x86: add loglevel to printks
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob51c9e2c0164068681b299b37f48840af59d5c79d
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
45 int i;
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
57 int i;
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(void)
76 int nid;
77 struct page *page = NULL;
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
89 return page;
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
95 int nid;
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 struct zonelist *zonelist = huge_zonelist(vma, address,
99 htlb_alloc_mask, &mpol);
100 struct zone **z;
102 for (z = zonelist->zones; *z; z++) {
103 nid = zone_to_nid(*z);
104 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
105 !list_empty(&hugepage_freelists[nid])) {
106 page = list_entry(hugepage_freelists[nid].next,
107 struct page, lru);
108 list_del(&page->lru);
109 free_huge_pages--;
110 free_huge_pages_node[nid]--;
111 if (vma && vma->vm_flags & VM_MAYSHARE)
112 resv_huge_pages--;
113 break;
116 mpol_free(mpol); /* unref if mpol !NULL */
117 return page;
120 static void update_and_free_page(struct page *page)
122 int i;
123 nr_huge_pages--;
124 nr_huge_pages_node[page_to_nid(page)]--;
125 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
126 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
127 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
128 1 << PG_private | 1<< PG_writeback);
130 set_compound_page_dtor(page, NULL);
131 set_page_refcounted(page);
132 __free_pages(page, HUGETLB_PAGE_ORDER);
135 static void free_huge_page(struct page *page)
137 int nid = page_to_nid(page);
138 struct address_space *mapping;
140 mapping = (struct address_space *) page_private(page);
141 set_page_private(page, 0);
142 BUG_ON(page_count(page));
143 INIT_LIST_HEAD(&page->lru);
145 spin_lock(&hugetlb_lock);
146 if (surplus_huge_pages_node[nid]) {
147 update_and_free_page(page);
148 surplus_huge_pages--;
149 surplus_huge_pages_node[nid]--;
150 } else {
151 enqueue_huge_page(page);
153 spin_unlock(&hugetlb_lock);
154 if (mapping)
155 hugetlb_put_quota(mapping, 1);
159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
163 static int adjust_pool_surplus(int delta)
165 static int prev_nid;
166 int nid = prev_nid;
167 int ret = 0;
169 VM_BUG_ON(delta != -1 && delta != 1);
170 do {
171 nid = next_node(nid, node_online_map);
172 if (nid == MAX_NUMNODES)
173 nid = first_node(node_online_map);
175 /* To shrink on this node, there must be a surplus page */
176 if (delta < 0 && !surplus_huge_pages_node[nid])
177 continue;
178 /* Surplus cannot exceed the total number of pages */
179 if (delta > 0 && surplus_huge_pages_node[nid] >=
180 nr_huge_pages_node[nid])
181 continue;
183 surplus_huge_pages += delta;
184 surplus_huge_pages_node[nid] += delta;
185 ret = 1;
186 break;
187 } while (nid != prev_nid);
189 prev_nid = nid;
190 return ret;
193 static struct page *alloc_fresh_huge_page_node(int nid)
195 struct page *page;
197 page = alloc_pages_node(nid,
198 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
199 HUGETLB_PAGE_ORDER);
200 if (page) {
201 set_compound_page_dtor(page, free_huge_page);
202 spin_lock(&hugetlb_lock);
203 nr_huge_pages++;
204 nr_huge_pages_node[nid]++;
205 spin_unlock(&hugetlb_lock);
206 put_page(page); /* free it into the hugepage allocator */
209 return page;
212 static int alloc_fresh_huge_page(void)
214 struct page *page;
215 int start_nid;
216 int next_nid;
217 int ret = 0;
219 start_nid = hugetlb_next_nid;
221 do {
222 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
223 if (page)
224 ret = 1;
226 * Use a helper variable to find the next node and then
227 * copy it back to hugetlb_next_nid afterwards:
228 * otherwise there's a window in which a racer might
229 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230 * But we don't need to use a spin_lock here: it really
231 * doesn't matter if occasionally a racer chooses the
232 * same nid as we do. Move nid forward in the mask even
233 * if we just successfully allocated a hugepage so that
234 * the next caller gets hugepages on the next node.
236 next_nid = next_node(hugetlb_next_nid, node_online_map);
237 if (next_nid == MAX_NUMNODES)
238 next_nid = first_node(node_online_map);
239 hugetlb_next_nid = next_nid;
240 } while (!page && hugetlb_next_nid != start_nid);
242 return ret;
245 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
246 unsigned long address)
248 struct page *page;
249 unsigned int nid;
252 * Assume we will successfully allocate the surplus page to
253 * prevent racing processes from causing the surplus to exceed
254 * overcommit
256 * This however introduces a different race, where a process B
257 * tries to grow the static hugepage pool while alloc_pages() is
258 * called by process A. B will only examine the per-node
259 * counters in determining if surplus huge pages can be
260 * converted to normal huge pages in adjust_pool_surplus(). A
261 * won't be able to increment the per-node counter, until the
262 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263 * no more huge pages can be converted from surplus to normal
264 * state (and doesn't try to convert again). Thus, we have a
265 * case where a surplus huge page exists, the pool is grown, and
266 * the surplus huge page still exists after, even though it
267 * should just have been converted to a normal huge page. This
268 * does not leak memory, though, as the hugepage will be freed
269 * once it is out of use. It also does not allow the counters to
270 * go out of whack in adjust_pool_surplus() as we don't modify
271 * the node values until we've gotten the hugepage and only the
272 * per-node value is checked there.
274 spin_lock(&hugetlb_lock);
275 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
276 spin_unlock(&hugetlb_lock);
277 return NULL;
278 } else {
279 nr_huge_pages++;
280 surplus_huge_pages++;
282 spin_unlock(&hugetlb_lock);
284 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
285 HUGETLB_PAGE_ORDER);
287 spin_lock(&hugetlb_lock);
288 if (page) {
290 * This page is now managed by the hugetlb allocator and has
291 * no users -- drop the buddy allocator's reference.
293 put_page_testzero(page);
294 VM_BUG_ON(page_count(page));
295 nid = page_to_nid(page);
296 set_compound_page_dtor(page, free_huge_page);
298 * We incremented the global counters already
300 nr_huge_pages_node[nid]++;
301 surplus_huge_pages_node[nid]++;
302 } else {
303 nr_huge_pages--;
304 surplus_huge_pages--;
306 spin_unlock(&hugetlb_lock);
308 return page;
312 * Increase the hugetlb pool such that it can accomodate a reservation
313 * of size 'delta'.
315 static int gather_surplus_pages(int delta)
317 struct list_head surplus_list;
318 struct page *page, *tmp;
319 int ret, i;
320 int needed, allocated;
322 needed = (resv_huge_pages + delta) - free_huge_pages;
323 if (needed <= 0) {
324 resv_huge_pages += delta;
325 return 0;
328 allocated = 0;
329 INIT_LIST_HEAD(&surplus_list);
331 ret = -ENOMEM;
332 retry:
333 spin_unlock(&hugetlb_lock);
334 for (i = 0; i < needed; i++) {
335 page = alloc_buddy_huge_page(NULL, 0);
336 if (!page) {
338 * We were not able to allocate enough pages to
339 * satisfy the entire reservation so we free what
340 * we've allocated so far.
342 spin_lock(&hugetlb_lock);
343 needed = 0;
344 goto free;
347 list_add(&page->lru, &surplus_list);
349 allocated += needed;
352 * After retaking hugetlb_lock, we need to recalculate 'needed'
353 * because either resv_huge_pages or free_huge_pages may have changed.
355 spin_lock(&hugetlb_lock);
356 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
357 if (needed > 0)
358 goto retry;
361 * The surplus_list now contains _at_least_ the number of extra pages
362 * needed to accomodate the reservation. Add the appropriate number
363 * of pages to the hugetlb pool and free the extras back to the buddy
364 * allocator. Commit the entire reservation here to prevent another
365 * process from stealing the pages as they are added to the pool but
366 * before they are reserved.
368 needed += allocated;
369 resv_huge_pages += delta;
370 ret = 0;
371 free:
372 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
373 list_del(&page->lru);
374 if ((--needed) >= 0)
375 enqueue_huge_page(page);
376 else {
378 * The page has a reference count of zero already, so
379 * call free_huge_page directly instead of using
380 * put_page. This must be done with hugetlb_lock
381 * unlocked which is safe because free_huge_page takes
382 * hugetlb_lock before deciding how to free the page.
384 spin_unlock(&hugetlb_lock);
385 free_huge_page(page);
386 spin_lock(&hugetlb_lock);
390 return ret;
394 * When releasing a hugetlb pool reservation, any surplus pages that were
395 * allocated to satisfy the reservation must be explicitly freed if they were
396 * never used.
398 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
400 static int nid = -1;
401 struct page *page;
402 unsigned long nr_pages;
405 * We want to release as many surplus pages as possible, spread
406 * evenly across all nodes. Iterate across all nodes until we
407 * can no longer free unreserved surplus pages. This occurs when
408 * the nodes with surplus pages have no free pages.
410 unsigned long remaining_iterations = num_online_nodes();
412 /* Uncommit the reservation */
413 resv_huge_pages -= unused_resv_pages;
415 nr_pages = min(unused_resv_pages, surplus_huge_pages);
417 while (remaining_iterations-- && nr_pages) {
418 nid = next_node(nid, node_online_map);
419 if (nid == MAX_NUMNODES)
420 nid = first_node(node_online_map);
422 if (!surplus_huge_pages_node[nid])
423 continue;
425 if (!list_empty(&hugepage_freelists[nid])) {
426 page = list_entry(hugepage_freelists[nid].next,
427 struct page, lru);
428 list_del(&page->lru);
429 update_and_free_page(page);
430 free_huge_pages--;
431 free_huge_pages_node[nid]--;
432 surplus_huge_pages--;
433 surplus_huge_pages_node[nid]--;
434 nr_pages--;
435 remaining_iterations = num_online_nodes();
441 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
442 unsigned long addr)
444 struct page *page;
446 spin_lock(&hugetlb_lock);
447 page = dequeue_huge_page_vma(vma, addr);
448 spin_unlock(&hugetlb_lock);
449 return page ? page : ERR_PTR(-VM_FAULT_OOM);
452 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
453 unsigned long addr)
455 struct page *page = NULL;
457 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
458 return ERR_PTR(-VM_FAULT_SIGBUS);
460 spin_lock(&hugetlb_lock);
461 if (free_huge_pages > resv_huge_pages)
462 page = dequeue_huge_page_vma(vma, addr);
463 spin_unlock(&hugetlb_lock);
464 if (!page) {
465 page = alloc_buddy_huge_page(vma, addr);
466 if (!page) {
467 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
468 return ERR_PTR(-VM_FAULT_OOM);
471 return page;
474 static struct page *alloc_huge_page(struct vm_area_struct *vma,
475 unsigned long addr)
477 struct page *page;
478 struct address_space *mapping = vma->vm_file->f_mapping;
480 if (vma->vm_flags & VM_MAYSHARE)
481 page = alloc_huge_page_shared(vma, addr);
482 else
483 page = alloc_huge_page_private(vma, addr);
485 if (!IS_ERR(page)) {
486 set_page_refcounted(page);
487 set_page_private(page, (unsigned long) mapping);
489 return page;
492 static int __init hugetlb_init(void)
494 unsigned long i;
496 if (HPAGE_SHIFT == 0)
497 return 0;
499 for (i = 0; i < MAX_NUMNODES; ++i)
500 INIT_LIST_HEAD(&hugepage_freelists[i]);
502 hugetlb_next_nid = first_node(node_online_map);
504 for (i = 0; i < max_huge_pages; ++i) {
505 if (!alloc_fresh_huge_page())
506 break;
508 max_huge_pages = free_huge_pages = nr_huge_pages = i;
509 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
510 return 0;
512 module_init(hugetlb_init);
514 static int __init hugetlb_setup(char *s)
516 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
517 max_huge_pages = 0;
518 return 1;
520 __setup("hugepages=", hugetlb_setup);
522 static unsigned int cpuset_mems_nr(unsigned int *array)
524 int node;
525 unsigned int nr = 0;
527 for_each_node_mask(node, cpuset_current_mems_allowed)
528 nr += array[node];
530 return nr;
533 #ifdef CONFIG_SYSCTL
534 #ifdef CONFIG_HIGHMEM
535 static void try_to_free_low(unsigned long count)
537 int i;
539 for (i = 0; i < MAX_NUMNODES; ++i) {
540 struct page *page, *next;
541 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
542 if (count >= nr_huge_pages)
543 return;
544 if (PageHighMem(page))
545 continue;
546 list_del(&page->lru);
547 update_and_free_page(page);
548 free_huge_pages--;
549 free_huge_pages_node[page_to_nid(page)]--;
553 #else
554 static inline void try_to_free_low(unsigned long count)
557 #endif
559 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
560 static unsigned long set_max_huge_pages(unsigned long count)
562 unsigned long min_count, ret;
565 * Increase the pool size
566 * First take pages out of surplus state. Then make up the
567 * remaining difference by allocating fresh huge pages.
569 * We might race with alloc_buddy_huge_page() here and be unable
570 * to convert a surplus huge page to a normal huge page. That is
571 * not critical, though, it just means the overall size of the
572 * pool might be one hugepage larger than it needs to be, but
573 * within all the constraints specified by the sysctls.
575 spin_lock(&hugetlb_lock);
576 while (surplus_huge_pages && count > persistent_huge_pages) {
577 if (!adjust_pool_surplus(-1))
578 break;
581 while (count > persistent_huge_pages) {
582 int ret;
584 * If this allocation races such that we no longer need the
585 * page, free_huge_page will handle it by freeing the page
586 * and reducing the surplus.
588 spin_unlock(&hugetlb_lock);
589 ret = alloc_fresh_huge_page();
590 spin_lock(&hugetlb_lock);
591 if (!ret)
592 goto out;
597 * Decrease the pool size
598 * First return free pages to the buddy allocator (being careful
599 * to keep enough around to satisfy reservations). Then place
600 * pages into surplus state as needed so the pool will shrink
601 * to the desired size as pages become free.
603 * By placing pages into the surplus state independent of the
604 * overcommit value, we are allowing the surplus pool size to
605 * exceed overcommit. There are few sane options here. Since
606 * alloc_buddy_huge_page() is checking the global counter,
607 * though, we'll note that we're not allowed to exceed surplus
608 * and won't grow the pool anywhere else. Not until one of the
609 * sysctls are changed, or the surplus pages go out of use.
611 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
612 min_count = max(count, min_count);
613 try_to_free_low(min_count);
614 while (min_count < persistent_huge_pages) {
615 struct page *page = dequeue_huge_page();
616 if (!page)
617 break;
618 update_and_free_page(page);
620 while (count < persistent_huge_pages) {
621 if (!adjust_pool_surplus(1))
622 break;
624 out:
625 ret = persistent_huge_pages;
626 spin_unlock(&hugetlb_lock);
627 return ret;
630 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
631 struct file *file, void __user *buffer,
632 size_t *length, loff_t *ppos)
634 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
635 max_huge_pages = set_max_huge_pages(max_huge_pages);
636 return 0;
639 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
640 struct file *file, void __user *buffer,
641 size_t *length, loff_t *ppos)
643 proc_dointvec(table, write, file, buffer, length, ppos);
644 if (hugepages_treat_as_movable)
645 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
646 else
647 htlb_alloc_mask = GFP_HIGHUSER;
648 return 0;
651 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
652 struct file *file, void __user *buffer,
653 size_t *length, loff_t *ppos)
655 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
656 spin_lock(&hugetlb_lock);
657 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
658 spin_unlock(&hugetlb_lock);
659 return 0;
662 #endif /* CONFIG_SYSCTL */
664 int hugetlb_report_meminfo(char *buf)
666 return sprintf(buf,
667 "HugePages_Total: %5lu\n"
668 "HugePages_Free: %5lu\n"
669 "HugePages_Rsvd: %5lu\n"
670 "HugePages_Surp: %5lu\n"
671 "Hugepagesize: %5lu kB\n",
672 nr_huge_pages,
673 free_huge_pages,
674 resv_huge_pages,
675 surplus_huge_pages,
676 HPAGE_SIZE/1024);
679 int hugetlb_report_node_meminfo(int nid, char *buf)
681 return sprintf(buf,
682 "Node %d HugePages_Total: %5u\n"
683 "Node %d HugePages_Free: %5u\n"
684 "Node %d HugePages_Surp: %5u\n",
685 nid, nr_huge_pages_node[nid],
686 nid, free_huge_pages_node[nid],
687 nid, surplus_huge_pages_node[nid]);
690 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
691 unsigned long hugetlb_total_pages(void)
693 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
697 * We cannot handle pagefaults against hugetlb pages at all. They cause
698 * handle_mm_fault() to try to instantiate regular-sized pages in the
699 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
700 * this far.
702 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
704 BUG();
705 return 0;
708 struct vm_operations_struct hugetlb_vm_ops = {
709 .fault = hugetlb_vm_op_fault,
712 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
713 int writable)
715 pte_t entry;
717 if (writable) {
718 entry =
719 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
720 } else {
721 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
723 entry = pte_mkyoung(entry);
724 entry = pte_mkhuge(entry);
726 return entry;
729 static void set_huge_ptep_writable(struct vm_area_struct *vma,
730 unsigned long address, pte_t *ptep)
732 pte_t entry;
734 entry = pte_mkwrite(pte_mkdirty(*ptep));
735 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
736 update_mmu_cache(vma, address, entry);
741 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
742 struct vm_area_struct *vma)
744 pte_t *src_pte, *dst_pte, entry;
745 struct page *ptepage;
746 unsigned long addr;
747 int cow;
749 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
751 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
752 src_pte = huge_pte_offset(src, addr);
753 if (!src_pte)
754 continue;
755 dst_pte = huge_pte_alloc(dst, addr);
756 if (!dst_pte)
757 goto nomem;
759 /* If the pagetables are shared don't copy or take references */
760 if (dst_pte == src_pte)
761 continue;
763 spin_lock(&dst->page_table_lock);
764 spin_lock(&src->page_table_lock);
765 if (!pte_none(*src_pte)) {
766 if (cow)
767 ptep_set_wrprotect(src, addr, src_pte);
768 entry = *src_pte;
769 ptepage = pte_page(entry);
770 get_page(ptepage);
771 set_huge_pte_at(dst, addr, dst_pte, entry);
773 spin_unlock(&src->page_table_lock);
774 spin_unlock(&dst->page_table_lock);
776 return 0;
778 nomem:
779 return -ENOMEM;
782 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
783 unsigned long end)
785 struct mm_struct *mm = vma->vm_mm;
786 unsigned long address;
787 pte_t *ptep;
788 pte_t pte;
789 struct page *page;
790 struct page *tmp;
792 * A page gathering list, protected by per file i_mmap_lock. The
793 * lock is used to avoid list corruption from multiple unmapping
794 * of the same page since we are using page->lru.
796 LIST_HEAD(page_list);
798 WARN_ON(!is_vm_hugetlb_page(vma));
799 BUG_ON(start & ~HPAGE_MASK);
800 BUG_ON(end & ~HPAGE_MASK);
802 spin_lock(&mm->page_table_lock);
803 for (address = start; address < end; address += HPAGE_SIZE) {
804 ptep = huge_pte_offset(mm, address);
805 if (!ptep)
806 continue;
808 if (huge_pmd_unshare(mm, &address, ptep))
809 continue;
811 pte = huge_ptep_get_and_clear(mm, address, ptep);
812 if (pte_none(pte))
813 continue;
815 page = pte_page(pte);
816 if (pte_dirty(pte))
817 set_page_dirty(page);
818 list_add(&page->lru, &page_list);
820 spin_unlock(&mm->page_table_lock);
821 flush_tlb_range(vma, start, end);
822 list_for_each_entry_safe(page, tmp, &page_list, lru) {
823 list_del(&page->lru);
824 put_page(page);
828 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
829 unsigned long end)
832 * It is undesirable to test vma->vm_file as it should be non-null
833 * for valid hugetlb area. However, vm_file will be NULL in the error
834 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
835 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
836 * to clean up. Since no pte has actually been setup, it is safe to
837 * do nothing in this case.
839 if (vma->vm_file) {
840 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
841 __unmap_hugepage_range(vma, start, end);
842 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
846 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
847 unsigned long address, pte_t *ptep, pte_t pte)
849 struct page *old_page, *new_page;
850 int avoidcopy;
852 old_page = pte_page(pte);
854 /* If no-one else is actually using this page, avoid the copy
855 * and just make the page writable */
856 avoidcopy = (page_count(old_page) == 1);
857 if (avoidcopy) {
858 set_huge_ptep_writable(vma, address, ptep);
859 return 0;
862 page_cache_get(old_page);
863 new_page = alloc_huge_page(vma, address);
865 if (IS_ERR(new_page)) {
866 page_cache_release(old_page);
867 return -PTR_ERR(new_page);
870 spin_unlock(&mm->page_table_lock);
871 copy_huge_page(new_page, old_page, address, vma);
872 __SetPageUptodate(new_page);
873 spin_lock(&mm->page_table_lock);
875 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
876 if (likely(pte_same(*ptep, pte))) {
877 /* Break COW */
878 set_huge_pte_at(mm, address, ptep,
879 make_huge_pte(vma, new_page, 1));
880 /* Make the old page be freed below */
881 new_page = old_page;
883 page_cache_release(new_page);
884 page_cache_release(old_page);
885 return 0;
888 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
889 unsigned long address, pte_t *ptep, int write_access)
891 int ret = VM_FAULT_SIGBUS;
892 unsigned long idx;
893 unsigned long size;
894 struct page *page;
895 struct address_space *mapping;
896 pte_t new_pte;
898 mapping = vma->vm_file->f_mapping;
899 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
900 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
903 * Use page lock to guard against racing truncation
904 * before we get page_table_lock.
906 retry:
907 page = find_lock_page(mapping, idx);
908 if (!page) {
909 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
910 if (idx >= size)
911 goto out;
912 page = alloc_huge_page(vma, address);
913 if (IS_ERR(page)) {
914 ret = -PTR_ERR(page);
915 goto out;
917 clear_huge_page(page, address);
918 __SetPageUptodate(page);
920 if (vma->vm_flags & VM_SHARED) {
921 int err;
922 struct inode *inode = mapping->host;
924 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
925 if (err) {
926 put_page(page);
927 if (err == -EEXIST)
928 goto retry;
929 goto out;
932 spin_lock(&inode->i_lock);
933 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
934 spin_unlock(&inode->i_lock);
935 } else
936 lock_page(page);
939 spin_lock(&mm->page_table_lock);
940 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
941 if (idx >= size)
942 goto backout;
944 ret = 0;
945 if (!pte_none(*ptep))
946 goto backout;
948 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
949 && (vma->vm_flags & VM_SHARED)));
950 set_huge_pte_at(mm, address, ptep, new_pte);
952 if (write_access && !(vma->vm_flags & VM_SHARED)) {
953 /* Optimization, do the COW without a second fault */
954 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
957 spin_unlock(&mm->page_table_lock);
958 unlock_page(page);
959 out:
960 return ret;
962 backout:
963 spin_unlock(&mm->page_table_lock);
964 unlock_page(page);
965 put_page(page);
966 goto out;
969 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
970 unsigned long address, int write_access)
972 pte_t *ptep;
973 pte_t entry;
974 int ret;
975 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
977 ptep = huge_pte_alloc(mm, address);
978 if (!ptep)
979 return VM_FAULT_OOM;
982 * Serialize hugepage allocation and instantiation, so that we don't
983 * get spurious allocation failures if two CPUs race to instantiate
984 * the same page in the page cache.
986 mutex_lock(&hugetlb_instantiation_mutex);
987 entry = *ptep;
988 if (pte_none(entry)) {
989 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
990 mutex_unlock(&hugetlb_instantiation_mutex);
991 return ret;
994 ret = 0;
996 spin_lock(&mm->page_table_lock);
997 /* Check for a racing update before calling hugetlb_cow */
998 if (likely(pte_same(entry, *ptep)))
999 if (write_access && !pte_write(entry))
1000 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1001 spin_unlock(&mm->page_table_lock);
1002 mutex_unlock(&hugetlb_instantiation_mutex);
1004 return ret;
1007 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1008 struct page **pages, struct vm_area_struct **vmas,
1009 unsigned long *position, int *length, int i,
1010 int write)
1012 unsigned long pfn_offset;
1013 unsigned long vaddr = *position;
1014 int remainder = *length;
1016 spin_lock(&mm->page_table_lock);
1017 while (vaddr < vma->vm_end && remainder) {
1018 pte_t *pte;
1019 struct page *page;
1022 * Some archs (sparc64, sh*) have multiple pte_ts to
1023 * each hugepage. We have to make * sure we get the
1024 * first, for the page indexing below to work.
1026 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1028 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1029 int ret;
1031 spin_unlock(&mm->page_table_lock);
1032 ret = hugetlb_fault(mm, vma, vaddr, write);
1033 spin_lock(&mm->page_table_lock);
1034 if (!(ret & VM_FAULT_ERROR))
1035 continue;
1037 remainder = 0;
1038 if (!i)
1039 i = -EFAULT;
1040 break;
1043 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1044 page = pte_page(*pte);
1045 same_page:
1046 if (pages) {
1047 get_page(page);
1048 pages[i] = page + pfn_offset;
1051 if (vmas)
1052 vmas[i] = vma;
1054 vaddr += PAGE_SIZE;
1055 ++pfn_offset;
1056 --remainder;
1057 ++i;
1058 if (vaddr < vma->vm_end && remainder &&
1059 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1061 * We use pfn_offset to avoid touching the pageframes
1062 * of this compound page.
1064 goto same_page;
1067 spin_unlock(&mm->page_table_lock);
1068 *length = remainder;
1069 *position = vaddr;
1071 return i;
1074 void hugetlb_change_protection(struct vm_area_struct *vma,
1075 unsigned long address, unsigned long end, pgprot_t newprot)
1077 struct mm_struct *mm = vma->vm_mm;
1078 unsigned long start = address;
1079 pte_t *ptep;
1080 pte_t pte;
1082 BUG_ON(address >= end);
1083 flush_cache_range(vma, address, end);
1085 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1086 spin_lock(&mm->page_table_lock);
1087 for (; address < end; address += HPAGE_SIZE) {
1088 ptep = huge_pte_offset(mm, address);
1089 if (!ptep)
1090 continue;
1091 if (huge_pmd_unshare(mm, &address, ptep))
1092 continue;
1093 if (!pte_none(*ptep)) {
1094 pte = huge_ptep_get_and_clear(mm, address, ptep);
1095 pte = pte_mkhuge(pte_modify(pte, newprot));
1096 set_huge_pte_at(mm, address, ptep, pte);
1099 spin_unlock(&mm->page_table_lock);
1100 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1102 flush_tlb_range(vma, start, end);
1105 struct file_region {
1106 struct list_head link;
1107 long from;
1108 long to;
1111 static long region_add(struct list_head *head, long f, long t)
1113 struct file_region *rg, *nrg, *trg;
1115 /* Locate the region we are either in or before. */
1116 list_for_each_entry(rg, head, link)
1117 if (f <= rg->to)
1118 break;
1120 /* Round our left edge to the current segment if it encloses us. */
1121 if (f > rg->from)
1122 f = rg->from;
1124 /* Check for and consume any regions we now overlap with. */
1125 nrg = rg;
1126 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1127 if (&rg->link == head)
1128 break;
1129 if (rg->from > t)
1130 break;
1132 /* If this area reaches higher then extend our area to
1133 * include it completely. If this is not the first area
1134 * which we intend to reuse, free it. */
1135 if (rg->to > t)
1136 t = rg->to;
1137 if (rg != nrg) {
1138 list_del(&rg->link);
1139 kfree(rg);
1142 nrg->from = f;
1143 nrg->to = t;
1144 return 0;
1147 static long region_chg(struct list_head *head, long f, long t)
1149 struct file_region *rg, *nrg;
1150 long chg = 0;
1152 /* Locate the region we are before or in. */
1153 list_for_each_entry(rg, head, link)
1154 if (f <= rg->to)
1155 break;
1157 /* If we are below the current region then a new region is required.
1158 * Subtle, allocate a new region at the position but make it zero
1159 * size such that we can guarantee to record the reservation. */
1160 if (&rg->link == head || t < rg->from) {
1161 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1162 if (!nrg)
1163 return -ENOMEM;
1164 nrg->from = f;
1165 nrg->to = f;
1166 INIT_LIST_HEAD(&nrg->link);
1167 list_add(&nrg->link, rg->link.prev);
1169 return t - f;
1172 /* Round our left edge to the current segment if it encloses us. */
1173 if (f > rg->from)
1174 f = rg->from;
1175 chg = t - f;
1177 /* Check for and consume any regions we now overlap with. */
1178 list_for_each_entry(rg, rg->link.prev, link) {
1179 if (&rg->link == head)
1180 break;
1181 if (rg->from > t)
1182 return chg;
1184 /* We overlap with this area, if it extends futher than
1185 * us then we must extend ourselves. Account for its
1186 * existing reservation. */
1187 if (rg->to > t) {
1188 chg += rg->to - t;
1189 t = rg->to;
1191 chg -= rg->to - rg->from;
1193 return chg;
1196 static long region_truncate(struct list_head *head, long end)
1198 struct file_region *rg, *trg;
1199 long chg = 0;
1201 /* Locate the region we are either in or before. */
1202 list_for_each_entry(rg, head, link)
1203 if (end <= rg->to)
1204 break;
1205 if (&rg->link == head)
1206 return 0;
1208 /* If we are in the middle of a region then adjust it. */
1209 if (end > rg->from) {
1210 chg = rg->to - end;
1211 rg->to = end;
1212 rg = list_entry(rg->link.next, typeof(*rg), link);
1215 /* Drop any remaining regions. */
1216 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1217 if (&rg->link == head)
1218 break;
1219 chg += rg->to - rg->from;
1220 list_del(&rg->link);
1221 kfree(rg);
1223 return chg;
1226 static int hugetlb_acct_memory(long delta)
1228 int ret = -ENOMEM;
1230 spin_lock(&hugetlb_lock);
1232 * When cpuset is configured, it breaks the strict hugetlb page
1233 * reservation as the accounting is done on a global variable. Such
1234 * reservation is completely rubbish in the presence of cpuset because
1235 * the reservation is not checked against page availability for the
1236 * current cpuset. Application can still potentially OOM'ed by kernel
1237 * with lack of free htlb page in cpuset that the task is in.
1238 * Attempt to enforce strict accounting with cpuset is almost
1239 * impossible (or too ugly) because cpuset is too fluid that
1240 * task or memory node can be dynamically moved between cpusets.
1242 * The change of semantics for shared hugetlb mapping with cpuset is
1243 * undesirable. However, in order to preserve some of the semantics,
1244 * we fall back to check against current free page availability as
1245 * a best attempt and hopefully to minimize the impact of changing
1246 * semantics that cpuset has.
1248 if (delta > 0) {
1249 if (gather_surplus_pages(delta) < 0)
1250 goto out;
1252 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1253 return_unused_surplus_pages(delta);
1254 goto out;
1258 ret = 0;
1259 if (delta < 0)
1260 return_unused_surplus_pages((unsigned long) -delta);
1262 out:
1263 spin_unlock(&hugetlb_lock);
1264 return ret;
1267 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1269 long ret, chg;
1271 chg = region_chg(&inode->i_mapping->private_list, from, to);
1272 if (chg < 0)
1273 return chg;
1275 if (hugetlb_get_quota(inode->i_mapping, chg))
1276 return -ENOSPC;
1277 ret = hugetlb_acct_memory(chg);
1278 if (ret < 0) {
1279 hugetlb_put_quota(inode->i_mapping, chg);
1280 return ret;
1282 region_add(&inode->i_mapping->private_list, from, to);
1283 return 0;
1286 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1288 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1290 spin_lock(&inode->i_lock);
1291 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1292 spin_unlock(&inode->i_lock);
1294 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1295 hugetlb_acct_memory(-(chg - freed));