2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
39 /* Slab cache for UBIFS inodes */
40 struct kmem_cache
*ubifs_inode_slab
;
42 /* UBIFS TNC shrinker description */
43 static struct shrinker ubifs_shrinker_info
= {
44 .shrink
= ubifs_shrinker
,
45 .seeks
= DEFAULT_SEEKS
,
49 * validate_inode - validate inode.
50 * @c: UBIFS file-system description object
51 * @inode: the inode to validate
53 * This is a helper function for 'ubifs_iget()' which validates various fields
54 * of a newly built inode to make sure they contain sane values and prevent
55 * possible vulnerabilities. Returns zero if the inode is all right and
56 * a non-zero error code if not.
58 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
61 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
63 if (inode
->i_size
> c
->max_inode_sz
) {
64 ubifs_err("inode is too large (%lld)",
65 (long long)inode
->i_size
);
69 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
70 ubifs_err("unknown compression type %d", ui
->compr_type
);
74 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
77 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
80 if (ui
->xattr
&& (inode
->i_mode
& S_IFMT
) != S_IFREG
)
83 if (!ubifs_compr_present(ui
->compr_type
)) {
84 ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 "compiled in", inode
->i_ino
,
86 ubifs_compr_name(ui
->compr_type
));
89 err
= dbg_check_dir_size(c
, inode
);
93 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
97 struct ubifs_ino_node
*ino
;
98 struct ubifs_info
*c
= sb
->s_fs_info
;
100 struct ubifs_inode
*ui
;
102 dbg_gen("inode %lu", inum
);
104 inode
= iget_locked(sb
, inum
);
106 return ERR_PTR(-ENOMEM
);
107 if (!(inode
->i_state
& I_NEW
))
109 ui
= ubifs_inode(inode
);
111 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
117 ino_key_init(c
, &key
, inode
->i_ino
);
119 err
= ubifs_tnc_lookup(c
, &key
, ino
);
123 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
124 inode
->i_nlink
= le32_to_cpu(ino
->nlink
);
125 inode
->i_uid
= le32_to_cpu(ino
->uid
);
126 inode
->i_gid
= le32_to_cpu(ino
->gid
);
127 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
128 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
129 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
130 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
131 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
132 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
133 inode
->i_mode
= le32_to_cpu(ino
->mode
);
134 inode
->i_size
= le64_to_cpu(ino
->size
);
136 ui
->data_len
= le32_to_cpu(ino
->data_len
);
137 ui
->flags
= le32_to_cpu(ino
->flags
);
138 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
139 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
140 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
141 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
142 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
143 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
145 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
147 err
= validate_inode(c
, inode
);
151 /* Disable read-ahead */
152 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
154 switch (inode
->i_mode
& S_IFMT
) {
156 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
157 inode
->i_op
= &ubifs_file_inode_operations
;
158 inode
->i_fop
= &ubifs_file_operations
;
160 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
165 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
166 ((char *)ui
->data
)[ui
->data_len
] = '\0';
167 } else if (ui
->data_len
!= 0) {
173 inode
->i_op
= &ubifs_dir_inode_operations
;
174 inode
->i_fop
= &ubifs_dir_operations
;
175 if (ui
->data_len
!= 0) {
181 inode
->i_op
= &ubifs_symlink_inode_operations
;
182 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
186 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
191 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
192 ((char *)ui
->data
)[ui
->data_len
] = '\0';
198 union ubifs_dev_desc
*dev
;
200 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
206 dev
= (union ubifs_dev_desc
*)ino
->data
;
207 if (ui
->data_len
== sizeof(dev
->new))
208 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
209 else if (ui
->data_len
== sizeof(dev
->huge
))
210 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
215 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
216 inode
->i_op
= &ubifs_file_inode_operations
;
217 init_special_inode(inode
, inode
->i_mode
, rdev
);
222 inode
->i_op
= &ubifs_file_inode_operations
;
223 init_special_inode(inode
, inode
->i_mode
, 0);
224 if (ui
->data_len
!= 0) {
235 ubifs_set_inode_flags(inode
);
236 unlock_new_inode(inode
);
240 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
241 dbg_dump_node(c
, ino
);
242 dbg_dump_inode(c
, inode
);
247 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
252 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
254 struct ubifs_inode
*ui
;
256 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
260 memset((void *)ui
+ sizeof(struct inode
), 0,
261 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
262 mutex_init(&ui
->ui_mutex
);
263 spin_lock_init(&ui
->ui_lock
);
264 return &ui
->vfs_inode
;
267 static void ubifs_destroy_inode(struct inode
*inode
)
269 struct ubifs_inode
*ui
= ubifs_inode(inode
);
272 kmem_cache_free(ubifs_inode_slab
, inode
);
276 * Note, Linux write-back code calls this without 'i_mutex'.
278 static int ubifs_write_inode(struct inode
*inode
, int wait
)
281 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
282 struct ubifs_inode
*ui
= ubifs_inode(inode
);
284 ubifs_assert(!ui
->xattr
);
285 if (is_bad_inode(inode
))
288 mutex_lock(&ui
->ui_mutex
);
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
297 mutex_unlock(&ui
->ui_mutex
);
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
307 if (inode
->i_nlink
) {
308 err
= ubifs_jnl_write_inode(c
, inode
);
310 ubifs_err("can't write inode %lu, error %d",
315 mutex_unlock(&ui
->ui_mutex
);
316 ubifs_release_dirty_inode_budget(c
, ui
);
320 static void ubifs_delete_inode(struct inode
*inode
)
323 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
324 struct ubifs_inode
*ui
= ubifs_inode(inode
);
328 * Extended attribute inode deletions are fully handled in
329 * 'ubifs_removexattr()'. These inodes are special and have
330 * limited usage, so there is nothing to do here.
334 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
335 ubifs_assert(!atomic_read(&inode
->i_count
));
336 ubifs_assert(inode
->i_nlink
== 0);
338 truncate_inode_pages(&inode
->i_data
, 0);
339 if (is_bad_inode(inode
))
342 ui
->ui_size
= inode
->i_size
= 0;
343 err
= ubifs_jnl_delete_inode(c
, inode
);
346 * Worst case we have a lost orphan inode wasting space, so a
347 * simple error message is OK here.
349 ubifs_err("can't delete inode %lu, error %d",
354 ubifs_release_dirty_inode_budget(c
, ui
);
358 static void ubifs_dirty_inode(struct inode
*inode
)
360 struct ubifs_inode
*ui
= ubifs_inode(inode
);
362 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
365 dbg_gen("inode %lu", inode
->i_ino
);
369 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
371 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
372 unsigned long long free
;
373 __le32
*uuid
= (__le32
*)c
->uuid
;
375 free
= ubifs_get_free_space(c
);
376 dbg_gen("free space %lld bytes (%lld blocks)",
377 free
, free
>> UBIFS_BLOCK_SHIFT
);
379 buf
->f_type
= UBIFS_SUPER_MAGIC
;
380 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
381 buf
->f_blocks
= c
->block_cnt
;
382 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
383 if (free
> c
->report_rp_size
)
384 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
389 buf
->f_namelen
= UBIFS_MAX_NLEN
;
390 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
391 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
395 static int ubifs_show_options(struct seq_file
*s
, struct vfsmount
*mnt
)
397 struct ubifs_info
*c
= mnt
->mnt_sb
->s_fs_info
;
399 if (c
->mount_opts
.unmount_mode
== 2)
400 seq_printf(s
, ",fast_unmount");
401 else if (c
->mount_opts
.unmount_mode
== 1)
402 seq_printf(s
, ",norm_unmount");
404 if (c
->mount_opts
.bulk_read
== 2)
405 seq_printf(s
, ",bulk_read");
406 else if (c
->mount_opts
.bulk_read
== 1)
407 seq_printf(s
, ",no_bulk_read");
409 if (c
->mount_opts
.chk_data_crc
== 2)
410 seq_printf(s
, ",chk_data_crc");
411 else if (c
->mount_opts
.chk_data_crc
== 1)
412 seq_printf(s
, ",no_chk_data_crc");
417 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
419 struct ubifs_info
*c
= sb
->s_fs_info
;
424 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
425 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
430 /* Commit the journal unless it has too little data */
431 spin_lock(&c
->buds_lock
);
432 bud_bytes
= c
->bud_bytes
;
433 spin_unlock(&c
->buds_lock
);
434 if (bud_bytes
> c
->leb_size
) {
435 err
= ubifs_run_commit(c
);
442 * We ought to call sync for c->ubi but it does not have one. If it had
443 * it would in turn call mtd->sync, however mtd operations are
444 * synchronous anyway, so we don't lose any sleep here.
450 * init_constants_early - initialize UBIFS constants.
451 * @c: UBIFS file-system description object
453 * This function initialize UBIFS constants which do not need the superblock to
454 * be read. It also checks that the UBI volume satisfies basic UBIFS
455 * requirements. Returns zero in case of success and a negative error code in
458 static int init_constants_early(struct ubifs_info
*c
)
460 if (c
->vi
.corrupted
) {
461 ubifs_warn("UBI volume is corrupted - read-only mode");
466 ubifs_msg("read-only UBI device");
470 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
471 ubifs_msg("static UBI volume - read-only mode");
475 c
->leb_cnt
= c
->vi
.size
;
476 c
->leb_size
= c
->vi
.usable_leb_size
;
477 c
->half_leb_size
= c
->leb_size
/ 2;
478 c
->min_io_size
= c
->di
.min_io_size
;
479 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
481 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
482 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
483 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
487 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
488 ubifs_err("too few LEBs (%d), min. is %d",
489 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
493 if (!is_power_of_2(c
->min_io_size
)) {
494 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
499 * UBIFS aligns all node to 8-byte boundary, so to make function in
500 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
503 if (c
->min_io_size
< 8) {
508 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
509 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
512 * Initialize node length ranges which are mostly needed for node
515 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
516 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
517 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
518 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
519 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
520 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
522 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
523 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
524 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
525 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
526 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
527 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
528 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
529 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
530 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
531 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
532 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
534 * Minimum indexing node size is amended later when superblock is
535 * read and the key length is known.
537 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
539 * Maximum indexing node size is amended later when superblock is
540 * read and the fanout is known.
542 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
545 * Initialize dead and dark LEB space watermarks.
547 * Dead space is the space which cannot be used. Its watermark is
548 * equivalent to min. I/O unit or minimum node size if it is greater
549 * then min. I/O unit.
551 * Dark space is the space which might be used, or might not, depending
552 * on which node should be written to the LEB. Its watermark is
553 * equivalent to maximum UBIFS node size.
555 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
556 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
559 * Calculate how many bytes would be wasted at the end of LEB if it was
560 * fully filled with data nodes of maximum size. This is used in
561 * calculations when reporting free space.
563 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
564 /* Buffer size for bulk-reads */
565 c
->bulk_read_buf_size
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
566 if (c
->bulk_read_buf_size
> c
->leb_size
)
567 c
->bulk_read_buf_size
= c
->leb_size
;
568 if (c
->bulk_read_buf_size
> 128 * 1024) {
569 /* Check if we can kmalloc more than 128KiB */
570 void *try = kmalloc(c
->bulk_read_buf_size
, GFP_KERNEL
);
574 c
->bulk_read_buf_size
= 128 * 1024;
580 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
581 * @c: UBIFS file-system description object
582 * @lnum: LEB the write-buffer was synchronized to
583 * @free: how many free bytes left in this LEB
584 * @pad: how many bytes were padded
586 * This is a callback function which is called by the I/O unit when the
587 * write-buffer is synchronized. We need this to correctly maintain space
588 * accounting in bud logical eraseblocks. This function returns zero in case of
589 * success and a negative error code in case of failure.
591 * This function actually belongs to the journal, but we keep it here because
592 * we want to keep it static.
594 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
596 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
600 * init_constants_late - initialize UBIFS constants.
601 * @c: UBIFS file-system description object
603 * This is a helper function which initializes various UBIFS constants after
604 * the superblock has been read. It also checks various UBIFS parameters and
605 * makes sure they are all right. Returns zero in case of success and a
606 * negative error code in case of failure.
608 static int init_constants_late(struct ubifs_info
*c
)
613 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
614 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
615 c
->fanout
* sizeof(struct ubifs_zbranch
);
617 tmp
= ubifs_idx_node_sz(c
, 1);
618 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
619 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
621 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
622 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
623 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
625 /* Make sure LEB size is large enough to fit full commit */
626 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
627 tmp
= ALIGN(tmp
, c
->min_io_size
);
628 if (tmp
> c
->leb_size
) {
629 dbg_err("too small LEB size %d, at least %d needed",
635 * Make sure that the log is large enough to fit reference nodes for
636 * all buds plus one reserved LEB.
638 tmp64
= c
->max_bud_bytes
;
639 tmp
= do_div(tmp64
, c
->leb_size
);
640 c
->max_bud_cnt
= tmp64
+ !!tmp
;
641 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
644 if (c
->log_lebs
< tmp
) {
645 dbg_err("too small log %d LEBs, required min. %d LEBs",
651 * When budgeting we assume worst-case scenarios when the pages are not
652 * be compressed and direntries are of the maximum size.
654 * Note, data, which may be stored in inodes is budgeted separately, so
655 * it is not included into 'c->inode_budget'.
657 c
->page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
658 c
->inode_budget
= UBIFS_INO_NODE_SZ
;
659 c
->dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
662 * When the amount of flash space used by buds becomes
663 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
664 * The writers are unblocked when the commit is finished. To avoid
665 * writers to be blocked UBIFS initiates background commit in advance,
666 * when number of bud bytes becomes above the limit defined below.
668 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
671 * Ensure minimum journal size. All the bytes in the journal heads are
672 * considered to be used, when calculating the current journal usage.
673 * Consequently, if the journal is too small, UBIFS will treat it as
676 tmp64
= (uint64_t)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
677 if (c
->bg_bud_bytes
< tmp64
)
678 c
->bg_bud_bytes
= tmp64
;
679 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
680 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
682 err
= ubifs_calc_lpt_geom(c
);
686 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
689 * Calculate total amount of FS blocks. This number is not used
690 * internally because it does not make much sense for UBIFS, but it is
691 * necessary to report something for the 'statfs()' call.
693 * Subtract the LEB reserved for GC, the LEB which is reserved for
694 * deletions, and assume only one journal head is available.
696 tmp64
= c
->main_lebs
- 2 - c
->jhead_cnt
+ 1;
697 tmp64
*= (uint64_t)c
->leb_size
- c
->leb_overhead
;
698 tmp64
= ubifs_reported_space(c
, tmp64
);
699 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
705 * take_gc_lnum - reserve GC LEB.
706 * @c: UBIFS file-system description object
708 * This function ensures that the LEB reserved for garbage collection is
709 * unmapped and is marked as "taken" in lprops. We also have to set free space
710 * to LEB size and dirty space to zero, because lprops may contain out-of-date
711 * information if the file-system was un-mounted before it has been committed.
712 * This function returns zero in case of success and a negative error code in
715 static int take_gc_lnum(struct ubifs_info
*c
)
719 if (c
->gc_lnum
== -1) {
720 ubifs_err("no LEB for GC");
724 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
728 /* And we have to tell lprops that this LEB is taken */
729 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
735 * alloc_wbufs - allocate write-buffers.
736 * @c: UBIFS file-system description object
738 * This helper function allocates and initializes UBIFS write-buffers. Returns
739 * zero in case of success and %-ENOMEM in case of failure.
741 static int alloc_wbufs(struct ubifs_info
*c
)
745 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
750 /* Initialize journal heads */
751 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
752 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
753 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
757 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
758 c
->jheads
[i
].wbuf
.jhead
= i
;
761 c
->jheads
[BASEHD
].wbuf
.dtype
= UBI_SHORTTERM
;
763 * Garbage Collector head likely contains long-term data and
764 * does not need to be synchronized by timer.
766 c
->jheads
[GCHD
].wbuf
.dtype
= UBI_LONGTERM
;
767 c
->jheads
[GCHD
].wbuf
.timeout
= 0;
773 * free_wbufs - free write-buffers.
774 * @c: UBIFS file-system description object
776 static void free_wbufs(struct ubifs_info
*c
)
781 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
782 kfree(c
->jheads
[i
].wbuf
.buf
);
783 kfree(c
->jheads
[i
].wbuf
.inodes
);
791 * free_orphans - free orphans.
792 * @c: UBIFS file-system description object
794 static void free_orphans(struct ubifs_info
*c
)
796 struct ubifs_orphan
*orph
;
798 while (c
->orph_dnext
) {
799 orph
= c
->orph_dnext
;
800 c
->orph_dnext
= orph
->dnext
;
801 list_del(&orph
->list
);
805 while (!list_empty(&c
->orph_list
)) {
806 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
807 list_del(&orph
->list
);
809 dbg_err("orphan list not empty at unmount");
817 * free_buds - free per-bud objects.
818 * @c: UBIFS file-system description object
820 static void free_buds(struct ubifs_info
*c
)
822 struct rb_node
*this = c
->buds
.rb_node
;
823 struct ubifs_bud
*bud
;
827 this = this->rb_left
;
828 else if (this->rb_right
)
829 this = this->rb_right
;
831 bud
= rb_entry(this, struct ubifs_bud
, rb
);
832 this = rb_parent(this);
834 if (this->rb_left
== &bud
->rb
)
835 this->rb_left
= NULL
;
837 this->rb_right
= NULL
;
845 * check_volume_empty - check if the UBI volume is empty.
846 * @c: UBIFS file-system description object
848 * This function checks if the UBIFS volume is empty by looking if its LEBs are
849 * mapped or not. The result of checking is stored in the @c->empty variable.
850 * Returns zero in case of success and a negative error code in case of
853 static int check_volume_empty(struct ubifs_info
*c
)
858 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
859 err
= ubi_is_mapped(c
->ubi
, lnum
);
860 if (unlikely(err
< 0))
874 * UBIFS mount options.
876 * Opt_fast_unmount: do not run a journal commit before un-mounting
877 * Opt_norm_unmount: run a journal commit before un-mounting
878 * Opt_bulk_read: enable bulk-reads
879 * Opt_no_bulk_read: disable bulk-reads
880 * Opt_chk_data_crc: check CRCs when reading data nodes
881 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
882 * Opt_err: just end of array marker
894 static const match_table_t tokens
= {
895 {Opt_fast_unmount
, "fast_unmount"},
896 {Opt_norm_unmount
, "norm_unmount"},
897 {Opt_bulk_read
, "bulk_read"},
898 {Opt_no_bulk_read
, "no_bulk_read"},
899 {Opt_chk_data_crc
, "chk_data_crc"},
900 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
905 * ubifs_parse_options - parse mount parameters.
906 * @c: UBIFS file-system description object
907 * @options: parameters to parse
908 * @is_remount: non-zero if this is FS re-mount
910 * This function parses UBIFS mount options and returns zero in case success
911 * and a negative error code in case of failure.
913 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
917 substring_t args
[MAX_OPT_ARGS
];
922 while ((p
= strsep(&options
, ","))) {
928 token
= match_token(p
, tokens
, args
);
930 case Opt_fast_unmount
:
931 c
->mount_opts
.unmount_mode
= 2;
934 case Opt_norm_unmount
:
935 c
->mount_opts
.unmount_mode
= 1;
939 c
->mount_opts
.bulk_read
= 2;
942 case Opt_no_bulk_read
:
943 c
->mount_opts
.bulk_read
= 1;
946 case Opt_chk_data_crc
:
947 c
->mount_opts
.chk_data_crc
= 2;
948 c
->no_chk_data_crc
= 0;
950 case Opt_no_chk_data_crc
:
951 c
->mount_opts
.chk_data_crc
= 1;
952 c
->no_chk_data_crc
= 1;
955 ubifs_err("unrecognized mount option \"%s\" "
956 "or missing value", p
);
965 * destroy_journal - destroy journal data structures.
966 * @c: UBIFS file-system description object
968 * This function destroys journal data structures including those that may have
969 * been created by recovery functions.
971 static void destroy_journal(struct ubifs_info
*c
)
973 while (!list_empty(&c
->unclean_leb_list
)) {
974 struct ubifs_unclean_leb
*ucleb
;
976 ucleb
= list_entry(c
->unclean_leb_list
.next
,
977 struct ubifs_unclean_leb
, list
);
978 list_del(&ucleb
->list
);
981 while (!list_empty(&c
->old_buds
)) {
982 struct ubifs_bud
*bud
;
984 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
985 list_del(&bud
->list
);
988 ubifs_destroy_idx_gc(c
);
989 ubifs_destroy_size_tree(c
);
995 * mount_ubifs - mount UBIFS file-system.
996 * @c: UBIFS file-system description object
998 * This function mounts UBIFS file system. Returns zero in case of success and
999 * a negative error code in case of failure.
1001 * Note, the function does not de-allocate resources it it fails half way
1002 * through, and the caller has to do this instead.
1004 static int mount_ubifs(struct ubifs_info
*c
)
1006 struct super_block
*sb
= c
->vfs_sb
;
1007 int err
, mounted_read_only
= (sb
->s_flags
& MS_RDONLY
);
1011 err
= init_constants_early(c
);
1015 #ifdef CONFIG_UBIFS_FS_DEBUG
1016 c
->dbg_buf
= vmalloc(c
->leb_size
);
1021 err
= check_volume_empty(c
);
1025 if (c
->empty
&& (mounted_read_only
|| c
->ro_media
)) {
1027 * This UBI volume is empty, and read-only, or the file system
1028 * is mounted read-only - we cannot format it.
1030 ubifs_err("can't format empty UBI volume: read-only %s",
1031 c
->ro_media
? "UBI volume" : "mount");
1036 if (c
->ro_media
&& !mounted_read_only
) {
1037 ubifs_err("cannot mount read-write - read-only media");
1043 * The requirement for the buffer is that it should fit indexing B-tree
1044 * height amount of integers. We assume the height if the TNC tree will
1048 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1049 if (!c
->bottom_up_buf
)
1052 c
->sbuf
= vmalloc(c
->leb_size
);
1056 if (!mounted_read_only
) {
1057 c
->ileb_buf
= vmalloc(c
->leb_size
);
1062 c
->always_chk_crc
= 1;
1064 err
= ubifs_read_superblock(c
);
1069 * Make sure the compressor which is set as the default on in the
1070 * superblock was actually compiled in.
1072 if (!ubifs_compr_present(c
->default_compr
)) {
1073 ubifs_warn("'%s' compressor is set by superblock, but not "
1074 "compiled in", ubifs_compr_name(c
->default_compr
));
1075 c
->default_compr
= UBIFS_COMPR_NONE
;
1078 dbg_failure_mode_registration(c
);
1080 err
= init_constants_late(c
);
1084 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1085 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1086 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1092 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1093 if (!mounted_read_only
) {
1094 err
= alloc_wbufs(c
);
1098 /* Create background thread */
1099 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1100 if (IS_ERR(c
->bgt
)) {
1101 err
= PTR_ERR(c
->bgt
);
1103 ubifs_err("cannot spawn \"%s\", error %d",
1107 wake_up_process(c
->bgt
);
1110 err
= ubifs_read_master(c
);
1114 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1115 ubifs_msg("recovery needed");
1116 c
->need_recovery
= 1;
1117 if (!mounted_read_only
) {
1118 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1122 } else if (!mounted_read_only
) {
1124 * Set the "dirty" flag so that if we reboot uncleanly we
1125 * will notice this immediately on the next mount.
1127 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1128 err
= ubifs_write_master(c
);
1133 err
= ubifs_lpt_init(c
, 1, !mounted_read_only
);
1137 err
= dbg_check_idx_size(c
, c
->old_idx_sz
);
1141 err
= ubifs_replay_journal(c
);
1145 err
= ubifs_mount_orphans(c
, c
->need_recovery
, mounted_read_only
);
1149 if (!mounted_read_only
) {
1152 /* Check for enough free space */
1153 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1154 ubifs_err("insufficient available space");
1159 /* Check for enough log space */
1160 lnum
= c
->lhead_lnum
+ 1;
1161 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1162 lnum
= UBIFS_LOG_LNUM
;
1163 if (lnum
== c
->ltail_lnum
) {
1164 err
= ubifs_consolidate_log(c
);
1169 if (c
->need_recovery
) {
1170 err
= ubifs_recover_size(c
);
1173 err
= ubifs_rcvry_gc_commit(c
);
1175 err
= take_gc_lnum(c
);
1179 err
= dbg_check_lprops(c
);
1182 } else if (c
->need_recovery
) {
1183 err
= ubifs_recover_size(c
);
1188 spin_lock(&ubifs_infos_lock
);
1189 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1190 spin_unlock(&ubifs_infos_lock
);
1192 if (c
->need_recovery
) {
1193 if (mounted_read_only
)
1194 ubifs_msg("recovery deferred");
1196 c
->need_recovery
= 0;
1197 ubifs_msg("recovery completed");
1201 err
= dbg_check_filesystem(c
);
1205 c
->always_chk_crc
= 0;
1207 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1208 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
);
1209 if (mounted_read_only
)
1210 ubifs_msg("mounted read-only");
1211 x
= (long long)c
->main_lebs
* c
->leb_size
;
1212 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1213 "LEBs)", x
, x
>> 10, x
>> 20, c
->main_lebs
);
1214 x
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1215 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1216 "LEBs)", x
, x
>> 10, x
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1217 ubifs_msg("media format: %d (latest is %d)",
1218 c
->fmt_version
, UBIFS_FORMAT_VERSION
);
1219 ubifs_msg("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1220 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1221 c
->report_rp_size
, c
->report_rp_size
>> 10);
1223 dbg_msg("compiled on: " __DATE__
" at " __TIME__
);
1224 dbg_msg("min. I/O unit size: %d bytes", c
->min_io_size
);
1225 dbg_msg("LEB size: %d bytes (%d KiB)",
1226 c
->leb_size
, c
->leb_size
>> 10);
1227 dbg_msg("data journal heads: %d",
1228 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1229 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1230 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1231 c
->uuid
[0], c
->uuid
[1], c
->uuid
[2], c
->uuid
[3],
1232 c
->uuid
[4], c
->uuid
[5], c
->uuid
[6], c
->uuid
[7],
1233 c
->uuid
[8], c
->uuid
[9], c
->uuid
[10], c
->uuid
[11],
1234 c
->uuid
[12], c
->uuid
[13], c
->uuid
[14], c
->uuid
[15]);
1235 dbg_msg("fast unmount: %d", c
->fast_unmount
);
1236 dbg_msg("big_lpt %d", c
->big_lpt
);
1237 dbg_msg("log LEBs: %d (%d - %d)",
1238 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1239 dbg_msg("LPT area LEBs: %d (%d - %d)",
1240 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1241 dbg_msg("orphan area LEBs: %d (%d - %d)",
1242 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1243 dbg_msg("main area LEBs: %d (%d - %d)",
1244 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1245 dbg_msg("index LEBs: %d", c
->lst
.idx_lebs
);
1246 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1247 c
->old_idx_sz
, c
->old_idx_sz
>> 10, c
->old_idx_sz
>> 20);
1248 dbg_msg("key hash type: %d", c
->key_hash_type
);
1249 dbg_msg("tree fanout: %d", c
->fanout
);
1250 dbg_msg("reserved GC LEB: %d", c
->gc_lnum
);
1251 dbg_msg("first main LEB: %d", c
->main_first
);
1252 dbg_msg("dead watermark: %d", c
->dead_wm
);
1253 dbg_msg("dark watermark: %d", c
->dark_wm
);
1254 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1255 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1256 x
, x
>> 10, x
>> 20);
1257 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1258 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1259 c
->max_bud_bytes
>> 20);
1260 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1261 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1262 c
->bg_bud_bytes
>> 20);
1263 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1264 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1265 dbg_msg("max. seq. number: %llu", c
->max_sqnum
);
1266 dbg_msg("commit number: %llu", c
->cmt_no
);
1271 spin_lock(&ubifs_infos_lock
);
1272 list_del(&c
->infos_list
);
1273 spin_unlock(&ubifs_infos_lock
);
1279 ubifs_lpt_free(c
, 0);
1282 kfree(c
->rcvrd_mst_node
);
1284 kthread_stop(c
->bgt
);
1290 dbg_failure_mode_deregistration(c
);
1294 kfree(c
->bottom_up_buf
);
1295 UBIFS_DBG(vfree(c
->dbg_buf
));
1300 * ubifs_umount - un-mount UBIFS file-system.
1301 * @c: UBIFS file-system description object
1303 * Note, this function is called to free allocated resourced when un-mounting,
1304 * as well as free resources when an error occurred while we were half way
1305 * through mounting (error path cleanup function). So it has to make sure the
1306 * resource was actually allocated before freeing it.
1308 static void ubifs_umount(struct ubifs_info
*c
)
1310 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1313 spin_lock(&ubifs_infos_lock
);
1314 list_del(&c
->infos_list
);
1315 spin_unlock(&ubifs_infos_lock
);
1318 kthread_stop(c
->bgt
);
1323 ubifs_lpt_free(c
, 0);
1326 kfree(c
->rcvrd_mst_node
);
1329 kfree(c
->bottom_up_buf
);
1330 UBIFS_DBG(vfree(c
->dbg_buf
));
1332 dbg_failure_mode_deregistration(c
);
1336 * ubifs_remount_rw - re-mount in read-write mode.
1337 * @c: UBIFS file-system description object
1339 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1340 * mode. This function allocates the needed resources and re-mounts UBIFS in
1343 static int ubifs_remount_rw(struct ubifs_info
*c
)
1350 mutex_lock(&c
->umount_mutex
);
1351 c
->remounting_rw
= 1;
1352 c
->always_chk_crc
= 1;
1354 /* Check for enough free space */
1355 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1356 ubifs_err("insufficient available space");
1361 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1362 struct ubifs_sb_node
*sup
;
1364 sup
= ubifs_read_sb_node(c
);
1369 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1370 err
= ubifs_write_sb_node(c
, sup
);
1375 if (c
->need_recovery
) {
1376 ubifs_msg("completing deferred recovery");
1377 err
= ubifs_write_rcvrd_mst_node(c
);
1380 err
= ubifs_recover_size(c
);
1383 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1386 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1391 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1392 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1393 err
= ubifs_write_master(c
);
1398 c
->ileb_buf
= vmalloc(c
->leb_size
);
1404 err
= ubifs_lpt_init(c
, 0, 1);
1408 err
= alloc_wbufs(c
);
1412 ubifs_create_buds_lists(c
);
1414 /* Create background thread */
1415 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1416 if (IS_ERR(c
->bgt
)) {
1417 err
= PTR_ERR(c
->bgt
);
1419 ubifs_err("cannot spawn \"%s\", error %d",
1423 wake_up_process(c
->bgt
);
1425 c
->orph_buf
= vmalloc(c
->leb_size
);
1431 /* Check for enough log space */
1432 lnum
= c
->lhead_lnum
+ 1;
1433 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1434 lnum
= UBIFS_LOG_LNUM
;
1435 if (lnum
== c
->ltail_lnum
) {
1436 err
= ubifs_consolidate_log(c
);
1441 if (c
->need_recovery
)
1442 err
= ubifs_rcvry_gc_commit(c
);
1444 err
= take_gc_lnum(c
);
1448 if (c
->need_recovery
) {
1449 c
->need_recovery
= 0;
1450 ubifs_msg("deferred recovery completed");
1453 dbg_gen("re-mounted read-write");
1454 c
->vfs_sb
->s_flags
&= ~MS_RDONLY
;
1455 c
->remounting_rw
= 0;
1456 c
->always_chk_crc
= 0;
1457 mutex_unlock(&c
->umount_mutex
);
1464 kthread_stop(c
->bgt
);
1470 ubifs_lpt_free(c
, 1);
1471 c
->remounting_rw
= 0;
1472 c
->always_chk_crc
= 0;
1473 mutex_unlock(&c
->umount_mutex
);
1478 * commit_on_unmount - commit the journal when un-mounting.
1479 * @c: UBIFS file-system description object
1481 * This function is called during un-mounting and re-mounting, and it commits
1482 * the journal unless the "fast unmount" mode is enabled. It also avoids
1483 * committing the journal if it contains too few data.
1485 static void commit_on_unmount(struct ubifs_info
*c
)
1487 if (!c
->fast_unmount
) {
1488 long long bud_bytes
;
1490 spin_lock(&c
->buds_lock
);
1491 bud_bytes
= c
->bud_bytes
;
1492 spin_unlock(&c
->buds_lock
);
1493 if (bud_bytes
> c
->leb_size
)
1494 ubifs_run_commit(c
);
1499 * ubifs_remount_ro - re-mount in read-only mode.
1500 * @c: UBIFS file-system description object
1502 * We rely on VFS to have stopped writing. Possibly the background thread could
1503 * be running a commit, however kthread_stop will wait in that case.
1505 static void ubifs_remount_ro(struct ubifs_info
*c
)
1509 ubifs_assert(!c
->need_recovery
);
1510 commit_on_unmount(c
);
1512 mutex_lock(&c
->umount_mutex
);
1514 kthread_stop(c
->bgt
);
1518 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1519 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1520 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1524 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1525 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1526 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1527 err
= ubifs_write_master(c
);
1529 ubifs_ro_mode(c
, err
);
1532 ubifs_destroy_idx_gc(c
);
1538 ubifs_lpt_free(c
, 1);
1539 mutex_unlock(&c
->umount_mutex
);
1542 static void ubifs_put_super(struct super_block
*sb
)
1545 struct ubifs_info
*c
= sb
->s_fs_info
;
1547 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1550 * The following asserts are only valid if there has not been a failure
1551 * of the media. For example, there will be dirty inodes if we failed
1552 * to write them back because of I/O errors.
1554 ubifs_assert(atomic_long_read(&c
->dirty_pg_cnt
) == 0);
1555 ubifs_assert(c
->budg_idx_growth
== 0);
1556 ubifs_assert(c
->budg_dd_growth
== 0);
1557 ubifs_assert(c
->budg_data_growth
== 0);
1560 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1561 * and file system un-mount. Namely, it prevents the shrinker from
1562 * picking this superblock for shrinking - it will be just skipped if
1563 * the mutex is locked.
1565 mutex_lock(&c
->umount_mutex
);
1566 if (!(c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1568 * First of all kill the background thread to make sure it does
1569 * not interfere with un-mounting and freeing resources.
1572 kthread_stop(c
->bgt
);
1576 /* Synchronize write-buffers */
1578 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1579 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1580 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1584 * On fatal errors c->ro_media is set to 1, in which case we do
1585 * not write the master node.
1589 * We are being cleanly unmounted which means the
1590 * orphans were killed - indicate this in the master
1591 * node. Also save the reserved GC LEB number.
1595 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1596 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1597 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1598 err
= ubifs_write_master(c
);
1601 * Recovery will attempt to fix the master area
1602 * next mount, so we just print a message and
1603 * continue to unmount normally.
1605 ubifs_err("failed to write master node, "
1611 bdi_destroy(&c
->bdi
);
1612 ubi_close_volume(c
->ubi
);
1613 mutex_unlock(&c
->umount_mutex
);
1617 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1620 struct ubifs_info
*c
= sb
->s_fs_info
;
1622 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1624 err
= ubifs_parse_options(c
, data
, 1);
1626 ubifs_err("invalid or unknown remount parameter");
1629 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
1630 err
= ubifs_remount_rw(c
);
1633 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
))
1634 ubifs_remount_ro(c
);
1639 struct super_operations ubifs_super_operations
= {
1640 .alloc_inode
= ubifs_alloc_inode
,
1641 .destroy_inode
= ubifs_destroy_inode
,
1642 .put_super
= ubifs_put_super
,
1643 .write_inode
= ubifs_write_inode
,
1644 .delete_inode
= ubifs_delete_inode
,
1645 .statfs
= ubifs_statfs
,
1646 .dirty_inode
= ubifs_dirty_inode
,
1647 .remount_fs
= ubifs_remount_fs
,
1648 .show_options
= ubifs_show_options
,
1649 .sync_fs
= ubifs_sync_fs
,
1653 * open_ubi - parse UBI device name string and open the UBI device.
1654 * @name: UBI volume name
1655 * @mode: UBI volume open mode
1657 * There are several ways to specify UBI volumes when mounting UBIFS:
1658 * o ubiX_Y - UBI device number X, volume Y;
1659 * o ubiY - UBI device number 0, volume Y;
1660 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1661 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1663 * Alternative '!' separator may be used instead of ':' (because some shells
1664 * like busybox may interpret ':' as an NFS host name separator). This function
1665 * returns ubi volume object in case of success and a negative error code in
1668 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1673 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1674 return ERR_PTR(-EINVAL
);
1676 /* ubi:NAME method */
1677 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1678 return ubi_open_volume_nm(0, name
+ 4, mode
);
1680 if (!isdigit(name
[3]))
1681 return ERR_PTR(-EINVAL
);
1683 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1686 if (*endptr
== '\0')
1687 return ubi_open_volume(0, dev
, mode
);
1690 if (*endptr
== '_' && isdigit(endptr
[1])) {
1691 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1692 if (*endptr
!= '\0')
1693 return ERR_PTR(-EINVAL
);
1694 return ubi_open_volume(dev
, vol
, mode
);
1697 /* ubiX:NAME method */
1698 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1699 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1701 return ERR_PTR(-EINVAL
);
1704 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1706 struct ubi_volume_desc
*ubi
= sb
->s_fs_info
;
1707 struct ubifs_info
*c
;
1711 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1715 spin_lock_init(&c
->cnt_lock
);
1716 spin_lock_init(&c
->cs_lock
);
1717 spin_lock_init(&c
->buds_lock
);
1718 spin_lock_init(&c
->space_lock
);
1719 spin_lock_init(&c
->orphan_lock
);
1720 init_rwsem(&c
->commit_sem
);
1721 mutex_init(&c
->lp_mutex
);
1722 mutex_init(&c
->tnc_mutex
);
1723 mutex_init(&c
->log_mutex
);
1724 mutex_init(&c
->mst_mutex
);
1725 mutex_init(&c
->umount_mutex
);
1726 init_waitqueue_head(&c
->cmt_wq
);
1728 c
->old_idx
= RB_ROOT
;
1729 c
->size_tree
= RB_ROOT
;
1730 c
->orph_tree
= RB_ROOT
;
1731 INIT_LIST_HEAD(&c
->infos_list
);
1732 INIT_LIST_HEAD(&c
->idx_gc
);
1733 INIT_LIST_HEAD(&c
->replay_list
);
1734 INIT_LIST_HEAD(&c
->replay_buds
);
1735 INIT_LIST_HEAD(&c
->uncat_list
);
1736 INIT_LIST_HEAD(&c
->empty_list
);
1737 INIT_LIST_HEAD(&c
->freeable_list
);
1738 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1739 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1740 INIT_LIST_HEAD(&c
->old_buds
);
1741 INIT_LIST_HEAD(&c
->orph_list
);
1742 INIT_LIST_HEAD(&c
->orph_new
);
1744 c
->highest_inum
= UBIFS_FIRST_INO
;
1745 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1747 ubi_get_volume_info(ubi
, &c
->vi
);
1748 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
1750 /* Re-open the UBI device in read-write mode */
1751 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
1752 if (IS_ERR(c
->ubi
)) {
1753 err
= PTR_ERR(c
->ubi
);
1758 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1759 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1760 * which means the user would have to wait not just for their own I/O
1761 * but the read-ahead I/O as well i.e. completely pointless.
1763 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1765 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
1766 c
->bdi
.unplug_io_fn
= default_unplug_io_fn
;
1767 err
= bdi_init(&c
->bdi
);
1771 err
= ubifs_parse_options(c
, data
, 0);
1778 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
1779 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
1780 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
1781 sb
->s_dev
= c
->vi
.cdev
;
1782 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
1783 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
1784 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
1785 sb
->s_op
= &ubifs_super_operations
;
1787 mutex_lock(&c
->umount_mutex
);
1788 err
= mount_ubifs(c
);
1790 ubifs_assert(err
< 0);
1794 /* Read the root inode */
1795 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
1797 err
= PTR_ERR(root
);
1801 sb
->s_root
= d_alloc_root(root
);
1805 mutex_unlock(&c
->umount_mutex
);
1814 mutex_unlock(&c
->umount_mutex
);
1816 bdi_destroy(&c
->bdi
);
1818 ubi_close_volume(c
->ubi
);
1824 static int sb_test(struct super_block
*sb
, void *data
)
1828 return sb
->s_dev
== *dev
;
1831 static int sb_set(struct super_block
*sb
, void *data
)
1839 static int ubifs_get_sb(struct file_system_type
*fs_type
, int flags
,
1840 const char *name
, void *data
, struct vfsmount
*mnt
)
1842 struct ubi_volume_desc
*ubi
;
1843 struct ubi_volume_info vi
;
1844 struct super_block
*sb
;
1847 dbg_gen("name %s, flags %#x", name
, flags
);
1850 * Get UBI device number and volume ID. Mount it read-only so far
1851 * because this might be a new mount point, and UBI allows only one
1852 * read-write user at a time.
1854 ubi
= open_ubi(name
, UBI_READONLY
);
1856 ubifs_err("cannot open \"%s\", error %d",
1857 name
, (int)PTR_ERR(ubi
));
1858 return PTR_ERR(ubi
);
1860 ubi_get_volume_info(ubi
, &vi
);
1862 dbg_gen("opened ubi%d_%d", vi
.ubi_num
, vi
.vol_id
);
1864 sb
= sget(fs_type
, &sb_test
, &sb_set
, &vi
.cdev
);
1871 /* A new mount point for already mounted UBIFS */
1872 dbg_gen("this ubi volume is already mounted");
1873 if ((flags
^ sb
->s_flags
) & MS_RDONLY
) {
1878 sb
->s_flags
= flags
;
1880 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1883 sb
->s_fs_info
= ubi
;
1884 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
1887 /* We do not support atime */
1888 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
1891 /* 'fill_super()' opens ubi again so we must close it here */
1892 ubi_close_volume(ubi
);
1894 return simple_set_mnt(mnt
, sb
);
1897 up_write(&sb
->s_umount
);
1898 deactivate_super(sb
);
1900 ubi_close_volume(ubi
);
1904 static void ubifs_kill_sb(struct super_block
*sb
)
1906 struct ubifs_info
*c
= sb
->s_fs_info
;
1909 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1910 * in order to be outside BKL.
1912 if (sb
->s_root
&& !(sb
->s_flags
& MS_RDONLY
))
1913 commit_on_unmount(c
);
1914 /* The un-mount routine is actually done in put_super() */
1915 generic_shutdown_super(sb
);
1918 static struct file_system_type ubifs_fs_type
= {
1920 .owner
= THIS_MODULE
,
1921 .get_sb
= ubifs_get_sb
,
1922 .kill_sb
= ubifs_kill_sb
1926 * Inode slab cache constructor.
1928 static void inode_slab_ctor(void *obj
)
1930 struct ubifs_inode
*ui
= obj
;
1931 inode_init_once(&ui
->vfs_inode
);
1934 static int __init
ubifs_init(void)
1938 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
1940 /* Make sure node sizes are 8-byte aligned */
1941 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
1942 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
1943 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
1944 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
1945 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
1946 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
1947 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
1948 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
1949 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
1950 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
1951 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
1953 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
1954 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
1955 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
1956 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
1957 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
1958 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
1960 /* Check min. node size */
1961 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
1962 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
1963 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
1964 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
1966 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1967 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1968 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1969 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1971 /* Defined node sizes */
1972 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
1973 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
1974 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
1975 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
1978 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1979 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1981 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
1982 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1983 " at least 4096 bytes",
1984 (unsigned int)PAGE_CACHE_SIZE
);
1988 err
= register_filesystem(&ubifs_fs_type
);
1990 ubifs_err("cannot register file system, error %d", err
);
1995 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
1996 sizeof(struct ubifs_inode
), 0,
1997 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
1999 if (!ubifs_inode_slab
)
2002 register_shrinker(&ubifs_shrinker_info
);
2004 err
= ubifs_compressors_init();
2011 unregister_shrinker(&ubifs_shrinker_info
);
2012 kmem_cache_destroy(ubifs_inode_slab
);
2014 unregister_filesystem(&ubifs_fs_type
);
2017 /* late_initcall to let compressors initialize first */
2018 late_initcall(ubifs_init
);
2020 static void __exit
ubifs_exit(void)
2022 ubifs_assert(list_empty(&ubifs_infos
));
2023 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2025 ubifs_compressors_exit();
2026 unregister_shrinker(&ubifs_shrinker_info
);
2027 kmem_cache_destroy(ubifs_inode_slab
);
2028 unregister_filesystem(&ubifs_fs_type
);
2030 module_exit(ubifs_exit
);
2032 MODULE_LICENSE("GPL");
2033 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2034 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2035 MODULE_DESCRIPTION("UBIFS - UBI File System");