1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
84 #include <asm/system.h>
85 #include <asm/div64.h>
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.28"
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name
[] = "Neterion";
96 static const char s2io_driver_version
[] = DRV_VERSION
;
98 static const int rxd_size
[2] = {32, 48};
99 static const int rxd_count
[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
105 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
106 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
126 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
140 {"tmac_data_octets"},
144 {"tmac_pause_ctrl_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
217 {"new_rd_req_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
222 {"new_wr_req_rtry_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
235 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
254 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
322 {"prc_pcix_err_cnt"},
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
351 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
352 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
353 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
354 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
355 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
356 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
360 static void s2io_vlan_rx_register(struct net_device
*dev
,
361 struct vlan_group
*grp
)
364 struct s2io_nic
*nic
= netdev_priv(dev
);
365 unsigned long flags
[MAX_TX_FIFOS
];
366 struct config_param
*config
= &nic
->config
;
367 struct mac_info
*mac_control
= &nic
->mac_control
;
369 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
370 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
372 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
377 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
378 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
380 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
388 struct s2io_nic
*nic
= netdev_priv(dev
);
389 unsigned long flags
[MAX_TX_FIFOS
];
390 struct config_param
*config
= &nic
->config
;
391 struct mac_info
*mac_control
= &nic
->mac_control
;
393 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
394 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
396 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
400 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
402 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
403 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
405 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
410 * Constants to be programmed into the Xena's registers, to configure
415 static const u64 herc_act_dtx_cfg
[] = {
417 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
419 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
421 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
423 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
425 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
427 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
429 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
431 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
436 static const u64 xena_dtx_cfg
[] = {
438 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
440 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
442 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
444 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
446 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
448 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
453 * Constants for Fixing the MacAddress problem seen mostly on
456 static const u64 fix_mac
[] = {
457 0x0060000000000000ULL
, 0x0060600000000000ULL
,
458 0x0040600000000000ULL
, 0x0000600000000000ULL
,
459 0x0020600000000000ULL
, 0x0060600000000000ULL
,
460 0x0020600000000000ULL
, 0x0060600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0060600000000000ULL
,
469 0x0020600000000000ULL
, 0x0000600000000000ULL
,
470 0x0040600000000000ULL
, 0x0060600000000000ULL
,
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION
);
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
480 S2IO_PARM_INT(rx_ring_num
, 1);
481 S2IO_PARM_INT(multiq
, 0);
482 S2IO_PARM_INT(rx_ring_mode
, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
484 S2IO_PARM_INT(rmac_pause_time
, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
487 S2IO_PARM_INT(shared_splits
, 0);
488 S2IO_PARM_INT(tmac_util_period
, 5);
489 S2IO_PARM_INT(rmac_util_period
, 5);
490 S2IO_PARM_INT(l3l4hdr_size
, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency
, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type
, 2);
497 /* Large receive offload feature */
499 /* Max pkts to be aggregated by LRO at one time. If not specified,
500 * aggregation happens until we hit max IP pkt size(64K)
502 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
503 S2IO_PARM_INT(indicate_max_pkts
, 0);
505 S2IO_PARM_INT(napi
, 1);
506 S2IO_PARM_INT(ufo
, 0);
507 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
509 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
510 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
511 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
512 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
513 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
514 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
516 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
517 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
518 module_param_array(rts_frm_len
, uint
, NULL
, 0);
522 * This table lists all the devices that this driver supports.
524 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
525 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
526 PCI_ANY_ID
, PCI_ANY_ID
},
527 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
528 PCI_ANY_ID
, PCI_ANY_ID
},
529 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
530 PCI_ANY_ID
, PCI_ANY_ID
},
531 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
532 PCI_ANY_ID
, PCI_ANY_ID
},
536 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
538 static struct pci_error_handlers s2io_err_handler
= {
539 .error_detected
= s2io_io_error_detected
,
540 .slot_reset
= s2io_io_slot_reset
,
541 .resume
= s2io_io_resume
,
544 static struct pci_driver s2io_driver
= {
546 .id_table
= s2io_tbl
,
547 .probe
= s2io_init_nic
,
548 .remove
= __devexit_p(s2io_rem_nic
),
549 .err_handler
= &s2io_err_handler
,
552 /* A simplifier macro used both by init and free shared_mem Fns(). */
553 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
555 /* netqueue manipulation helper functions */
556 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
558 if (!sp
->config
.multiq
) {
561 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
562 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
564 netif_tx_stop_all_queues(sp
->dev
);
567 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
569 if (!sp
->config
.multiq
)
570 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
573 netif_tx_stop_all_queues(sp
->dev
);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
578 if (!sp
->config
.multiq
) {
581 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
582 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
584 netif_tx_start_all_queues(sp
->dev
);
587 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
589 if (!sp
->config
.multiq
)
590 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
593 netif_tx_start_all_queues(sp
->dev
);
596 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
598 if (!sp
->config
.multiq
) {
601 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
602 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
604 netif_tx_wake_all_queues(sp
->dev
);
607 static inline void s2io_wake_tx_queue(
608 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
612 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
613 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
614 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
615 if (netif_queue_stopped(fifo
->dev
)) {
616 fifo
->queue_state
= FIFO_QUEUE_START
;
617 netif_wake_queue(fifo
->dev
);
623 * init_shared_mem - Allocation and Initialization of Memory
624 * @nic: Device private variable.
625 * Description: The function allocates all the memory areas shared
626 * between the NIC and the driver. This includes Tx descriptors,
627 * Rx descriptors and the statistics block.
630 static int init_shared_mem(struct s2io_nic
*nic
)
633 void *tmp_v_addr
, *tmp_v_addr_next
;
634 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
635 struct RxD_block
*pre_rxd_blk
= NULL
;
637 int lst_size
, lst_per_page
;
638 struct net_device
*dev
= nic
->dev
;
641 struct config_param
*config
= &nic
->config
;
642 struct mac_info
*mac_control
= &nic
->mac_control
;
643 unsigned long long mem_allocated
= 0;
645 /* Allocation and initialization of TXDLs in FIFOs */
647 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
648 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
650 size
+= tx_cfg
->fifo_len
;
652 if (size
> MAX_AVAILABLE_TXDS
) {
654 "Too many TxDs requested: %d, max supported: %d\n",
655 size
, MAX_AVAILABLE_TXDS
);
660 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
661 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
663 size
= tx_cfg
->fifo_len
;
665 * Legal values are from 2 to 8192
668 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
669 "Valid lengths are 2 through 8192\n",
675 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
676 lst_per_page
= PAGE_SIZE
/ lst_size
;
678 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
679 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
680 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
681 int fifo_len
= tx_cfg
->fifo_len
;
682 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
684 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
685 if (!fifo
->list_info
) {
686 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
689 mem_allocated
+= list_holder_size
;
691 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
692 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
694 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
695 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
697 fifo
->tx_curr_put_info
.offset
= 0;
698 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
699 fifo
->tx_curr_get_info
.offset
= 0;
700 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
703 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
706 for (j
= 0; j
< page_num
; j
++) {
710 tmp_v
= pci_alloc_consistent(nic
->pdev
,
714 "pci_alloc_consistent failed for TxDL\n");
717 /* If we got a zero DMA address(can happen on
718 * certain platforms like PPC), reallocate.
719 * Store virtual address of page we don't want,
723 mac_control
->zerodma_virt_addr
= tmp_v
;
725 "%s: Zero DMA address for TxDL. "
726 "Virtual address %p\n",
728 tmp_v
= pci_alloc_consistent(nic
->pdev
,
732 "pci_alloc_consistent failed for TxDL\n");
735 mem_allocated
+= PAGE_SIZE
;
737 while (k
< lst_per_page
) {
738 int l
= (j
* lst_per_page
) + k
;
739 if (l
== tx_cfg
->fifo_len
)
741 fifo
->list_info
[l
].list_virt_addr
=
742 tmp_v
+ (k
* lst_size
);
743 fifo
->list_info
[l
].list_phy_addr
=
744 tmp_p
+ (k
* lst_size
);
750 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
751 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
752 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
754 size
= tx_cfg
->fifo_len
;
755 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
756 if (!fifo
->ufo_in_band_v
)
758 mem_allocated
+= (size
* sizeof(u64
));
761 /* Allocation and initialization of RXDs in Rings */
763 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
764 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
765 struct ring_info
*ring
= &mac_control
->rings
[i
];
767 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
768 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
769 "multiple of RxDs per Block\n",
773 size
+= rx_cfg
->num_rxd
;
774 ring
->block_count
= rx_cfg
->num_rxd
/
775 (rxd_count
[nic
->rxd_mode
] + 1);
776 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
778 if (nic
->rxd_mode
== RXD_MODE_1
)
779 size
= (size
* (sizeof(struct RxD1
)));
781 size
= (size
* (sizeof(struct RxD3
)));
783 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
784 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
785 struct ring_info
*ring
= &mac_control
->rings
[i
];
787 ring
->rx_curr_get_info
.block_index
= 0;
788 ring
->rx_curr_get_info
.offset
= 0;
789 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
790 ring
->rx_curr_put_info
.block_index
= 0;
791 ring
->rx_curr_put_info
.offset
= 0;
792 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
796 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
797 /* Allocating all the Rx blocks */
798 for (j
= 0; j
< blk_cnt
; j
++) {
799 struct rx_block_info
*rx_blocks
;
802 rx_blocks
= &ring
->rx_blocks
[j
];
803 size
= SIZE_OF_BLOCK
; /* size is always page size */
804 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
806 if (tmp_v_addr
== NULL
) {
808 * In case of failure, free_shared_mem()
809 * is called, which should free any
810 * memory that was alloced till the
813 rx_blocks
->block_virt_addr
= tmp_v_addr
;
816 mem_allocated
+= size
;
817 memset(tmp_v_addr
, 0, size
);
819 size
= sizeof(struct rxd_info
) *
820 rxd_count
[nic
->rxd_mode
];
821 rx_blocks
->block_virt_addr
= tmp_v_addr
;
822 rx_blocks
->block_dma_addr
= tmp_p_addr
;
823 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
824 if (!rx_blocks
->rxds
)
826 mem_allocated
+= size
;
827 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
828 rx_blocks
->rxds
[l
].virt_addr
=
829 rx_blocks
->block_virt_addr
+
830 (rxd_size
[nic
->rxd_mode
] * l
);
831 rx_blocks
->rxds
[l
].dma_addr
=
832 rx_blocks
->block_dma_addr
+
833 (rxd_size
[nic
->rxd_mode
] * l
);
836 /* Interlinking all Rx Blocks */
837 for (j
= 0; j
< blk_cnt
; j
++) {
838 int next
= (j
+ 1) % blk_cnt
;
839 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
840 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
841 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
842 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
844 pre_rxd_blk
= (struct RxD_block
*)tmp_v_addr
;
845 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
846 (unsigned long)tmp_v_addr_next
;
847 pre_rxd_blk
->pNext_RxD_Blk_physical
=
848 (u64
)tmp_p_addr_next
;
851 if (nic
->rxd_mode
== RXD_MODE_3B
) {
853 * Allocation of Storages for buffer addresses in 2BUFF mode
854 * and the buffers as well.
856 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
857 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
858 struct ring_info
*ring
= &mac_control
->rings
[i
];
860 blk_cnt
= rx_cfg
->num_rxd
/
861 (rxd_count
[nic
->rxd_mode
] + 1);
862 size
= sizeof(struct buffAdd
*) * blk_cnt
;
863 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
866 mem_allocated
+= size
;
867 for (j
= 0; j
< blk_cnt
; j
++) {
870 size
= sizeof(struct buffAdd
) *
871 (rxd_count
[nic
->rxd_mode
] + 1);
872 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
875 mem_allocated
+= size
;
876 while (k
!= rxd_count
[nic
->rxd_mode
]) {
877 ba
= &ring
->ba
[j
][k
];
878 size
= BUF0_LEN
+ ALIGN_SIZE
;
879 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
882 mem_allocated
+= size
;
883 tmp
= (unsigned long)ba
->ba_0_org
;
885 tmp
&= ~((unsigned long)ALIGN_SIZE
);
886 ba
->ba_0
= (void *)tmp
;
888 size
= BUF1_LEN
+ ALIGN_SIZE
;
889 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
892 mem_allocated
+= size
;
893 tmp
= (unsigned long)ba
->ba_1_org
;
895 tmp
&= ~((unsigned long)ALIGN_SIZE
);
896 ba
->ba_1
= (void *)tmp
;
903 /* Allocation and initialization of Statistics block */
904 size
= sizeof(struct stat_block
);
905 mac_control
->stats_mem
=
906 pci_alloc_consistent(nic
->pdev
, size
,
907 &mac_control
->stats_mem_phy
);
909 if (!mac_control
->stats_mem
) {
911 * In case of failure, free_shared_mem() is called, which
912 * should free any memory that was alloced till the
917 mem_allocated
+= size
;
918 mac_control
->stats_mem_sz
= size
;
920 tmp_v_addr
= mac_control
->stats_mem
;
921 mac_control
->stats_info
= (struct stat_block
*)tmp_v_addr
;
922 memset(tmp_v_addr
, 0, size
);
923 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
924 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
925 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
930 * free_shared_mem - Free the allocated Memory
931 * @nic: Device private variable.
932 * Description: This function is to free all memory locations allocated by
933 * the init_shared_mem() function and return it to the kernel.
936 static void free_shared_mem(struct s2io_nic
*nic
)
938 int i
, j
, blk_cnt
, size
;
940 dma_addr_t tmp_p_addr
;
941 int lst_size
, lst_per_page
;
942 struct net_device
*dev
;
944 struct config_param
*config
;
945 struct mac_info
*mac_control
;
946 struct stat_block
*stats
;
947 struct swStat
*swstats
;
954 config
= &nic
->config
;
955 mac_control
= &nic
->mac_control
;
956 stats
= mac_control
->stats_info
;
957 swstats
= &stats
->sw_stat
;
959 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
960 lst_per_page
= PAGE_SIZE
/ lst_size
;
962 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
963 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
964 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
966 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
967 for (j
= 0; j
< page_num
; j
++) {
968 int mem_blks
= (j
* lst_per_page
);
969 struct list_info_hold
*fli
;
971 if (!fifo
->list_info
)
974 fli
= &fifo
->list_info
[mem_blks
];
975 if (!fli
->list_virt_addr
)
977 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
980 swstats
->mem_freed
+= PAGE_SIZE
;
982 /* If we got a zero DMA address during allocation,
985 if (mac_control
->zerodma_virt_addr
) {
986 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
987 mac_control
->zerodma_virt_addr
,
990 "%s: Freeing TxDL with zero DMA address. "
991 "Virtual address %p\n",
992 dev
->name
, mac_control
->zerodma_virt_addr
);
993 swstats
->mem_freed
+= PAGE_SIZE
;
995 kfree(fifo
->list_info
);
996 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
997 sizeof(struct list_info_hold
);
1000 size
= SIZE_OF_BLOCK
;
1001 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1002 struct ring_info
*ring
= &mac_control
->rings
[i
];
1004 blk_cnt
= ring
->block_count
;
1005 for (j
= 0; j
< blk_cnt
; j
++) {
1006 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
1007 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
1008 if (tmp_v_addr
== NULL
)
1010 pci_free_consistent(nic
->pdev
, size
,
1011 tmp_v_addr
, tmp_p_addr
);
1012 swstats
->mem_freed
+= size
;
1013 kfree(ring
->rx_blocks
[j
].rxds
);
1014 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
1015 rxd_count
[nic
->rxd_mode
];
1019 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1020 /* Freeing buffer storage addresses in 2BUFF mode. */
1021 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1022 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1023 struct ring_info
*ring
= &mac_control
->rings
[i
];
1025 blk_cnt
= rx_cfg
->num_rxd
/
1026 (rxd_count
[nic
->rxd_mode
] + 1);
1027 for (j
= 0; j
< blk_cnt
; j
++) {
1031 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1032 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
1033 kfree(ba
->ba_0_org
);
1034 swstats
->mem_freed
+=
1035 BUF0_LEN
+ ALIGN_SIZE
;
1036 kfree(ba
->ba_1_org
);
1037 swstats
->mem_freed
+=
1038 BUF1_LEN
+ ALIGN_SIZE
;
1042 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
1043 (rxd_count
[nic
->rxd_mode
] + 1);
1046 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1051 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1052 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1053 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1055 if (fifo
->ufo_in_band_v
) {
1056 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1058 kfree(fifo
->ufo_in_band_v
);
1062 if (mac_control
->stats_mem
) {
1063 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1064 pci_free_consistent(nic
->pdev
,
1065 mac_control
->stats_mem_sz
,
1066 mac_control
->stats_mem
,
1067 mac_control
->stats_mem_phy
);
1072 * s2io_verify_pci_mode -
1075 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1077 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1078 register u64 val64
= 0;
1081 val64
= readq(&bar0
->pci_mode
);
1082 mode
= (u8
)GET_PCI_MODE(val64
);
1084 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1085 return -1; /* Unknown PCI mode */
1089 #define NEC_VENID 0x1033
1090 #define NEC_DEVID 0x0125
1091 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1093 struct pci_dev
*tdev
= NULL
;
1094 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1095 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1096 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1105 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1107 * s2io_print_pci_mode -
1109 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1111 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1112 register u64 val64
= 0;
1114 struct config_param
*config
= &nic
->config
;
1115 const char *pcimode
;
1117 val64
= readq(&bar0
->pci_mode
);
1118 mode
= (u8
)GET_PCI_MODE(val64
);
1120 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1121 return -1; /* Unknown PCI mode */
1123 config
->bus_speed
= bus_speed
[mode
];
1125 if (s2io_on_nec_bridge(nic
->pdev
)) {
1126 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1132 case PCI_MODE_PCI_33
:
1133 pcimode
= "33MHz PCI bus";
1135 case PCI_MODE_PCI_66
:
1136 pcimode
= "66MHz PCI bus";
1138 case PCI_MODE_PCIX_M1_66
:
1139 pcimode
= "66MHz PCIX(M1) bus";
1141 case PCI_MODE_PCIX_M1_100
:
1142 pcimode
= "100MHz PCIX(M1) bus";
1144 case PCI_MODE_PCIX_M1_133
:
1145 pcimode
= "133MHz PCIX(M1) bus";
1147 case PCI_MODE_PCIX_M2_66
:
1148 pcimode
= "133MHz PCIX(M2) bus";
1150 case PCI_MODE_PCIX_M2_100
:
1151 pcimode
= "200MHz PCIX(M2) bus";
1153 case PCI_MODE_PCIX_M2_133
:
1154 pcimode
= "266MHz PCIX(M2) bus";
1157 pcimode
= "unsupported bus!";
1161 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1162 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1168 * init_tti - Initialization transmit traffic interrupt scheme
1169 * @nic: device private variable
1170 * @link: link status (UP/DOWN) used to enable/disable continuous
1171 * transmit interrupts
1172 * Description: The function configures transmit traffic interrupts
1173 * Return Value: SUCCESS on success and
1177 static int init_tti(struct s2io_nic
*nic
, int link
)
1179 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1180 register u64 val64
= 0;
1182 struct config_param
*config
= &nic
->config
;
1184 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1186 * TTI Initialization. Default Tx timer gets us about
1187 * 250 interrupts per sec. Continuous interrupts are enabled
1190 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1191 int count
= (nic
->config
.bus_speed
* 125)/2;
1192 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1194 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1196 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1197 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1198 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1199 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1201 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1202 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1203 writeq(val64
, &bar0
->tti_data1_mem
);
1205 if (nic
->config
.intr_type
== MSI_X
) {
1206 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1207 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1208 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1209 TTI_DATA2_MEM_TX_UFC_D(0x300);
1211 if ((nic
->config
.tx_steering_type
==
1212 TX_DEFAULT_STEERING
) &&
1213 (config
->tx_fifo_num
> 1) &&
1214 (i
>= nic
->udp_fifo_idx
) &&
1215 (i
< (nic
->udp_fifo_idx
+
1216 nic
->total_udp_fifos
)))
1217 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1218 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1219 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1220 TTI_DATA2_MEM_TX_UFC_D(0x120);
1222 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1223 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1224 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1225 TTI_DATA2_MEM_TX_UFC_D(0x80);
1228 writeq(val64
, &bar0
->tti_data2_mem
);
1230 val64
= TTI_CMD_MEM_WE
|
1231 TTI_CMD_MEM_STROBE_NEW_CMD
|
1232 TTI_CMD_MEM_OFFSET(i
);
1233 writeq(val64
, &bar0
->tti_command_mem
);
1235 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1236 TTI_CMD_MEM_STROBE_NEW_CMD
,
1237 S2IO_BIT_RESET
) != SUCCESS
)
1245 * init_nic - Initialization of hardware
1246 * @nic: device private variable
1247 * Description: The function sequentially configures every block
1248 * of the H/W from their reset values.
1249 * Return Value: SUCCESS on success and
1250 * '-1' on failure (endian settings incorrect).
1253 static int init_nic(struct s2io_nic
*nic
)
1255 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1256 struct net_device
*dev
= nic
->dev
;
1257 register u64 val64
= 0;
1262 unsigned long long mem_share
;
1264 struct config_param
*config
= &nic
->config
;
1265 struct mac_info
*mac_control
= &nic
->mac_control
;
1267 /* to set the swapper controle on the card */
1268 if (s2io_set_swapper(nic
)) {
1269 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1274 * Herc requires EOI to be removed from reset before XGXS, so..
1276 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1277 val64
= 0xA500000000ULL
;
1278 writeq(val64
, &bar0
->sw_reset
);
1280 val64
= readq(&bar0
->sw_reset
);
1283 /* Remove XGXS from reset state */
1285 writeq(val64
, &bar0
->sw_reset
);
1287 val64
= readq(&bar0
->sw_reset
);
1289 /* Ensure that it's safe to access registers by checking
1290 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1292 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1293 for (i
= 0; i
< 50; i
++) {
1294 val64
= readq(&bar0
->adapter_status
);
1295 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1303 /* Enable Receiving broadcasts */
1304 add
= &bar0
->mac_cfg
;
1305 val64
= readq(&bar0
->mac_cfg
);
1306 val64
|= MAC_RMAC_BCAST_ENABLE
;
1307 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1308 writel((u32
)val64
, add
);
1309 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1310 writel((u32
) (val64
>> 32), (add
+ 4));
1312 /* Read registers in all blocks */
1313 val64
= readq(&bar0
->mac_int_mask
);
1314 val64
= readq(&bar0
->mc_int_mask
);
1315 val64
= readq(&bar0
->xgxs_int_mask
);
1319 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1321 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1322 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1323 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1324 &bar0
->dtx_control
, UF
);
1326 msleep(1); /* Necessary!! */
1330 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1331 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1332 &bar0
->dtx_control
, UF
);
1333 val64
= readq(&bar0
->dtx_control
);
1338 /* Tx DMA Initialization */
1340 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1341 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1342 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1343 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1345 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1346 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1348 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1349 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1351 if (i
== (config
->tx_fifo_num
- 1)) {
1358 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1363 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1368 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1373 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1384 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1385 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1387 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1388 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1390 val64
= readq(&bar0
->tx_fifo_partition_0
);
1391 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1392 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1395 * Initialization of Tx_PA_CONFIG register to ignore packet
1396 * integrity checking.
1398 val64
= readq(&bar0
->tx_pa_cfg
);
1399 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1400 TX_PA_CFG_IGNORE_SNAP_OUI
|
1401 TX_PA_CFG_IGNORE_LLC_CTRL
|
1402 TX_PA_CFG_IGNORE_L2_ERR
;
1403 writeq(val64
, &bar0
->tx_pa_cfg
);
1405 /* Rx DMA intialization. */
1407 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1408 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1410 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1412 writeq(val64
, &bar0
->rx_queue_priority
);
1415 * Allocating equal share of memory to all the
1419 if (nic
->device_type
& XFRAME_II_DEVICE
)
1424 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1427 mem_share
= (mem_size
/ config
->rx_ring_num
+
1428 mem_size
% config
->rx_ring_num
);
1429 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1432 mem_share
= (mem_size
/ config
->rx_ring_num
);
1433 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1436 mem_share
= (mem_size
/ config
->rx_ring_num
);
1437 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1440 mem_share
= (mem_size
/ config
->rx_ring_num
);
1441 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1444 mem_share
= (mem_size
/ config
->rx_ring_num
);
1445 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1448 mem_share
= (mem_size
/ config
->rx_ring_num
);
1449 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1452 mem_share
= (mem_size
/ config
->rx_ring_num
);
1453 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1456 mem_share
= (mem_size
/ config
->rx_ring_num
);
1457 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1461 writeq(val64
, &bar0
->rx_queue_cfg
);
1464 * Filling Tx round robin registers
1465 * as per the number of FIFOs for equal scheduling priority
1467 switch (config
->tx_fifo_num
) {
1470 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1471 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1472 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1473 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1474 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1477 val64
= 0x0001000100010001ULL
;
1478 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1479 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1480 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1481 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1482 val64
= 0x0001000100000000ULL
;
1483 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1486 val64
= 0x0001020001020001ULL
;
1487 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1488 val64
= 0x0200010200010200ULL
;
1489 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1490 val64
= 0x0102000102000102ULL
;
1491 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1492 val64
= 0x0001020001020001ULL
;
1493 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1494 val64
= 0x0200010200000000ULL
;
1495 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1498 val64
= 0x0001020300010203ULL
;
1499 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1500 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1501 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1502 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1503 val64
= 0x0001020300000000ULL
;
1504 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1507 val64
= 0x0001020304000102ULL
;
1508 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1509 val64
= 0x0304000102030400ULL
;
1510 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1511 val64
= 0x0102030400010203ULL
;
1512 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1513 val64
= 0x0400010203040001ULL
;
1514 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1515 val64
= 0x0203040000000000ULL
;
1516 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1519 val64
= 0x0001020304050001ULL
;
1520 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1521 val64
= 0x0203040500010203ULL
;
1522 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1523 val64
= 0x0405000102030405ULL
;
1524 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1525 val64
= 0x0001020304050001ULL
;
1526 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1527 val64
= 0x0203040500000000ULL
;
1528 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1531 val64
= 0x0001020304050600ULL
;
1532 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1533 val64
= 0x0102030405060001ULL
;
1534 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1535 val64
= 0x0203040506000102ULL
;
1536 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1537 val64
= 0x0304050600010203ULL
;
1538 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1539 val64
= 0x0405060000000000ULL
;
1540 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1543 val64
= 0x0001020304050607ULL
;
1544 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1545 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1546 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1547 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1548 val64
= 0x0001020300000000ULL
;
1549 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1553 /* Enable all configured Tx FIFO partitions */
1554 val64
= readq(&bar0
->tx_fifo_partition_0
);
1555 val64
|= (TX_FIFO_PARTITION_EN
);
1556 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1558 /* Filling the Rx round robin registers as per the
1559 * number of Rings and steering based on QoS with
1562 switch (config
->rx_ring_num
) {
1565 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1566 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1567 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1568 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1569 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1571 val64
= 0x8080808080808080ULL
;
1572 writeq(val64
, &bar0
->rts_qos_steering
);
1575 val64
= 0x0001000100010001ULL
;
1576 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1577 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1578 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1579 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1580 val64
= 0x0001000100000000ULL
;
1581 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1583 val64
= 0x8080808040404040ULL
;
1584 writeq(val64
, &bar0
->rts_qos_steering
);
1587 val64
= 0x0001020001020001ULL
;
1588 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1589 val64
= 0x0200010200010200ULL
;
1590 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1591 val64
= 0x0102000102000102ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1593 val64
= 0x0001020001020001ULL
;
1594 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1595 val64
= 0x0200010200000000ULL
;
1596 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1598 val64
= 0x8080804040402020ULL
;
1599 writeq(val64
, &bar0
->rts_qos_steering
);
1602 val64
= 0x0001020300010203ULL
;
1603 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1604 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1605 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1606 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1607 val64
= 0x0001020300000000ULL
;
1608 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1610 val64
= 0x8080404020201010ULL
;
1611 writeq(val64
, &bar0
->rts_qos_steering
);
1614 val64
= 0x0001020304000102ULL
;
1615 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1616 val64
= 0x0304000102030400ULL
;
1617 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1618 val64
= 0x0102030400010203ULL
;
1619 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1620 val64
= 0x0400010203040001ULL
;
1621 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1622 val64
= 0x0203040000000000ULL
;
1623 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1625 val64
= 0x8080404020201008ULL
;
1626 writeq(val64
, &bar0
->rts_qos_steering
);
1629 val64
= 0x0001020304050001ULL
;
1630 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1631 val64
= 0x0203040500010203ULL
;
1632 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1633 val64
= 0x0405000102030405ULL
;
1634 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1635 val64
= 0x0001020304050001ULL
;
1636 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1637 val64
= 0x0203040500000000ULL
;
1638 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1640 val64
= 0x8080404020100804ULL
;
1641 writeq(val64
, &bar0
->rts_qos_steering
);
1644 val64
= 0x0001020304050600ULL
;
1645 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1646 val64
= 0x0102030405060001ULL
;
1647 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1648 val64
= 0x0203040506000102ULL
;
1649 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1650 val64
= 0x0304050600010203ULL
;
1651 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1652 val64
= 0x0405060000000000ULL
;
1653 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1655 val64
= 0x8080402010080402ULL
;
1656 writeq(val64
, &bar0
->rts_qos_steering
);
1659 val64
= 0x0001020304050607ULL
;
1660 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1661 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1662 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1663 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1664 val64
= 0x0001020300000000ULL
;
1665 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1667 val64
= 0x8040201008040201ULL
;
1668 writeq(val64
, &bar0
->rts_qos_steering
);
1674 for (i
= 0; i
< 8; i
++)
1675 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1677 /* Set the default rts frame length for the rings configured */
1678 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1679 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1680 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1682 /* Set the frame length for the configured rings
1683 * desired by the user
1685 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1686 /* If rts_frm_len[i] == 0 then it is assumed that user not
1687 * specified frame length steering.
1688 * If the user provides the frame length then program
1689 * the rts_frm_len register for those values or else
1690 * leave it as it is.
1692 if (rts_frm_len
[i
] != 0) {
1693 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1694 &bar0
->rts_frm_len_n
[i
]);
1698 /* Disable differentiated services steering logic */
1699 for (i
= 0; i
< 64; i
++) {
1700 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1702 "%s: rts_ds_steer failed on codepoint %d\n",
1708 /* Program statistics memory */
1709 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1711 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1712 val64
= STAT_BC(0x320);
1713 writeq(val64
, &bar0
->stat_byte_cnt
);
1717 * Initializing the sampling rate for the device to calculate the
1718 * bandwidth utilization.
1720 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1721 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1722 writeq(val64
, &bar0
->mac_link_util
);
1725 * Initializing the Transmit and Receive Traffic Interrupt
1729 /* Initialize TTI */
1730 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1733 /* RTI Initialization */
1734 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1736 * Programmed to generate Apprx 500 Intrs per
1739 int count
= (nic
->config
.bus_speed
* 125)/4;
1740 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1742 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1743 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1744 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1745 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1746 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1748 writeq(val64
, &bar0
->rti_data1_mem
);
1750 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1751 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1752 if (nic
->config
.intr_type
== MSI_X
)
1753 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1754 RTI_DATA2_MEM_RX_UFC_D(0x40));
1756 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x80));
1758 writeq(val64
, &bar0
->rti_data2_mem
);
1760 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1761 val64
= RTI_CMD_MEM_WE
|
1762 RTI_CMD_MEM_STROBE_NEW_CMD
|
1763 RTI_CMD_MEM_OFFSET(i
);
1764 writeq(val64
, &bar0
->rti_command_mem
);
1767 * Once the operation completes, the Strobe bit of the
1768 * command register will be reset. We poll for this
1769 * particular condition. We wait for a maximum of 500ms
1770 * for the operation to complete, if it's not complete
1771 * by then we return error.
1775 val64
= readq(&bar0
->rti_command_mem
);
1776 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1780 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1790 * Initializing proper values as Pause threshold into all
1791 * the 8 Queues on Rx side.
1793 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1794 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1796 /* Disable RMAC PAD STRIPPING */
1797 add
= &bar0
->mac_cfg
;
1798 val64
= readq(&bar0
->mac_cfg
);
1799 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1800 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1801 writel((u32
) (val64
), add
);
1802 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1803 writel((u32
) (val64
>> 32), (add
+ 4));
1804 val64
= readq(&bar0
->mac_cfg
);
1806 /* Enable FCS stripping by adapter */
1807 add
= &bar0
->mac_cfg
;
1808 val64
= readq(&bar0
->mac_cfg
);
1809 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1810 if (nic
->device_type
== XFRAME_II_DEVICE
)
1811 writeq(val64
, &bar0
->mac_cfg
);
1813 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1814 writel((u32
) (val64
), add
);
1815 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1816 writel((u32
) (val64
>> 32), (add
+ 4));
1820 * Set the time value to be inserted in the pause frame
1821 * generated by xena.
1823 val64
= readq(&bar0
->rmac_pause_cfg
);
1824 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1825 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1826 writeq(val64
, &bar0
->rmac_pause_cfg
);
1829 * Set the Threshold Limit for Generating the pause frame
1830 * If the amount of data in any Queue exceeds ratio of
1831 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1832 * pause frame is generated
1835 for (i
= 0; i
< 4; i
++) {
1836 val64
|= (((u64
)0xFF00 |
1837 nic
->mac_control
.mc_pause_threshold_q0q3
)
1840 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1843 for (i
= 0; i
< 4; i
++) {
1844 val64
|= (((u64
)0xFF00 |
1845 nic
->mac_control
.mc_pause_threshold_q4q7
)
1848 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1851 * TxDMA will stop Read request if the number of read split has
1852 * exceeded the limit pointed by shared_splits
1854 val64
= readq(&bar0
->pic_control
);
1855 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1856 writeq(val64
, &bar0
->pic_control
);
1858 if (nic
->config
.bus_speed
== 266) {
1859 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1860 writeq(0x0, &bar0
->read_retry_delay
);
1861 writeq(0x0, &bar0
->write_retry_delay
);
1865 * Programming the Herc to split every write transaction
1866 * that does not start on an ADB to reduce disconnects.
1868 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1869 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1870 MISC_LINK_STABILITY_PRD(3);
1871 writeq(val64
, &bar0
->misc_control
);
1872 val64
= readq(&bar0
->pic_control2
);
1873 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1874 writeq(val64
, &bar0
->pic_control2
);
1876 if (strstr(nic
->product_name
, "CX4")) {
1877 val64
= TMAC_AVG_IPG(0x17);
1878 writeq(val64
, &bar0
->tmac_avg_ipg
);
1883 #define LINK_UP_DOWN_INTERRUPT 1
1884 #define MAC_RMAC_ERR_TIMER 2
1886 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1888 if (nic
->device_type
== XFRAME_II_DEVICE
)
1889 return LINK_UP_DOWN_INTERRUPT
;
1891 return MAC_RMAC_ERR_TIMER
;
1895 * do_s2io_write_bits - update alarm bits in alarm register
1896 * @value: alarm bits
1897 * @flag: interrupt status
1898 * @addr: address value
1899 * Description: update alarm bits in alarm register
1903 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1907 temp64
= readq(addr
);
1909 if (flag
== ENABLE_INTRS
)
1910 temp64
&= ~((u64
)value
);
1912 temp64
|= ((u64
)value
);
1913 writeq(temp64
, addr
);
1916 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1918 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1919 register u64 gen_int_mask
= 0;
1922 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1923 if (mask
& TX_DMA_INTR
) {
1924 gen_int_mask
|= TXDMA_INT_M
;
1926 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1927 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1928 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1929 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1931 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1932 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1933 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1934 &bar0
->pfc_err_mask
);
1936 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1937 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1938 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1940 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1941 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1942 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1943 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1944 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1946 flag
, &bar0
->pcc_err_mask
);
1948 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1949 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1951 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1952 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1953 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1954 flag
, &bar0
->lso_err_mask
);
1956 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1957 flag
, &bar0
->tpa_err_mask
);
1959 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1962 if (mask
& TX_MAC_INTR
) {
1963 gen_int_mask
|= TXMAC_INT_M
;
1964 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1965 &bar0
->mac_int_mask
);
1966 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1967 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1968 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1969 flag
, &bar0
->mac_tmac_err_mask
);
1972 if (mask
& TX_XGXS_INTR
) {
1973 gen_int_mask
|= TXXGXS_INT_M
;
1974 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1975 &bar0
->xgxs_int_mask
);
1976 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1977 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1978 flag
, &bar0
->xgxs_txgxs_err_mask
);
1981 if (mask
& RX_DMA_INTR
) {
1982 gen_int_mask
|= RXDMA_INT_M
;
1983 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1984 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1985 flag
, &bar0
->rxdma_int_mask
);
1986 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1987 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1988 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1989 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1990 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1991 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1992 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1993 &bar0
->prc_pcix_err_mask
);
1994 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1995 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1996 &bar0
->rpa_err_mask
);
1997 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1998 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1999 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2000 RDA_FRM_ECC_SG_ERR
|
2001 RDA_MISC_ERR
|RDA_PCIX_ERR
,
2002 flag
, &bar0
->rda_err_mask
);
2003 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2004 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2005 flag
, &bar0
->rti_err_mask
);
2008 if (mask
& RX_MAC_INTR
) {
2009 gen_int_mask
|= RXMAC_INT_M
;
2010 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2011 &bar0
->mac_int_mask
);
2012 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2013 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2014 RMAC_DOUBLE_ECC_ERR
);
2015 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2016 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2017 do_s2io_write_bits(interruptible
,
2018 flag
, &bar0
->mac_rmac_err_mask
);
2021 if (mask
& RX_XGXS_INTR
) {
2022 gen_int_mask
|= RXXGXS_INT_M
;
2023 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2024 &bar0
->xgxs_int_mask
);
2025 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2026 &bar0
->xgxs_rxgxs_err_mask
);
2029 if (mask
& MC_INTR
) {
2030 gen_int_mask
|= MC_INT_M
;
2031 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
2032 flag
, &bar0
->mc_int_mask
);
2033 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2034 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2035 &bar0
->mc_err_mask
);
2037 nic
->general_int_mask
= gen_int_mask
;
2039 /* Remove this line when alarm interrupts are enabled */
2040 nic
->general_int_mask
= 0;
2044 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2045 * @nic: device private variable,
2046 * @mask: A mask indicating which Intr block must be modified and,
2047 * @flag: A flag indicating whether to enable or disable the Intrs.
2048 * Description: This function will either disable or enable the interrupts
2049 * depending on the flag argument. The mask argument can be used to
2050 * enable/disable any Intr block.
2051 * Return Value: NONE.
2054 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2056 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2057 register u64 temp64
= 0, intr_mask
= 0;
2059 intr_mask
= nic
->general_int_mask
;
2061 /* Top level interrupt classification */
2062 /* PIC Interrupts */
2063 if (mask
& TX_PIC_INTR
) {
2064 /* Enable PIC Intrs in the general intr mask register */
2065 intr_mask
|= TXPIC_INT_M
;
2066 if (flag
== ENABLE_INTRS
) {
2068 * If Hercules adapter enable GPIO otherwise
2069 * disable all PCIX, Flash, MDIO, IIC and GPIO
2070 * interrupts for now.
2073 if (s2io_link_fault_indication(nic
) ==
2074 LINK_UP_DOWN_INTERRUPT
) {
2075 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2076 &bar0
->pic_int_mask
);
2077 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2078 &bar0
->gpio_int_mask
);
2080 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2081 } else if (flag
== DISABLE_INTRS
) {
2083 * Disable PIC Intrs in the general
2084 * intr mask register
2086 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2090 /* Tx traffic interrupts */
2091 if (mask
& TX_TRAFFIC_INTR
) {
2092 intr_mask
|= TXTRAFFIC_INT_M
;
2093 if (flag
== ENABLE_INTRS
) {
2095 * Enable all the Tx side interrupts
2096 * writing 0 Enables all 64 TX interrupt levels
2098 writeq(0x0, &bar0
->tx_traffic_mask
);
2099 } else if (flag
== DISABLE_INTRS
) {
2101 * Disable Tx Traffic Intrs in the general intr mask
2104 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2108 /* Rx traffic interrupts */
2109 if (mask
& RX_TRAFFIC_INTR
) {
2110 intr_mask
|= RXTRAFFIC_INT_M
;
2111 if (flag
== ENABLE_INTRS
) {
2112 /* writing 0 Enables all 8 RX interrupt levels */
2113 writeq(0x0, &bar0
->rx_traffic_mask
);
2114 } else if (flag
== DISABLE_INTRS
) {
2116 * Disable Rx Traffic Intrs in the general intr mask
2119 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2123 temp64
= readq(&bar0
->general_int_mask
);
2124 if (flag
== ENABLE_INTRS
)
2125 temp64
&= ~((u64
)intr_mask
);
2127 temp64
= DISABLE_ALL_INTRS
;
2128 writeq(temp64
, &bar0
->general_int_mask
);
2130 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2134 * verify_pcc_quiescent- Checks for PCC quiescent state
2135 * Return: 1 If PCC is quiescence
2136 * 0 If PCC is not quiescence
2138 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2141 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2142 u64 val64
= readq(&bar0
->adapter_status
);
2144 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2146 if (flag
== false) {
2147 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2148 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2151 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2155 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2156 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2157 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2160 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2161 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2169 * verify_xena_quiescence - Checks whether the H/W is ready
2170 * Description: Returns whether the H/W is ready to go or not. Depending
2171 * on whether adapter enable bit was written or not the comparison
2172 * differs and the calling function passes the input argument flag to
2174 * Return: 1 If xena is quiescence
2175 * 0 If Xena is not quiescence
2178 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2181 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2182 u64 val64
= readq(&bar0
->adapter_status
);
2183 mode
= s2io_verify_pci_mode(sp
);
2185 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2186 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2189 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2190 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2193 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2194 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2197 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2198 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2201 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2202 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2205 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2206 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2209 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2210 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2213 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2214 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2219 * In PCI 33 mode, the P_PLL is not used, and therefore,
2220 * the the P_PLL_LOCK bit in the adapter_status register will
2223 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2224 sp
->device_type
== XFRAME_II_DEVICE
&&
2225 mode
!= PCI_MODE_PCI_33
) {
2226 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2229 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2230 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2231 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2238 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2239 * @sp: Pointer to device specifc structure
2241 * New procedure to clear mac address reading problems on Alpha platforms
2245 static void fix_mac_address(struct s2io_nic
*sp
)
2247 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2250 while (fix_mac
[i
] != END_SIGN
) {
2251 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2253 (void) readq(&bar0
->gpio_control
);
2258 * start_nic - Turns the device on
2259 * @nic : device private variable.
2261 * This function actually turns the device on. Before this function is
2262 * called,all Registers are configured from their reset states
2263 * and shared memory is allocated but the NIC is still quiescent. On
2264 * calling this function, the device interrupts are cleared and the NIC is
2265 * literally switched on by writing into the adapter control register.
2267 * SUCCESS on success and -1 on failure.
2270 static int start_nic(struct s2io_nic
*nic
)
2272 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2273 struct net_device
*dev
= nic
->dev
;
2274 register u64 val64
= 0;
2276 struct config_param
*config
= &nic
->config
;
2277 struct mac_info
*mac_control
= &nic
->mac_control
;
2279 /* PRC Initialization and configuration */
2280 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2281 struct ring_info
*ring
= &mac_control
->rings
[i
];
2283 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2284 &bar0
->prc_rxd0_n
[i
]);
2286 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2287 if (nic
->rxd_mode
== RXD_MODE_1
)
2288 val64
|= PRC_CTRL_RC_ENABLED
;
2290 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2291 if (nic
->device_type
== XFRAME_II_DEVICE
)
2292 val64
|= PRC_CTRL_GROUP_READS
;
2293 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2298 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2299 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300 val64
= readq(&bar0
->rx_pa_cfg
);
2301 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2302 writeq(val64
, &bar0
->rx_pa_cfg
);
2305 if (vlan_tag_strip
== 0) {
2306 val64
= readq(&bar0
->rx_pa_cfg
);
2307 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2308 writeq(val64
, &bar0
->rx_pa_cfg
);
2309 nic
->vlan_strip_flag
= 0;
2313 * Enabling MC-RLDRAM. After enabling the device, we timeout
2314 * for around 100ms, which is approximately the time required
2315 * for the device to be ready for operation.
2317 val64
= readq(&bar0
->mc_rldram_mrs
);
2318 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2319 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2320 val64
= readq(&bar0
->mc_rldram_mrs
);
2322 msleep(100); /* Delay by around 100 ms. */
2324 /* Enabling ECC Protection. */
2325 val64
= readq(&bar0
->adapter_control
);
2326 val64
&= ~ADAPTER_ECC_EN
;
2327 writeq(val64
, &bar0
->adapter_control
);
2330 * Verify if the device is ready to be enabled, if so enable
2333 val64
= readq(&bar0
->adapter_status
);
2334 if (!verify_xena_quiescence(nic
)) {
2335 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2336 "Adapter status reads: 0x%llx\n",
2337 dev
->name
, (unsigned long long)val64
);
2342 * With some switches, link might be already up at this point.
2343 * Because of this weird behavior, when we enable laser,
2344 * we may not get link. We need to handle this. We cannot
2345 * figure out which switch is misbehaving. So we are forced to
2346 * make a global change.
2349 /* Enabling Laser. */
2350 val64
= readq(&bar0
->adapter_control
);
2351 val64
|= ADAPTER_EOI_TX_ON
;
2352 writeq(val64
, &bar0
->adapter_control
);
2354 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2356 * Dont see link state interrupts initially on some switches,
2357 * so directly scheduling the link state task here.
2359 schedule_work(&nic
->set_link_task
);
2361 /* SXE-002: Initialize link and activity LED */
2362 subid
= nic
->pdev
->subsystem_device
;
2363 if (((subid
& 0xFF) >= 0x07) &&
2364 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2365 val64
= readq(&bar0
->gpio_control
);
2366 val64
|= 0x0000800000000000ULL
;
2367 writeq(val64
, &bar0
->gpio_control
);
2368 val64
= 0x0411040400000000ULL
;
2369 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2375 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2377 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2378 struct TxD
*txdlp
, int get_off
)
2380 struct s2io_nic
*nic
= fifo_data
->nic
;
2381 struct sk_buff
*skb
;
2386 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2387 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2388 sizeof(u64
), PCI_DMA_TODEVICE
);
2392 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2394 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2397 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2398 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2399 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2402 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2403 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2404 if (!txds
->Buffer_Pointer
)
2406 pci_unmap_page(nic
->pdev
,
2407 (dma_addr_t
)txds
->Buffer_Pointer
,
2408 frag
->size
, PCI_DMA_TODEVICE
);
2411 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2423 static void free_tx_buffers(struct s2io_nic
*nic
)
2425 struct net_device
*dev
= nic
->dev
;
2426 struct sk_buff
*skb
;
2430 struct config_param
*config
= &nic
->config
;
2431 struct mac_info
*mac_control
= &nic
->mac_control
;
2432 struct stat_block
*stats
= mac_control
->stats_info
;
2433 struct swStat
*swstats
= &stats
->sw_stat
;
2435 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2436 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2437 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2438 unsigned long flags
;
2440 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2441 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2442 txdp
= (struct TxD
*)fifo
->list_info
[j
].list_virt_addr
;
2443 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2445 swstats
->mem_freed
+= skb
->truesize
;
2451 "%s: forcibly freeing %d skbs on FIFO%d\n",
2453 fifo
->tx_curr_get_info
.offset
= 0;
2454 fifo
->tx_curr_put_info
.offset
= 0;
2455 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2469 static void stop_nic(struct s2io_nic
*nic
)
2471 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2472 register u64 val64
= 0;
2475 /* Disable all interrupts */
2476 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2477 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2478 interruptible
|= TX_PIC_INTR
;
2479 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2481 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482 val64
= readq(&bar0
->adapter_control
);
2483 val64
&= ~(ADAPTER_CNTL_EN
);
2484 writeq(val64
, &bar0
->adapter_control
);
2488 * fill_rx_buffers - Allocates the Rx side skbs
2489 * @ring_info: per ring structure
2490 * @from_card_up: If this is true, we will map the buffer to get
2491 * the dma address for buf0 and buf1 to give it to the card.
2492 * Else we will sync the already mapped buffer to give it to the card.
2494 * The function allocates Rx side skbs and puts the physical
2495 * address of these buffers into the RxD buffer pointers, so that the NIC
2496 * can DMA the received frame into these locations.
2497 * The NIC supports 3 receive modes, viz
2499 * 2. three buffer and
2500 * 3. Five buffer modes.
2501 * Each mode defines how many fragments the received frame will be split
2502 * up into by the NIC. The frame is split into L3 header, L4 Header,
2503 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504 * is split into 3 fragments. As of now only single buffer mode is
2507 * SUCCESS on success or an appropriate -ve value on failure.
2509 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2512 struct sk_buff
*skb
;
2514 int off
, size
, block_no
, block_no1
;
2519 struct RxD_t
*first_rxdp
= NULL
;
2520 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2524 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2526 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2528 block_no1
= ring
->rx_curr_get_info
.block_index
;
2529 while (alloc_tab
< alloc_cnt
) {
2530 block_no
= ring
->rx_curr_put_info
.block_index
;
2532 off
= ring
->rx_curr_put_info
.offset
;
2534 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2536 rxd_index
= off
+ 1;
2538 rxd_index
+= (block_no
* ring
->rxd_count
);
2540 if ((block_no
== block_no1
) &&
2541 (off
== ring
->rx_curr_get_info
.offset
) &&
2542 (rxdp
->Host_Control
)) {
2543 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2547 if (off
&& (off
== ring
->rxd_count
)) {
2548 ring
->rx_curr_put_info
.block_index
++;
2549 if (ring
->rx_curr_put_info
.block_index
==
2551 ring
->rx_curr_put_info
.block_index
= 0;
2552 block_no
= ring
->rx_curr_put_info
.block_index
;
2554 ring
->rx_curr_put_info
.offset
= off
;
2555 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2556 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2557 ring
->dev
->name
, rxdp
);
2561 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2562 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2563 (rxdp
->Control_2
& s2BIT(0)))) {
2564 ring
->rx_curr_put_info
.offset
= off
;
2567 /* calculate size of skb based on ring mode */
2569 HEADER_ETHERNET_II_802_3_SIZE
+
2570 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2571 if (ring
->rxd_mode
== RXD_MODE_1
)
2572 size
+= NET_IP_ALIGN
;
2574 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2577 skb
= dev_alloc_skb(size
);
2579 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2583 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2585 swstats
->mem_alloc_fail_cnt
++;
2589 swstats
->mem_allocated
+= skb
->truesize
;
2591 if (ring
->rxd_mode
== RXD_MODE_1
) {
2592 /* 1 buffer mode - normal operation mode */
2593 rxdp1
= (struct RxD1
*)rxdp
;
2594 memset(rxdp
, 0, sizeof(struct RxD1
));
2595 skb_reserve(skb
, NET_IP_ALIGN
);
2596 rxdp1
->Buffer0_ptr
=
2597 pci_map_single(ring
->pdev
, skb
->data
,
2598 size
- NET_IP_ALIGN
,
2599 PCI_DMA_FROMDEVICE
);
2600 if (pci_dma_mapping_error(nic
->pdev
,
2601 rxdp1
->Buffer0_ptr
))
2602 goto pci_map_failed
;
2605 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2606 rxdp
->Host_Control
= (unsigned long)skb
;
2607 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2610 * 2 buffer mode provides 128
2611 * byte aligned receive buffers.
2614 rxdp3
= (struct RxD3
*)rxdp
;
2615 /* save buffer pointers to avoid frequent dma mapping */
2616 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2617 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2618 memset(rxdp
, 0, sizeof(struct RxD3
));
2619 /* restore the buffer pointers for dma sync*/
2620 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2621 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2623 ba
= &ring
->ba
[block_no
][off
];
2624 skb_reserve(skb
, BUF0_LEN
);
2625 tmp
= (u64
)(unsigned long)skb
->data
;
2628 skb
->data
= (void *) (unsigned long)tmp
;
2629 skb_reset_tail_pointer(skb
);
2632 rxdp3
->Buffer0_ptr
=
2633 pci_map_single(ring
->pdev
, ba
->ba_0
,
2635 PCI_DMA_FROMDEVICE
);
2636 if (pci_dma_mapping_error(nic
->pdev
,
2637 rxdp3
->Buffer0_ptr
))
2638 goto pci_map_failed
;
2640 pci_dma_sync_single_for_device(ring
->pdev
,
2641 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2643 PCI_DMA_FROMDEVICE
);
2645 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2646 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2647 /* Two buffer mode */
2650 * Buffer2 will have L3/L4 header plus
2653 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2656 PCI_DMA_FROMDEVICE
);
2658 if (pci_dma_mapping_error(nic
->pdev
,
2659 rxdp3
->Buffer2_ptr
))
2660 goto pci_map_failed
;
2663 rxdp3
->Buffer1_ptr
=
2664 pci_map_single(ring
->pdev
,
2667 PCI_DMA_FROMDEVICE
);
2669 if (pci_dma_mapping_error(nic
->pdev
,
2670 rxdp3
->Buffer1_ptr
)) {
2671 pci_unmap_single(ring
->pdev
,
2672 (dma_addr_t
)(unsigned long)
2675 PCI_DMA_FROMDEVICE
);
2676 goto pci_map_failed
;
2679 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2680 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2683 rxdp
->Control_2
|= s2BIT(0);
2684 rxdp
->Host_Control
= (unsigned long) (skb
);
2686 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2687 rxdp
->Control_1
|= RXD_OWN_XENA
;
2689 if (off
== (ring
->rxd_count
+ 1))
2691 ring
->rx_curr_put_info
.offset
= off
;
2693 rxdp
->Control_2
|= SET_RXD_MARKER
;
2694 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2697 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2701 ring
->rx_bufs_left
+= 1;
2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2712 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2718 swstats
->pci_map_fail_cnt
++;
2719 swstats
->mem_freed
+= skb
->truesize
;
2720 dev_kfree_skb_irq(skb
);
2724 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2726 struct net_device
*dev
= sp
->dev
;
2728 struct sk_buff
*skb
;
2732 struct mac_info
*mac_control
= &sp
->mac_control
;
2733 struct stat_block
*stats
= mac_control
->stats_info
;
2734 struct swStat
*swstats
= &stats
->sw_stat
;
2736 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2737 rxdp
= mac_control
->rings
[ring_no
].
2738 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2739 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2742 if (sp
->rxd_mode
== RXD_MODE_1
) {
2743 rxdp1
= (struct RxD1
*)rxdp
;
2744 pci_unmap_single(sp
->pdev
,
2745 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2747 HEADER_ETHERNET_II_802_3_SIZE
+
2748 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2749 PCI_DMA_FROMDEVICE
);
2750 memset(rxdp
, 0, sizeof(struct RxD1
));
2751 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2752 rxdp3
= (struct RxD3
*)rxdp
;
2753 pci_unmap_single(sp
->pdev
,
2754 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2756 PCI_DMA_FROMDEVICE
);
2757 pci_unmap_single(sp
->pdev
,
2758 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2760 PCI_DMA_FROMDEVICE
);
2761 pci_unmap_single(sp
->pdev
,
2762 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2764 PCI_DMA_FROMDEVICE
);
2765 memset(rxdp
, 0, sizeof(struct RxD3
));
2767 swstats
->mem_freed
+= skb
->truesize
;
2769 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2774 * free_rx_buffers - Frees all Rx buffers
2775 * @sp: device private variable.
2777 * This function will free all Rx buffers allocated by host.
2782 static void free_rx_buffers(struct s2io_nic
*sp
)
2784 struct net_device
*dev
= sp
->dev
;
2785 int i
, blk
= 0, buf_cnt
= 0;
2786 struct config_param
*config
= &sp
->config
;
2787 struct mac_info
*mac_control
= &sp
->mac_control
;
2789 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2790 struct ring_info
*ring
= &mac_control
->rings
[i
];
2792 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2793 free_rxd_blk(sp
, i
, blk
);
2795 ring
->rx_curr_put_info
.block_index
= 0;
2796 ring
->rx_curr_get_info
.block_index
= 0;
2797 ring
->rx_curr_put_info
.offset
= 0;
2798 ring
->rx_curr_get_info
.offset
= 0;
2799 ring
->rx_bufs_left
= 0;
2800 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2801 dev
->name
, buf_cnt
, i
);
2805 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2807 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2808 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2815 * s2io_poll - Rx interrupt handler for NAPI support
2816 * @napi : pointer to the napi structure.
2817 * @budget : The number of packets that were budgeted to be processed
2818 * during one pass through the 'Poll" function.
2820 * Comes into picture only if NAPI support has been incorporated. It does
2821 * the same thing that rx_intr_handler does, but not in a interrupt context
2822 * also It will process only a given number of packets.
2824 * 0 on success and 1 if there are No Rx packets to be processed.
2827 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2829 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2830 struct net_device
*dev
= ring
->dev
;
2831 int pkts_processed
= 0;
2832 u8 __iomem
*addr
= NULL
;
2834 struct s2io_nic
*nic
= netdev_priv(dev
);
2835 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2836 int budget_org
= budget
;
2838 if (unlikely(!is_s2io_card_up(nic
)))
2841 pkts_processed
= rx_intr_handler(ring
, budget
);
2842 s2io_chk_rx_buffers(nic
, ring
);
2844 if (pkts_processed
< budget_org
) {
2845 napi_complete(napi
);
2846 /*Re Enable MSI-Rx Vector*/
2847 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2848 addr
+= 7 - ring
->ring_no
;
2849 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2853 return pkts_processed
;
2856 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2858 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2859 int pkts_processed
= 0;
2860 int ring_pkts_processed
, i
;
2861 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2862 int budget_org
= budget
;
2863 struct config_param
*config
= &nic
->config
;
2864 struct mac_info
*mac_control
= &nic
->mac_control
;
2866 if (unlikely(!is_s2io_card_up(nic
)))
2869 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2870 struct ring_info
*ring
= &mac_control
->rings
[i
];
2871 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2872 s2io_chk_rx_buffers(nic
, ring
);
2873 pkts_processed
+= ring_pkts_processed
;
2874 budget
-= ring_pkts_processed
;
2878 if (pkts_processed
< budget_org
) {
2879 napi_complete(napi
);
2880 /* Re enable the Rx interrupts for the ring */
2881 writeq(0, &bar0
->rx_traffic_mask
);
2882 readl(&bar0
->rx_traffic_mask
);
2884 return pkts_processed
;
2887 #ifdef CONFIG_NET_POLL_CONTROLLER
2889 * s2io_netpoll - netpoll event handler entry point
2890 * @dev : pointer to the device structure.
2892 * This function will be called by upper layer to check for events on the
2893 * interface in situations where interrupts are disabled. It is used for
2894 * specific in-kernel networking tasks, such as remote consoles and kernel
2895 * debugging over the network (example netdump in RedHat).
2897 static void s2io_netpoll(struct net_device
*dev
)
2899 struct s2io_nic
*nic
= netdev_priv(dev
);
2900 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2901 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2903 struct config_param
*config
= &nic
->config
;
2904 struct mac_info
*mac_control
= &nic
->mac_control
;
2906 if (pci_channel_offline(nic
->pdev
))
2909 disable_irq(dev
->irq
);
2911 writeq(val64
, &bar0
->rx_traffic_int
);
2912 writeq(val64
, &bar0
->tx_traffic_int
);
2914 /* we need to free up the transmitted skbufs or else netpoll will
2915 * run out of skbs and will fail and eventually netpoll application such
2916 * as netdump will fail.
2918 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2919 tx_intr_handler(&mac_control
->fifos
[i
]);
2921 /* check for received packet and indicate up to network */
2922 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2923 struct ring_info
*ring
= &mac_control
->rings
[i
];
2925 rx_intr_handler(ring
, 0);
2928 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2929 struct ring_info
*ring
= &mac_control
->rings
[i
];
2931 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2933 "%s: Out of memory in Rx Netpoll!!\n",
2938 enable_irq(dev
->irq
);
2943 * rx_intr_handler - Rx interrupt handler
2944 * @ring_info: per ring structure.
2945 * @budget: budget for napi processing.
2947 * If the interrupt is because of a received frame or if the
2948 * receive ring contains fresh as yet un-processed frames,this function is
2949 * called. It picks out the RxD at which place the last Rx processing had
2950 * stopped and sends the skb to the OSM's Rx handler and then increments
2953 * No. of napi packets processed.
2955 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2957 int get_block
, put_block
;
2958 struct rx_curr_get_info get_info
, put_info
;
2960 struct sk_buff
*skb
;
2961 int pkt_cnt
= 0, napi_pkts
= 0;
2966 get_info
= ring_data
->rx_curr_get_info
;
2967 get_block
= get_info
.block_index
;
2968 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2969 put_block
= put_info
.block_index
;
2970 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2972 while (RXD_IS_UP2DT(rxdp
)) {
2974 * If your are next to put index then it's
2975 * FIFO full condition
2977 if ((get_block
== put_block
) &&
2978 (get_info
.offset
+ 1) == put_info
.offset
) {
2979 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2980 ring_data
->dev
->name
);
2983 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2985 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2986 ring_data
->dev
->name
);
2989 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2990 rxdp1
= (struct RxD1
*)rxdp
;
2991 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2994 HEADER_ETHERNET_II_802_3_SIZE
+
2997 PCI_DMA_FROMDEVICE
);
2998 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
2999 rxdp3
= (struct RxD3
*)rxdp
;
3000 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
3001 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
3003 PCI_DMA_FROMDEVICE
);
3004 pci_unmap_single(ring_data
->pdev
,
3005 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
3007 PCI_DMA_FROMDEVICE
);
3009 prefetch(skb
->data
);
3010 rx_osm_handler(ring_data
, rxdp
);
3012 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3013 rxdp
= ring_data
->rx_blocks
[get_block
].
3014 rxds
[get_info
.offset
].virt_addr
;
3015 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3016 get_info
.offset
= 0;
3017 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3019 if (get_block
== ring_data
->block_count
)
3021 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3022 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3025 if (ring_data
->nic
->config
.napi
) {
3032 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3035 if (ring_data
->lro
) {
3036 /* Clear all LRO sessions before exiting */
3037 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
3038 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3040 update_L3L4_header(ring_data
->nic
, lro
);
3041 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3042 clear_lro_session(lro
);
3050 * tx_intr_handler - Transmit interrupt handler
3051 * @nic : device private variable
3053 * If an interrupt was raised to indicate DMA complete of the
3054 * Tx packet, this function is called. It identifies the last TxD
3055 * whose buffer was freed and frees all skbs whose data have already
3056 * DMA'ed into the NICs internal memory.
3061 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3063 struct s2io_nic
*nic
= fifo_data
->nic
;
3064 struct tx_curr_get_info get_info
, put_info
;
3065 struct sk_buff
*skb
= NULL
;
3068 unsigned long flags
= 0;
3070 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3071 struct swStat
*swstats
= &stats
->sw_stat
;
3073 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3076 get_info
= fifo_data
->tx_curr_get_info
;
3077 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3078 txdlp
= (struct TxD
*)
3079 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3080 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3081 (get_info
.offset
!= put_info
.offset
) &&
3082 (txdlp
->Host_Control
)) {
3083 /* Check for TxD errors */
3084 if (txdlp
->Control_1
& TXD_T_CODE
) {
3085 unsigned long long err
;
3086 err
= txdlp
->Control_1
& TXD_T_CODE
;
3088 swstats
->parity_err_cnt
++;
3091 /* update t_code statistics */
3092 err_mask
= err
>> 48;
3095 swstats
->tx_buf_abort_cnt
++;
3099 swstats
->tx_desc_abort_cnt
++;
3103 swstats
->tx_parity_err_cnt
++;
3107 swstats
->tx_link_loss_cnt
++;
3111 swstats
->tx_list_proc_err_cnt
++;
3116 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3118 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3119 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3125 /* Updating the statistics block */
3126 swstats
->mem_freed
+= skb
->truesize
;
3127 dev_kfree_skb_irq(skb
);
3130 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3131 get_info
.offset
= 0;
3132 txdlp
= (struct TxD
*)
3133 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3134 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3137 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3139 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3143 * s2io_mdio_write - Function to write in to MDIO registers
3144 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3145 * @addr : address value
3146 * @value : data value
3147 * @dev : pointer to net_device structure
3149 * This function is used to write values to the MDIO registers
3152 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3153 struct net_device
*dev
)
3156 struct s2io_nic
*sp
= netdev_priv(dev
);
3157 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3159 /* address transaction */
3160 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3161 MDIO_MMD_DEV_ADDR(mmd_type
) |
3162 MDIO_MMS_PRT_ADDR(0x0);
3163 writeq(val64
, &bar0
->mdio_control
);
3164 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3165 writeq(val64
, &bar0
->mdio_control
);
3168 /* Data transaction */
3169 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3170 MDIO_MMD_DEV_ADDR(mmd_type
) |
3171 MDIO_MMS_PRT_ADDR(0x0) |
3172 MDIO_MDIO_DATA(value
) |
3173 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3174 writeq(val64
, &bar0
->mdio_control
);
3175 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3176 writeq(val64
, &bar0
->mdio_control
);
3179 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3180 MDIO_MMD_DEV_ADDR(mmd_type
) |
3181 MDIO_MMS_PRT_ADDR(0x0) |
3182 MDIO_OP(MDIO_OP_READ_TRANS
);
3183 writeq(val64
, &bar0
->mdio_control
);
3184 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3185 writeq(val64
, &bar0
->mdio_control
);
3190 * s2io_mdio_read - Function to write in to MDIO registers
3191 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3192 * @addr : address value
3193 * @dev : pointer to net_device structure
3195 * This function is used to read values to the MDIO registers
3198 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3202 struct s2io_nic
*sp
= netdev_priv(dev
);
3203 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3205 /* address transaction */
3206 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3207 | MDIO_MMD_DEV_ADDR(mmd_type
)
3208 | MDIO_MMS_PRT_ADDR(0x0));
3209 writeq(val64
, &bar0
->mdio_control
);
3210 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3211 writeq(val64
, &bar0
->mdio_control
);
3214 /* Data transaction */
3215 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3216 MDIO_MMD_DEV_ADDR(mmd_type
) |
3217 MDIO_MMS_PRT_ADDR(0x0) |
3218 MDIO_OP(MDIO_OP_READ_TRANS
);
3219 writeq(val64
, &bar0
->mdio_control
);
3220 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3221 writeq(val64
, &bar0
->mdio_control
);
3224 /* Read the value from regs */
3225 rval64
= readq(&bar0
->mdio_control
);
3226 rval64
= rval64
& 0xFFFF0000;
3227 rval64
= rval64
>> 16;
3232 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3233 * @counter : counter value to be updated
3234 * @flag : flag to indicate the status
3235 * @type : counter type
3237 * This function is to check the status of the xpak counters value
3241 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3247 for (i
= 0; i
< index
; i
++)
3251 *counter
= *counter
+ 1;
3252 val64
= *regs_stat
& mask
;
3253 val64
= val64
>> (index
* 0x2);
3259 "Take Xframe NIC out of service.\n");
3261 "Excessive temperatures may result in premature transceiver failure.\n");
3265 "Take Xframe NIC out of service.\n");
3267 "Excessive bias currents may indicate imminent laser diode failure.\n");
3271 "Take Xframe NIC out of service.\n");
3273 "Excessive laser output power may saturate far-end receiver.\n");
3277 "Incorrect XPAK Alarm type\n");
3281 val64
= val64
<< (index
* 0x2);
3282 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3285 *regs_stat
= *regs_stat
& (~mask
);
3290 * s2io_updt_xpak_counter - Function to update the xpak counters
3291 * @dev : pointer to net_device struct
3293 * This function is to upate the status of the xpak counters value
3296 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3304 struct s2io_nic
*sp
= netdev_priv(dev
);
3305 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3306 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3308 /* Check the communication with the MDIO slave */
3311 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3312 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3314 "ERR: MDIO slave access failed - Returned %llx\n",
3315 (unsigned long long)val64
);
3319 /* Check for the expected value of control reg 1 */
3320 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3321 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3322 "Returned: %llx- Expected: 0x%x\n",
3323 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3327 /* Loading the DOM register to MDIO register */
3329 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3330 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3332 /* Reading the Alarm flags */
3335 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3337 flag
= CHECKBIT(val64
, 0x7);
3339 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3340 &xstats
->xpak_regs_stat
,
3343 if (CHECKBIT(val64
, 0x6))
3344 xstats
->alarm_transceiver_temp_low
++;
3346 flag
= CHECKBIT(val64
, 0x3);
3348 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3349 &xstats
->xpak_regs_stat
,
3352 if (CHECKBIT(val64
, 0x2))
3353 xstats
->alarm_laser_bias_current_low
++;
3355 flag
= CHECKBIT(val64
, 0x1);
3357 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3358 &xstats
->xpak_regs_stat
,
3361 if (CHECKBIT(val64
, 0x0))
3362 xstats
->alarm_laser_output_power_low
++;
3364 /* Reading the Warning flags */
3367 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3369 if (CHECKBIT(val64
, 0x7))
3370 xstats
->warn_transceiver_temp_high
++;
3372 if (CHECKBIT(val64
, 0x6))
3373 xstats
->warn_transceiver_temp_low
++;
3375 if (CHECKBIT(val64
, 0x3))
3376 xstats
->warn_laser_bias_current_high
++;
3378 if (CHECKBIT(val64
, 0x2))
3379 xstats
->warn_laser_bias_current_low
++;
3381 if (CHECKBIT(val64
, 0x1))
3382 xstats
->warn_laser_output_power_high
++;
3384 if (CHECKBIT(val64
, 0x0))
3385 xstats
->warn_laser_output_power_low
++;
3389 * wait_for_cmd_complete - waits for a command to complete.
3390 * @sp : private member of the device structure, which is a pointer to the
3391 * s2io_nic structure.
3392 * Description: Function that waits for a command to Write into RMAC
3393 * ADDR DATA registers to be completed and returns either success or
3394 * error depending on whether the command was complete or not.
3396 * SUCCESS on success and FAILURE on failure.
3399 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3402 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3405 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3409 val64
= readq(addr
);
3410 if (bit_state
== S2IO_BIT_RESET
) {
3411 if (!(val64
& busy_bit
)) {
3416 if (val64
& busy_bit
) {
3433 * check_pci_device_id - Checks if the device id is supported
3435 * Description: Function to check if the pci device id is supported by driver.
3436 * Return value: Actual device id if supported else PCI_ANY_ID
3438 static u16
check_pci_device_id(u16 id
)
3441 case PCI_DEVICE_ID_HERC_WIN
:
3442 case PCI_DEVICE_ID_HERC_UNI
:
3443 return XFRAME_II_DEVICE
;
3444 case PCI_DEVICE_ID_S2IO_UNI
:
3445 case PCI_DEVICE_ID_S2IO_WIN
:
3446 return XFRAME_I_DEVICE
;
3453 * s2io_reset - Resets the card.
3454 * @sp : private member of the device structure.
3455 * Description: Function to Reset the card. This function then also
3456 * restores the previously saved PCI configuration space registers as
3457 * the card reset also resets the configuration space.
3462 static void s2io_reset(struct s2io_nic
*sp
)
3464 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3469 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3470 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3471 struct stat_block
*stats
;
3472 struct swStat
*swstats
;
3474 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3475 __func__
, pci_name(sp
->pdev
));
3477 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3478 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3480 val64
= SW_RESET_ALL
;
3481 writeq(val64
, &bar0
->sw_reset
);
3482 if (strstr(sp
->product_name
, "CX4"))
3485 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3487 /* Restore the PCI state saved during initialization. */
3488 pci_restore_state(sp
->pdev
);
3489 pci_save_state(sp
->pdev
);
3490 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3491 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3496 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3497 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3499 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3503 /* Set swapper to enable I/O register access */
3504 s2io_set_swapper(sp
);
3506 /* restore mac_addr entries */
3507 do_s2io_restore_unicast_mc(sp
);
3509 /* Restore the MSIX table entries from local variables */
3510 restore_xmsi_data(sp
);
3512 /* Clear certain PCI/PCI-X fields after reset */
3513 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3514 /* Clear "detected parity error" bit */
3515 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3517 /* Clearing PCIX Ecc status register */
3518 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3520 /* Clearing PCI_STATUS error reflected here */
3521 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3524 /* Reset device statistics maintained by OS */
3525 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3527 stats
= sp
->mac_control
.stats_info
;
3528 swstats
= &stats
->sw_stat
;
3530 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3531 up_cnt
= swstats
->link_up_cnt
;
3532 down_cnt
= swstats
->link_down_cnt
;
3533 up_time
= swstats
->link_up_time
;
3534 down_time
= swstats
->link_down_time
;
3535 reset_cnt
= swstats
->soft_reset_cnt
;
3536 mem_alloc_cnt
= swstats
->mem_allocated
;
3537 mem_free_cnt
= swstats
->mem_freed
;
3538 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3540 memset(stats
, 0, sizeof(struct stat_block
));
3542 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3543 swstats
->link_up_cnt
= up_cnt
;
3544 swstats
->link_down_cnt
= down_cnt
;
3545 swstats
->link_up_time
= up_time
;
3546 swstats
->link_down_time
= down_time
;
3547 swstats
->soft_reset_cnt
= reset_cnt
;
3548 swstats
->mem_allocated
= mem_alloc_cnt
;
3549 swstats
->mem_freed
= mem_free_cnt
;
3550 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3552 /* SXE-002: Configure link and activity LED to turn it off */
3553 subid
= sp
->pdev
->subsystem_device
;
3554 if (((subid
& 0xFF) >= 0x07) &&
3555 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3556 val64
= readq(&bar0
->gpio_control
);
3557 val64
|= 0x0000800000000000ULL
;
3558 writeq(val64
, &bar0
->gpio_control
);
3559 val64
= 0x0411040400000000ULL
;
3560 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3564 * Clear spurious ECC interrupts that would have occurred on
3565 * XFRAME II cards after reset.
3567 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3568 val64
= readq(&bar0
->pcc_err_reg
);
3569 writeq(val64
, &bar0
->pcc_err_reg
);
3572 sp
->device_enabled_once
= false;
3576 * s2io_set_swapper - to set the swapper controle on the card
3577 * @sp : private member of the device structure,
3578 * pointer to the s2io_nic structure.
3579 * Description: Function to set the swapper control on the card
3580 * correctly depending on the 'endianness' of the system.
3582 * SUCCESS on success and FAILURE on failure.
3585 static int s2io_set_swapper(struct s2io_nic
*sp
)
3587 struct net_device
*dev
= sp
->dev
;
3588 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3589 u64 val64
, valt
, valr
;
3592 * Set proper endian settings and verify the same by reading
3593 * the PIF Feed-back register.
3596 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3597 if (val64
!= 0x0123456789ABCDEFULL
) {
3599 static const u64 value
[] = {
3600 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3601 0x8100008181000081ULL
, /* FE=1, SE=0 */
3602 0x4200004242000042ULL
, /* FE=0, SE=1 */
3607 writeq(value
[i
], &bar0
->swapper_ctrl
);
3608 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3609 if (val64
== 0x0123456789ABCDEFULL
)
3614 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3615 "feedback read %llx\n",
3616 dev
->name
, (unsigned long long)val64
);
3621 valr
= readq(&bar0
->swapper_ctrl
);
3624 valt
= 0x0123456789ABCDEFULL
;
3625 writeq(valt
, &bar0
->xmsi_address
);
3626 val64
= readq(&bar0
->xmsi_address
);
3628 if (val64
!= valt
) {
3630 static const u64 value
[] = {
3631 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3632 0x0081810000818100ULL
, /* FE=1, SE=0 */
3633 0x0042420000424200ULL
, /* FE=0, SE=1 */
3638 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3639 writeq(valt
, &bar0
->xmsi_address
);
3640 val64
= readq(&bar0
->xmsi_address
);
3646 unsigned long long x
= val64
;
3648 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3652 val64
= readq(&bar0
->swapper_ctrl
);
3653 val64
&= 0xFFFF000000000000ULL
;
3657 * The device by default set to a big endian format, so a
3658 * big endian driver need not set anything.
3660 val64
|= (SWAPPER_CTRL_TXP_FE
|
3661 SWAPPER_CTRL_TXP_SE
|
3662 SWAPPER_CTRL_TXD_R_FE
|
3663 SWAPPER_CTRL_TXD_W_FE
|
3664 SWAPPER_CTRL_TXF_R_FE
|
3665 SWAPPER_CTRL_RXD_R_FE
|
3666 SWAPPER_CTRL_RXD_W_FE
|
3667 SWAPPER_CTRL_RXF_W_FE
|
3668 SWAPPER_CTRL_XMSI_FE
|
3669 SWAPPER_CTRL_STATS_FE
|
3670 SWAPPER_CTRL_STATS_SE
);
3671 if (sp
->config
.intr_type
== INTA
)
3672 val64
|= SWAPPER_CTRL_XMSI_SE
;
3673 writeq(val64
, &bar0
->swapper_ctrl
);
3676 * Initially we enable all bits to make it accessible by the
3677 * driver, then we selectively enable only those bits that
3680 val64
|= (SWAPPER_CTRL_TXP_FE
|
3681 SWAPPER_CTRL_TXP_SE
|
3682 SWAPPER_CTRL_TXD_R_FE
|
3683 SWAPPER_CTRL_TXD_R_SE
|
3684 SWAPPER_CTRL_TXD_W_FE
|
3685 SWAPPER_CTRL_TXD_W_SE
|
3686 SWAPPER_CTRL_TXF_R_FE
|
3687 SWAPPER_CTRL_RXD_R_FE
|
3688 SWAPPER_CTRL_RXD_R_SE
|
3689 SWAPPER_CTRL_RXD_W_FE
|
3690 SWAPPER_CTRL_RXD_W_SE
|
3691 SWAPPER_CTRL_RXF_W_FE
|
3692 SWAPPER_CTRL_XMSI_FE
|
3693 SWAPPER_CTRL_STATS_FE
|
3694 SWAPPER_CTRL_STATS_SE
);
3695 if (sp
->config
.intr_type
== INTA
)
3696 val64
|= SWAPPER_CTRL_XMSI_SE
;
3697 writeq(val64
, &bar0
->swapper_ctrl
);
3699 val64
= readq(&bar0
->swapper_ctrl
);
3702 * Verifying if endian settings are accurate by reading a
3703 * feedback register.
3705 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3706 if (val64
!= 0x0123456789ABCDEFULL
) {
3707 /* Endian settings are incorrect, calls for another dekko. */
3709 "%s: Endian settings are wrong, feedback read %llx\n",
3710 dev
->name
, (unsigned long long)val64
);
3717 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3719 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3721 int ret
= 0, cnt
= 0;
3724 val64
= readq(&bar0
->xmsi_access
);
3725 if (!(val64
& s2BIT(15)))
3731 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3738 static void restore_xmsi_data(struct s2io_nic
*nic
)
3740 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3744 if (nic
->device_type
== XFRAME_I_DEVICE
)
3747 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3748 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3749 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3750 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3751 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3752 writeq(val64
, &bar0
->xmsi_access
);
3753 if (wait_for_msix_trans(nic
, msix_index
)) {
3754 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3755 __func__
, msix_index
);
3761 static void store_xmsi_data(struct s2io_nic
*nic
)
3763 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3764 u64 val64
, addr
, data
;
3767 if (nic
->device_type
== XFRAME_I_DEVICE
)
3770 /* Store and display */
3771 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3772 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3773 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3774 writeq(val64
, &bar0
->xmsi_access
);
3775 if (wait_for_msix_trans(nic
, msix_index
)) {
3776 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3777 __func__
, msix_index
);
3780 addr
= readq(&bar0
->xmsi_address
);
3781 data
= readq(&bar0
->xmsi_data
);
3783 nic
->msix_info
[i
].addr
= addr
;
3784 nic
->msix_info
[i
].data
= data
;
3789 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3791 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3793 u16 msi_control
; /* Temp variable */
3794 int ret
, i
, j
, msix_indx
= 1;
3796 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3797 struct swStat
*swstats
= &stats
->sw_stat
;
3799 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3800 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3801 if (!nic
->entries
) {
3802 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3804 swstats
->mem_alloc_fail_cnt
++;
3807 swstats
->mem_allocated
+= size
;
3809 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3810 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3811 if (!nic
->s2io_entries
) {
3812 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3814 swstats
->mem_alloc_fail_cnt
++;
3815 kfree(nic
->entries
);
3817 += (nic
->num_entries
* sizeof(struct msix_entry
));
3820 swstats
->mem_allocated
+= size
;
3822 nic
->entries
[0].entry
= 0;
3823 nic
->s2io_entries
[0].entry
= 0;
3824 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3825 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3826 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3828 for (i
= 1; i
< nic
->num_entries
; i
++) {
3829 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3830 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3831 nic
->s2io_entries
[i
].arg
= NULL
;
3832 nic
->s2io_entries
[i
].in_use
= 0;
3835 rx_mat
= readq(&bar0
->rx_mat
);
3836 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3837 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3838 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3839 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3840 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3843 writeq(rx_mat
, &bar0
->rx_mat
);
3844 readq(&bar0
->rx_mat
);
3846 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3847 /* We fail init if error or we get less vectors than min required */
3849 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3850 kfree(nic
->entries
);
3851 swstats
->mem_freed
+= nic
->num_entries
*
3852 sizeof(struct msix_entry
);
3853 kfree(nic
->s2io_entries
);
3854 swstats
->mem_freed
+= nic
->num_entries
*
3855 sizeof(struct s2io_msix_entry
);
3856 nic
->entries
= NULL
;
3857 nic
->s2io_entries
= NULL
;
3862 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3863 * in the herc NIC. (Temp change, needs to be removed later)
3865 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3866 msi_control
|= 0x1; /* Enable MSI */
3867 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3872 /* Handle software interrupt used during MSI(X) test */
3873 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3875 struct s2io_nic
*sp
= dev_id
;
3877 sp
->msi_detected
= 1;
3878 wake_up(&sp
->msi_wait
);
3883 /* Test interrupt path by forcing a a software IRQ */
3884 static int s2io_test_msi(struct s2io_nic
*sp
)
3886 struct pci_dev
*pdev
= sp
->pdev
;
3887 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3891 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3894 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3895 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3899 init_waitqueue_head(&sp
->msi_wait
);
3900 sp
->msi_detected
= 0;
3902 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3903 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3904 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3905 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3906 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3908 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3910 if (!sp
->msi_detected
) {
3911 /* MSI(X) test failed, go back to INTx mode */
3912 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3913 "using MSI(X) during test\n",
3914 sp
->dev
->name
, pci_name(pdev
));
3919 free_irq(sp
->entries
[1].vector
, sp
);
3921 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3926 static void remove_msix_isr(struct s2io_nic
*sp
)
3931 for (i
= 0; i
< sp
->num_entries
; i
++) {
3932 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3933 int vector
= sp
->entries
[i
].vector
;
3934 void *arg
= sp
->s2io_entries
[i
].arg
;
3935 free_irq(vector
, arg
);
3940 kfree(sp
->s2io_entries
);
3942 sp
->s2io_entries
= NULL
;
3944 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3945 msi_control
&= 0xFFFE; /* Disable MSI */
3946 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3948 pci_disable_msix(sp
->pdev
);
3951 static void remove_inta_isr(struct s2io_nic
*sp
)
3953 struct net_device
*dev
= sp
->dev
;
3955 free_irq(sp
->pdev
->irq
, dev
);
3958 /* ********************************************************* *
3959 * Functions defined below concern the OS part of the driver *
3960 * ********************************************************* */
3963 * s2io_open - open entry point of the driver
3964 * @dev : pointer to the device structure.
3966 * This function is the open entry point of the driver. It mainly calls a
3967 * function to allocate Rx buffers and inserts them into the buffer
3968 * descriptors and then enables the Rx part of the NIC.
3970 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3974 static int s2io_open(struct net_device
*dev
)
3976 struct s2io_nic
*sp
= netdev_priv(dev
);
3977 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3981 * Make sure you have link off by default every time
3982 * Nic is initialized
3984 netif_carrier_off(dev
);
3985 sp
->last_link_state
= 0;
3987 /* Initialize H/W and enable interrupts */
3988 err
= s2io_card_up(sp
);
3990 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3992 goto hw_init_failed
;
3995 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3996 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3999 goto hw_init_failed
;
4001 s2io_start_all_tx_queue(sp
);
4005 if (sp
->config
.intr_type
== MSI_X
) {
4008 swstats
->mem_freed
+= sp
->num_entries
*
4009 sizeof(struct msix_entry
);
4011 if (sp
->s2io_entries
) {
4012 kfree(sp
->s2io_entries
);
4013 swstats
->mem_freed
+= sp
->num_entries
*
4014 sizeof(struct s2io_msix_entry
);
4021 * s2io_close -close entry point of the driver
4022 * @dev : device pointer.
4024 * This is the stop entry point of the driver. It needs to undo exactly
4025 * whatever was done by the open entry point,thus it's usually referred to
4026 * as the close function.Among other things this function mainly stops the
4027 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4029 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4033 static int s2io_close(struct net_device
*dev
)
4035 struct s2io_nic
*sp
= netdev_priv(dev
);
4036 struct config_param
*config
= &sp
->config
;
4040 /* Return if the device is already closed *
4041 * Can happen when s2io_card_up failed in change_mtu *
4043 if (!is_s2io_card_up(sp
))
4046 s2io_stop_all_tx_queue(sp
);
4047 /* delete all populated mac entries */
4048 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4049 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4050 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4051 do_s2io_delete_unicast_mc(sp
, tmp64
);
4060 * s2io_xmit - Tx entry point of te driver
4061 * @skb : the socket buffer containing the Tx data.
4062 * @dev : device pointer.
4064 * This function is the Tx entry point of the driver. S2IO NIC supports
4065 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4066 * NOTE: when device can't queue the pkt,just the trans_start variable will
4069 * 0 on success & 1 on failure.
4072 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4074 struct s2io_nic
*sp
= netdev_priv(dev
);
4075 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4078 struct TxFIFO_element __iomem
*tx_fifo
;
4079 unsigned long flags
= 0;
4081 struct fifo_info
*fifo
= NULL
;
4082 int do_spin_lock
= 1;
4084 int enable_per_list_interrupt
= 0;
4085 struct config_param
*config
= &sp
->config
;
4086 struct mac_info
*mac_control
= &sp
->mac_control
;
4087 struct stat_block
*stats
= mac_control
->stats_info
;
4088 struct swStat
*swstats
= &stats
->sw_stat
;
4090 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4092 if (unlikely(skb
->len
<= 0)) {
4093 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4094 dev_kfree_skb_any(skb
);
4095 return NETDEV_TX_OK
;
4098 if (!is_s2io_card_up(sp
)) {
4099 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4102 return NETDEV_TX_OK
;
4106 if (vlan_tx_tag_present(skb
))
4107 vlan_tag
= vlan_tx_tag_get(skb
);
4108 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4109 if (skb
->protocol
== htons(ETH_P_IP
)) {
4114 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4115 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4118 if (ip
->protocol
== IPPROTO_TCP
) {
4119 queue_len
= sp
->total_tcp_fifos
;
4120 queue
= (ntohs(th
->source
) +
4122 sp
->fifo_selector
[queue_len
- 1];
4123 if (queue
>= queue_len
)
4124 queue
= queue_len
- 1;
4125 } else if (ip
->protocol
== IPPROTO_UDP
) {
4126 queue_len
= sp
->total_udp_fifos
;
4127 queue
= (ntohs(th
->source
) +
4129 sp
->fifo_selector
[queue_len
- 1];
4130 if (queue
>= queue_len
)
4131 queue
= queue_len
- 1;
4132 queue
+= sp
->udp_fifo_idx
;
4133 if (skb
->len
> 1024)
4134 enable_per_list_interrupt
= 1;
4139 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4140 /* get fifo number based on skb->priority value */
4141 queue
= config
->fifo_mapping
4142 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4143 fifo
= &mac_control
->fifos
[queue
];
4146 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4148 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4149 return NETDEV_TX_LOCKED
;
4152 if (sp
->config
.multiq
) {
4153 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4154 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4155 return NETDEV_TX_BUSY
;
4157 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4158 if (netif_queue_stopped(dev
)) {
4159 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4160 return NETDEV_TX_BUSY
;
4164 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4165 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4166 txdp
= (struct TxD
*)fifo
->list_info
[put_off
].list_virt_addr
;
4168 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4169 /* Avoid "put" pointer going beyond "get" pointer */
4170 if (txdp
->Host_Control
||
4171 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4172 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4173 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4175 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4176 return NETDEV_TX_OK
;
4179 offload_type
= s2io_offload_type(skb
);
4180 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4181 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4182 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4184 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4185 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4189 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4190 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4191 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4192 if (enable_per_list_interrupt
)
4193 if (put_off
& (queue_len
>> 5))
4194 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4196 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4197 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4200 frg_len
= skb_headlen(skb
);
4201 if (offload_type
== SKB_GSO_UDP
) {
4204 ufo_size
= s2io_udp_mss(skb
);
4206 txdp
->Control_1
|= TXD_UFO_EN
;
4207 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4208 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4210 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4211 fifo
->ufo_in_band_v
[put_off
] =
4212 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4214 fifo
->ufo_in_band_v
[put_off
] =
4215 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4217 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4218 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4219 fifo
->ufo_in_band_v
,
4222 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4223 goto pci_map_failed
;
4227 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4228 frg_len
, PCI_DMA_TODEVICE
);
4229 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4230 goto pci_map_failed
;
4232 txdp
->Host_Control
= (unsigned long)skb
;
4233 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4234 if (offload_type
== SKB_GSO_UDP
)
4235 txdp
->Control_1
|= TXD_UFO_EN
;
4237 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4238 /* For fragmented SKB. */
4239 for (i
= 0; i
< frg_cnt
; i
++) {
4240 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4241 /* A '0' length fragment will be ignored */
4245 txdp
->Buffer_Pointer
= (u64
)pci_map_page(sp
->pdev
, frag
->page
,
4249 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4250 if (offload_type
== SKB_GSO_UDP
)
4251 txdp
->Control_1
|= TXD_UFO_EN
;
4253 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4255 if (offload_type
== SKB_GSO_UDP
)
4256 frg_cnt
++; /* as Txd0 was used for inband header */
4258 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4259 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4260 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4262 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4265 val64
|= TX_FIFO_SPECIAL_FUNC
;
4267 writeq(val64
, &tx_fifo
->List_Control
);
4272 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4274 fifo
->tx_curr_put_info
.offset
= put_off
;
4276 /* Avoid "put" pointer going beyond "get" pointer */
4277 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4278 swstats
->fifo_full_cnt
++;
4280 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4282 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4284 swstats
->mem_allocated
+= skb
->truesize
;
4285 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4287 if (sp
->config
.intr_type
== MSI_X
)
4288 tx_intr_handler(fifo
);
4290 return NETDEV_TX_OK
;
4293 swstats
->pci_map_fail_cnt
++;
4294 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4295 swstats
->mem_freed
+= skb
->truesize
;
4297 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4298 return NETDEV_TX_OK
;
4302 s2io_alarm_handle(unsigned long data
)
4304 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4305 struct net_device
*dev
= sp
->dev
;
4307 s2io_handle_errors(dev
);
4308 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4311 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4313 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4314 struct s2io_nic
*sp
= ring
->nic
;
4315 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4317 if (unlikely(!is_s2io_card_up(sp
)))
4320 if (sp
->config
.napi
) {
4321 u8 __iomem
*addr
= NULL
;
4324 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4325 addr
+= (7 - ring
->ring_no
);
4326 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4329 napi_schedule(&ring
->napi
);
4331 rx_intr_handler(ring
, 0);
4332 s2io_chk_rx_buffers(sp
, ring
);
4338 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4341 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4342 struct s2io_nic
*sp
= fifos
->nic
;
4343 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4344 struct config_param
*config
= &sp
->config
;
4347 if (unlikely(!is_s2io_card_up(sp
)))
4350 reason
= readq(&bar0
->general_int_status
);
4351 if (unlikely(reason
== S2IO_MINUS_ONE
))
4352 /* Nothing much can be done. Get out */
4355 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4356 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4358 if (reason
& GEN_INTR_TXPIC
)
4359 s2io_txpic_intr_handle(sp
);
4361 if (reason
& GEN_INTR_TXTRAFFIC
)
4362 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4364 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4365 tx_intr_handler(&fifos
[i
]);
4367 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4368 readl(&bar0
->general_int_status
);
4371 /* The interrupt was not raised by us */
4375 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4377 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4380 val64
= readq(&bar0
->pic_int_status
);
4381 if (val64
& PIC_INT_GPIO
) {
4382 val64
= readq(&bar0
->gpio_int_reg
);
4383 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4384 (val64
& GPIO_INT_REG_LINK_UP
)) {
4386 * This is unstable state so clear both up/down
4387 * interrupt and adapter to re-evaluate the link state.
4389 val64
|= GPIO_INT_REG_LINK_DOWN
;
4390 val64
|= GPIO_INT_REG_LINK_UP
;
4391 writeq(val64
, &bar0
->gpio_int_reg
);
4392 val64
= readq(&bar0
->gpio_int_mask
);
4393 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4394 GPIO_INT_MASK_LINK_DOWN
);
4395 writeq(val64
, &bar0
->gpio_int_mask
);
4396 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4397 val64
= readq(&bar0
->adapter_status
);
4398 /* Enable Adapter */
4399 val64
= readq(&bar0
->adapter_control
);
4400 val64
|= ADAPTER_CNTL_EN
;
4401 writeq(val64
, &bar0
->adapter_control
);
4402 val64
|= ADAPTER_LED_ON
;
4403 writeq(val64
, &bar0
->adapter_control
);
4404 if (!sp
->device_enabled_once
)
4405 sp
->device_enabled_once
= 1;
4407 s2io_link(sp
, LINK_UP
);
4409 * unmask link down interrupt and mask link-up
4412 val64
= readq(&bar0
->gpio_int_mask
);
4413 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4414 val64
|= GPIO_INT_MASK_LINK_UP
;
4415 writeq(val64
, &bar0
->gpio_int_mask
);
4417 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4418 val64
= readq(&bar0
->adapter_status
);
4419 s2io_link(sp
, LINK_DOWN
);
4420 /* Link is down so unmaks link up interrupt */
4421 val64
= readq(&bar0
->gpio_int_mask
);
4422 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4423 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4424 writeq(val64
, &bar0
->gpio_int_mask
);
4427 val64
= readq(&bar0
->adapter_control
);
4428 val64
= val64
& (~ADAPTER_LED_ON
);
4429 writeq(val64
, &bar0
->adapter_control
);
4432 val64
= readq(&bar0
->gpio_int_mask
);
4436 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4437 * @value: alarm bits
4438 * @addr: address value
4439 * @cnt: counter variable
4440 * Description: Check for alarm and increment the counter
4442 * 1 - if alarm bit set
4443 * 0 - if alarm bit is not set
4445 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4446 unsigned long long *cnt
)
4449 val64
= readq(addr
);
4450 if (val64
& value
) {
4451 writeq(val64
, addr
);
4460 * s2io_handle_errors - Xframe error indication handler
4461 * @nic: device private variable
4462 * Description: Handle alarms such as loss of link, single or
4463 * double ECC errors, critical and serious errors.
4467 static void s2io_handle_errors(void *dev_id
)
4469 struct net_device
*dev
= (struct net_device
*)dev_id
;
4470 struct s2io_nic
*sp
= netdev_priv(dev
);
4471 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4472 u64 temp64
= 0, val64
= 0;
4475 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4476 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4478 if (!is_s2io_card_up(sp
))
4481 if (pci_channel_offline(sp
->pdev
))
4484 memset(&sw_stat
->ring_full_cnt
, 0,
4485 sizeof(sw_stat
->ring_full_cnt
));
4487 /* Handling the XPAK counters update */
4488 if (stats
->xpak_timer_count
< 72000) {
4489 /* waiting for an hour */
4490 stats
->xpak_timer_count
++;
4492 s2io_updt_xpak_counter(dev
);
4493 /* reset the count to zero */
4494 stats
->xpak_timer_count
= 0;
4497 /* Handling link status change error Intr */
4498 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4499 val64
= readq(&bar0
->mac_rmac_err_reg
);
4500 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4501 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4502 schedule_work(&sp
->set_link_task
);
4505 /* In case of a serious error, the device will be Reset. */
4506 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4507 &sw_stat
->serious_err_cnt
))
4510 /* Check for data parity error */
4511 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4512 &sw_stat
->parity_err_cnt
))
4515 /* Check for ring full counter */
4516 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4517 val64
= readq(&bar0
->ring_bump_counter1
);
4518 for (i
= 0; i
< 4; i
++) {
4519 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4520 temp64
>>= 64 - ((i
+1)*16);
4521 sw_stat
->ring_full_cnt
[i
] += temp64
;
4524 val64
= readq(&bar0
->ring_bump_counter2
);
4525 for (i
= 0; i
< 4; i
++) {
4526 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4527 temp64
>>= 64 - ((i
+1)*16);
4528 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4532 val64
= readq(&bar0
->txdma_int_status
);
4533 /*check for pfc_err*/
4534 if (val64
& TXDMA_PFC_INT
) {
4535 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4536 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4539 &sw_stat
->pfc_err_cnt
))
4541 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4543 &sw_stat
->pfc_err_cnt
);
4546 /*check for tda_err*/
4547 if (val64
& TXDMA_TDA_INT
) {
4548 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4552 &sw_stat
->tda_err_cnt
))
4554 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4556 &sw_stat
->tda_err_cnt
);
4558 /*check for pcc_err*/
4559 if (val64
& TXDMA_PCC_INT
) {
4560 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4561 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4562 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4563 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4566 &sw_stat
->pcc_err_cnt
))
4568 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4570 &sw_stat
->pcc_err_cnt
);
4573 /*check for tti_err*/
4574 if (val64
& TXDMA_TTI_INT
) {
4575 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4577 &sw_stat
->tti_err_cnt
))
4579 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4581 &sw_stat
->tti_err_cnt
);
4584 /*check for lso_err*/
4585 if (val64
& TXDMA_LSO_INT
) {
4586 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4587 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4589 &sw_stat
->lso_err_cnt
))
4591 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4593 &sw_stat
->lso_err_cnt
);
4596 /*check for tpa_err*/
4597 if (val64
& TXDMA_TPA_INT
) {
4598 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4600 &sw_stat
->tpa_err_cnt
))
4602 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4604 &sw_stat
->tpa_err_cnt
);
4607 /*check for sm_err*/
4608 if (val64
& TXDMA_SM_INT
) {
4609 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4611 &sw_stat
->sm_err_cnt
))
4615 val64
= readq(&bar0
->mac_int_status
);
4616 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4617 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4618 &bar0
->mac_tmac_err_reg
,
4619 &sw_stat
->mac_tmac_err_cnt
))
4621 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4622 TMAC_DESC_ECC_SG_ERR
|
4623 TMAC_DESC_ECC_DB_ERR
,
4624 &bar0
->mac_tmac_err_reg
,
4625 &sw_stat
->mac_tmac_err_cnt
);
4628 val64
= readq(&bar0
->xgxs_int_status
);
4629 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4630 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4631 &bar0
->xgxs_txgxs_err_reg
,
4632 &sw_stat
->xgxs_txgxs_err_cnt
))
4634 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4635 &bar0
->xgxs_txgxs_err_reg
,
4636 &sw_stat
->xgxs_txgxs_err_cnt
);
4639 val64
= readq(&bar0
->rxdma_int_status
);
4640 if (val64
& RXDMA_INT_RC_INT_M
) {
4641 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4643 RC_PRCn_SM_ERR_ALARM
|
4644 RC_FTC_SM_ERR_ALARM
,
4646 &sw_stat
->rc_err_cnt
))
4648 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4650 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4651 &sw_stat
->rc_err_cnt
);
4652 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4655 &bar0
->prc_pcix_err_reg
,
4656 &sw_stat
->prc_pcix_err_cnt
))
4658 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4661 &bar0
->prc_pcix_err_reg
,
4662 &sw_stat
->prc_pcix_err_cnt
);
4665 if (val64
& RXDMA_INT_RPA_INT_M
) {
4666 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4668 &sw_stat
->rpa_err_cnt
))
4670 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4672 &sw_stat
->rpa_err_cnt
);
4675 if (val64
& RXDMA_INT_RDA_INT_M
) {
4676 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4677 RDA_FRM_ECC_DB_N_AERR
|
4680 RDA_RXD_ECC_DB_SERR
,
4682 &sw_stat
->rda_err_cnt
))
4684 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4685 RDA_FRM_ECC_SG_ERR
|
4689 &sw_stat
->rda_err_cnt
);
4692 if (val64
& RXDMA_INT_RTI_INT_M
) {
4693 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4695 &sw_stat
->rti_err_cnt
))
4697 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4699 &sw_stat
->rti_err_cnt
);
4702 val64
= readq(&bar0
->mac_int_status
);
4703 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4704 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4705 &bar0
->mac_rmac_err_reg
,
4706 &sw_stat
->mac_rmac_err_cnt
))
4708 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4709 RMAC_SINGLE_ECC_ERR
|
4710 RMAC_DOUBLE_ECC_ERR
,
4711 &bar0
->mac_rmac_err_reg
,
4712 &sw_stat
->mac_rmac_err_cnt
);
4715 val64
= readq(&bar0
->xgxs_int_status
);
4716 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4717 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4718 &bar0
->xgxs_rxgxs_err_reg
,
4719 &sw_stat
->xgxs_rxgxs_err_cnt
))
4723 val64
= readq(&bar0
->mc_int_status
);
4724 if (val64
& MC_INT_STATUS_MC_INT
) {
4725 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4727 &sw_stat
->mc_err_cnt
))
4730 /* Handling Ecc errors */
4731 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4732 writeq(val64
, &bar0
->mc_err_reg
);
4733 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4734 sw_stat
->double_ecc_errs
++;
4735 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4737 * Reset XframeI only if critical error
4740 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4741 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4745 sw_stat
->single_ecc_errs
++;
4751 s2io_stop_all_tx_queue(sp
);
4752 schedule_work(&sp
->rst_timer_task
);
4753 sw_stat
->soft_reset_cnt
++;
4757 * s2io_isr - ISR handler of the device .
4758 * @irq: the irq of the device.
4759 * @dev_id: a void pointer to the dev structure of the NIC.
4760 * Description: This function is the ISR handler of the device. It
4761 * identifies the reason for the interrupt and calls the relevant
4762 * service routines. As a contongency measure, this ISR allocates the
4763 * recv buffers, if their numbers are below the panic value which is
4764 * presently set to 25% of the original number of rcv buffers allocated.
4766 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4767 * IRQ_NONE: will be returned if interrupt is not from our device
4769 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4771 struct net_device
*dev
= (struct net_device
*)dev_id
;
4772 struct s2io_nic
*sp
= netdev_priv(dev
);
4773 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4776 struct mac_info
*mac_control
;
4777 struct config_param
*config
;
4779 /* Pretend we handled any irq's from a disconnected card */
4780 if (pci_channel_offline(sp
->pdev
))
4783 if (!is_s2io_card_up(sp
))
4786 config
= &sp
->config
;
4787 mac_control
= &sp
->mac_control
;
4790 * Identify the cause for interrupt and call the appropriate
4791 * interrupt handler. Causes for the interrupt could be;
4796 reason
= readq(&bar0
->general_int_status
);
4798 if (unlikely(reason
== S2IO_MINUS_ONE
))
4799 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4802 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4803 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4806 if (reason
& GEN_INTR_RXTRAFFIC
) {
4807 napi_schedule(&sp
->napi
);
4808 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4809 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4810 readl(&bar0
->rx_traffic_int
);
4814 * rx_traffic_int reg is an R1 register, writing all 1's
4815 * will ensure that the actual interrupt causing bit
4816 * get's cleared and hence a read can be avoided.
4818 if (reason
& GEN_INTR_RXTRAFFIC
)
4819 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4821 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4822 struct ring_info
*ring
= &mac_control
->rings
[i
];
4824 rx_intr_handler(ring
, 0);
4829 * tx_traffic_int reg is an R1 register, writing all 1's
4830 * will ensure that the actual interrupt causing bit get's
4831 * cleared and hence a read can be avoided.
4833 if (reason
& GEN_INTR_TXTRAFFIC
)
4834 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4836 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4837 tx_intr_handler(&mac_control
->fifos
[i
]);
4839 if (reason
& GEN_INTR_TXPIC
)
4840 s2io_txpic_intr_handle(sp
);
4843 * Reallocate the buffers from the interrupt handler itself.
4845 if (!config
->napi
) {
4846 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4847 struct ring_info
*ring
= &mac_control
->rings
[i
];
4849 s2io_chk_rx_buffers(sp
, ring
);
4852 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4853 readl(&bar0
->general_int_status
);
4857 } else if (!reason
) {
4858 /* The interrupt was not raised by us */
4868 static void s2io_updt_stats(struct s2io_nic
*sp
)
4870 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4874 if (is_s2io_card_up(sp
)) {
4875 /* Apprx 30us on a 133 MHz bus */
4876 val64
= SET_UPDT_CLICKS(10) |
4877 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4878 writeq(val64
, &bar0
->stat_cfg
);
4881 val64
= readq(&bar0
->stat_cfg
);
4882 if (!(val64
& s2BIT(0)))
4886 break; /* Updt failed */
4892 * s2io_get_stats - Updates the device statistics structure.
4893 * @dev : pointer to the device structure.
4895 * This function updates the device statistics structure in the s2io_nic
4896 * structure and returns a pointer to the same.
4898 * pointer to the updated net_device_stats structure.
4900 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4902 struct s2io_nic
*sp
= netdev_priv(dev
);
4903 struct mac_info
*mac_control
= &sp
->mac_control
;
4904 struct stat_block
*stats
= mac_control
->stats_info
;
4907 /* Configure Stats for immediate updt */
4908 s2io_updt_stats(sp
);
4910 /* A device reset will cause the on-adapter statistics to be zero'ed.
4911 * This can be done while running by changing the MTU. To prevent the
4912 * system from having the stats zero'ed, the driver keeps a copy of the
4913 * last update to the system (which is also zero'ed on reset). This
4914 * enables the driver to accurately know the delta between the last
4915 * update and the current update.
4917 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4918 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4919 sp
->stats
.rx_packets
+= delta
;
4920 dev
->stats
.rx_packets
+= delta
;
4922 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4923 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4924 sp
->stats
.tx_packets
+= delta
;
4925 dev
->stats
.tx_packets
+= delta
;
4927 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4928 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4929 sp
->stats
.rx_bytes
+= delta
;
4930 dev
->stats
.rx_bytes
+= delta
;
4932 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4933 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4934 sp
->stats
.tx_bytes
+= delta
;
4935 dev
->stats
.tx_bytes
+= delta
;
4937 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4938 sp
->stats
.rx_errors
+= delta
;
4939 dev
->stats
.rx_errors
+= delta
;
4941 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4942 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4943 sp
->stats
.tx_errors
+= delta
;
4944 dev
->stats
.tx_errors
+= delta
;
4946 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4947 sp
->stats
.rx_dropped
+= delta
;
4948 dev
->stats
.rx_dropped
+= delta
;
4950 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4951 sp
->stats
.tx_dropped
+= delta
;
4952 dev
->stats
.tx_dropped
+= delta
;
4954 /* The adapter MAC interprets pause frames as multicast packets, but
4955 * does not pass them up. This erroneously increases the multicast
4956 * packet count and needs to be deducted when the multicast frame count
4959 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4960 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4961 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4962 delta
-= sp
->stats
.multicast
;
4963 sp
->stats
.multicast
+= delta
;
4964 dev
->stats
.multicast
+= delta
;
4966 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4967 le32_to_cpu(stats
->rmac_usized_frms
)) +
4968 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4969 sp
->stats
.rx_length_errors
+= delta
;
4970 dev
->stats
.rx_length_errors
+= delta
;
4972 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4973 sp
->stats
.rx_crc_errors
+= delta
;
4974 dev
->stats
.rx_crc_errors
+= delta
;
4980 * s2io_set_multicast - entry point for multicast address enable/disable.
4981 * @dev : pointer to the device structure
4983 * This function is a driver entry point which gets called by the kernel
4984 * whenever multicast addresses must be enabled/disabled. This also gets
4985 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4986 * determine, if multicast address must be enabled or if promiscuous mode
4987 * is to be disabled etc.
4992 static void s2io_set_multicast(struct net_device
*dev
)
4995 struct netdev_hw_addr
*ha
;
4996 struct s2io_nic
*sp
= netdev_priv(dev
);
4997 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4998 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
5000 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
5002 struct config_param
*config
= &sp
->config
;
5004 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
5005 /* Enable all Multicast addresses */
5006 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
5007 &bar0
->rmac_addr_data0_mem
);
5008 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
5009 &bar0
->rmac_addr_data1_mem
);
5010 val64
= RMAC_ADDR_CMD_MEM_WE
|
5011 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5012 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
5013 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5014 /* Wait till command completes */
5015 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5016 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5020 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
5021 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
5022 /* Disable all Multicast addresses */
5023 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5024 &bar0
->rmac_addr_data0_mem
);
5025 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5026 &bar0
->rmac_addr_data1_mem
);
5027 val64
= RMAC_ADDR_CMD_MEM_WE
|
5028 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5029 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
5030 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5031 /* Wait till command completes */
5032 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5033 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5037 sp
->all_multi_pos
= 0;
5040 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5041 /* Put the NIC into promiscuous mode */
5042 add
= &bar0
->mac_cfg
;
5043 val64
= readq(&bar0
->mac_cfg
);
5044 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5046 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5047 writel((u32
)val64
, add
);
5048 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5049 writel((u32
) (val64
>> 32), (add
+ 4));
5051 if (vlan_tag_strip
!= 1) {
5052 val64
= readq(&bar0
->rx_pa_cfg
);
5053 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5054 writeq(val64
, &bar0
->rx_pa_cfg
);
5055 sp
->vlan_strip_flag
= 0;
5058 val64
= readq(&bar0
->mac_cfg
);
5059 sp
->promisc_flg
= 1;
5060 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5062 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5063 /* Remove the NIC from promiscuous mode */
5064 add
= &bar0
->mac_cfg
;
5065 val64
= readq(&bar0
->mac_cfg
);
5066 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5068 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5069 writel((u32
)val64
, add
);
5070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5071 writel((u32
) (val64
>> 32), (add
+ 4));
5073 if (vlan_tag_strip
!= 0) {
5074 val64
= readq(&bar0
->rx_pa_cfg
);
5075 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5076 writeq(val64
, &bar0
->rx_pa_cfg
);
5077 sp
->vlan_strip_flag
= 1;
5080 val64
= readq(&bar0
->mac_cfg
);
5081 sp
->promisc_flg
= 0;
5082 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5085 /* Update individual M_CAST address list */
5086 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5087 if (netdev_mc_count(dev
) >
5088 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5090 "%s: No more Rx filters can be added - "
5091 "please enable ALL_MULTI instead\n",
5096 prev_cnt
= sp
->mc_addr_count
;
5097 sp
->mc_addr_count
= netdev_mc_count(dev
);
5099 /* Clear out the previous list of Mc in the H/W. */
5100 for (i
= 0; i
< prev_cnt
; i
++) {
5101 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5102 &bar0
->rmac_addr_data0_mem
);
5103 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5104 &bar0
->rmac_addr_data1_mem
);
5105 val64
= RMAC_ADDR_CMD_MEM_WE
|
5106 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5107 RMAC_ADDR_CMD_MEM_OFFSET
5108 (config
->mc_start_offset
+ i
);
5109 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5111 /* Wait for command completes */
5112 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5113 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5116 "%s: Adding Multicasts failed\n",
5122 /* Create the new Rx filter list and update the same in H/W. */
5124 netdev_for_each_mc_addr(ha
, dev
) {
5126 for (j
= 0; j
< ETH_ALEN
; j
++) {
5127 mac_addr
|= ha
->addr
[j
];
5131 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5132 &bar0
->rmac_addr_data0_mem
);
5133 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5134 &bar0
->rmac_addr_data1_mem
);
5135 val64
= RMAC_ADDR_CMD_MEM_WE
|
5136 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5137 RMAC_ADDR_CMD_MEM_OFFSET
5138 (i
+ config
->mc_start_offset
);
5139 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5141 /* Wait for command completes */
5142 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5143 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5146 "%s: Adding Multicasts failed\n",
5155 /* read from CAM unicast & multicast addresses and store it in
5156 * def_mac_addr structure
5158 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5162 struct config_param
*config
= &sp
->config
;
5164 /* store unicast & multicast mac addresses */
5165 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5166 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5167 /* if read fails disable the entry */
5168 if (mac_addr
== FAILURE
)
5169 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5170 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5174 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5175 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5178 struct config_param
*config
= &sp
->config
;
5179 /* restore unicast mac address */
5180 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5181 do_s2io_prog_unicast(sp
->dev
,
5182 sp
->def_mac_addr
[offset
].mac_addr
);
5184 /* restore multicast mac address */
5185 for (offset
= config
->mc_start_offset
;
5186 offset
< config
->max_mc_addr
; offset
++)
5187 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5190 /* add a multicast MAC address to CAM */
5191 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5195 struct config_param
*config
= &sp
->config
;
5197 for (i
= 0; i
< ETH_ALEN
; i
++) {
5199 mac_addr
|= addr
[i
];
5201 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5204 /* check if the multicast mac already preset in CAM */
5205 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5207 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5208 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5211 if (tmp64
== mac_addr
)
5214 if (i
== config
->max_mc_addr
) {
5216 "CAM full no space left for multicast MAC\n");
5219 /* Update the internal structure with this new mac address */
5220 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5222 return do_s2io_add_mac(sp
, mac_addr
, i
);
5225 /* add MAC address to CAM */
5226 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5229 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5231 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5232 &bar0
->rmac_addr_data0_mem
);
5234 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5235 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5236 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5238 /* Wait till command completes */
5239 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5240 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5242 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5247 /* deletes a specified unicast/multicast mac entry from CAM */
5248 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5251 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5252 struct config_param
*config
= &sp
->config
;
5255 offset
< config
->max_mc_addr
; offset
++) {
5256 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5257 if (tmp64
== addr
) {
5258 /* disable the entry by writing 0xffffffffffffULL */
5259 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5261 /* store the new mac list from CAM */
5262 do_s2io_store_unicast_mc(sp
);
5266 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5267 (unsigned long long)addr
);
5271 /* read mac entries from CAM */
5272 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5274 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5275 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5278 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5279 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5280 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5282 /* Wait till command completes */
5283 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5284 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5286 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5289 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5295 * s2io_set_mac_addr driver entry point
5298 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5300 struct sockaddr
*addr
= p
;
5302 if (!is_valid_ether_addr(addr
->sa_data
))
5305 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5307 /* store the MAC address in CAM */
5308 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5311 * do_s2io_prog_unicast - Programs the Xframe mac address
5312 * @dev : pointer to the device structure.
5313 * @addr: a uchar pointer to the new mac address which is to be set.
5314 * Description : This procedure will program the Xframe to receive
5315 * frames with new Mac Address
5316 * Return value: SUCCESS on success and an appropriate (-)ve integer
5317 * as defined in errno.h file on failure.
5320 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5322 struct s2io_nic
*sp
= netdev_priv(dev
);
5323 register u64 mac_addr
= 0, perm_addr
= 0;
5326 struct config_param
*config
= &sp
->config
;
5329 * Set the new MAC address as the new unicast filter and reflect this
5330 * change on the device address registered with the OS. It will be
5333 for (i
= 0; i
< ETH_ALEN
; i
++) {
5335 mac_addr
|= addr
[i
];
5337 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5340 /* check if the dev_addr is different than perm_addr */
5341 if (mac_addr
== perm_addr
)
5344 /* check if the mac already preset in CAM */
5345 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5346 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5347 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5350 if (tmp64
== mac_addr
) {
5352 "MAC addr:0x%llx already present in CAM\n",
5353 (unsigned long long)mac_addr
);
5357 if (i
== config
->max_mac_addr
) {
5358 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5361 /* Update the internal structure with this new mac address */
5362 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5364 return do_s2io_add_mac(sp
, mac_addr
, i
);
5368 * s2io_ethtool_sset - Sets different link parameters.
5369 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5370 * @info: pointer to the structure with parameters given by ethtool to set
5373 * The function sets different link parameters provided by the user onto
5379 static int s2io_ethtool_sset(struct net_device
*dev
,
5380 struct ethtool_cmd
*info
)
5382 struct s2io_nic
*sp
= netdev_priv(dev
);
5383 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5384 (ethtool_cmd_speed(info
) != SPEED_10000
) ||
5385 (info
->duplex
!= DUPLEX_FULL
))
5388 s2io_close(sp
->dev
);
5396 * s2io_ethtol_gset - Return link specific information.
5397 * @sp : private member of the device structure, pointer to the
5398 * s2io_nic structure.
5399 * @info : pointer to the structure with parameters given by ethtool
5400 * to return link information.
5402 * Returns link specific information like speed, duplex etc.. to ethtool.
5404 * return 0 on success.
5407 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5409 struct s2io_nic
*sp
= netdev_priv(dev
);
5410 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5411 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5412 info
->port
= PORT_FIBRE
;
5414 /* info->transceiver */
5415 info
->transceiver
= XCVR_EXTERNAL
;
5417 if (netif_carrier_ok(sp
->dev
)) {
5418 ethtool_cmd_speed_set(info
, SPEED_10000
);
5419 info
->duplex
= DUPLEX_FULL
;
5421 ethtool_cmd_speed_set(info
, -1);
5425 info
->autoneg
= AUTONEG_DISABLE
;
5430 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5431 * @sp : private member of the device structure, which is a pointer to the
5432 * s2io_nic structure.
5433 * @info : pointer to the structure with parameters given by ethtool to
5434 * return driver information.
5436 * Returns driver specefic information like name, version etc.. to ethtool.
5441 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5442 struct ethtool_drvinfo
*info
)
5444 struct s2io_nic
*sp
= netdev_priv(dev
);
5446 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5447 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5448 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5449 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5450 info
->regdump_len
= XENA_REG_SPACE
;
5451 info
->eedump_len
= XENA_EEPROM_SPACE
;
5455 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5456 * @sp: private member of the device structure, which is a pointer to the
5457 * s2io_nic structure.
5458 * @regs : pointer to the structure with parameters given by ethtool for
5459 * dumping the registers.
5460 * @reg_space: The input argumnet into which all the registers are dumped.
5462 * Dumps the entire register space of xFrame NIC into the user given
5468 static void s2io_ethtool_gregs(struct net_device
*dev
,
5469 struct ethtool_regs
*regs
, void *space
)
5473 u8
*reg_space
= (u8
*)space
;
5474 struct s2io_nic
*sp
= netdev_priv(dev
);
5476 regs
->len
= XENA_REG_SPACE
;
5477 regs
->version
= sp
->pdev
->subsystem_device
;
5479 for (i
= 0; i
< regs
->len
; i
+= 8) {
5480 reg
= readq(sp
->bar0
+ i
);
5481 memcpy((reg_space
+ i
), ®
, 8);
5486 * s2io_set_led - control NIC led
5488 static void s2io_set_led(struct s2io_nic
*sp
, bool on
)
5490 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5491 u16 subid
= sp
->pdev
->subsystem_device
;
5494 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5495 ((subid
& 0xFF) >= 0x07)) {
5496 val64
= readq(&bar0
->gpio_control
);
5498 val64
|= GPIO_CTRL_GPIO_0
;
5500 val64
&= ~GPIO_CTRL_GPIO_0
;
5502 writeq(val64
, &bar0
->gpio_control
);
5504 val64
= readq(&bar0
->adapter_control
);
5506 val64
|= ADAPTER_LED_ON
;
5508 val64
&= ~ADAPTER_LED_ON
;
5510 writeq(val64
, &bar0
->adapter_control
);
5516 * s2io_ethtool_set_led - To physically identify the nic on the system.
5517 * @dev : network device
5518 * @state: led setting
5520 * Description: Used to physically identify the NIC on the system.
5521 * The Link LED will blink for a time specified by the user for
5523 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5524 * identification is possible only if it's link is up.
5527 static int s2io_ethtool_set_led(struct net_device
*dev
,
5528 enum ethtool_phys_id_state state
)
5530 struct s2io_nic
*sp
= netdev_priv(dev
);
5531 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5532 u16 subid
= sp
->pdev
->subsystem_device
;
5534 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5535 u64 val64
= readq(&bar0
->adapter_control
);
5536 if (!(val64
& ADAPTER_CNTL_EN
)) {
5537 pr_err("Adapter Link down, cannot blink LED\n");
5543 case ETHTOOL_ID_ACTIVE
:
5544 sp
->adapt_ctrl_org
= readq(&bar0
->gpio_control
);
5545 return 1; /* cycle on/off once per second */
5548 s2io_set_led(sp
, true);
5551 case ETHTOOL_ID_OFF
:
5552 s2io_set_led(sp
, false);
5555 case ETHTOOL_ID_INACTIVE
:
5556 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
))
5557 writeq(sp
->adapt_ctrl_org
, &bar0
->gpio_control
);
5563 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5564 struct ethtool_ringparam
*ering
)
5566 struct s2io_nic
*sp
= netdev_priv(dev
);
5567 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5569 if (sp
->rxd_mode
== RXD_MODE_1
) {
5570 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5571 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5573 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5574 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5577 ering
->rx_mini_max_pending
= 0;
5578 ering
->tx_max_pending
= MAX_TX_DESC
;
5580 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
5581 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5582 ering
->rx_pending
= rx_desc_count
;
5583 ering
->rx_jumbo_pending
= rx_desc_count
;
5584 ering
->rx_mini_pending
= 0;
5586 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
5587 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5588 ering
->tx_pending
= tx_desc_count
;
5589 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5593 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5594 * @sp : private member of the device structure, which is a pointer to the
5595 * s2io_nic structure.
5596 * @ep : pointer to the structure with pause parameters given by ethtool.
5598 * Returns the Pause frame generation and reception capability of the NIC.
5602 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5603 struct ethtool_pauseparam
*ep
)
5606 struct s2io_nic
*sp
= netdev_priv(dev
);
5607 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5609 val64
= readq(&bar0
->rmac_pause_cfg
);
5610 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5611 ep
->tx_pause
= true;
5612 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5613 ep
->rx_pause
= true;
5614 ep
->autoneg
= false;
5618 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5619 * @sp : private member of the device structure, which is a pointer to the
5620 * s2io_nic structure.
5621 * @ep : pointer to the structure with pause parameters given by ethtool.
5623 * It can be used to set or reset Pause frame generation or reception
5624 * support of the NIC.
5626 * int, returns 0 on Success
5629 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5630 struct ethtool_pauseparam
*ep
)
5633 struct s2io_nic
*sp
= netdev_priv(dev
);
5634 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5636 val64
= readq(&bar0
->rmac_pause_cfg
);
5638 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5640 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5642 val64
|= RMAC_PAUSE_RX_ENABLE
;
5644 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5645 writeq(val64
, &bar0
->rmac_pause_cfg
);
5650 * read_eeprom - reads 4 bytes of data from user given offset.
5651 * @sp : private member of the device structure, which is a pointer to the
5652 * s2io_nic structure.
5653 * @off : offset at which the data must be written
5654 * @data : Its an output parameter where the data read at the given
5657 * Will read 4 bytes of data from the user given offset and return the
5659 * NOTE: Will allow to read only part of the EEPROM visible through the
5662 * -1 on failure and 0 on success.
5665 #define S2IO_DEV_ID 5
5666 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5671 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5673 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5674 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5675 I2C_CONTROL_ADDR(off
) |
5676 I2C_CONTROL_BYTE_CNT(0x3) |
5678 I2C_CONTROL_CNTL_START
;
5679 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5681 while (exit_cnt
< 5) {
5682 val64
= readq(&bar0
->i2c_control
);
5683 if (I2C_CONTROL_CNTL_END(val64
)) {
5684 *data
= I2C_CONTROL_GET_DATA(val64
);
5693 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5694 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5695 SPI_CONTROL_BYTECNT(0x3) |
5696 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5697 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5698 val64
|= SPI_CONTROL_REQ
;
5699 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5700 while (exit_cnt
< 5) {
5701 val64
= readq(&bar0
->spi_control
);
5702 if (val64
& SPI_CONTROL_NACK
) {
5705 } else if (val64
& SPI_CONTROL_DONE
) {
5706 *data
= readq(&bar0
->spi_data
);
5719 * write_eeprom - actually writes the relevant part of the data value.
5720 * @sp : private member of the device structure, which is a pointer to the
5721 * s2io_nic structure.
5722 * @off : offset at which the data must be written
5723 * @data : The data that is to be written
5724 * @cnt : Number of bytes of the data that are actually to be written into
5725 * the Eeprom. (max of 3)
5727 * Actually writes the relevant part of the data value into the Eeprom
5728 * through the I2C bus.
5730 * 0 on success, -1 on failure.
5733 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5735 int exit_cnt
= 0, ret
= -1;
5737 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5739 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5740 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5741 I2C_CONTROL_ADDR(off
) |
5742 I2C_CONTROL_BYTE_CNT(cnt
) |
5743 I2C_CONTROL_SET_DATA((u32
)data
) |
5744 I2C_CONTROL_CNTL_START
;
5745 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5747 while (exit_cnt
< 5) {
5748 val64
= readq(&bar0
->i2c_control
);
5749 if (I2C_CONTROL_CNTL_END(val64
)) {
5750 if (!(val64
& I2C_CONTROL_NACK
))
5759 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5760 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5761 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5763 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5764 SPI_CONTROL_BYTECNT(write_cnt
) |
5765 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5766 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5767 val64
|= SPI_CONTROL_REQ
;
5768 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5769 while (exit_cnt
< 5) {
5770 val64
= readq(&bar0
->spi_control
);
5771 if (val64
& SPI_CONTROL_NACK
) {
5774 } else if (val64
& SPI_CONTROL_DONE
) {
5784 static void s2io_vpd_read(struct s2io_nic
*nic
)
5788 int i
= 0, cnt
, len
, fail
= 0;
5789 int vpd_addr
= 0x80;
5790 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5792 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5793 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5796 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5799 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5801 vpd_data
= kmalloc(256, GFP_KERNEL
);
5803 swstats
->mem_alloc_fail_cnt
++;
5806 swstats
->mem_allocated
+= 256;
5808 for (i
= 0; i
< 256; i
+= 4) {
5809 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5810 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5811 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5812 for (cnt
= 0; cnt
< 5; cnt
++) {
5814 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5819 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5823 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5824 (u32
*)&vpd_data
[i
]);
5828 /* read serial number of adapter */
5829 for (cnt
= 0; cnt
< 252; cnt
++) {
5830 if ((vpd_data
[cnt
] == 'S') &&
5831 (vpd_data
[cnt
+1] == 'N')) {
5832 len
= vpd_data
[cnt
+2];
5833 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5834 memcpy(nic
->serial_num
,
5837 memset(nic
->serial_num
+len
,
5839 VPD_STRING_LEN
-len
);
5846 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5848 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5849 nic
->product_name
[len
] = 0;
5852 swstats
->mem_freed
+= 256;
5856 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5857 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5858 * @eeprom : pointer to the user level structure provided by ethtool,
5859 * containing all relevant information.
5860 * @data_buf : user defined value to be written into Eeprom.
5861 * Description: Reads the values stored in the Eeprom at given offset
5862 * for a given length. Stores these values int the input argument data
5863 * buffer 'data_buf' and returns these to the caller (ethtool.)
5868 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5869 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5873 struct s2io_nic
*sp
= netdev_priv(dev
);
5875 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5877 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5878 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5880 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5881 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5882 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5886 memcpy((data_buf
+ i
), &valid
, 4);
5892 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5893 * @sp : private member of the device structure, which is a pointer to the
5894 * s2io_nic structure.
5895 * @eeprom : pointer to the user level structure provided by ethtool,
5896 * containing all relevant information.
5897 * @data_buf ; user defined value to be written into Eeprom.
5899 * Tries to write the user provided value in the Eeprom, at the offset
5900 * given by the user.
5902 * 0 on success, -EFAULT on failure.
5905 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5906 struct ethtool_eeprom
*eeprom
,
5909 int len
= eeprom
->len
, cnt
= 0;
5910 u64 valid
= 0, data
;
5911 struct s2io_nic
*sp
= netdev_priv(dev
);
5913 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5915 "ETHTOOL_WRITE_EEPROM Err: "
5916 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5917 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5923 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5925 valid
= (u32
)(data
<< 24);
5929 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5931 "ETHTOOL_WRITE_EEPROM Err: "
5932 "Cannot write into the specified offset\n");
5943 * s2io_register_test - reads and writes into all clock domains.
5944 * @sp : private member of the device structure, which is a pointer to the
5945 * s2io_nic structure.
5946 * @data : variable that returns the result of each of the test conducted b
5949 * Read and write into all clock domains. The NIC has 3 clock domains,
5950 * see that registers in all the three regions are accessible.
5955 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5957 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5958 u64 val64
= 0, exp_val
;
5961 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5962 if (val64
!= 0x123456789abcdefULL
) {
5964 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5967 val64
= readq(&bar0
->rmac_pause_cfg
);
5968 if (val64
!= 0xc000ffff00000000ULL
) {
5970 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5973 val64
= readq(&bar0
->rx_queue_cfg
);
5974 if (sp
->device_type
== XFRAME_II_DEVICE
)
5975 exp_val
= 0x0404040404040404ULL
;
5977 exp_val
= 0x0808080808080808ULL
;
5978 if (val64
!= exp_val
) {
5980 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5983 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5984 if (val64
!= 0x000000001923141EULL
) {
5986 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5989 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5990 writeq(val64
, &bar0
->xmsi_data
);
5991 val64
= readq(&bar0
->xmsi_data
);
5992 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5994 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5997 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5998 writeq(val64
, &bar0
->xmsi_data
);
5999 val64
= readq(&bar0
->xmsi_data
);
6000 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
6002 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
6010 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6011 * @sp : private member of the device structure, which is a pointer to the
6012 * s2io_nic structure.
6013 * @data:variable that returns the result of each of the test conducted by
6016 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6022 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
6025 u64 ret_data
, org_4F0
, org_7F0
;
6026 u8 saved_4F0
= 0, saved_7F0
= 0;
6027 struct net_device
*dev
= sp
->dev
;
6029 /* Test Write Error at offset 0 */
6030 /* Note that SPI interface allows write access to all areas
6031 * of EEPROM. Hence doing all negative testing only for Xframe I.
6033 if (sp
->device_type
== XFRAME_I_DEVICE
)
6034 if (!write_eeprom(sp
, 0, 0, 3))
6037 /* Save current values at offsets 0x4F0 and 0x7F0 */
6038 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6040 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6043 /* Test Write at offset 4f0 */
6044 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6046 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6049 if (ret_data
!= 0x012345) {
6050 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6051 "Data written %llx Data read %llx\n",
6052 dev
->name
, (unsigned long long)0x12345,
6053 (unsigned long long)ret_data
);
6057 /* Reset the EEPROM data go FFFF */
6058 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6060 /* Test Write Request Error at offset 0x7c */
6061 if (sp
->device_type
== XFRAME_I_DEVICE
)
6062 if (!write_eeprom(sp
, 0x07C, 0, 3))
6065 /* Test Write Request at offset 0x7f0 */
6066 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6068 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6071 if (ret_data
!= 0x012345) {
6072 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6073 "Data written %llx Data read %llx\n",
6074 dev
->name
, (unsigned long long)0x12345,
6075 (unsigned long long)ret_data
);
6079 /* Reset the EEPROM data go FFFF */
6080 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6082 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6083 /* Test Write Error at offset 0x80 */
6084 if (!write_eeprom(sp
, 0x080, 0, 3))
6087 /* Test Write Error at offset 0xfc */
6088 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6091 /* Test Write Error at offset 0x100 */
6092 if (!write_eeprom(sp
, 0x100, 0, 3))
6095 /* Test Write Error at offset 4ec */
6096 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6100 /* Restore values at offsets 0x4F0 and 0x7F0 */
6102 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6104 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6111 * s2io_bist_test - invokes the MemBist test of the card .
6112 * @sp : private member of the device structure, which is a pointer to the
6113 * s2io_nic structure.
6114 * @data:variable that returns the result of each of the test conducted by
6117 * This invokes the MemBist test of the card. We give around
6118 * 2 secs time for the Test to complete. If it's still not complete
6119 * within this peiod, we consider that the test failed.
6121 * 0 on success and -1 on failure.
6124 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6127 int cnt
= 0, ret
= -1;
6129 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6130 bist
|= PCI_BIST_START
;
6131 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6134 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6135 if (!(bist
& PCI_BIST_START
)) {
6136 *data
= (bist
& PCI_BIST_CODE_MASK
);
6148 * s2io-link_test - verifies the link state of the nic
6149 * @sp ; private member of the device structure, which is a pointer to the
6150 * s2io_nic structure.
6151 * @data: variable that returns the result of each of the test conducted by
6154 * The function verifies the link state of the NIC and updates the input
6155 * argument 'data' appropriately.
6160 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6162 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6165 val64
= readq(&bar0
->adapter_status
);
6166 if (!(LINK_IS_UP(val64
)))
6175 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6176 * @sp - private member of the device structure, which is a pointer to the
6177 * s2io_nic structure.
6178 * @data - variable that returns the result of each of the test
6179 * conducted by the driver.
6181 * This is one of the offline test that tests the read and write
6182 * access to the RldRam chip on the NIC.
6187 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6189 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6191 int cnt
, iteration
= 0, test_fail
= 0;
6193 val64
= readq(&bar0
->adapter_control
);
6194 val64
&= ~ADAPTER_ECC_EN
;
6195 writeq(val64
, &bar0
->adapter_control
);
6197 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6198 val64
|= MC_RLDRAM_TEST_MODE
;
6199 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6201 val64
= readq(&bar0
->mc_rldram_mrs
);
6202 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6203 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6205 val64
|= MC_RLDRAM_MRS_ENABLE
;
6206 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6208 while (iteration
< 2) {
6209 val64
= 0x55555555aaaa0000ULL
;
6211 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6212 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6214 val64
= 0xaaaa5a5555550000ULL
;
6216 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6217 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6219 val64
= 0x55aaaaaaaa5a0000ULL
;
6221 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6222 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6224 val64
= (u64
) (0x0000003ffffe0100ULL
);
6225 writeq(val64
, &bar0
->mc_rldram_test_add
);
6227 val64
= MC_RLDRAM_TEST_MODE
|
6228 MC_RLDRAM_TEST_WRITE
|
6230 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6232 for (cnt
= 0; cnt
< 5; cnt
++) {
6233 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6234 if (val64
& MC_RLDRAM_TEST_DONE
)
6242 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6243 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6245 for (cnt
= 0; cnt
< 5; cnt
++) {
6246 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6247 if (val64
& MC_RLDRAM_TEST_DONE
)
6255 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6256 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6264 /* Bring the adapter out of test mode */
6265 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6271 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6272 * @sp : private member of the device structure, which is a pointer to the
6273 * s2io_nic structure.
6274 * @ethtest : pointer to a ethtool command specific structure that will be
6275 * returned to the user.
6276 * @data : variable that returns the result of each of the test
6277 * conducted by the driver.
6279 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6280 * the health of the card.
6285 static void s2io_ethtool_test(struct net_device
*dev
,
6286 struct ethtool_test
*ethtest
,
6289 struct s2io_nic
*sp
= netdev_priv(dev
);
6290 int orig_state
= netif_running(sp
->dev
);
6292 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6293 /* Offline Tests. */
6295 s2io_close(sp
->dev
);
6297 if (s2io_register_test(sp
, &data
[0]))
6298 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6302 if (s2io_rldram_test(sp
, &data
[3]))
6303 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6307 if (s2io_eeprom_test(sp
, &data
[1]))
6308 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6310 if (s2io_bist_test(sp
, &data
[4]))
6311 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6320 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6329 if (s2io_link_test(sp
, &data
[2]))
6330 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6339 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6340 struct ethtool_stats
*estats
,
6344 struct s2io_nic
*sp
= netdev_priv(dev
);
6345 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6346 struct swStat
*swstats
= &stats
->sw_stat
;
6347 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6349 s2io_updt_stats(sp
);
6351 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6352 le32_to_cpu(stats
->tmac_frms
);
6354 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6355 le32_to_cpu(stats
->tmac_data_octets
);
6356 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6358 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6359 le32_to_cpu(stats
->tmac_mcst_frms
);
6361 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6362 le32_to_cpu(stats
->tmac_bcst_frms
);
6363 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6365 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6366 le32_to_cpu(stats
->tmac_ttl_octets
);
6368 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6369 le32_to_cpu(stats
->tmac_ucst_frms
);
6371 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6372 le32_to_cpu(stats
->tmac_nucst_frms
);
6374 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6375 le32_to_cpu(stats
->tmac_any_err_frms
);
6376 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6377 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6379 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6380 le32_to_cpu(stats
->tmac_vld_ip
);
6382 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6383 le32_to_cpu(stats
->tmac_drop_ip
);
6385 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6386 le32_to_cpu(stats
->tmac_icmp
);
6388 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6389 le32_to_cpu(stats
->tmac_rst_tcp
);
6390 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6391 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6392 le32_to_cpu(stats
->tmac_udp
);
6394 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6395 le32_to_cpu(stats
->rmac_vld_frms
);
6397 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6398 le32_to_cpu(stats
->rmac_data_octets
);
6399 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6400 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6402 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6403 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6405 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6406 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6407 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6408 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6409 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6410 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6411 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6413 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6414 le32_to_cpu(stats
->rmac_ttl_octets
);
6416 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6417 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6419 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6420 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6422 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6423 le32_to_cpu(stats
->rmac_discarded_frms
);
6425 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6426 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6427 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6428 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6430 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6431 le32_to_cpu(stats
->rmac_usized_frms
);
6433 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6434 le32_to_cpu(stats
->rmac_osized_frms
);
6436 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6437 le32_to_cpu(stats
->rmac_frag_frms
);
6439 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6440 le32_to_cpu(stats
->rmac_jabber_frms
);
6441 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6442 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6443 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6444 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6445 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6446 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6448 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6449 le32_to_cpu(stats
->rmac_ip
);
6450 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6451 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6453 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6454 le32_to_cpu(stats
->rmac_drop_ip
);
6456 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6457 le32_to_cpu(stats
->rmac_icmp
);
6458 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6460 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6461 le32_to_cpu(stats
->rmac_udp
);
6463 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6464 le32_to_cpu(stats
->rmac_err_drp_udp
);
6465 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6466 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6467 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6468 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6469 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6470 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6471 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6472 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6473 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6474 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6475 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6476 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6477 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6478 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6479 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6480 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6481 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6483 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6484 le32_to_cpu(stats
->rmac_pause_cnt
);
6485 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6486 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6488 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6489 le32_to_cpu(stats
->rmac_accepted_ip
);
6490 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6491 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6492 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6493 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6494 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6495 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6496 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6497 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6498 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6499 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6500 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6501 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6502 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6503 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6504 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6505 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6506 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6507 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6508 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6510 /* Enhanced statistics exist only for Hercules */
6511 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6513 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6515 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6517 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6518 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6519 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6520 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6521 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6522 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6523 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6524 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6525 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6526 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6527 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6528 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6529 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6530 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6534 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6535 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6536 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6537 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6538 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6539 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6540 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6541 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6542 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6543 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6544 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6545 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6546 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6547 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6548 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6549 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6550 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6551 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6552 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6553 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6554 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6555 tmp_stats
[i
++] = swstats
->sending_both
;
6556 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6557 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6558 if (swstats
->num_aggregations
) {
6559 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6562 * Since 64-bit divide does not work on all platforms,
6563 * do repeated subtraction.
6565 while (tmp
>= swstats
->num_aggregations
) {
6566 tmp
-= swstats
->num_aggregations
;
6569 tmp_stats
[i
++] = count
;
6572 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6573 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6574 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6575 tmp_stats
[i
++] = swstats
->mem_allocated
;
6576 tmp_stats
[i
++] = swstats
->mem_freed
;
6577 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6578 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6579 tmp_stats
[i
++] = swstats
->link_up_time
;
6580 tmp_stats
[i
++] = swstats
->link_down_time
;
6582 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6583 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6584 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6585 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6586 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6588 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6589 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6590 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6591 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6592 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6593 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6594 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6595 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6596 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6597 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6598 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6599 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6600 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6601 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6602 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6603 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6604 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6605 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6606 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6607 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6608 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6609 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6610 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6611 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6612 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6613 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6616 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6618 return XENA_REG_SPACE
;
6622 static int s2io_get_eeprom_len(struct net_device
*dev
)
6624 return XENA_EEPROM_SPACE
;
6627 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6629 struct s2io_nic
*sp
= netdev_priv(dev
);
6633 return S2IO_TEST_LEN
;
6635 switch (sp
->device_type
) {
6636 case XFRAME_I_DEVICE
:
6637 return XFRAME_I_STAT_LEN
;
6638 case XFRAME_II_DEVICE
:
6639 return XFRAME_II_STAT_LEN
;
6648 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6649 u32 stringset
, u8
*data
)
6652 struct s2io_nic
*sp
= netdev_priv(dev
);
6654 switch (stringset
) {
6656 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6659 stat_size
= sizeof(ethtool_xena_stats_keys
);
6660 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6661 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6662 memcpy(data
+ stat_size
,
6663 ðtool_enhanced_stats_keys
,
6664 sizeof(ethtool_enhanced_stats_keys
));
6665 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6668 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6669 sizeof(ethtool_driver_stats_keys
));
6673 static int s2io_set_features(struct net_device
*dev
, u32 features
)
6675 struct s2io_nic
*sp
= netdev_priv(dev
);
6676 u32 changed
= (features
^ dev
->features
) & NETIF_F_LRO
;
6678 if (changed
&& netif_running(dev
)) {
6681 s2io_stop_all_tx_queue(sp
);
6683 dev
->features
= features
;
6684 rc
= s2io_card_up(sp
);
6688 s2io_start_all_tx_queue(sp
);
6696 static const struct ethtool_ops netdev_ethtool_ops
= {
6697 .get_settings
= s2io_ethtool_gset
,
6698 .set_settings
= s2io_ethtool_sset
,
6699 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6700 .get_regs_len
= s2io_ethtool_get_regs_len
,
6701 .get_regs
= s2io_ethtool_gregs
,
6702 .get_link
= ethtool_op_get_link
,
6703 .get_eeprom_len
= s2io_get_eeprom_len
,
6704 .get_eeprom
= s2io_ethtool_geeprom
,
6705 .set_eeprom
= s2io_ethtool_seeprom
,
6706 .get_ringparam
= s2io_ethtool_gringparam
,
6707 .get_pauseparam
= s2io_ethtool_getpause_data
,
6708 .set_pauseparam
= s2io_ethtool_setpause_data
,
6709 .self_test
= s2io_ethtool_test
,
6710 .get_strings
= s2io_ethtool_get_strings
,
6711 .set_phys_id
= s2io_ethtool_set_led
,
6712 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6713 .get_sset_count
= s2io_get_sset_count
,
6717 * s2io_ioctl - Entry point for the Ioctl
6718 * @dev : Device pointer.
6719 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6720 * a proprietary structure used to pass information to the driver.
6721 * @cmd : This is used to distinguish between the different commands that
6722 * can be passed to the IOCTL functions.
6724 * Currently there are no special functionality supported in IOCTL, hence
6725 * function always return EOPNOTSUPPORTED
6728 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6734 * s2io_change_mtu - entry point to change MTU size for the device.
6735 * @dev : device pointer.
6736 * @new_mtu : the new MTU size for the device.
6737 * Description: A driver entry point to change MTU size for the device.
6738 * Before changing the MTU the device must be stopped.
6740 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6744 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6746 struct s2io_nic
*sp
= netdev_priv(dev
);
6749 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6750 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6755 if (netif_running(dev
)) {
6756 s2io_stop_all_tx_queue(sp
);
6758 ret
= s2io_card_up(sp
);
6760 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6764 s2io_wake_all_tx_queue(sp
);
6765 } else { /* Device is down */
6766 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6767 u64 val64
= new_mtu
;
6769 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6776 * s2io_set_link - Set the LInk status
6777 * @data: long pointer to device private structue
6778 * Description: Sets the link status for the adapter
6781 static void s2io_set_link(struct work_struct
*work
)
6783 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6785 struct net_device
*dev
= nic
->dev
;
6786 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6792 if (!netif_running(dev
))
6795 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6796 /* The card is being reset, no point doing anything */
6800 subid
= nic
->pdev
->subsystem_device
;
6801 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6803 * Allow a small delay for the NICs self initiated
6804 * cleanup to complete.
6809 val64
= readq(&bar0
->adapter_status
);
6810 if (LINK_IS_UP(val64
)) {
6811 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6812 if (verify_xena_quiescence(nic
)) {
6813 val64
= readq(&bar0
->adapter_control
);
6814 val64
|= ADAPTER_CNTL_EN
;
6815 writeq(val64
, &bar0
->adapter_control
);
6816 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6817 nic
->device_type
, subid
)) {
6818 val64
= readq(&bar0
->gpio_control
);
6819 val64
|= GPIO_CTRL_GPIO_0
;
6820 writeq(val64
, &bar0
->gpio_control
);
6821 val64
= readq(&bar0
->gpio_control
);
6823 val64
|= ADAPTER_LED_ON
;
6824 writeq(val64
, &bar0
->adapter_control
);
6826 nic
->device_enabled_once
= true;
6829 "%s: Error: device is not Quiescent\n",
6831 s2io_stop_all_tx_queue(nic
);
6834 val64
= readq(&bar0
->adapter_control
);
6835 val64
|= ADAPTER_LED_ON
;
6836 writeq(val64
, &bar0
->adapter_control
);
6837 s2io_link(nic
, LINK_UP
);
6839 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6841 val64
= readq(&bar0
->gpio_control
);
6842 val64
&= ~GPIO_CTRL_GPIO_0
;
6843 writeq(val64
, &bar0
->gpio_control
);
6844 val64
= readq(&bar0
->gpio_control
);
6847 val64
= readq(&bar0
->adapter_control
);
6848 val64
= val64
& (~ADAPTER_LED_ON
);
6849 writeq(val64
, &bar0
->adapter_control
);
6850 s2io_link(nic
, LINK_DOWN
);
6852 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6858 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6860 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6861 u64
*temp2
, int size
)
6863 struct net_device
*dev
= sp
->dev
;
6864 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6866 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6867 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6870 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6872 * As Rx frame are not going to be processed,
6873 * using same mapped address for the Rxd
6876 rxdp1
->Buffer0_ptr
= *temp0
;
6878 *skb
= dev_alloc_skb(size
);
6881 "%s: Out of memory to allocate %s\n",
6882 dev
->name
, "1 buf mode SKBs");
6883 stats
->mem_alloc_fail_cnt
++;
6886 stats
->mem_allocated
+= (*skb
)->truesize
;
6887 /* storing the mapped addr in a temp variable
6888 * such it will be used for next rxd whose
6889 * Host Control is NULL
6891 rxdp1
->Buffer0_ptr
= *temp0
=
6892 pci_map_single(sp
->pdev
, (*skb
)->data
,
6893 size
- NET_IP_ALIGN
,
6894 PCI_DMA_FROMDEVICE
);
6895 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6896 goto memalloc_failed
;
6897 rxdp
->Host_Control
= (unsigned long) (*skb
);
6899 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6900 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6901 /* Two buffer Mode */
6903 rxdp3
->Buffer2_ptr
= *temp2
;
6904 rxdp3
->Buffer0_ptr
= *temp0
;
6905 rxdp3
->Buffer1_ptr
= *temp1
;
6907 *skb
= dev_alloc_skb(size
);
6910 "%s: Out of memory to allocate %s\n",
6913 stats
->mem_alloc_fail_cnt
++;
6916 stats
->mem_allocated
+= (*skb
)->truesize
;
6917 rxdp3
->Buffer2_ptr
= *temp2
=
6918 pci_map_single(sp
->pdev
, (*skb
)->data
,
6920 PCI_DMA_FROMDEVICE
);
6921 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6922 goto memalloc_failed
;
6923 rxdp3
->Buffer0_ptr
= *temp0
=
6924 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6925 PCI_DMA_FROMDEVICE
);
6926 if (pci_dma_mapping_error(sp
->pdev
,
6927 rxdp3
->Buffer0_ptr
)) {
6928 pci_unmap_single(sp
->pdev
,
6929 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6931 PCI_DMA_FROMDEVICE
);
6932 goto memalloc_failed
;
6934 rxdp
->Host_Control
= (unsigned long) (*skb
);
6936 /* Buffer-1 will be dummy buffer not used */
6937 rxdp3
->Buffer1_ptr
= *temp1
=
6938 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6939 PCI_DMA_FROMDEVICE
);
6940 if (pci_dma_mapping_error(sp
->pdev
,
6941 rxdp3
->Buffer1_ptr
)) {
6942 pci_unmap_single(sp
->pdev
,
6943 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6944 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6945 pci_unmap_single(sp
->pdev
,
6946 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6948 PCI_DMA_FROMDEVICE
);
6949 goto memalloc_failed
;
6956 stats
->pci_map_fail_cnt
++;
6957 stats
->mem_freed
+= (*skb
)->truesize
;
6958 dev_kfree_skb(*skb
);
6962 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6965 struct net_device
*dev
= sp
->dev
;
6966 if (sp
->rxd_mode
== RXD_MODE_1
) {
6967 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6968 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6969 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6970 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6971 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6975 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6977 int i
, j
, k
, blk_cnt
= 0, size
;
6978 struct config_param
*config
= &sp
->config
;
6979 struct mac_info
*mac_control
= &sp
->mac_control
;
6980 struct net_device
*dev
= sp
->dev
;
6981 struct RxD_t
*rxdp
= NULL
;
6982 struct sk_buff
*skb
= NULL
;
6983 struct buffAdd
*ba
= NULL
;
6984 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6986 /* Calculate the size based on ring mode */
6987 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6988 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6989 if (sp
->rxd_mode
== RXD_MODE_1
)
6990 size
+= NET_IP_ALIGN
;
6991 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6992 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6994 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6995 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6996 struct ring_info
*ring
= &mac_control
->rings
[i
];
6998 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
7000 for (j
= 0; j
< blk_cnt
; j
++) {
7001 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7002 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
7003 if (sp
->rxd_mode
== RXD_MODE_3B
)
7004 ba
= &ring
->ba
[j
][k
];
7005 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
7013 set_rxd_buffer_size(sp
, rxdp
, size
);
7015 /* flip the Ownership bit to Hardware */
7016 rxdp
->Control_1
|= RXD_OWN_XENA
;
7024 static int s2io_add_isr(struct s2io_nic
*sp
)
7027 struct net_device
*dev
= sp
->dev
;
7030 if (sp
->config
.intr_type
== MSI_X
)
7031 ret
= s2io_enable_msi_x(sp
);
7033 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7034 sp
->config
.intr_type
= INTA
;
7038 * Store the values of the MSIX table in
7039 * the struct s2io_nic structure
7041 store_xmsi_data(sp
);
7043 /* After proper initialization of H/W, register ISR */
7044 if (sp
->config
.intr_type
== MSI_X
) {
7045 int i
, msix_rx_cnt
= 0;
7047 for (i
= 0; i
< sp
->num_entries
; i
++) {
7048 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7049 if (sp
->s2io_entries
[i
].type
==
7051 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7053 err
= request_irq(sp
->entries
[i
].vector
,
7054 s2io_msix_ring_handle
,
7057 sp
->s2io_entries
[i
].arg
);
7058 } else if (sp
->s2io_entries
[i
].type
==
7060 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7062 err
= request_irq(sp
->entries
[i
].vector
,
7063 s2io_msix_fifo_handle
,
7066 sp
->s2io_entries
[i
].arg
);
7069 /* if either data or addr is zero print it. */
7070 if (!(sp
->msix_info
[i
].addr
&&
7071 sp
->msix_info
[i
].data
)) {
7073 "%s @Addr:0x%llx Data:0x%llx\n",
7075 (unsigned long long)
7076 sp
->msix_info
[i
].addr
,
7077 (unsigned long long)
7078 ntohl(sp
->msix_info
[i
].data
));
7082 remove_msix_isr(sp
);
7085 "%s:MSI-X-%d registration "
7086 "failed\n", dev
->name
, i
);
7089 "%s: Defaulting to INTA\n",
7091 sp
->config
.intr_type
= INTA
;
7094 sp
->s2io_entries
[i
].in_use
=
7095 MSIX_REGISTERED_SUCCESS
;
7099 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7101 "MSI-X-TX entries enabled through alarm vector\n");
7104 if (sp
->config
.intr_type
== INTA
) {
7105 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7108 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7116 static void s2io_rem_isr(struct s2io_nic
*sp
)
7118 if (sp
->config
.intr_type
== MSI_X
)
7119 remove_msix_isr(sp
);
7121 remove_inta_isr(sp
);
7124 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7127 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7128 register u64 val64
= 0;
7129 struct config_param
*config
;
7130 config
= &sp
->config
;
7132 if (!is_s2io_card_up(sp
))
7135 del_timer_sync(&sp
->alarm_timer
);
7136 /* If s2io_set_link task is executing, wait till it completes. */
7137 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7139 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7142 if (sp
->config
.napi
) {
7144 if (config
->intr_type
== MSI_X
) {
7145 for (; off
< sp
->config
.rx_ring_num
; off
++)
7146 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7149 napi_disable(&sp
->napi
);
7152 /* disable Tx and Rx traffic on the NIC */
7158 /* stop the tx queue, indicate link down */
7159 s2io_link(sp
, LINK_DOWN
);
7161 /* Check if the device is Quiescent and then Reset the NIC */
7163 /* As per the HW requirement we need to replenish the
7164 * receive buffer to avoid the ring bump. Since there is
7165 * no intention of processing the Rx frame at this pointwe are
7166 * just setting the ownership bit of rxd in Each Rx
7167 * ring to HW and set the appropriate buffer size
7168 * based on the ring mode
7170 rxd_owner_bit_reset(sp
);
7172 val64
= readq(&bar0
->adapter_status
);
7173 if (verify_xena_quiescence(sp
)) {
7174 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7181 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7182 "adapter status reads 0x%llx\n",
7183 (unsigned long long)val64
);
7190 /* Free all Tx buffers */
7191 free_tx_buffers(sp
);
7193 /* Free all Rx buffers */
7194 free_rx_buffers(sp
);
7196 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7199 static void s2io_card_down(struct s2io_nic
*sp
)
7201 do_s2io_card_down(sp
, 1);
7204 static int s2io_card_up(struct s2io_nic
*sp
)
7207 struct config_param
*config
;
7208 struct mac_info
*mac_control
;
7209 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7212 /* Initialize the H/W I/O registers */
7215 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7223 * Initializing the Rx buffers. For now we are considering only 1
7224 * Rx ring and initializing buffers into 30 Rx blocks
7226 config
= &sp
->config
;
7227 mac_control
= &sp
->mac_control
;
7229 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7230 struct ring_info
*ring
= &mac_control
->rings
[i
];
7232 ring
->mtu
= dev
->mtu
;
7233 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7234 ret
= fill_rx_buffers(sp
, ring
, 1);
7236 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7239 free_rx_buffers(sp
);
7242 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7243 ring
->rx_bufs_left
);
7246 /* Initialise napi */
7248 if (config
->intr_type
== MSI_X
) {
7249 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7250 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7252 napi_enable(&sp
->napi
);
7256 /* Maintain the state prior to the open */
7257 if (sp
->promisc_flg
)
7258 sp
->promisc_flg
= 0;
7259 if (sp
->m_cast_flg
) {
7261 sp
->all_multi_pos
= 0;
7264 /* Setting its receive mode */
7265 s2io_set_multicast(dev
);
7267 if (dev
->features
& NETIF_F_LRO
) {
7268 /* Initialize max aggregatable pkts per session based on MTU */
7269 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7270 /* Check if we can use (if specified) user provided value */
7271 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7272 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7275 /* Enable Rx Traffic and interrupts on the NIC */
7276 if (start_nic(sp
)) {
7277 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7279 free_rx_buffers(sp
);
7283 /* Add interrupt service routine */
7284 if (s2io_add_isr(sp
) != 0) {
7285 if (sp
->config
.intr_type
== MSI_X
)
7288 free_rx_buffers(sp
);
7292 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7294 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7296 /* Enable select interrupts */
7297 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7298 if (sp
->config
.intr_type
!= INTA
) {
7299 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7300 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7302 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7303 interruptible
|= TX_PIC_INTR
;
7304 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7311 * s2io_restart_nic - Resets the NIC.
7312 * @data : long pointer to the device private structure
7314 * This function is scheduled to be run by the s2io_tx_watchdog
7315 * function after 0.5 secs to reset the NIC. The idea is to reduce
7316 * the run time of the watch dog routine which is run holding a
7320 static void s2io_restart_nic(struct work_struct
*work
)
7322 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7323 struct net_device
*dev
= sp
->dev
;
7327 if (!netif_running(dev
))
7331 if (s2io_card_up(sp
)) {
7332 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7334 s2io_wake_all_tx_queue(sp
);
7335 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7341 * s2io_tx_watchdog - Watchdog for transmit side.
7342 * @dev : Pointer to net device structure
7344 * This function is triggered if the Tx Queue is stopped
7345 * for a pre-defined amount of time when the Interface is still up.
7346 * If the Interface is jammed in such a situation, the hardware is
7347 * reset (by s2io_close) and restarted again (by s2io_open) to
7348 * overcome any problem that might have been caused in the hardware.
7353 static void s2io_tx_watchdog(struct net_device
*dev
)
7355 struct s2io_nic
*sp
= netdev_priv(dev
);
7356 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7358 if (netif_carrier_ok(dev
)) {
7359 swstats
->watchdog_timer_cnt
++;
7360 schedule_work(&sp
->rst_timer_task
);
7361 swstats
->soft_reset_cnt
++;
7366 * rx_osm_handler - To perform some OS related operations on SKB.
7367 * @sp: private member of the device structure,pointer to s2io_nic structure.
7368 * @skb : the socket buffer pointer.
7369 * @len : length of the packet
7370 * @cksum : FCS checksum of the frame.
7371 * @ring_no : the ring from which this RxD was extracted.
7373 * This function is called by the Rx interrupt serivce routine to perform
7374 * some OS related operations on the SKB before passing it to the upper
7375 * layers. It mainly checks if the checksum is OK, if so adds it to the
7376 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7377 * to the upper layer. If the checksum is wrong, it increments the Rx
7378 * packet error count, frees the SKB and returns error.
7380 * SUCCESS on success and -1 on failure.
7382 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7384 struct s2io_nic
*sp
= ring_data
->nic
;
7385 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7386 struct sk_buff
*skb
= (struct sk_buff
*)
7387 ((unsigned long)rxdp
->Host_Control
);
7388 int ring_no
= ring_data
->ring_no
;
7389 u16 l3_csum
, l4_csum
;
7390 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7391 struct lro
*uninitialized_var(lro
);
7393 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7398 /* Check for parity error */
7400 swstats
->parity_err_cnt
++;
7402 err_mask
= err
>> 48;
7405 swstats
->rx_parity_err_cnt
++;
7409 swstats
->rx_abort_cnt
++;
7413 swstats
->rx_parity_abort_cnt
++;
7417 swstats
->rx_rda_fail_cnt
++;
7421 swstats
->rx_unkn_prot_cnt
++;
7425 swstats
->rx_fcs_err_cnt
++;
7429 swstats
->rx_buf_size_err_cnt
++;
7433 swstats
->rx_rxd_corrupt_cnt
++;
7437 swstats
->rx_unkn_err_cnt
++;
7441 * Drop the packet if bad transfer code. Exception being
7442 * 0x5, which could be due to unsupported IPv6 extension header.
7443 * In this case, we let stack handle the packet.
7444 * Note that in this case, since checksum will be incorrect,
7445 * stack will validate the same.
7447 if (err_mask
!= 0x5) {
7448 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7449 dev
->name
, err_mask
);
7450 dev
->stats
.rx_crc_errors
++;
7454 ring_data
->rx_bufs_left
-= 1;
7455 rxdp
->Host_Control
= 0;
7460 rxdp
->Host_Control
= 0;
7461 if (sp
->rxd_mode
== RXD_MODE_1
) {
7462 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7465 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7466 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7467 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7468 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7469 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7470 unsigned char *buff
= skb_push(skb
, buf0_len
);
7472 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7473 memcpy(buff
, ba
->ba_0
, buf0_len
);
7474 skb_put(skb
, buf2_len
);
7477 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7478 ((!ring_data
->lro
) ||
7479 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7480 (dev
->features
& NETIF_F_RXCSUM
)) {
7481 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7482 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7483 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7485 * NIC verifies if the Checksum of the received
7486 * frame is Ok or not and accordingly returns
7487 * a flag in the RxD.
7489 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7490 if (ring_data
->lro
) {
7495 ret
= s2io_club_tcp_session(ring_data
,
7500 case 3: /* Begin anew */
7503 case 1: /* Aggregate */
7504 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7506 case 4: /* Flush session */
7507 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7508 queue_rx_frame(lro
->parent
,
7510 clear_lro_session(lro
);
7511 swstats
->flush_max_pkts
++;
7513 case 2: /* Flush both */
7514 lro
->parent
->data_len
= lro
->frags_len
;
7515 swstats
->sending_both
++;
7516 queue_rx_frame(lro
->parent
,
7518 clear_lro_session(lro
);
7520 case 0: /* sessions exceeded */
7521 case -1: /* non-TCP or not L2 aggregatable */
7523 * First pkt in session not
7524 * L3/L4 aggregatable
7529 "%s: Samadhana!!\n",
7536 * Packet with erroneous checksum, let the
7537 * upper layers deal with it.
7539 skb_checksum_none_assert(skb
);
7542 skb_checksum_none_assert(skb
);
7544 swstats
->mem_freed
+= skb
->truesize
;
7546 skb_record_rx_queue(skb
, ring_no
);
7547 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7549 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7554 * s2io_link - stops/starts the Tx queue.
7555 * @sp : private member of the device structure, which is a pointer to the
7556 * s2io_nic structure.
7557 * @link : inidicates whether link is UP/DOWN.
7559 * This function stops/starts the Tx queue depending on whether the link
7560 * status of the NIC is is down or up. This is called by the Alarm
7561 * interrupt handler whenever a link change interrupt comes up.
7566 static void s2io_link(struct s2io_nic
*sp
, int link
)
7568 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7569 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7571 if (link
!= sp
->last_link_state
) {
7573 if (link
== LINK_DOWN
) {
7574 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7575 s2io_stop_all_tx_queue(sp
);
7576 netif_carrier_off(dev
);
7577 if (swstats
->link_up_cnt
)
7578 swstats
->link_up_time
=
7579 jiffies
- sp
->start_time
;
7580 swstats
->link_down_cnt
++;
7582 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7583 if (swstats
->link_down_cnt
)
7584 swstats
->link_down_time
=
7585 jiffies
- sp
->start_time
;
7586 swstats
->link_up_cnt
++;
7587 netif_carrier_on(dev
);
7588 s2io_wake_all_tx_queue(sp
);
7591 sp
->last_link_state
= link
;
7592 sp
->start_time
= jiffies
;
7596 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7597 * @sp : private member of the device structure, which is a pointer to the
7598 * s2io_nic structure.
7600 * This function initializes a few of the PCI and PCI-X configuration registers
7601 * with recommended values.
7606 static void s2io_init_pci(struct s2io_nic
*sp
)
7608 u16 pci_cmd
= 0, pcix_cmd
= 0;
7610 /* Enable Data Parity Error Recovery in PCI-X command register. */
7611 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7613 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7615 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7618 /* Set the PErr Response bit in PCI command register. */
7619 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7620 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7621 (pci_cmd
| PCI_COMMAND_PARITY
));
7622 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7625 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7630 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7631 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7632 "(%d) not supported\n", tx_fifo_num
);
7634 if (tx_fifo_num
< 1)
7637 tx_fifo_num
= MAX_TX_FIFOS
;
7639 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7643 *dev_multiq
= multiq
;
7645 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7646 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7648 "Tx steering is not supported with "
7649 "one fifo. Disabling Tx steering.\n");
7650 tx_steering_type
= NO_STEERING
;
7653 if ((tx_steering_type
< NO_STEERING
) ||
7654 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7656 "Requested transmit steering not supported\n");
7657 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7658 tx_steering_type
= NO_STEERING
;
7661 if (rx_ring_num
> MAX_RX_RINGS
) {
7663 "Requested number of rx rings not supported\n");
7664 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7666 rx_ring_num
= MAX_RX_RINGS
;
7669 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7670 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7671 "Defaulting to INTA\n");
7672 *dev_intr_type
= INTA
;
7675 if ((*dev_intr_type
== MSI_X
) &&
7676 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7677 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7678 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7679 "Defaulting to INTA\n");
7680 *dev_intr_type
= INTA
;
7683 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7684 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7685 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7689 for (i
= 0; i
< MAX_RX_RINGS
; i
++)
7690 if (rx_ring_sz
[i
] > MAX_RX_BLOCKS_PER_RING
) {
7691 DBG_PRINT(ERR_DBG
, "Requested rx ring size not "
7692 "supported\nDefaulting to %d\n",
7693 MAX_RX_BLOCKS_PER_RING
);
7694 rx_ring_sz
[i
] = MAX_RX_BLOCKS_PER_RING
;
7701 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7702 * or Traffic class respectively.
7703 * @nic: device private variable
7704 * Description: The function configures the receive steering to
7705 * desired receive ring.
7706 * Return Value: SUCCESS on success and
7707 * '-1' on failure (endian settings incorrect).
7709 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7711 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7712 register u64 val64
= 0;
7714 if (ds_codepoint
> 63)
7717 val64
= RTS_DS_MEM_DATA(ring
);
7718 writeq(val64
, &bar0
->rts_ds_mem_data
);
7720 val64
= RTS_DS_MEM_CTRL_WE
|
7721 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7722 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7724 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7726 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7727 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7731 static const struct net_device_ops s2io_netdev_ops
= {
7732 .ndo_open
= s2io_open
,
7733 .ndo_stop
= s2io_close
,
7734 .ndo_get_stats
= s2io_get_stats
,
7735 .ndo_start_xmit
= s2io_xmit
,
7736 .ndo_validate_addr
= eth_validate_addr
,
7737 .ndo_set_multicast_list
= s2io_set_multicast
,
7738 .ndo_do_ioctl
= s2io_ioctl
,
7739 .ndo_set_mac_address
= s2io_set_mac_addr
,
7740 .ndo_change_mtu
= s2io_change_mtu
,
7741 .ndo_set_features
= s2io_set_features
,
7742 .ndo_vlan_rx_register
= s2io_vlan_rx_register
,
7743 .ndo_vlan_rx_kill_vid
= s2io_vlan_rx_kill_vid
,
7744 .ndo_tx_timeout
= s2io_tx_watchdog
,
7745 #ifdef CONFIG_NET_POLL_CONTROLLER
7746 .ndo_poll_controller
= s2io_netpoll
,
7751 * s2io_init_nic - Initialization of the adapter .
7752 * @pdev : structure containing the PCI related information of the device.
7753 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7755 * The function initializes an adapter identified by the pci_dec structure.
7756 * All OS related initialization including memory and device structure and
7757 * initlaization of the device private variable is done. Also the swapper
7758 * control register is initialized to enable read and write into the I/O
7759 * registers of the device.
7761 * returns 0 on success and negative on failure.
7764 static int __devinit
7765 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7767 struct s2io_nic
*sp
;
7768 struct net_device
*dev
;
7770 int dma_flag
= false;
7771 u32 mac_up
, mac_down
;
7772 u64 val64
= 0, tmp64
= 0;
7773 struct XENA_dev_config __iomem
*bar0
= NULL
;
7775 struct config_param
*config
;
7776 struct mac_info
*mac_control
;
7778 u8 dev_intr_type
= intr_type
;
7781 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7785 ret
= pci_enable_device(pdev
);
7788 "%s: pci_enable_device failed\n", __func__
);
7792 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7793 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7795 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7797 "Unable to obtain 64bit DMA "
7798 "for consistent allocations\n");
7799 pci_disable_device(pdev
);
7802 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7803 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7805 pci_disable_device(pdev
);
7808 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7810 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7812 pci_disable_device(pdev
);
7816 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7818 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7820 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7821 pci_disable_device(pdev
);
7822 pci_release_regions(pdev
);
7826 pci_set_master(pdev
);
7827 pci_set_drvdata(pdev
, dev
);
7828 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7830 /* Private member variable initialized to s2io NIC structure */
7831 sp
= netdev_priv(dev
);
7834 sp
->high_dma_flag
= dma_flag
;
7835 sp
->device_enabled_once
= false;
7836 if (rx_ring_mode
== 1)
7837 sp
->rxd_mode
= RXD_MODE_1
;
7838 if (rx_ring_mode
== 2)
7839 sp
->rxd_mode
= RXD_MODE_3B
;
7841 sp
->config
.intr_type
= dev_intr_type
;
7843 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7844 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7845 sp
->device_type
= XFRAME_II_DEVICE
;
7847 sp
->device_type
= XFRAME_I_DEVICE
;
7850 /* Initialize some PCI/PCI-X fields of the NIC. */
7854 * Setting the device configuration parameters.
7855 * Most of these parameters can be specified by the user during
7856 * module insertion as they are module loadable parameters. If
7857 * these parameters are not not specified during load time, they
7858 * are initialized with default values.
7860 config
= &sp
->config
;
7861 mac_control
= &sp
->mac_control
;
7863 config
->napi
= napi
;
7864 config
->tx_steering_type
= tx_steering_type
;
7866 /* Tx side parameters. */
7867 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7868 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7870 config
->tx_fifo_num
= tx_fifo_num
;
7872 /* Initialize the fifos used for tx steering */
7873 if (config
->tx_fifo_num
< 5) {
7874 if (config
->tx_fifo_num
== 1)
7875 sp
->total_tcp_fifos
= 1;
7877 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7878 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7879 sp
->total_udp_fifos
= 1;
7880 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7882 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7883 FIFO_OTHER_MAX_NUM
);
7884 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7885 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7886 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7889 config
->multiq
= dev_multiq
;
7890 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7891 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7893 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7894 tx_cfg
->fifo_priority
= i
;
7897 /* mapping the QoS priority to the configured fifos */
7898 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7899 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7901 /* map the hashing selector table to the configured fifos */
7902 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7903 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7906 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7907 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7908 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7910 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7911 if (tx_cfg
->fifo_len
< 65) {
7912 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7916 /* + 2 because one Txd for skb->data and one Txd for UFO */
7917 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7919 /* Rx side parameters. */
7920 config
->rx_ring_num
= rx_ring_num
;
7921 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7922 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7923 struct ring_info
*ring
= &mac_control
->rings
[i
];
7925 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7926 rx_cfg
->ring_priority
= i
;
7927 ring
->rx_bufs_left
= 0;
7928 ring
->rxd_mode
= sp
->rxd_mode
;
7929 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7930 ring
->pdev
= sp
->pdev
;
7931 ring
->dev
= sp
->dev
;
7934 for (i
= 0; i
< rx_ring_num
; i
++) {
7935 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7937 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7938 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7941 /* Setting Mac Control parameters */
7942 mac_control
->rmac_pause_time
= rmac_pause_time
;
7943 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7944 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7947 /* initialize the shared memory used by the NIC and the host */
7948 if (init_shared_mem(sp
)) {
7949 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7951 goto mem_alloc_failed
;
7954 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7956 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7959 goto bar0_remap_failed
;
7962 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7964 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7967 goto bar1_remap_failed
;
7970 dev
->irq
= pdev
->irq
;
7971 dev
->base_addr
= (unsigned long)sp
->bar0
;
7973 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7974 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7975 mac_control
->tx_FIFO_start
[j
] =
7976 (struct TxFIFO_element __iomem
*)
7977 (sp
->bar1
+ (j
* 0x00020000));
7980 /* Driver entry points */
7981 dev
->netdev_ops
= &s2io_netdev_ops
;
7982 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7983 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
7984 NETIF_F_TSO
| NETIF_F_TSO6
|
7985 NETIF_F_RXCSUM
| NETIF_F_LRO
;
7986 dev
->features
|= dev
->hw_features
|
7987 NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7988 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7989 dev
->hw_features
|= NETIF_F_UFO
;
7991 dev
->features
|= NETIF_F_UFO
;
7993 if (sp
->high_dma_flag
== true)
7994 dev
->features
|= NETIF_F_HIGHDMA
;
7995 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7996 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7997 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7999 pci_save_state(sp
->pdev
);
8001 /* Setting swapper control on the NIC, for proper reset operation */
8002 if (s2io_set_swapper(sp
)) {
8003 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
8006 goto set_swap_failed
;
8009 /* Verify if the Herc works on the slot its placed into */
8010 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8011 mode
= s2io_verify_pci_mode(sp
);
8013 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
8016 goto set_swap_failed
;
8020 if (sp
->config
.intr_type
== MSI_X
) {
8021 sp
->num_entries
= config
->rx_ring_num
+ 1;
8022 ret
= s2io_enable_msi_x(sp
);
8025 ret
= s2io_test_msi(sp
);
8026 /* rollback MSI-X, will re-enable during add_isr() */
8027 remove_msix_isr(sp
);
8032 "MSI-X requested but failed to enable\n");
8033 sp
->config
.intr_type
= INTA
;
8037 if (config
->intr_type
== MSI_X
) {
8038 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
8039 struct ring_info
*ring
= &mac_control
->rings
[i
];
8041 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
8044 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8047 /* Not needed for Herc */
8048 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8050 * Fix for all "FFs" MAC address problems observed on
8053 fix_mac_address(sp
);
8058 * MAC address initialization.
8059 * For now only one mac address will be read and used.
8062 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8063 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8064 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8065 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8066 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8068 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8069 mac_down
= (u32
)tmp64
;
8070 mac_up
= (u32
) (tmp64
>> 32);
8072 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8073 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8074 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8075 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8076 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8077 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8079 /* Set the factory defined MAC address initially */
8080 dev
->addr_len
= ETH_ALEN
;
8081 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8082 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8084 /* initialize number of multicast & unicast MAC entries variables */
8085 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8086 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8087 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8088 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8089 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8090 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8091 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8092 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8095 /* store mac addresses from CAM to s2io_nic structure */
8096 do_s2io_store_unicast_mc(sp
);
8098 /* Configure MSIX vector for number of rings configured plus one */
8099 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8100 (config
->intr_type
== MSI_X
))
8101 sp
->num_entries
= config
->rx_ring_num
+ 1;
8103 /* Store the values of the MSIX table in the s2io_nic structure */
8104 store_xmsi_data(sp
);
8105 /* reset Nic and bring it to known state */
8109 * Initialize link state flags
8110 * and the card state parameter
8114 /* Initialize spinlocks */
8115 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8116 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8118 spin_lock_init(&fifo
->tx_lock
);
8122 * SXE-002: Configure link and activity LED to init state
8125 subid
= sp
->pdev
->subsystem_device
;
8126 if ((subid
& 0xFF) >= 0x07) {
8127 val64
= readq(&bar0
->gpio_control
);
8128 val64
|= 0x0000800000000000ULL
;
8129 writeq(val64
, &bar0
->gpio_control
);
8130 val64
= 0x0411040400000000ULL
;
8131 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8132 val64
= readq(&bar0
->gpio_control
);
8135 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8137 if (register_netdev(dev
)) {
8138 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8140 goto register_failed
;
8143 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8144 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8145 sp
->product_name
, pdev
->revision
);
8146 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8147 s2io_driver_version
);
8148 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8149 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8150 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8151 mode
= s2io_print_pci_mode(sp
);
8154 unregister_netdev(dev
);
8155 goto set_swap_failed
;
8158 switch (sp
->rxd_mode
) {
8160 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8164 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8169 switch (sp
->config
.napi
) {
8171 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8174 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8178 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8179 sp
->config
.tx_fifo_num
);
8181 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8182 sp
->config
.rx_ring_num
);
8184 switch (sp
->config
.intr_type
) {
8186 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8189 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8192 if (sp
->config
.multiq
) {
8193 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8194 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8196 fifo
->multiq
= config
->multiq
;
8198 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8201 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8204 switch (sp
->config
.tx_steering_type
) {
8206 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8209 case TX_PRIORITY_STEERING
:
8211 "%s: Priority steering enabled for transmit\n",
8214 case TX_DEFAULT_STEERING
:
8216 "%s: Default steering enabled for transmit\n",
8220 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8224 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8226 /* Initialize device name */
8227 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8230 sp
->vlan_strip_flag
= 1;
8232 sp
->vlan_strip_flag
= 0;
8235 * Make Link state as off at this point, when the Link change
8236 * interrupt comes the state will be automatically changed to
8239 netif_carrier_off(dev
);
8250 free_shared_mem(sp
);
8251 pci_disable_device(pdev
);
8252 pci_release_regions(pdev
);
8253 pci_set_drvdata(pdev
, NULL
);
8260 * s2io_rem_nic - Free the PCI device
8261 * @pdev: structure containing the PCI related information of the device.
8262 * Description: This function is called by the Pci subsystem to release a
8263 * PCI device and free up all resource held up by the device. This could
8264 * be in response to a Hot plug event or when the driver is to be removed
8268 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8270 struct net_device
*dev
= pci_get_drvdata(pdev
);
8271 struct s2io_nic
*sp
;
8274 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8278 sp
= netdev_priv(dev
);
8280 cancel_work_sync(&sp
->rst_timer_task
);
8281 cancel_work_sync(&sp
->set_link_task
);
8283 unregister_netdev(dev
);
8285 free_shared_mem(sp
);
8288 pci_release_regions(pdev
);
8289 pci_set_drvdata(pdev
, NULL
);
8291 pci_disable_device(pdev
);
8295 * s2io_starter - Entry point for the driver
8296 * Description: This function is the entry point for the driver. It verifies
8297 * the module loadable parameters and initializes PCI configuration space.
8300 static int __init
s2io_starter(void)
8302 return pci_register_driver(&s2io_driver
);
8306 * s2io_closer - Cleanup routine for the driver
8307 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8310 static __exit
void s2io_closer(void)
8312 pci_unregister_driver(&s2io_driver
);
8313 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8316 module_init(s2io_starter
);
8317 module_exit(s2io_closer
);
8319 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8320 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8321 struct s2io_nic
*sp
)
8324 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8326 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8328 "%s: Non-TCP frames not supported for LRO\n",
8333 /* Checking for DIX type or DIX type with VLAN */
8334 if ((l2_type
== 0) || (l2_type
== 4)) {
8335 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8337 * If vlan stripping is disabled and the frame is VLAN tagged,
8338 * shift the offset by the VLAN header size bytes.
8340 if ((!sp
->vlan_strip_flag
) &&
8341 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8342 ip_off
+= HEADER_VLAN_SIZE
;
8344 /* LLC, SNAP etc are considered non-mergeable */
8348 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8349 ip_len
= (u8
)((*ip
)->ihl
);
8351 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8356 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8359 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8360 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8361 (lro
->iph
->daddr
!= ip
->daddr
) ||
8362 (lro
->tcph
->source
!= tcp
->source
) ||
8363 (lro
->tcph
->dest
!= tcp
->dest
))
8368 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8370 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8373 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8374 struct iphdr
*ip
, struct tcphdr
*tcp
,
8375 u32 tcp_pyld_len
, u16 vlan_tag
)
8377 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8381 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8382 lro
->tcp_ack
= tcp
->ack_seq
;
8384 lro
->total_len
= ntohs(ip
->tot_len
);
8386 lro
->vlan_tag
= vlan_tag
;
8388 * Check if we saw TCP timestamp.
8389 * Other consistency checks have already been done.
8391 if (tcp
->doff
== 8) {
8393 ptr
= (__be32
*)(tcp
+1);
8395 lro
->cur_tsval
= ntohl(*(ptr
+1));
8396 lro
->cur_tsecr
= *(ptr
+2);
8401 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8403 struct iphdr
*ip
= lro
->iph
;
8404 struct tcphdr
*tcp
= lro
->tcph
;
8406 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8408 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8410 /* Update L3 header */
8411 ip
->tot_len
= htons(lro
->total_len
);
8413 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8416 /* Update L4 header */
8417 tcp
->ack_seq
= lro
->tcp_ack
;
8418 tcp
->window
= lro
->window
;
8420 /* Update tsecr field if this session has timestamps enabled */
8422 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8423 *(ptr
+2) = lro
->cur_tsecr
;
8426 /* Update counters required for calculation of
8427 * average no. of packets aggregated.
8429 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8430 swstats
->num_aggregations
++;
8433 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8434 struct tcphdr
*tcp
, u32 l4_pyld
)
8436 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8437 lro
->total_len
+= l4_pyld
;
8438 lro
->frags_len
+= l4_pyld
;
8439 lro
->tcp_next_seq
+= l4_pyld
;
8442 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8443 lro
->tcp_ack
= tcp
->ack_seq
;
8444 lro
->window
= tcp
->window
;
8448 /* Update tsecr and tsval from this packet */
8449 ptr
= (__be32
*)(tcp
+1);
8450 lro
->cur_tsval
= ntohl(*(ptr
+1));
8451 lro
->cur_tsecr
= *(ptr
+ 2);
8455 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8456 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8460 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8462 if (!tcp_pyld_len
) {
8463 /* Runt frame or a pure ack */
8467 if (ip
->ihl
!= 5) /* IP has options */
8470 /* If we see CE codepoint in IP header, packet is not mergeable */
8471 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8474 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8475 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8476 tcp
->syn
|| tcp
->fin
||
8477 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8479 * Currently recognize only the ack control word and
8480 * any other control field being set would result in
8481 * flushing the LRO session
8487 * Allow only one TCP timestamp option. Don't aggregate if
8488 * any other options are detected.
8490 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8493 if (tcp
->doff
== 8) {
8494 ptr
= (u8
*)(tcp
+ 1);
8495 while (*ptr
== TCPOPT_NOP
)
8497 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8500 /* Ensure timestamp value increases monotonically */
8502 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8505 /* timestamp echo reply should be non-zero */
8506 if (*((__be32
*)(ptr
+6)) == 0)
8513 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8514 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8515 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8518 struct tcphdr
*tcph
;
8521 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8523 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8528 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8530 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8531 tcph
= (struct tcphdr
*)*tcp
;
8532 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8533 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8534 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8535 if (l_lro
->in_use
) {
8536 if (check_for_socket_match(l_lro
, ip
, tcph
))
8538 /* Sock pair matched */
8541 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8542 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8543 "expected 0x%x, actual 0x%x\n",
8545 (*lro
)->tcp_next_seq
,
8548 swstats
->outof_sequence_pkts
++;
8553 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8555 ret
= 1; /* Aggregate */
8557 ret
= 2; /* Flush both */
8563 /* Before searching for available LRO objects,
8564 * check if the pkt is L3/L4 aggregatable. If not
8565 * don't create new LRO session. Just send this
8568 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8571 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8572 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8573 if (!(l_lro
->in_use
)) {
8575 ret
= 3; /* Begin anew */
8581 if (ret
== 0) { /* sessions exceeded */
8582 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8590 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8594 update_L3L4_header(sp
, *lro
);
8597 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8598 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8599 update_L3L4_header(sp
, *lro
);
8600 ret
= 4; /* Flush the LRO */
8604 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8611 static void clear_lro_session(struct lro
*lro
)
8613 static u16 lro_struct_size
= sizeof(struct lro
);
8615 memset(lro
, 0, lro_struct_size
);
8618 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8620 struct net_device
*dev
= skb
->dev
;
8621 struct s2io_nic
*sp
= netdev_priv(dev
);
8623 skb
->protocol
= eth_type_trans(skb
, dev
);
8624 if (sp
->vlgrp
&& vlan_tag
&& (sp
->vlan_strip_flag
)) {
8625 /* Queueing the vlan frame to the upper layer */
8626 if (sp
->config
.napi
)
8627 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8629 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8631 if (sp
->config
.napi
)
8632 netif_receive_skb(skb
);
8638 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8639 struct sk_buff
*skb
, u32 tcp_len
)
8641 struct sk_buff
*first
= lro
->parent
;
8642 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8644 first
->len
+= tcp_len
;
8645 first
->data_len
= lro
->frags_len
;
8646 skb_pull(skb
, (skb
->len
- tcp_len
));
8647 if (skb_shinfo(first
)->frag_list
)
8648 lro
->last_frag
->next
= skb
;
8650 skb_shinfo(first
)->frag_list
= skb
;
8651 first
->truesize
+= skb
->truesize
;
8652 lro
->last_frag
= skb
;
8653 swstats
->clubbed_frms_cnt
++;
8657 * s2io_io_error_detected - called when PCI error is detected
8658 * @pdev: Pointer to PCI device
8659 * @state: The current pci connection state
8661 * This function is called after a PCI bus error affecting
8662 * this device has been detected.
8664 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8665 pci_channel_state_t state
)
8667 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8668 struct s2io_nic
*sp
= netdev_priv(netdev
);
8670 netif_device_detach(netdev
);
8672 if (state
== pci_channel_io_perm_failure
)
8673 return PCI_ERS_RESULT_DISCONNECT
;
8675 if (netif_running(netdev
)) {
8676 /* Bring down the card, while avoiding PCI I/O */
8677 do_s2io_card_down(sp
, 0);
8679 pci_disable_device(pdev
);
8681 return PCI_ERS_RESULT_NEED_RESET
;
8685 * s2io_io_slot_reset - called after the pci bus has been reset.
8686 * @pdev: Pointer to PCI device
8688 * Restart the card from scratch, as if from a cold-boot.
8689 * At this point, the card has exprienced a hard reset,
8690 * followed by fixups by BIOS, and has its config space
8691 * set up identically to what it was at cold boot.
8693 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8695 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8696 struct s2io_nic
*sp
= netdev_priv(netdev
);
8698 if (pci_enable_device(pdev
)) {
8699 pr_err("Cannot re-enable PCI device after reset.\n");
8700 return PCI_ERS_RESULT_DISCONNECT
;
8703 pci_set_master(pdev
);
8706 return PCI_ERS_RESULT_RECOVERED
;
8710 * s2io_io_resume - called when traffic can start flowing again.
8711 * @pdev: Pointer to PCI device
8713 * This callback is called when the error recovery driver tells
8714 * us that its OK to resume normal operation.
8716 static void s2io_io_resume(struct pci_dev
*pdev
)
8718 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8719 struct s2io_nic
*sp
= netdev_priv(netdev
);
8721 if (netif_running(netdev
)) {
8722 if (s2io_card_up(sp
)) {
8723 pr_err("Can't bring device back up after reset.\n");
8727 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8729 pr_err("Can't restore mac addr after reset.\n");
8734 netif_device_attach(netdev
);
8735 netif_tx_wake_all_queues(netdev
);