x86: warn about RAM pages in ioremap()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / bootmem.c
blob2ccea700968f7ecaaa265023e79e52d540a82871
1 /*
2 * linux/mm/bootmem.c
4 * Copyright (C) 1999 Ingo Molnar
5 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
7 * simple boot-time physical memory area allocator and
8 * free memory collector. It's used to deal with reserved
9 * system memory and memory holes as well.
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/bootmem.h>
14 #include <linux/module.h>
16 #include <asm/bug.h>
17 #include <asm/io.h>
18 #include <asm/processor.h>
20 #include "internal.h"
23 * Access to this subsystem has to be serialized externally. (this is
24 * true for the boot process anyway)
26 unsigned long max_low_pfn;
27 unsigned long min_low_pfn;
28 unsigned long max_pfn;
30 static LIST_HEAD(bdata_list);
31 #ifdef CONFIG_CRASH_DUMP
33 * If we have booted due to a crash, max_pfn will be a very low value. We need
34 * to know the amount of memory that the previous kernel used.
36 unsigned long saved_max_pfn;
37 #endif
39 /* return the number of _pages_ that will be allocated for the boot bitmap */
40 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
42 unsigned long mapsize;
44 mapsize = (pages+7)/8;
45 mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
46 mapsize >>= PAGE_SHIFT;
48 return mapsize;
52 * link bdata in order
54 static void __init link_bootmem(bootmem_data_t *bdata)
56 bootmem_data_t *ent;
58 if (list_empty(&bdata_list)) {
59 list_add(&bdata->list, &bdata_list);
60 return;
62 /* insert in order */
63 list_for_each_entry(ent, &bdata_list, list) {
64 if (bdata->node_boot_start < ent->node_boot_start) {
65 list_add_tail(&bdata->list, &ent->list);
66 return;
69 list_add_tail(&bdata->list, &bdata_list);
73 * Given an initialised bdata, it returns the size of the boot bitmap
75 static unsigned long __init get_mapsize(bootmem_data_t *bdata)
77 unsigned long mapsize;
78 unsigned long start = PFN_DOWN(bdata->node_boot_start);
79 unsigned long end = bdata->node_low_pfn;
81 mapsize = ((end - start) + 7) / 8;
82 return ALIGN(mapsize, sizeof(long));
86 * Called once to set up the allocator itself.
88 static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
89 unsigned long mapstart, unsigned long start, unsigned long end)
91 bootmem_data_t *bdata = pgdat->bdata;
92 unsigned long mapsize;
94 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
95 bdata->node_boot_start = PFN_PHYS(start);
96 bdata->node_low_pfn = end;
97 link_bootmem(bdata);
100 * Initially all pages are reserved - setup_arch() has to
101 * register free RAM areas explicitly.
103 mapsize = get_mapsize(bdata);
104 memset(bdata->node_bootmem_map, 0xff, mapsize);
106 return mapsize;
110 * Marks a particular physical memory range as unallocatable. Usable RAM
111 * might be used for boot-time allocations - or it might get added
112 * to the free page pool later on.
114 static int __init reserve_bootmem_core(bootmem_data_t *bdata,
115 unsigned long addr, unsigned long size, int flags)
117 unsigned long sidx, eidx;
118 unsigned long i;
119 int ret;
122 * round up, partially reserved pages are considered
123 * fully reserved.
125 BUG_ON(!size);
126 BUG_ON(PFN_DOWN(addr) >= bdata->node_low_pfn);
127 BUG_ON(PFN_UP(addr + size) > bdata->node_low_pfn);
128 BUG_ON(addr < bdata->node_boot_start);
130 sidx = PFN_DOWN(addr - bdata->node_boot_start);
131 eidx = PFN_UP(addr + size - bdata->node_boot_start);
133 for (i = sidx; i < eidx; i++)
134 if (test_and_set_bit(i, bdata->node_bootmem_map)) {
135 #ifdef CONFIG_DEBUG_BOOTMEM
136 printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
137 #endif
138 if (flags & BOOTMEM_EXCLUSIVE) {
139 ret = -EBUSY;
140 goto err;
144 return 0;
146 err:
147 /* unreserve memory we accidentally reserved */
148 for (i--; i >= sidx; i--)
149 clear_bit(i, bdata->node_bootmem_map);
151 return ret;
154 static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
155 unsigned long size)
157 unsigned long sidx, eidx;
158 unsigned long i;
160 BUG_ON(!size);
162 /* out range */
163 if (addr + size < bdata->node_boot_start ||
164 PFN_DOWN(addr) > bdata->node_low_pfn)
165 return;
167 * round down end of usable mem, partially free pages are
168 * considered reserved.
171 if (addr >= bdata->node_boot_start && addr < bdata->last_success)
172 bdata->last_success = addr;
175 * Round up to index to the range.
177 if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
178 sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
179 else
180 sidx = 0;
182 eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
183 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
184 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
186 for (i = sidx; i < eidx; i++) {
187 if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
188 BUG();
193 * We 'merge' subsequent allocations to save space. We might 'lose'
194 * some fraction of a page if allocations cannot be satisfied due to
195 * size constraints on boxes where there is physical RAM space
196 * fragmentation - in these cases (mostly large memory boxes) this
197 * is not a problem.
199 * On low memory boxes we get it right in 100% of the cases.
201 * alignment has to be a power of 2 value.
203 * NOTE: This function is _not_ reentrant.
205 void * __init
206 __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
207 unsigned long align, unsigned long goal, unsigned long limit)
209 unsigned long offset, remaining_size, areasize, preferred;
210 unsigned long i, start = 0, incr, eidx, end_pfn;
211 void *ret;
213 if (!size) {
214 printk("__alloc_bootmem_core(): zero-sized request\n");
215 BUG();
217 BUG_ON(align & (align-1));
219 if (limit && bdata->node_boot_start >= limit)
220 return NULL;
222 /* on nodes without memory - bootmem_map is NULL */
223 if (!bdata->node_bootmem_map)
224 return NULL;
226 end_pfn = bdata->node_low_pfn;
227 limit = PFN_DOWN(limit);
228 if (limit && end_pfn > limit)
229 end_pfn = limit;
231 eidx = end_pfn - PFN_DOWN(bdata->node_boot_start);
232 offset = 0;
233 if (align && (bdata->node_boot_start & (align - 1UL)) != 0)
234 offset = align - (bdata->node_boot_start & (align - 1UL));
235 offset = PFN_DOWN(offset);
238 * We try to allocate bootmem pages above 'goal'
239 * first, then we try to allocate lower pages.
241 if (goal && goal >= bdata->node_boot_start && PFN_DOWN(goal) < end_pfn) {
242 preferred = goal - bdata->node_boot_start;
244 if (bdata->last_success >= preferred)
245 if (!limit || (limit && limit > bdata->last_success))
246 preferred = bdata->last_success;
247 } else
248 preferred = 0;
250 preferred = PFN_DOWN(ALIGN(preferred, align)) + offset;
251 areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
252 incr = align >> PAGE_SHIFT ? : 1;
254 restart_scan:
255 for (i = preferred; i < eidx; i += incr) {
256 unsigned long j;
257 i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
258 i = ALIGN(i, incr);
259 if (i >= eidx)
260 break;
261 if (test_bit(i, bdata->node_bootmem_map))
262 continue;
263 for (j = i + 1; j < i + areasize; ++j) {
264 if (j >= eidx)
265 goto fail_block;
266 if (test_bit(j, bdata->node_bootmem_map))
267 goto fail_block;
269 start = i;
270 goto found;
271 fail_block:
272 i = ALIGN(j, incr);
275 if (preferred > offset) {
276 preferred = offset;
277 goto restart_scan;
279 return NULL;
281 found:
282 bdata->last_success = PFN_PHYS(start);
283 BUG_ON(start >= eidx);
286 * Is the next page of the previous allocation-end the start
287 * of this allocation's buffer? If yes then we can 'merge'
288 * the previous partial page with this allocation.
290 if (align < PAGE_SIZE &&
291 bdata->last_offset && bdata->last_pos+1 == start) {
292 offset = ALIGN(bdata->last_offset, align);
293 BUG_ON(offset > PAGE_SIZE);
294 remaining_size = PAGE_SIZE - offset;
295 if (size < remaining_size) {
296 areasize = 0;
297 /* last_pos unchanged */
298 bdata->last_offset = offset + size;
299 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
300 offset +
301 bdata->node_boot_start);
302 } else {
303 remaining_size = size - remaining_size;
304 areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
305 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
306 offset +
307 bdata->node_boot_start);
308 bdata->last_pos = start + areasize - 1;
309 bdata->last_offset = remaining_size;
311 bdata->last_offset &= ~PAGE_MASK;
312 } else {
313 bdata->last_pos = start + areasize - 1;
314 bdata->last_offset = size & ~PAGE_MASK;
315 ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
319 * Reserve the area now:
321 for (i = start; i < start + areasize; i++)
322 if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
323 BUG();
324 memset(ret, 0, size);
325 return ret;
328 static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
330 struct page *page;
331 unsigned long pfn;
332 bootmem_data_t *bdata = pgdat->bdata;
333 unsigned long i, count, total = 0;
334 unsigned long idx;
335 unsigned long *map;
336 int gofast = 0;
338 BUG_ON(!bdata->node_bootmem_map);
340 count = 0;
341 /* first extant page of the node */
342 pfn = PFN_DOWN(bdata->node_boot_start);
343 idx = bdata->node_low_pfn - pfn;
344 map = bdata->node_bootmem_map;
345 /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
346 if (bdata->node_boot_start == 0 ||
347 ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
348 gofast = 1;
349 for (i = 0; i < idx; ) {
350 unsigned long v = ~map[i / BITS_PER_LONG];
352 if (gofast && v == ~0UL) {
353 int order;
355 page = pfn_to_page(pfn);
356 count += BITS_PER_LONG;
357 order = ffs(BITS_PER_LONG) - 1;
358 __free_pages_bootmem(page, order);
359 i += BITS_PER_LONG;
360 page += BITS_PER_LONG;
361 } else if (v) {
362 unsigned long m;
364 page = pfn_to_page(pfn);
365 for (m = 1; m && i < idx; m<<=1, page++, i++) {
366 if (v & m) {
367 count++;
368 __free_pages_bootmem(page, 0);
371 } else {
372 i += BITS_PER_LONG;
374 pfn += BITS_PER_LONG;
376 total += count;
379 * Now free the allocator bitmap itself, it's not
380 * needed anymore:
382 page = virt_to_page(bdata->node_bootmem_map);
383 count = 0;
384 idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
385 for (i = 0; i < idx; i++, page++) {
386 __free_pages_bootmem(page, 0);
387 count++;
389 total += count;
390 bdata->node_bootmem_map = NULL;
392 return total;
395 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
396 unsigned long startpfn, unsigned long endpfn)
398 return init_bootmem_core(pgdat, freepfn, startpfn, endpfn);
401 void __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
402 unsigned long size, int flags)
404 reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
407 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
408 unsigned long size)
410 free_bootmem_core(pgdat->bdata, physaddr, size);
413 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
415 return free_all_bootmem_core(pgdat);
418 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
420 max_low_pfn = pages;
421 min_low_pfn = start;
422 return init_bootmem_core(NODE_DATA(0), start, 0, pages);
425 #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
426 int __init reserve_bootmem(unsigned long addr, unsigned long size,
427 int flags)
429 return reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size, flags);
431 #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
433 void __init free_bootmem(unsigned long addr, unsigned long size)
435 bootmem_data_t *bdata;
436 list_for_each_entry(bdata, &bdata_list, list)
437 free_bootmem_core(bdata, addr, size);
440 unsigned long __init free_all_bootmem(void)
442 return free_all_bootmem_core(NODE_DATA(0));
445 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
446 unsigned long goal)
448 bootmem_data_t *bdata;
449 void *ptr;
451 list_for_each_entry(bdata, &bdata_list, list) {
452 ptr = __alloc_bootmem_core(bdata, size, align, goal, 0);
453 if (ptr)
454 return ptr;
456 return NULL;
459 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
460 unsigned long goal)
462 void *mem = __alloc_bootmem_nopanic(size,align,goal);
464 if (mem)
465 return mem;
467 * Whoops, we cannot satisfy the allocation request.
469 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
470 panic("Out of memory");
471 return NULL;
475 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
476 unsigned long align, unsigned long goal)
478 void *ptr;
480 ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
481 if (ptr)
482 return ptr;
484 return __alloc_bootmem(size, align, goal);
487 #ifndef ARCH_LOW_ADDRESS_LIMIT
488 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
489 #endif
491 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
492 unsigned long goal)
494 bootmem_data_t *bdata;
495 void *ptr;
497 list_for_each_entry(bdata, &bdata_list, list) {
498 ptr = __alloc_bootmem_core(bdata, size, align, goal,
499 ARCH_LOW_ADDRESS_LIMIT);
500 if (ptr)
501 return ptr;
505 * Whoops, we cannot satisfy the allocation request.
507 printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
508 panic("Out of low memory");
509 return NULL;
512 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
513 unsigned long align, unsigned long goal)
515 return __alloc_bootmem_core(pgdat->bdata, size, align, goal,
516 ARCH_LOW_ADDRESS_LIMIT);