105 goto out_wbufs;
1107 wake_up_process(c->bgt);
1110 err = ubifs_read_master(c);
1111 if (err)
1112 goto out_master;
1114 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1115 ubifs_msg("recovery needed");
1116 c->need_recovery = 1;
1117 if (!mounted_read_only) {
1118 err = ubifs_recover_inl_heads(c, c->sbuf);
1119 if (err)
1120 goto out_master;
1122 } else if (!mounted_read_only) {
1124 * Set the "dirty" flag so that if we reboot uncleanly we
1125 * will notice this immediately on the next mount.
1127 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1128 err = ubifs_write_master(c);
1129 if (err)
1130 goto out_master;
1133 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1134 if (err)
1135 goto out_lpt;
1137 err = dbg_check_idx_size(c, c->old_idx_sz);
1138 if (err)
1139 goto out_lpt;
1141 err = ubifs_replay_journal(c);
1142 if (err)
1143 goto out_journal;
1145 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1146 if (err)
1147 goto out_orphans;
1149 if (!mounted_read_only) {
1150 int lnum;
1152 /* Check for enough free space */
1153 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1154 ubifs_err("insufficient available space");
1155 err = -EINVAL;
1156 goto out_orphans;
1159 /* Check for enough log space */
1160 lnum = c->lhead_lnum + 1;
1161 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1162 lnum = UBIFS_LOG_LNUM;
1163 if (lnum == c->ltail_lnum) {
1164 err = ubifs_consolidate_log(c);
1165 if (err)
1166 goto out_orphans;
1169 if (c->need_recovery) {
1170 err = ubifs_recover_size(c);
1171 if (err)
1172 goto out_orphans;
1173 err = ubifs_rcvry_gc_commit(c);
1174 } else
1175 err = take_gc_lnum(c);
1176 if (err)
1177 goto out_orphans;
1179 err = dbg_check_lprops(c);
1180 if (err)
1181 goto out_orphans;
1182 } else if (c->need_recovery) {
1183 err = ubifs_recover_size(c);
1184 if (err)
1185 goto out_orphans;
1188 spin_lock(&ubifs_infos_lock);
1189 list_add_tail(&c->infos_list, &ubifs_infos);
1190 spin_unlock(&ubifs_infos_lock);
1192 if (c->need_recovery) {
1193 if (mounted_read_only)
1194 ubifs_msg("recovery deferred");
1195 else {
1196 c->need_recovery = 0;
1197 ubifs_msg("recovery completed");
1201 err = dbg_check_filesystem(c);
1202 if (err)
1203 goto out_infos;
1205 c->always_chk_crc = 0;
1207 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1208 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1209 if (mounted_read_only)
1210 ubifs_msg("mounted read-only");
1211 x = (long long)c->main_lebs * c->leb_size;
1212 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1213 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1214 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1215 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1216 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1217 ubifs_msg("media format: %d (latest is %d)",
1218 c->fmt_version, UBIFS_FORMAT_VERSION);
1219 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1220 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1221 c->report_rp_size, c->report_rp_size >> 10);
1223 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1224 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1225 dbg_msg("LEB size: %d bytes (%d KiB)",
1226 c->leb_size, c->leb_size >> 10);
1227 dbg_msg("data journal heads: %d",
1228 c->jhead_cnt - NONDATA_JHEADS_CNT);
1229 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1230 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1231 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1232 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1233 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1234 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1235 dbg_msg("fast unmount: %d", c->fast_unmount);
1236 dbg_msg("big_lpt %d", c->big_lpt);
1237 dbg_msg("log LEBs: %d (%d - %d)",
1238 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1239 dbg_msg("LPT area LEBs: %d (%d - %d)",
1240 c->lpt_lebs, c->lpt_first, c->lpt_last);
1241 dbg_msg("orphan area LEBs: %d (%d - %d)",
1242 c->orph_lebs, c->orph_first, c->orph_last);
1243 dbg_msg("main area LEBs: %d (%d - %d)",
1244 c->main_lebs, c->main_first, c->leb_cnt - 1);
1245 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1246 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1247 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1248 dbg_msg("key hash type: %d", c->key_hash_type);
1249 dbg_msg("tree fanout: %d", c->fanout);
1250 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1251 dbg_msg("first main LEB: %d", c->main_first);
1252 dbg_msg("dead watermark: %d", c->dead_wm);
1253 dbg_msg("dark watermark: %d", c->dark_wm);
1254 x = (long long)c->main_lebs * c->dark_wm;
1255 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1256 x, x >> 10, x >> 20);
1257 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1258 c->max_bud_bytes, c->max_bud_bytes >> 10,
1259 c->max_bud_bytes >> 20);
1260 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1261 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1262 c->bg_bud_bytes >> 20);
1263 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1264 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1265 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1266 dbg_msg("commit number: %llu", c->cmt_no);
1268 return 0;
1270 out_infos:
1271 spin_lock(&ubifs_infos_lock);
1272 list_del(&c->infos_list);
1273 spin_unlock(&ubifs_infos_lock);
1274 out_orphans:
1275 free_orphans(c);
1276 out_journal:
1277 destroy_journal(c);
1278 out_lpt:
1279 ubifs_lpt_free(c, 0);
1280 out_master:
1281 kfree(c->mst_node);
1282 kfree(c->rcvrd_mst_node);
1283 if (c->bgt)
1284 kthread_stop(c->bgt);
1285 out_wbufs:
1286 free_wbufs(c);
1287 out_cbuf:
1288 kfree(c->cbuf);
1289 out_dereg:
1290 dbg_failure_mode_deregistration(c);
1291 out_free:
1292 vfree(c->ileb_buf);
1293 vfree(c->sbuf);
1294 kfree(c->bottom_up_buf);
1295 UBIFS_DBG(vfree(c->dbg_buf));
1296 return err;
1300 * ubifs_umount - un-mount UBIFS file-system.
1301 * @c: UBIFS file-system description object
1303 * Note, this function is called to free allocated resourced when un-mounting,
1304 * as well as free resources when an error occurred while we were half way
1305 * through mounting (error path cleanup function). So it has to make sure the
1306 * resource was actually allocated before freeing it.
1308 static void ubifs_umount(struct ubifs_info *c)
1310 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1311 c->vi.vol_id);
1313 spin_lock(&ubifs_infos_lock);
1314 list_del(&c->infos_list);
1315 spin_unlock(&ubifs_infos_lock);
1317 if (c->bgt)
1318 kthread_stop(c->bgt);
1320 destroy_journal(c);
1321 free_wbufs(c);
1322 free_orphans(c);
1323 ubifs_lpt_free(c, 0);
1325 kfree(c->cbuf);
1326 kfree(c->rcvrd_mst_node);
1327 kfree(c->mst_node);
1328 vfree(c->sbuf);
1329 kfree(c->bottom_up_buf);
1330 UBIFS_DBG(vfree(c->dbg_buf));
1331 vfree(c->ileb_buf);
1332 dbg_failure_mode_deregistration(c);
1336 * ubifs_remount_rw - re-mount in read-write mode.
1337 * @c: UBIFS file-system description object
1339 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1340 * mode. This function allocates the needed resources and re-mounts UBIFS in
1341 * read-write mode.
1343 static int ubifs_remount_rw(struct ubifs_info *c)
1345 int err, lnum;
1347 if (c->ro_media)
1348 return -EINVAL;
1350 mutex_lock(&c->umount_mutex);
1351 c->remounting_rw = 1;
1352 c->always_chk_crc = 1;
1354 /* Check for enough free space */
1355 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1356 ubifs_err("insufficient available space");
1357 err = -EINVAL;
1358 goto out;
1361 if (c->old_leb_cnt != c->leb_cnt) {
1362 struct ubifs_sb_node *sup;
1364 sup = ubifs_read_sb_node(c);
1365 if (IS_ERR(sup)) {
1366 err = PTR_ERR(sup);
1367 goto out;
1369 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1370 err = ubifs_write_sb_node(c, sup);
1371 if (err)
1372 goto out;
1375 if (c->need_recovery) {
1376 ubifs_msg("completing deferred recovery");
1377 err = ubifs_write_rcvrd_mst_node(c);
1378 if (err)
1379 goto out;
1380 err = ubifs_recover_size(c);
1381 if (err)
1382 goto out;
1383 err = ubifs_clean_lebs(c, c->sbuf);
1384 if (err)
1385 goto out;
1386 err = ubifs_recover_inl_heads(c, c->sbuf);
1387 if (err)
1388 goto out;
1391 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1392 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1393 err = ubifs_write_master(c);
1394 if (err)
1395 goto out;
1398 c->ileb_buf = vmalloc(c->leb_size);
1399 if (!c->ileb_buf) {
1400 err = -ENOMEM;
1401 goto out;
1404 err = ubifs_lpt_init(c, 0, 1);
1405 if (err)
1406 goto out;
1408 err = alloc_wbufs(c);
1409 if (err)
1410 goto out;
1412 ubifs_create_buds_lists(c);
1414 /* Create background thread */
1415 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1416 if (IS_ERR(c->bgt)) {
1417 err = PTR_ERR(c->bgt);
1418 c->bgt = NULL;
1419 ubifs_err("cannot spawn \"%s\", error %d",
1420 c->bgt_name, err);
1421 goto out;
1423 wake_up_process(c->bgt);
1425 c->orph_buf = vmalloc(c->leb_size);
1426 if (!c->orph_buf) {
1427 err = -ENOMEM;
1428 goto out;
1431 /* Check for enough log space */
1432 lnum = c->lhead_lnum + 1;
1433 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1434 lnum = UBIFS_LOG_LNUM;
1435 if (lnum == c->ltail_lnum) {
1436 err = ubifs_consolidate_log(c);
1437 if (err)
1438 goto out;
1441 if (c->need_recovery)
1442 err = ubifs_rcvry_gc_commit(c);
1443 else
1444 err = take_gc_lnum(c);
1445 if (err)
1446 goto out;
1448 if (c->need_recovery) {
1449 c->need_recovery = 0;
1450 ubifs_msg("deferred recovery completed");
1453 dbg_gen("re-mounted read-write");
1454 c->vfs_sb->s_flags &= ~MS_RDONLY;
1455 c->remounting_rw = 0;
1456 c->always_chk_crc = 0;
1457 mutex_unlock(&c->umount_mutex);
1458 return 0;
1460 out:
1461 vfree(c->orph_buf);
1462 c->orph_buf = NULL;
1463 if (c->bgt) {
1464 kthread_stop(c->bgt);
1465 c->bgt = NULL;
1467 free_wbufs(c);
1468 vfree(c->ileb_buf);
1469 c->ileb_buf = NULL;
1470 ubifs_lpt_free(c, 1);
1471 c->remounting_rw = 0;
1472 c->always_chk_crc = 0;
1473 mutex_unlock(&c->umount_mutex);
1474 return err;
1478 * commit_on_unmount - commit the journal when un-mounting.
1479 * @c: UBIFS file-system description object
1481 * This function is called during un-mounting and re-mounting, and it commits
1482 * the journal unless the "fast unmount" mode is enabled. It also avoids
1483 * committing the journal if it contains too few data.
1485 static void commit_on_unmount(struct ubifs_info *c)
1487 if (!c->fast_unmount) {
1488 long long bud_bytes;
1490 spin_lock(&c->buds_lock);
1491 bud_bytes = c->bud_bytes;
1492 spin_unlock(&c->buds_lock);
1493 if (bud_bytes > c->leb_size)
1494 ubifs_run_commit(c);
1499 * ubifs_remount_ro - re-mount in read-only mode.
1500 * @c: UBIFS file-system description object
1502 * We rely on VFS to have stopped writing. Possibly the background thread could
1503 * be running a commit, however kthread_stop will wait in that case.
1505 static void ubifs_remount_ro(struct ubifs_info *c)
1507 int i, err;
1509 ubifs_assert(!c->need_recovery);
1510 commit_on_unmount(c);
1512 mutex_lock(&c->umount_mutex);
1513 if (c->bgt) {
1514 kthread_stop(c->bgt);
1515 c->bgt = NULL;
1518 for (i = 0; i < c->jhead_cnt; i++) {
1519 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1520 del_timer_sync(&c->jheads[i].wbuf.timer);
1523 if (!c->ro_media) {
1524 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1525 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1526 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1527 err = ubifs_write_master(c);
1528 if (err)
1529 ubifs_ro_mode(c, err);
1532 ubifs_destroy_idx_gc(c);
1533 free_wbufs(c);
1534 vfree(c->orph_buf);
1535 c->orph_buf = NULL;
1536 vfree(c->ileb_buf);
1537 c->ileb_buf = NULL;
1538 ubifs_lpt_free(c, 1);
1539 mutex_unlock(&c->umount_mutex);
1542 static void ubifs_put_super(struct super_block *sb)
1544 int i;
1545 struct ubifs_info *c = sb->s_fs_info;
1547 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1548 c->vi.vol_id);
1550 * The following asserts are only valid if there has not been a failure
1551 * of the media. For example, there will be dirty inodes if we failed
1552 * to write them back because of I/O errors.
1554 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1555 ubifs_assert(c->budg_idx_growth == 0);
1556 ubifs_assert(c->budg_dd_growth == 0);
1557 ubifs_assert(c->budg_data_growth == 0);
1560 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1561 * and file system un-mount. Namely, it prevents the shrinker from
1562 * picking this superblock for shrinking - it will be just skipped if
1563 * the mutex is locked.
1565 mutex_lock(&c->umount_mutex);
1566 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1568 * First of all kill the background thread to make sure it does
1569 * not interfere with un-mounting and freeing resources.
1571 if (c->bgt) {
1572 kthread_stop(c->bgt);
1573 c->bgt = NULL;
1576 /* Synchronize write-buffers */
1577 if (c->jheads)
1578 for (i = 0; i < c->jhead_cnt; i++) {
1579 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1580 del_timer_sync(&c->jheads[i].wbuf.timer);
1584 * On fatal errors c->ro_media is set to 1, in which case we do
1585 * not write the master node.
1587 if (!c->ro_media) {
1589 * We are being cleanly unmounted which means the
1590 * orphans were killed - indicate this in the master
1591 * node. Also save the reserved GC LEB number.
1593 int err;
1595 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1596 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1597 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1598 err = ubifs_write_master(c);
1599 if (err)
1601 * Recovery will attempt to fix the master area
1602 * next mount, so we just print a message and
1603 * continue to unmount normally.
1605 ubifs_err("failed to write master node, "
1606 "error %d", err);
1610 ubifs_umount(c);
1611 bdi_destroy(&c->bdi);
1612 ubi_close_volume(c->ubi);
1613 mutex_unlock(&c->umount_mutex);
1614 kfree(c);
1617 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1619 int err;
1620 struct ubifs_info *c = sb->s_fs_info;
1622 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1624 err = ubifs_parse_options(c, data, 1);
1625 if (err) {
1626 ubifs_err("invalid or unknown remount parameter");
1627 return err;
1629 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1630 err = ubifs_remount_rw(c);
1631 if (err)
1632 return err;
1633 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1634 ubifs_remount_ro(c);
1636 return 0;
1639 struct super_operations ubifs_super_operations = {
1640 .alloc_inode = ubifs_alloc_inode,
1641 .destroy_inode = ubifs_destroy_inode,
1642 .put_super = ubifs_put_super,
1643 .write_inode = ubifs_write_inode,
1644 .delete_inode = ubifs_delete_inode,
1645 .statfs = ubifs_statfs,
1646 .dirty_inode = ubifs_dirty_inode,
1647 .remount_fs = ubifs_remount_fs,
1648 .show_options = ubifs_show_options,
1649 .sync_fs = ubifs_sync_fs,
1653 * open_ubi - parse UBI device name string and open the UBI device.
1654 * @name: UBI volume name
1655 * @mode: UBI volume open mode
1657 * There are several ways to specify UBI volumes when mounting UBIFS:
1658 * o ubiX_Y - UBI device number X, volume Y;
1659 * o ubiY - UBI device number 0, volume Y;
1660 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1661 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1663 * Alternative '!' separator may be used instead of ':' (because some shells
1664 * like busybox may interpret ':' as an NFS host name separator). This function
1665 * returns ubi volume object in case of success and a negative error code in
1666 * case of failure.
1668 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1670 int dev, vol;
1671 char *endptr;
1673 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1674 return ERR_PTR(-EINVAL);
1676 /* ubi:NAME method */
1677 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1678 return ubi_open_volume_nm(0, name + 4, mode);
1680 if (!isdigit(name[3]))
1681 return ERR_PTR(-EINVAL);
1683 dev = simple_strtoul(name + 3, &endptr, 0);
1685 /* ubiY method */
1686 if (*endptr == '\0')
1687 return ubi_open_volume(0, dev, mode);
1689 /* ubiX_Y method */
1690 if (*endptr == '_' && isdigit(endptr[1])) {
1691 vol = simple_strtoul(endptr + 1, &endptr, 0);
1692 if (*endptr != '\0')
1693 return ERR_PTR(-EINVAL);
1694 return ubi_open_volume(dev, vol, mode);
1697 /* ubiX:NAME method */
1698 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1699 return ubi_open_volume_nm(dev, ++endptr, mode);
1701 return ERR_PTR(-EINVAL);
1704 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1706 struct ubi_volume_desc *ubi = sb->s_fs_info;
1707 struct ubifs_info *c;
1708 struct inode *root;
1709 int err;
1711 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1712 if (!c)
1713 return -ENOMEM;
1715 spin_lock_init(&c->cnt_lock);
1716 spin_lock_init(&c->cs_lock);
1717 spin_lock_init(&c->buds_lock);
1718 spin_lock_init(&c->space_lock);
1719 spin_lock_init(&c->orphan_lock);
1720 init_rwsem(&c->commit_sem);
1721 mutex_init(&c->lp_mutex);
1722 mutex_init(&c->tnc_mutex);
1723 mutex_init(&c->log_mutex);
1724 mutex_init(&c->mst_mutex);
1725 mutex_init(&c->umount_mutex);
1726 init_waitqueue_head(&c->cmt_wq);
1727 c->buds = RB_ROOT;
1728 c->old_idx = RB_ROOT;
1729 c->size_tree = RB_ROOT;
1730 c->orph_tree = RB_ROOT;
1731 INIT_LIST_HEAD(&c->infos_list);
1732 INIT_LIST_HEAD(&c->idx_gc);
1733 INIT_LIST_HEAD(&c->replay_list);
1734 INIT_LIST_HEAD(&c->replay_buds);
1735 INIT_LIST_HEAD(&c->uncat_list);
1736 INIT_LIST_HEAD(&c->empty_list);
1737 INIT_LIST_HEAD(&c->freeable_list);
1738 INIT_LIST_HEAD(&c->frdi_idx_list);
1739 INIT_LIST_HEAD(&c->unclean_leb_list);
1740 INIT_LIST_HEAD(&c->old_buds);
1741 INIT_LIST_HEAD(&c->orph_list);
1742 INIT_LIST_HEAD(&c->orph_new);
1744 c->highest_inum = UBIFS_FIRST_INO;
1745 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1747 ubi_get_volume_info(ubi, &c->vi);
1748 ubi_get_device_info(c->vi.ubi_num, &c->di);
1750 /* Re-open the UBI device in read-write mode */
1751 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1752 if (IS_ERR(c->ubi)) {
1753 err = PTR_ERR(c->ubi);
1754 goto out_free;
1758 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1759 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1760 * which means the user would have to wait not just for their own I/O
1761 * but the read-ahead I/O as well i.e. completely pointless.
1763 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1765 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1766 c->bdi.unplug_io_fn = default_unplug_io_fn;
1767 err = bdi_init(&c->bdi);
1768 if (err)
1769 goto out_close;
1771 err = ubifs_parse_options(c, data, 0);
1772 if (err)
1773 goto out_bdi;
1775 c->vfs_sb = sb;
1777 sb->s_fs_info = c;
1778 sb->s_magic = UBIFS_SUPER_MAGIC;
1779 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1780 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1781 sb->s_dev = c->vi.cdev;
1782 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1783 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1784 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1785 sb->s_op = &ubifs_super_operations;
1787 mutex_lock(&c->umount_mutex);
1788 err = mount_ubifs(c);
1789 if (err) {
1790 ubifs_assert(err < 0);
1791 goto out_unlock;
1794 /* Read the root inode */
1795 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1796 if (IS_ERR(root)) {
1797 err = PTR_ERR(root);
1798 goto out_umount;
1801 sb->s_root = d_alloc_root(root);
1802 if (!sb->s_root)
1803 goto out_iput;
1805 mutex_unlock(&c->umount_mutex);
1807 return 0;
1809 out_iput:
1810 iput(root);
1811 out_umount:
1812 ubifs_umount(c);
1813 out_unlock:
1814 mutex_unlock(&c->umount_mutex);
1815 out_bdi:
1816 bdi_destroy(&c->bdi);
1817 out_close:
1818 ubi_close_volume(c->ubi);
1819 out_free:
1820 kfree(c);
1821 return err;
1824 static int sb_test(struct super_block *sb, void *data)
1826 dev_t *dev = data;
1828 return sb->s_dev == *dev;
1831 static int sb_set(struct super_block *sb, void *data)
1833 dev_t *dev = data;
1835 sb->s_dev = *dev;
1836 return 0;
1839 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1840 const char *name, void *data, struct vfsmount *mnt)
1842 struct ubi_volume_desc *ubi;
1843 struct ubi_volume_info vi;
1844 struct super_block *sb;
1845 int err;
1847 dbg_gen("name %s, flags %#x", name, flags);
1850 * Get UBI device number and volume ID. Mount it read-only so far
1851 * because this might be a new mount point, and UBI allows only one
1852 * read-write user at a time.
1854 ubi = open_ubi(name, UBI_READONLY);
1855 if (IS_ERR(ubi)) {
1856 ubifs_err("cannot open \"%s\", error %d",
1857 name, (int)PTR_ERR(ubi));
1858 return PTR_ERR(ubi);
1860 ubi_get_volume_info(ubi, &vi);
1862 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1864 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1865 if (IS_ERR(sb)) {
1866 err = PTR_ERR(sb);
1867 goto out_close;
1870 if (sb->s_root) {
1871 /* A new mount point for already mounted UBIFS */
1872 dbg_gen("this ubi volume is already mounted");
1873 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1874 err = -EBUSY;
1875 goto out_deact;
1877 } else {
1878 sb->s_flags = flags;
1880 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1881 * replaced by 'c'.
1883 sb->s_fs_info = ubi;
1884 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1885 if (err)
1886 goto out_deact;
1887 /* We do not support atime */
1888 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1891 /* 'fill_super()' opens ubi again so we must close it here */
1892 ubi_close_volume(ubi);
1894 return simple_set_mnt(mnt, sb);
1896 out_deact:
1897 up_write(&sb->s_umount);
1898 deactivate_super(sb);
1899 out_close:
1900 ubi_close_volume(ubi);
1901 return err;
1904 static void ubifs_kill_sb(struct super_block *sb)
1906 struct ubifs_info *c = sb->s_fs_info;
1909 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1910 * in order to be outside BKL.
1912 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1913 commit_on_unmount(c);
1914 /* The un-mount routine is actually done in put_super() */
1915 generic_shutdown_super(sb);
1918 static struct file_system_type ubifs_fs_type = {
1919 .name = "ubifs",
1920 .owner = THIS_MODULE,
1921 .get_sb = ubifs_get_sb,
1922 .kill_sb = ubifs_kill_sb
1926 * Inode slab cache constructor.
1928 static void inode_slab_ctor(void *obj)
1930 struct ubifs_inode *ui = obj;
1931 inode_init_once(&ui->vfs_inode);
1934 static int __init ubifs_init(void)
1936 int err;
1938 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1940 /* Make sure node sizes are 8-byte aligned */
1941 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1942 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1943 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1944 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1945 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1946 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1947 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1948 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1949 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1950 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1951 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1953 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1954 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1955 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1956 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1957 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1958 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1960 /* Check min. node size */
1961 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1962 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1963 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1964 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1966 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1967 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1968 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1969 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1971 /* Defined node sizes */
1972 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1973 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1974 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1975 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1978 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1979 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1981 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1982 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1983 " at least 4096 bytes",
1984 (unsigned int)PAGE_CACHE_SIZE);
1985 return -EINVAL;
1988 err = register_filesystem(&ubifs_fs_type);
1989 if (err) {
1990 ubifs_err("cannot register file system, error %d", err);
1991 return err;
1994 err = -ENOMEM;
1995 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1996 sizeof(struct ubifs_inode), 0,
1997 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1998 &inode_slab_ctor);
1999 if (!ubifs_inode_slab)
2000 goto out_reg;
2002 register_shrinker(&ubifs_shrinker_info);
2004 err = ubifs_compressors_init();
2005 if (err)
2006 goto out_compr;
2008 return 0;
2010 out_compr:
2011 unregister_shrinker(&ubifs_shrinker_info);
2012 kmem_cache_destroy(ubifs_inode_slab);
2013 out_reg:
2014 unregister_filesystem(&ubifs_fs_type);
2015 return err;
2017 /* late_initcall to let compressors initialize first */
2018 late_initcall(ubifs_init);
2020 static void __exit ubifs_exit(void)
2022 ubifs_assert(list_empty(&ubifs_infos));
2023 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2025 ubifs_compressors_exit();
2026 unregister_shrinker(&ubifs_shrinker_info);
2027 kmem_cache_destroy(ubifs_inode_slab);
2028 unregister_filesystem(&ubifs_fs_type);
2030 module_exit(ubifs_exit);
2032 MODULE_LICENSE("GPL");
2033 MODULE_VERSION(__stringify(UBIFS_VERSION));
2034 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2035 MODULE_DESCRIPTION("UBIFS - UBI File System");