[NetLabel]: consolidate the struct socket/sock handling to just struct sock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blobeb7180db303326f73f7e099f84e2557e84cc87b1
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
33 static DEFINE_SPINLOCK(hugetlb_lock);
35 static void clear_huge_page(struct page *page, unsigned long addr)
37 int i;
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
46 static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr, struct vm_area_struct *vma)
49 int i;
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
58 static void enqueue_huge_page(struct page *page)
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
69 int nid = numa_node_id();
70 struct page *page = NULL;
71 struct zonelist *zonelist = huge_zonelist(vma, address);
72 struct zone **z;
74 for (z = zonelist->zones; *z; z++) {
75 nid = zone_to_nid(*z);
76 if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77 !list_empty(&hugepage_freelists[nid]))
78 break;
81 if (*z) {
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
88 return page;
91 static void free_huge_page(struct page *page)
93 BUG_ON(page_count(page));
95 INIT_LIST_HEAD(&page->lru);
97 spin_lock(&hugetlb_lock);
98 enqueue_huge_page(page);
99 spin_unlock(&hugetlb_lock);
102 static int alloc_fresh_huge_page(void)
104 static int nid = 0;
105 struct page *page;
106 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107 HUGETLB_PAGE_ORDER);
108 nid = next_node(nid, node_online_map);
109 if (nid == MAX_NUMNODES)
110 nid = first_node(node_online_map);
111 if (page) {
112 set_compound_page_dtor(page, free_huge_page);
113 spin_lock(&hugetlb_lock);
114 nr_huge_pages++;
115 nr_huge_pages_node[page_to_nid(page)]++;
116 spin_unlock(&hugetlb_lock);
117 put_page(page); /* free it into the hugepage allocator */
118 return 1;
120 return 0;
123 static struct page *alloc_huge_page(struct vm_area_struct *vma,
124 unsigned long addr)
126 struct page *page;
128 spin_lock(&hugetlb_lock);
129 if (vma->vm_flags & VM_MAYSHARE)
130 resv_huge_pages--;
131 else if (free_huge_pages <= resv_huge_pages)
132 goto fail;
134 page = dequeue_huge_page(vma, addr);
135 if (!page)
136 goto fail;
138 spin_unlock(&hugetlb_lock);
139 set_page_refcounted(page);
140 return page;
142 fail:
143 if (vma->vm_flags & VM_MAYSHARE)
144 resv_huge_pages++;
145 spin_unlock(&hugetlb_lock);
146 return NULL;
149 static int __init hugetlb_init(void)
151 unsigned long i;
153 if (HPAGE_SHIFT == 0)
154 return 0;
156 for (i = 0; i < MAX_NUMNODES; ++i)
157 INIT_LIST_HEAD(&hugepage_freelists[i]);
159 for (i = 0; i < max_huge_pages; ++i) {
160 if (!alloc_fresh_huge_page())
161 break;
163 max_huge_pages = free_huge_pages = nr_huge_pages = i;
164 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
165 return 0;
167 module_init(hugetlb_init);
169 static int __init hugetlb_setup(char *s)
171 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
172 max_huge_pages = 0;
173 return 1;
175 __setup("hugepages=", hugetlb_setup);
177 static unsigned int cpuset_mems_nr(unsigned int *array)
179 int node;
180 unsigned int nr = 0;
182 for_each_node_mask(node, cpuset_current_mems_allowed)
183 nr += array[node];
185 return nr;
188 #ifdef CONFIG_SYSCTL
189 static void update_and_free_page(struct page *page)
191 int i;
192 nr_huge_pages--;
193 nr_huge_pages_node[page_to_nid(page)]--;
194 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
195 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
196 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
197 1 << PG_private | 1<< PG_writeback);
199 page[1].lru.next = NULL;
200 set_page_refcounted(page);
201 __free_pages(page, HUGETLB_PAGE_ORDER);
204 #ifdef CONFIG_HIGHMEM
205 static void try_to_free_low(unsigned long count)
207 int i;
209 for (i = 0; i < MAX_NUMNODES; ++i) {
210 struct page *page, *next;
211 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
212 if (PageHighMem(page))
213 continue;
214 list_del(&page->lru);
215 update_and_free_page(page);
216 free_huge_pages--;
217 free_huge_pages_node[page_to_nid(page)]--;
218 if (count >= nr_huge_pages)
219 return;
223 #else
224 static inline void try_to_free_low(unsigned long count)
227 #endif
229 static unsigned long set_max_huge_pages(unsigned long count)
231 while (count > nr_huge_pages) {
232 if (!alloc_fresh_huge_page())
233 return nr_huge_pages;
235 if (count >= nr_huge_pages)
236 return nr_huge_pages;
238 spin_lock(&hugetlb_lock);
239 count = max(count, resv_huge_pages);
240 try_to_free_low(count);
241 while (count < nr_huge_pages) {
242 struct page *page = dequeue_huge_page(NULL, 0);
243 if (!page)
244 break;
245 update_and_free_page(page);
247 spin_unlock(&hugetlb_lock);
248 return nr_huge_pages;
251 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
252 struct file *file, void __user *buffer,
253 size_t *length, loff_t *ppos)
255 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
256 max_huge_pages = set_max_huge_pages(max_huge_pages);
257 return 0;
259 #endif /* CONFIG_SYSCTL */
261 int hugetlb_report_meminfo(char *buf)
263 return sprintf(buf,
264 "HugePages_Total: %5lu\n"
265 "HugePages_Free: %5lu\n"
266 "HugePages_Rsvd: %5lu\n"
267 "Hugepagesize: %5lu kB\n",
268 nr_huge_pages,
269 free_huge_pages,
270 resv_huge_pages,
271 HPAGE_SIZE/1024);
274 int hugetlb_report_node_meminfo(int nid, char *buf)
276 return sprintf(buf,
277 "Node %d HugePages_Total: %5u\n"
278 "Node %d HugePages_Free: %5u\n",
279 nid, nr_huge_pages_node[nid],
280 nid, free_huge_pages_node[nid]);
283 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
284 unsigned long hugetlb_total_pages(void)
286 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
290 * We cannot handle pagefaults against hugetlb pages at all. They cause
291 * handle_mm_fault() to try to instantiate regular-sized pages in the
292 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
293 * this far.
295 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
296 unsigned long address, int *unused)
298 BUG();
299 return NULL;
302 struct vm_operations_struct hugetlb_vm_ops = {
303 .nopage = hugetlb_nopage,
306 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
307 int writable)
309 pte_t entry;
311 if (writable) {
312 entry =
313 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
314 } else {
315 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
317 entry = pte_mkyoung(entry);
318 entry = pte_mkhuge(entry);
320 return entry;
323 static void set_huge_ptep_writable(struct vm_area_struct *vma,
324 unsigned long address, pte_t *ptep)
326 pte_t entry;
328 entry = pte_mkwrite(pte_mkdirty(*ptep));
329 ptep_set_access_flags(vma, address, ptep, entry, 1);
330 update_mmu_cache(vma, address, entry);
331 lazy_mmu_prot_update(entry);
335 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
336 struct vm_area_struct *vma)
338 pte_t *src_pte, *dst_pte, entry;
339 struct page *ptepage;
340 unsigned long addr;
341 int cow;
343 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
345 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
346 src_pte = huge_pte_offset(src, addr);
347 if (!src_pte)
348 continue;
349 dst_pte = huge_pte_alloc(dst, addr);
350 if (!dst_pte)
351 goto nomem;
352 spin_lock(&dst->page_table_lock);
353 spin_lock(&src->page_table_lock);
354 if (!pte_none(*src_pte)) {
355 if (cow)
356 ptep_set_wrprotect(src, addr, src_pte);
357 entry = *src_pte;
358 ptepage = pte_page(entry);
359 get_page(ptepage);
360 set_huge_pte_at(dst, addr, dst_pte, entry);
362 spin_unlock(&src->page_table_lock);
363 spin_unlock(&dst->page_table_lock);
365 return 0;
367 nomem:
368 return -ENOMEM;
371 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
372 unsigned long end)
374 struct mm_struct *mm = vma->vm_mm;
375 unsigned long address;
376 pte_t *ptep;
377 pte_t pte;
378 struct page *page;
379 struct page *tmp;
381 * A page gathering list, protected by per file i_mmap_lock. The
382 * lock is used to avoid list corruption from multiple unmapping
383 * of the same page since we are using page->lru.
385 LIST_HEAD(page_list);
387 WARN_ON(!is_vm_hugetlb_page(vma));
388 BUG_ON(start & ~HPAGE_MASK);
389 BUG_ON(end & ~HPAGE_MASK);
391 spin_lock(&mm->page_table_lock);
392 for (address = start; address < end; address += HPAGE_SIZE) {
393 ptep = huge_pte_offset(mm, address);
394 if (!ptep)
395 continue;
397 if (huge_pmd_unshare(mm, &address, ptep))
398 continue;
400 pte = huge_ptep_get_and_clear(mm, address, ptep);
401 if (pte_none(pte))
402 continue;
404 page = pte_page(pte);
405 if (pte_dirty(pte))
406 set_page_dirty(page);
407 list_add(&page->lru, &page_list);
409 spin_unlock(&mm->page_table_lock);
410 flush_tlb_range(vma, start, end);
411 list_for_each_entry_safe(page, tmp, &page_list, lru) {
412 list_del(&page->lru);
413 put_page(page);
417 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
418 unsigned long end)
421 * It is undesirable to test vma->vm_file as it should be non-null
422 * for valid hugetlb area. However, vm_file will be NULL in the error
423 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
424 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
425 * to clean up. Since no pte has actually been setup, it is safe to
426 * do nothing in this case.
428 if (vma->vm_file) {
429 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
430 __unmap_hugepage_range(vma, start, end);
431 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
435 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
436 unsigned long address, pte_t *ptep, pte_t pte)
438 struct page *old_page, *new_page;
439 int avoidcopy;
441 old_page = pte_page(pte);
443 /* If no-one else is actually using this page, avoid the copy
444 * and just make the page writable */
445 avoidcopy = (page_count(old_page) == 1);
446 if (avoidcopy) {
447 set_huge_ptep_writable(vma, address, ptep);
448 return VM_FAULT_MINOR;
451 page_cache_get(old_page);
452 new_page = alloc_huge_page(vma, address);
454 if (!new_page) {
455 page_cache_release(old_page);
456 return VM_FAULT_OOM;
459 spin_unlock(&mm->page_table_lock);
460 copy_huge_page(new_page, old_page, address, vma);
461 spin_lock(&mm->page_table_lock);
463 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
464 if (likely(pte_same(*ptep, pte))) {
465 /* Break COW */
466 set_huge_pte_at(mm, address, ptep,
467 make_huge_pte(vma, new_page, 1));
468 /* Make the old page be freed below */
469 new_page = old_page;
471 page_cache_release(new_page);
472 page_cache_release(old_page);
473 return VM_FAULT_MINOR;
476 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
477 unsigned long address, pte_t *ptep, int write_access)
479 int ret = VM_FAULT_SIGBUS;
480 unsigned long idx;
481 unsigned long size;
482 struct page *page;
483 struct address_space *mapping;
484 pte_t new_pte;
486 mapping = vma->vm_file->f_mapping;
487 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
488 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
491 * Use page lock to guard against racing truncation
492 * before we get page_table_lock.
494 retry:
495 page = find_lock_page(mapping, idx);
496 if (!page) {
497 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
498 if (idx >= size)
499 goto out;
500 if (hugetlb_get_quota(mapping))
501 goto out;
502 page = alloc_huge_page(vma, address);
503 if (!page) {
504 hugetlb_put_quota(mapping);
505 ret = VM_FAULT_OOM;
506 goto out;
508 clear_huge_page(page, address);
510 if (vma->vm_flags & VM_SHARED) {
511 int err;
513 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
514 if (err) {
515 put_page(page);
516 hugetlb_put_quota(mapping);
517 if (err == -EEXIST)
518 goto retry;
519 goto out;
521 } else
522 lock_page(page);
525 spin_lock(&mm->page_table_lock);
526 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
527 if (idx >= size)
528 goto backout;
530 ret = VM_FAULT_MINOR;
531 if (!pte_none(*ptep))
532 goto backout;
534 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
535 && (vma->vm_flags & VM_SHARED)));
536 set_huge_pte_at(mm, address, ptep, new_pte);
538 if (write_access && !(vma->vm_flags & VM_SHARED)) {
539 /* Optimization, do the COW without a second fault */
540 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
543 spin_unlock(&mm->page_table_lock);
544 unlock_page(page);
545 out:
546 return ret;
548 backout:
549 spin_unlock(&mm->page_table_lock);
550 hugetlb_put_quota(mapping);
551 unlock_page(page);
552 put_page(page);
553 goto out;
556 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
557 unsigned long address, int write_access)
559 pte_t *ptep;
560 pte_t entry;
561 int ret;
562 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
564 ptep = huge_pte_alloc(mm, address);
565 if (!ptep)
566 return VM_FAULT_OOM;
569 * Serialize hugepage allocation and instantiation, so that we don't
570 * get spurious allocation failures if two CPUs race to instantiate
571 * the same page in the page cache.
573 mutex_lock(&hugetlb_instantiation_mutex);
574 entry = *ptep;
575 if (pte_none(entry)) {
576 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
577 mutex_unlock(&hugetlb_instantiation_mutex);
578 return ret;
581 ret = VM_FAULT_MINOR;
583 spin_lock(&mm->page_table_lock);
584 /* Check for a racing update before calling hugetlb_cow */
585 if (likely(pte_same(entry, *ptep)))
586 if (write_access && !pte_write(entry))
587 ret = hugetlb_cow(mm, vma, address, ptep, entry);
588 spin_unlock(&mm->page_table_lock);
589 mutex_unlock(&hugetlb_instantiation_mutex);
591 return ret;
594 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
595 struct page **pages, struct vm_area_struct **vmas,
596 unsigned long *position, int *length, int i)
598 unsigned long pfn_offset;
599 unsigned long vaddr = *position;
600 int remainder = *length;
602 spin_lock(&mm->page_table_lock);
603 while (vaddr < vma->vm_end && remainder) {
604 pte_t *pte;
605 struct page *page;
608 * Some archs (sparc64, sh*) have multiple pte_ts to
609 * each hugepage. We have to make * sure we get the
610 * first, for the page indexing below to work.
612 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
614 if (!pte || pte_none(*pte)) {
615 int ret;
617 spin_unlock(&mm->page_table_lock);
618 ret = hugetlb_fault(mm, vma, vaddr, 0);
619 spin_lock(&mm->page_table_lock);
620 if (ret == VM_FAULT_MINOR)
621 continue;
623 remainder = 0;
624 if (!i)
625 i = -EFAULT;
626 break;
629 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
630 page = pte_page(*pte);
631 same_page:
632 if (pages) {
633 get_page(page);
634 pages[i] = page + pfn_offset;
637 if (vmas)
638 vmas[i] = vma;
640 vaddr += PAGE_SIZE;
641 ++pfn_offset;
642 --remainder;
643 ++i;
644 if (vaddr < vma->vm_end && remainder &&
645 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
647 * We use pfn_offset to avoid touching the pageframes
648 * of this compound page.
650 goto same_page;
653 spin_unlock(&mm->page_table_lock);
654 *length = remainder;
655 *position = vaddr;
657 return i;
660 void hugetlb_change_protection(struct vm_area_struct *vma,
661 unsigned long address, unsigned long end, pgprot_t newprot)
663 struct mm_struct *mm = vma->vm_mm;
664 unsigned long start = address;
665 pte_t *ptep;
666 pte_t pte;
668 BUG_ON(address >= end);
669 flush_cache_range(vma, address, end);
671 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
672 spin_lock(&mm->page_table_lock);
673 for (; address < end; address += HPAGE_SIZE) {
674 ptep = huge_pte_offset(mm, address);
675 if (!ptep)
676 continue;
677 if (huge_pmd_unshare(mm, &address, ptep))
678 continue;
679 if (!pte_none(*ptep)) {
680 pte = huge_ptep_get_and_clear(mm, address, ptep);
681 pte = pte_mkhuge(pte_modify(pte, newprot));
682 set_huge_pte_at(mm, address, ptep, pte);
683 lazy_mmu_prot_update(pte);
686 spin_unlock(&mm->page_table_lock);
687 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
689 flush_tlb_range(vma, start, end);
692 struct file_region {
693 struct list_head link;
694 long from;
695 long to;
698 static long region_add(struct list_head *head, long f, long t)
700 struct file_region *rg, *nrg, *trg;
702 /* Locate the region we are either in or before. */
703 list_for_each_entry(rg, head, link)
704 if (f <= rg->to)
705 break;
707 /* Round our left edge to the current segment if it encloses us. */
708 if (f > rg->from)
709 f = rg->from;
711 /* Check for and consume any regions we now overlap with. */
712 nrg = rg;
713 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
714 if (&rg->link == head)
715 break;
716 if (rg->from > t)
717 break;
719 /* If this area reaches higher then extend our area to
720 * include it completely. If this is not the first area
721 * which we intend to reuse, free it. */
722 if (rg->to > t)
723 t = rg->to;
724 if (rg != nrg) {
725 list_del(&rg->link);
726 kfree(rg);
729 nrg->from = f;
730 nrg->to = t;
731 return 0;
734 static long region_chg(struct list_head *head, long f, long t)
736 struct file_region *rg, *nrg;
737 long chg = 0;
739 /* Locate the region we are before or in. */
740 list_for_each_entry(rg, head, link)
741 if (f <= rg->to)
742 break;
744 /* If we are below the current region then a new region is required.
745 * Subtle, allocate a new region at the position but make it zero
746 * size such that we can guarentee to record the reservation. */
747 if (&rg->link == head || t < rg->from) {
748 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
749 if (nrg == 0)
750 return -ENOMEM;
751 nrg->from = f;
752 nrg->to = f;
753 INIT_LIST_HEAD(&nrg->link);
754 list_add(&nrg->link, rg->link.prev);
756 return t - f;
759 /* Round our left edge to the current segment if it encloses us. */
760 if (f > rg->from)
761 f = rg->from;
762 chg = t - f;
764 /* Check for and consume any regions we now overlap with. */
765 list_for_each_entry(rg, rg->link.prev, link) {
766 if (&rg->link == head)
767 break;
768 if (rg->from > t)
769 return chg;
771 /* We overlap with this area, if it extends futher than
772 * us then we must extend ourselves. Account for its
773 * existing reservation. */
774 if (rg->to > t) {
775 chg += rg->to - t;
776 t = rg->to;
778 chg -= rg->to - rg->from;
780 return chg;
783 static long region_truncate(struct list_head *head, long end)
785 struct file_region *rg, *trg;
786 long chg = 0;
788 /* Locate the region we are either in or before. */
789 list_for_each_entry(rg, head, link)
790 if (end <= rg->to)
791 break;
792 if (&rg->link == head)
793 return 0;
795 /* If we are in the middle of a region then adjust it. */
796 if (end > rg->from) {
797 chg = rg->to - end;
798 rg->to = end;
799 rg = list_entry(rg->link.next, typeof(*rg), link);
802 /* Drop any remaining regions. */
803 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
804 if (&rg->link == head)
805 break;
806 chg += rg->to - rg->from;
807 list_del(&rg->link);
808 kfree(rg);
810 return chg;
813 static int hugetlb_acct_memory(long delta)
815 int ret = -ENOMEM;
817 spin_lock(&hugetlb_lock);
818 if ((delta + resv_huge_pages) <= free_huge_pages) {
819 resv_huge_pages += delta;
820 ret = 0;
822 spin_unlock(&hugetlb_lock);
823 return ret;
826 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
828 long ret, chg;
830 chg = region_chg(&inode->i_mapping->private_list, from, to);
831 if (chg < 0)
832 return chg;
834 * When cpuset is configured, it breaks the strict hugetlb page
835 * reservation as the accounting is done on a global variable. Such
836 * reservation is completely rubbish in the presence of cpuset because
837 * the reservation is not checked against page availability for the
838 * current cpuset. Application can still potentially OOM'ed by kernel
839 * with lack of free htlb page in cpuset that the task is in.
840 * Attempt to enforce strict accounting with cpuset is almost
841 * impossible (or too ugly) because cpuset is too fluid that
842 * task or memory node can be dynamically moved between cpusets.
844 * The change of semantics for shared hugetlb mapping with cpuset is
845 * undesirable. However, in order to preserve some of the semantics,
846 * we fall back to check against current free page availability as
847 * a best attempt and hopefully to minimize the impact of changing
848 * semantics that cpuset has.
850 if (chg > cpuset_mems_nr(free_huge_pages_node))
851 return -ENOMEM;
853 ret = hugetlb_acct_memory(chg);
854 if (ret < 0)
855 return ret;
856 region_add(&inode->i_mapping->private_list, from, to);
857 return 0;
860 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
862 long chg = region_truncate(&inode->i_mapping->private_list, offset);
863 hugetlb_acct_memory(freed - chg);