sched: Clean up SCHED_RESET_ON_FORK
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob50e4e3d15e83ead57817f1dbacca3984dacd2729
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 #ifdef CONFIG_SMP
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 #endif
147 static inline int rt_policy(int policy)
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
154 static inline int task_has_rt_policy(struct task_struct *p)
156 return rt_policy(p->policy);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
175 static struct rt_bandwidth def_rt_bandwidth;
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191 if (!overrun)
192 break;
194 idle = do_sched_rt_period_timer(rt_b, overrun);
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
206 spin_lock_init(&rt_b->rt_runtime_lock);
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime >= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 ktime_t now;
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
245 spin_unlock(&rt_b->rt_runtime_lock);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
251 hrtimer_cancel(&rt_b->rt_period_timer);
253 #endif
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
265 struct cfs_rq;
267 static LIST_HEAD(task_groups);
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
291 struct rt_bandwidth rt_bandwidth;
292 #endif
294 struct rcu_head rcu;
295 struct list_head list;
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
307 user->tg->uid = user->uid;
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock);
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group.children);
342 #endif
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group;
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
373 struct task_group *tg;
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
402 #else
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
407 return 1;
409 #endif
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
414 return NULL;
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
424 u64 exec_clock;
425 u64 min_vruntime;
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
430 struct list_head tasks;
431 struct list_head *balance_iterator;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity *curr, *next, *last;
439 unsigned int nr_spread_over;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
455 #ifdef CONFIG_SMP
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
467 unsigned long h_load;
470 * this cpu's part of tg->shares
472 unsigned long shares;
475 * load.weight at the time we set shares
477 unsigned long rq_weight;
478 #endif
479 #endif
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #endif
499 int rt_throttled;
500 u64 rt_time;
501 u64 rt_runtime;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512 #endif
515 #ifdef CONFIG_SMP
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
525 struct root_domain {
526 atomic_t refcount;
527 cpumask_var_t span;
528 cpumask_var_t online;
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
534 cpumask_var_t rto_mask;
535 atomic_t rto_count;
536 #ifdef CONFIG_SMP
537 struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
553 static struct root_domain def_root_domain;
555 #endif
558 * This is the main, per-CPU runqueue data structure.
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
564 struct rq {
565 /* runqueue lock: */
566 spinlock_t lock;
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583 u64 nr_migrations_in;
585 struct cfs_rq cfs;
586 struct rt_rq rt;
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list;
594 #endif
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
602 unsigned long nr_uninterruptible;
604 struct task_struct *curr, *idle;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
608 u64 clock;
610 atomic_t nr_iowait;
612 #ifdef CONFIG_SMP
613 struct root_domain *rd;
614 struct sched_domain *sd;
616 unsigned char idle_at_tick;
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
620 /* cpu of this runqueue: */
621 int cpu;
622 int online;
624 unsigned long avg_load_per_task;
626 struct task_struct *migration_thread;
627 struct list_head migration_queue;
628 #endif
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
672 static inline int cpu_of(struct rq *rq)
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 inline void update_rq_clock(struct rq *rq)
698 rq->clock = sched_clock_cpu(cpu_of(rq));
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
711 * runqueue_is_locked
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
717 int runqueue_is_locked(void)
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
729 * Debugging: various feature bits
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
735 enum {
736 #include "sched_features.h"
739 #undef SCHED_FEAT
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
748 #undef SCHED_FEAT
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
759 #undef SCHED_FEAT
761 static int sched_feat_show(struct seq_file *m, void *v)
763 int i;
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
770 seq_puts(m, "\n");
772 return 0;
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
784 if (cnt > 63)
785 cnt = 63;
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
790 buf[cnt] = 0;
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
809 if (!sched_feat_names[i])
810 return -EINVAL;
812 filp->f_pos += cnt;
814 return cnt;
817 static int sched_feat_open(struct inode *inode, struct file *filp)
819 return single_open(filp, sched_feat_show, NULL);
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
830 static __init int sched_init_debug(void)
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
835 return 0;
837 late_initcall(sched_init_debug);
839 #endif
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
860 unsigned int sysctl_sched_shares_thresh = 4;
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
866 unsigned int sysctl_sched_rt_period = 1000000;
868 static __read_mostly int scheduler_running;
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
874 int sysctl_sched_rt_runtime = 950000;
876 static inline u64 global_rt_period(void)
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881 static inline u64 global_rt_runtime(void)
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
896 static inline int task_current(struct rq *rq, struct task_struct *p)
898 return rq->curr == p;
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 return task_current(rq, p);
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
924 spin_unlock_irq(&rq->lock);
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
939 #ifdef CONFIG_SMP
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
956 #ifdef CONFIG_SMP
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
995 struct rq *rq;
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1007 void task_rq_unlock_wait(struct task_struct *p)
1009 struct rq *rq = task_rq(p);
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1018 spin_unlock(&rq->lock);
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1033 struct rq *rq;
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1039 return rq;
1042 #ifdef CONFIG_SCHED_HRTICK
1044 * Use HR-timers to deliver accurate preemption points.
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1059 static inline int hrtick_enabled(struct rq *rq)
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068 static void hrtick_clear(struct rq *rq)
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1089 return HRTIMER_NORESTART;
1092 #ifdef CONFIG_SMP
1094 * called from hardirq (IPI) context
1096 static void __hrtick_start(void *arg)
1098 struct rq *rq = arg;
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq *rq, u64 delay)
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1116 hrtimer_set_expires(timer, time);
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1129 int cpu = (int)(long)hcpu;
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1142 return NOTIFY_DONE;
1145 static __init void init_hrtick(void)
1147 hotcpu_notifier(hotplug_hrtick, 0);
1149 #else
1151 * Called to set the hrtick timer state.
1153 * called with rq->lock held and irqs disabled
1155 static void hrtick_start(struct rq *rq, u64 delay)
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL, 0);
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SMP */
1166 static void init_rq_hrtick(struct rq *rq)
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1184 static inline void init_rq_hrtick(struct rq *rq)
1188 static inline void init_hrtick(void)
1191 #endif /* CONFIG_SCHED_HRTICK */
1194 * resched_task - mark a task 'to be rescheduled now'.
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1200 #ifdef CONFIG_SMP
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1206 static void resched_task(struct task_struct *p)
1208 int cpu;
1210 assert_spin_locked(&task_rq(p)->lock);
1212 if (test_tsk_need_resched(p))
1213 return;
1215 set_tsk_need_resched(p);
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1227 static void resched_cpu(int cpu)
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1238 #ifdef CONFIG_NO_HZ
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1249 void wake_up_idle_cpu(int cpu)
1251 struct rq *rq = cpu_rq(cpu);
1253 if (cpu == smp_processor_id())
1254 return;
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1263 if (rq->curr != rq->idle)
1264 return;
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1271 set_tsk_need_resched(rq->idle);
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1278 #endif /* CONFIG_NO_HZ */
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1308 u64 tmp;
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1318 tmp = (u64)delta_exec * weight;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427 CPUACCT_STAT_NSTATS,
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442 update_load_add(&rq->load, load);
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447 update_load_sub(&rq->load, load);
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1459 struct task_group *parent, *child;
1460 int ret;
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1473 continue;
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1486 return ret;
1489 static int tg_nop(struct task_group *tg, void *data)
1491 return 0;
1493 #endif
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1510 return rq->avg_load_per_task;
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518 * Calculate and set the cpu's group shares.
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1524 unsigned long shares;
1525 unsigned long rq_weight;
1527 if (!tg->se[cpu])
1528 return;
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1559 static int tg_shares_up(struct task_group *tg, void *data)
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1566 for_each_cpu(i, sched_domain_span(sd)) {
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1590 return 0;
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1598 static int tg_load_down(struct task_group *tg, void *data)
1600 unsigned long load;
1601 long cpu = (long)data;
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1611 tg->cfs_rq[cpu]->h_load = load;
1613 return 0;
1616 static void update_shares(struct sched_domain *sd)
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1634 static void update_h_load(long cpu)
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1639 #else
1641 static inline void update_shares(struct sched_domain *sd)
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649 #endif
1651 #ifdef CONFIG_PREEMPT
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1669 return 1;
1672 #else
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1685 int ret = 0;
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1696 return ret;
1699 #endif /* CONFIG_PREEMPT */
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1712 return _double_lock_balance(this_rq, busiest);
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1721 #endif
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1730 #endif
1732 static void calc_load_account_active(struct rq *this_rq);
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1740 #endif
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1746 static void inc_nr_running(struct rq *rq)
1748 rq->nr_running++;
1751 static void dec_nr_running(struct rq *rq)
1753 rq->nr_running--;
1756 static void set_load_weight(struct task_struct *p)
1758 if (task_has_rt_policy(p)) {
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1765 * SCHED_IDLE tasks get minimal weight:
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1777 static void update_avg(u64 *avg, u64 sample)
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1788 sched_info_queued(p);
1789 p->sched_class->enqueue_task(rq, p, wakeup);
1790 p->se.on_rq = 1;
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1806 sched_info_dequeued(p);
1807 p->sched_class->dequeue_task(rq, p, sleep);
1808 p->se.on_rq = 0;
1812 * __normal_prio - return the priority that is based on the static prio
1814 static inline int __normal_prio(struct task_struct *p)
1816 return p->static_prio;
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1826 static inline int normal_prio(struct task_struct *p)
1828 int prio;
1830 if (task_has_rt_policy(p))
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1844 static int effective_prio(struct task_struct *p)
1846 p->normal_prio = normal_prio(p);
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1858 * activate_task - move a task to the runqueue.
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1862 if (task_contributes_to_load(p))
1863 rq->nr_uninterruptible--;
1865 enqueue_task(rq, p, wakeup);
1866 inc_nr_running(rq);
1870 * deactivate_task - remove a task from the runqueue.
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1874 if (task_contributes_to_load(p))
1875 rq->nr_uninterruptible++;
1877 dequeue_task(rq, p, sleep);
1878 dec_nr_running(rq);
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1885 inline int task_curr(const struct task_struct *p)
1887 return cpu_curr(task_cpu(p)) == p;
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1892 set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1899 smp_wmb();
1900 task_thread_info(p)->cpu = cpu;
1901 #endif
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1916 #ifdef CONFIG_SMP
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu)
1921 return cpu_rq(cpu)->load.weight;
1925 * Is this task likely cache-hot:
1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1930 s64 delta;
1933 * Buddy candidates are cache hot:
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
1938 return 1;
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1948 delta = now - p->se.exec_start;
1950 return delta < (s64)sysctl_sched_migration_cost;
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960 u64 clock_offset;
1962 clock_offset = old_rq->clock - new_rq->clock;
1964 trace_sched_migrate_task(p, new_cpu);
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
1973 #endif
1974 if (old_cpu != new_cpu) {
1975 p->se.nr_migrations++;
1976 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif
1981 perf_counter_task_migration(p, new_cpu);
1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime;
1986 __set_task_cpu(p, new_cpu);
1989 struct migration_req {
1990 struct list_head list;
1992 struct task_struct *task;
1993 int dest_cpu;
1995 struct completion done;
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2002 static int
2003 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2005 struct rq *rq = task_rq(p);
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2011 if (!p->se.on_rq && !task_running(rq, p)) {
2012 set_task_cpu(p, dest_cpu);
2013 return 0;
2016 init_completion(&req->done);
2017 req->task = p;
2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue);
2021 return 1;
2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch.
2028 * @p must not be current.
2030 void wait_task_context_switch(struct task_struct *p)
2032 unsigned long nvcsw, nivcsw, flags;
2033 int running;
2034 struct rq *rq;
2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw;
2038 for (;;) {
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2045 * iteration.
2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags);
2051 if (likely(!running))
2052 break;
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2058 if ((p->nvcsw - nvcsw) > 1)
2059 break;
2060 if ((p->nivcsw - nivcsw) > 1)
2061 break;
2063 cpu_relax();
2068 * wait_task_inactive - wait for a thread to unschedule.
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2083 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2085 unsigned long flags;
2086 int running, on_rq;
2087 unsigned long ncsw;
2088 struct rq *rq;
2090 for (;;) {
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2097 rq = task_rq(p);
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
2113 cpu_relax();
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2121 rq = task_rq_lock(p, &flags);
2122 trace_sched_wait_task(rq, p);
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
2125 ncsw = 0;
2126 if (!match_state || p->state == match_state)
2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2128 task_rq_unlock(rq, &flags);
2131 * If it changed from the expected state, bail out now.
2133 if (unlikely(!ncsw))
2134 break;
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2140 * Oops. Go back and try again..
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2152 * So if it was still runnable (but just not actively
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2166 break;
2169 return ncsw;
2172 /***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2185 void kick_process(struct task_struct *p)
2187 int cpu;
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2195 EXPORT_SYMBOL_GPL(kick_process);
2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value.
2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively.
2204 static unsigned long source_load(int cpu, int type)
2206 struct rq *rq = cpu_rq(cpu);
2207 unsigned long total = weighted_cpuload(cpu);
2209 if (type == 0 || !sched_feat(LB_BIAS))
2210 return total;
2212 return min(rq->cpu_load[type-1], total);
2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value.
2219 static unsigned long target_load(int cpu, int type)
2221 struct rq *rq = cpu_rq(cpu);
2222 unsigned long total = weighted_cpuload(cpu);
2224 if (type == 0 || !sched_feat(LB_BIAS))
2225 return total;
2227 return max(rq->cpu_load[type-1], total);
2231 * find_idlest_group finds and returns the least busy CPU group within the
2232 * domain.
2234 static struct sched_group *
2235 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2238 unsigned long min_load = ULONG_MAX, this_load = 0;
2239 int load_idx = sd->forkexec_idx;
2240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2242 do {
2243 unsigned long load, avg_load;
2244 int local_group;
2245 int i;
2247 /* Skip over this group if it has no CPUs allowed */
2248 if (!cpumask_intersects(sched_group_cpus(group),
2249 &p->cpus_allowed))
2250 continue;
2252 local_group = cpumask_test_cpu(this_cpu,
2253 sched_group_cpus(group));
2255 /* Tally up the load of all CPUs in the group */
2256 avg_load = 0;
2258 for_each_cpu(i, sched_group_cpus(group)) {
2259 /* Bias balancing toward cpus of our domain */
2260 if (local_group)
2261 load = source_load(i, load_idx);
2262 else
2263 load = target_load(i, load_idx);
2265 avg_load += load;
2268 /* Adjust by relative CPU power of the group */
2269 avg_load = sg_div_cpu_power(group,
2270 avg_load * SCHED_LOAD_SCALE);
2272 if (local_group) {
2273 this_load = avg_load;
2274 this = group;
2275 } else if (avg_load < min_load) {
2276 min_load = avg_load;
2277 idlest = group;
2279 } while (group = group->next, group != sd->groups);
2281 if (!idlest || 100*this_load < imbalance*min_load)
2282 return NULL;
2283 return idlest;
2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2289 static int
2290 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2292 unsigned long load, min_load = ULONG_MAX;
2293 int idlest = -1;
2294 int i;
2296 /* Traverse only the allowed CPUs */
2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2298 load = weighted_cpuload(i);
2300 if (load < min_load || (load == min_load && i == this_cpu)) {
2301 min_load = load;
2302 idlest = i;
2306 return idlest;
2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2312 * SD_BALANCE_EXEC.
2314 * Balance, ie. select the least loaded group.
2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2318 * preempt must be disabled.
2320 static int sched_balance_self(int cpu, int flag)
2322 struct task_struct *t = current;
2323 struct sched_domain *tmp, *sd = NULL;
2325 for_each_domain(cpu, tmp) {
2327 * If power savings logic is enabled for a domain, stop there.
2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2330 break;
2331 if (tmp->flags & flag)
2332 sd = tmp;
2335 if (sd)
2336 update_shares(sd);
2338 while (sd) {
2339 struct sched_group *group;
2340 int new_cpu, weight;
2342 if (!(sd->flags & flag)) {
2343 sd = sd->child;
2344 continue;
2347 group = find_idlest_group(sd, t, cpu);
2348 if (!group) {
2349 sd = sd->child;
2350 continue;
2353 new_cpu = find_idlest_cpu(group, t, cpu);
2354 if (new_cpu == -1 || new_cpu == cpu) {
2355 /* Now try balancing at a lower domain level of cpu */
2356 sd = sd->child;
2357 continue;
2360 /* Now try balancing at a lower domain level of new_cpu */
2361 cpu = new_cpu;
2362 weight = cpumask_weight(sched_domain_span(sd));
2363 sd = NULL;
2364 for_each_domain(cpu, tmp) {
2365 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2366 break;
2367 if (tmp->flags & flag)
2368 sd = tmp;
2370 /* while loop will break here if sd == NULL */
2373 return cpu;
2376 #endif /* CONFIG_SMP */
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate
2381 * @func: the function to be called
2382 * @info: the function call argument
2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly
2387 void task_oncpu_function_call(struct task_struct *p,
2388 void (*func) (void *info), void *info)
2390 int cpu;
2392 preempt_disable();
2393 cpu = task_cpu(p);
2394 if (task_curr(p))
2395 smp_call_function_single(cpu, func, info, 1);
2396 preempt_enable();
2399 /***
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2411 * returns failure only if the task is already active.
2413 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2415 int cpu, orig_cpu, this_cpu, success = 0;
2416 unsigned long flags;
2417 long old_state;
2418 struct rq *rq;
2420 if (!sched_feat(SYNC_WAKEUPS))
2421 sync = 0;
2423 #ifdef CONFIG_SMP
2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2425 struct sched_domain *sd;
2427 this_cpu = raw_smp_processor_id();
2428 cpu = task_cpu(p);
2430 for_each_domain(this_cpu, sd) {
2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 update_shares(sd);
2433 break;
2437 #endif
2439 smp_wmb();
2440 rq = task_rq_lock(p, &flags);
2441 update_rq_clock(rq);
2442 old_state = p->state;
2443 if (!(old_state & state))
2444 goto out;
2446 if (p->se.on_rq)
2447 goto out_running;
2449 cpu = task_cpu(p);
2450 orig_cpu = cpu;
2451 this_cpu = smp_processor_id();
2453 #ifdef CONFIG_SMP
2454 if (unlikely(task_running(rq, p)))
2455 goto out_activate;
2457 cpu = p->sched_class->select_task_rq(p, sync);
2458 if (cpu != orig_cpu) {
2459 set_task_cpu(p, cpu);
2460 task_rq_unlock(rq, &flags);
2461 /* might preempt at this point */
2462 rq = task_rq_lock(p, &flags);
2463 old_state = p->state;
2464 if (!(old_state & state))
2465 goto out;
2466 if (p->se.on_rq)
2467 goto out_running;
2469 this_cpu = smp_processor_id();
2470 cpu = task_cpu(p);
2473 #ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq, ttwu_count);
2475 if (cpu == this_cpu)
2476 schedstat_inc(rq, ttwu_local);
2477 else {
2478 struct sched_domain *sd;
2479 for_each_domain(this_cpu, sd) {
2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2481 schedstat_inc(sd, ttwu_wake_remote);
2482 break;
2486 #endif /* CONFIG_SCHEDSTATS */
2488 out_activate:
2489 #endif /* CONFIG_SMP */
2490 schedstat_inc(p, se.nr_wakeups);
2491 if (sync)
2492 schedstat_inc(p, se.nr_wakeups_sync);
2493 if (orig_cpu != cpu)
2494 schedstat_inc(p, se.nr_wakeups_migrate);
2495 if (cpu == this_cpu)
2496 schedstat_inc(p, se.nr_wakeups_local);
2497 else
2498 schedstat_inc(p, se.nr_wakeups_remote);
2499 activate_task(rq, p, 1);
2500 success = 1;
2503 * Only attribute actual wakeups done by this task.
2505 if (!in_interrupt()) {
2506 struct sched_entity *se = &current->se;
2507 u64 sample = se->sum_exec_runtime;
2509 if (se->last_wakeup)
2510 sample -= se->last_wakeup;
2511 else
2512 sample -= se->start_runtime;
2513 update_avg(&se->avg_wakeup, sample);
2515 se->last_wakeup = se->sum_exec_runtime;
2518 out_running:
2519 trace_sched_wakeup(rq, p, success);
2520 check_preempt_curr(rq, p, sync);
2522 p->state = TASK_RUNNING;
2523 #ifdef CONFIG_SMP
2524 if (p->sched_class->task_wake_up)
2525 p->sched_class->task_wake_up(rq, p);
2526 #endif
2527 out:
2528 task_rq_unlock(rq, &flags);
2530 return success;
2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up.
2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2539 * running.
2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up.
2544 int wake_up_process(struct task_struct *p)
2546 return try_to_wake_up(p, TASK_ALL, 0);
2548 EXPORT_SYMBOL(wake_up_process);
2550 int wake_up_state(struct task_struct *p, unsigned int state)
2552 return try_to_wake_up(p, state, 0);
2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current.
2559 * __sched_fork() is basic setup used by init_idle() too:
2561 static void __sched_fork(struct task_struct *p)
2563 p->se.exec_start = 0;
2564 p->se.sum_exec_runtime = 0;
2565 p->se.prev_sum_exec_runtime = 0;
2566 p->se.nr_migrations = 0;
2567 p->se.last_wakeup = 0;
2568 p->se.avg_overlap = 0;
2569 p->se.start_runtime = 0;
2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2572 #ifdef CONFIG_SCHEDSTATS
2573 p->se.wait_start = 0;
2574 p->se.sum_sleep_runtime = 0;
2575 p->se.sleep_start = 0;
2576 p->se.block_start = 0;
2577 p->se.sleep_max = 0;
2578 p->se.block_max = 0;
2579 p->se.exec_max = 0;
2580 p->se.slice_max = 0;
2581 p->se.wait_max = 0;
2582 #endif
2584 INIT_LIST_HEAD(&p->rt.run_list);
2585 p->se.on_rq = 0;
2586 INIT_LIST_HEAD(&p->se.group_node);
2588 #ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p->preempt_notifiers);
2590 #endif
2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2598 p->state = TASK_RUNNING;
2602 * fork()/clone()-time setup:
2604 void sched_fork(struct task_struct *p, int clone_flags)
2606 int cpu = get_cpu();
2608 __sched_fork(p);
2610 #ifdef CONFIG_SMP
2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2612 #endif
2613 set_task_cpu(p, cpu);
2616 * Make sure we do not leak PI boosting priority to the child.
2618 p->prio = current->normal_prio;
2621 * Revert to default priority/policy on fork if requested.
2623 if (unlikely(p->sched_reset_on_fork)) {
2624 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2625 p->policy = SCHED_NORMAL;
2627 if (p->normal_prio < DEFAULT_PRIO)
2628 p->prio = DEFAULT_PRIO;
2631 * We don't need the reset flag anymore after the fork. It has
2632 * fulfilled its duty:
2634 p->sched_reset_on_fork = 0;
2637 if (!rt_prio(p->prio))
2638 p->sched_class = &fair_sched_class;
2640 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2641 if (likely(sched_info_on()))
2642 memset(&p->sched_info, 0, sizeof(p->sched_info));
2643 #endif
2644 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2645 p->oncpu = 0;
2646 #endif
2647 #ifdef CONFIG_PREEMPT
2648 /* Want to start with kernel preemption disabled. */
2649 task_thread_info(p)->preempt_count = 1;
2650 #endif
2651 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2653 put_cpu();
2657 * wake_up_new_task - wake up a newly created task for the first time.
2659 * This function will do some initial scheduler statistics housekeeping
2660 * that must be done for every newly created context, then puts the task
2661 * on the runqueue and wakes it.
2663 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2665 unsigned long flags;
2666 struct rq *rq;
2668 rq = task_rq_lock(p, &flags);
2669 BUG_ON(p->state != TASK_RUNNING);
2670 update_rq_clock(rq);
2672 p->prio = effective_prio(p);
2674 if (!p->sched_class->task_new || !current->se.on_rq) {
2675 activate_task(rq, p, 0);
2676 } else {
2678 * Let the scheduling class do new task startup
2679 * management (if any):
2681 p->sched_class->task_new(rq, p);
2682 inc_nr_running(rq);
2684 trace_sched_wakeup_new(rq, p, 1);
2685 check_preempt_curr(rq, p, 0);
2686 #ifdef CONFIG_SMP
2687 if (p->sched_class->task_wake_up)
2688 p->sched_class->task_wake_up(rq, p);
2689 #endif
2690 task_rq_unlock(rq, &flags);
2693 #ifdef CONFIG_PREEMPT_NOTIFIERS
2696 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2697 * @notifier: notifier struct to register
2699 void preempt_notifier_register(struct preempt_notifier *notifier)
2701 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2703 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2706 * preempt_notifier_unregister - no longer interested in preemption notifications
2707 * @notifier: notifier struct to unregister
2709 * This is safe to call from within a preemption notifier.
2711 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2713 hlist_del(&notifier->link);
2715 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2717 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2719 struct preempt_notifier *notifier;
2720 struct hlist_node *node;
2722 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2723 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2726 static void
2727 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2728 struct task_struct *next)
2730 struct preempt_notifier *notifier;
2731 struct hlist_node *node;
2733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2734 notifier->ops->sched_out(notifier, next);
2737 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2739 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2743 static void
2744 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2745 struct task_struct *next)
2749 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2752 * prepare_task_switch - prepare to switch tasks
2753 * @rq: the runqueue preparing to switch
2754 * @prev: the current task that is being switched out
2755 * @next: the task we are going to switch to.
2757 * This is called with the rq lock held and interrupts off. It must
2758 * be paired with a subsequent finish_task_switch after the context
2759 * switch.
2761 * prepare_task_switch sets up locking and calls architecture specific
2762 * hooks.
2764 static inline void
2765 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2766 struct task_struct *next)
2768 fire_sched_out_preempt_notifiers(prev, next);
2769 prepare_lock_switch(rq, next);
2770 prepare_arch_switch(next);
2774 * finish_task_switch - clean up after a task-switch
2775 * @rq: runqueue associated with task-switch
2776 * @prev: the thread we just switched away from.
2778 * finish_task_switch must be called after the context switch, paired
2779 * with a prepare_task_switch call before the context switch.
2780 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2781 * and do any other architecture-specific cleanup actions.
2783 * Note that we may have delayed dropping an mm in context_switch(). If
2784 * so, we finish that here outside of the runqueue lock. (Doing it
2785 * with the lock held can cause deadlocks; see schedule() for
2786 * details.)
2788 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2789 __releases(rq->lock)
2791 struct mm_struct *mm = rq->prev_mm;
2792 long prev_state;
2793 #ifdef CONFIG_SMP
2794 int post_schedule = 0;
2796 if (current->sched_class->needs_post_schedule)
2797 post_schedule = current->sched_class->needs_post_schedule(rq);
2798 #endif
2800 rq->prev_mm = NULL;
2803 * A task struct has one reference for the use as "current".
2804 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2805 * schedule one last time. The schedule call will never return, and
2806 * the scheduled task must drop that reference.
2807 * The test for TASK_DEAD must occur while the runqueue locks are
2808 * still held, otherwise prev could be scheduled on another cpu, die
2809 * there before we look at prev->state, and then the reference would
2810 * be dropped twice.
2811 * Manfred Spraul <manfred@colorfullife.com>
2813 prev_state = prev->state;
2814 finish_arch_switch(prev);
2815 perf_counter_task_sched_in(current, cpu_of(rq));
2816 finish_lock_switch(rq, prev);
2817 #ifdef CONFIG_SMP
2818 if (post_schedule)
2819 current->sched_class->post_schedule(rq);
2820 #endif
2822 fire_sched_in_preempt_notifiers(current);
2823 if (mm)
2824 mmdrop(mm);
2825 if (unlikely(prev_state == TASK_DEAD)) {
2827 * Remove function-return probe instances associated with this
2828 * task and put them back on the free list.
2830 kprobe_flush_task(prev);
2831 put_task_struct(prev);
2836 * schedule_tail - first thing a freshly forked thread must call.
2837 * @prev: the thread we just switched away from.
2839 asmlinkage void schedule_tail(struct task_struct *prev)
2840 __releases(rq->lock)
2842 struct rq *rq = this_rq();
2844 finish_task_switch(rq, prev);
2845 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2846 /* In this case, finish_task_switch does not reenable preemption */
2847 preempt_enable();
2848 #endif
2849 if (current->set_child_tid)
2850 put_user(task_pid_vnr(current), current->set_child_tid);
2854 * context_switch - switch to the new MM and the new
2855 * thread's register state.
2857 static inline void
2858 context_switch(struct rq *rq, struct task_struct *prev,
2859 struct task_struct *next)
2861 struct mm_struct *mm, *oldmm;
2863 prepare_task_switch(rq, prev, next);
2864 trace_sched_switch(rq, prev, next);
2865 mm = next->mm;
2866 oldmm = prev->active_mm;
2868 * For paravirt, this is coupled with an exit in switch_to to
2869 * combine the page table reload and the switch backend into
2870 * one hypercall.
2872 arch_start_context_switch(prev);
2874 if (unlikely(!mm)) {
2875 next->active_mm = oldmm;
2876 atomic_inc(&oldmm->mm_count);
2877 enter_lazy_tlb(oldmm, next);
2878 } else
2879 switch_mm(oldmm, mm, next);
2881 if (unlikely(!prev->mm)) {
2882 prev->active_mm = NULL;
2883 rq->prev_mm = oldmm;
2886 * Since the runqueue lock will be released by the next
2887 * task (which is an invalid locking op but in the case
2888 * of the scheduler it's an obvious special-case), so we
2889 * do an early lockdep release here:
2891 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2892 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2893 #endif
2895 /* Here we just switch the register state and the stack. */
2896 switch_to(prev, next, prev);
2898 barrier();
2900 * this_rq must be evaluated again because prev may have moved
2901 * CPUs since it called schedule(), thus the 'rq' on its stack
2902 * frame will be invalid.
2904 finish_task_switch(this_rq(), prev);
2908 * nr_running, nr_uninterruptible and nr_context_switches:
2910 * externally visible scheduler statistics: current number of runnable
2911 * threads, current number of uninterruptible-sleeping threads, total
2912 * number of context switches performed since bootup.
2914 unsigned long nr_running(void)
2916 unsigned long i, sum = 0;
2918 for_each_online_cpu(i)
2919 sum += cpu_rq(i)->nr_running;
2921 return sum;
2924 unsigned long nr_uninterruptible(void)
2926 unsigned long i, sum = 0;
2928 for_each_possible_cpu(i)
2929 sum += cpu_rq(i)->nr_uninterruptible;
2932 * Since we read the counters lockless, it might be slightly
2933 * inaccurate. Do not allow it to go below zero though:
2935 if (unlikely((long)sum < 0))
2936 sum = 0;
2938 return sum;
2941 unsigned long long nr_context_switches(void)
2943 int i;
2944 unsigned long long sum = 0;
2946 for_each_possible_cpu(i)
2947 sum += cpu_rq(i)->nr_switches;
2949 return sum;
2952 unsigned long nr_iowait(void)
2954 unsigned long i, sum = 0;
2956 for_each_possible_cpu(i)
2957 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2959 return sum;
2962 /* Variables and functions for calc_load */
2963 static atomic_long_t calc_load_tasks;
2964 static unsigned long calc_load_update;
2965 unsigned long avenrun[3];
2966 EXPORT_SYMBOL(avenrun);
2969 * get_avenrun - get the load average array
2970 * @loads: pointer to dest load array
2971 * @offset: offset to add
2972 * @shift: shift count to shift the result left
2974 * These values are estimates at best, so no need for locking.
2976 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2978 loads[0] = (avenrun[0] + offset) << shift;
2979 loads[1] = (avenrun[1] + offset) << shift;
2980 loads[2] = (avenrun[2] + offset) << shift;
2983 static unsigned long
2984 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2986 load *= exp;
2987 load += active * (FIXED_1 - exp);
2988 return load >> FSHIFT;
2992 * calc_load - update the avenrun load estimates 10 ticks after the
2993 * CPUs have updated calc_load_tasks.
2995 void calc_global_load(void)
2997 unsigned long upd = calc_load_update + 10;
2998 long active;
3000 if (time_before(jiffies, upd))
3001 return;
3003 active = atomic_long_read(&calc_load_tasks);
3004 active = active > 0 ? active * FIXED_1 : 0;
3006 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3007 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3008 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3010 calc_load_update += LOAD_FREQ;
3014 * Either called from update_cpu_load() or from a cpu going idle
3016 static void calc_load_account_active(struct rq *this_rq)
3018 long nr_active, delta;
3020 nr_active = this_rq->nr_running;
3021 nr_active += (long) this_rq->nr_uninterruptible;
3023 if (nr_active != this_rq->calc_load_active) {
3024 delta = nr_active - this_rq->calc_load_active;
3025 this_rq->calc_load_active = nr_active;
3026 atomic_long_add(delta, &calc_load_tasks);
3031 * Externally visible per-cpu scheduler statistics:
3032 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3034 u64 cpu_nr_migrations(int cpu)
3036 return cpu_rq(cpu)->nr_migrations_in;
3040 * Update rq->cpu_load[] statistics. This function is usually called every
3041 * scheduler tick (TICK_NSEC).
3043 static void update_cpu_load(struct rq *this_rq)
3045 unsigned long this_load = this_rq->load.weight;
3046 int i, scale;
3048 this_rq->nr_load_updates++;
3050 /* Update our load: */
3051 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3052 unsigned long old_load, new_load;
3054 /* scale is effectively 1 << i now, and >> i divides by scale */
3056 old_load = this_rq->cpu_load[i];
3057 new_load = this_load;
3059 * Round up the averaging division if load is increasing. This
3060 * prevents us from getting stuck on 9 if the load is 10, for
3061 * example.
3063 if (new_load > old_load)
3064 new_load += scale-1;
3065 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3068 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3069 this_rq->calc_load_update += LOAD_FREQ;
3070 calc_load_account_active(this_rq);
3074 #ifdef CONFIG_SMP
3077 * double_rq_lock - safely lock two runqueues
3079 * Note this does not disable interrupts like task_rq_lock,
3080 * you need to do so manually before calling.
3082 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3083 __acquires(rq1->lock)
3084 __acquires(rq2->lock)
3086 BUG_ON(!irqs_disabled());
3087 if (rq1 == rq2) {
3088 spin_lock(&rq1->lock);
3089 __acquire(rq2->lock); /* Fake it out ;) */
3090 } else {
3091 if (rq1 < rq2) {
3092 spin_lock(&rq1->lock);
3093 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3094 } else {
3095 spin_lock(&rq2->lock);
3096 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3099 update_rq_clock(rq1);
3100 update_rq_clock(rq2);
3104 * double_rq_unlock - safely unlock two runqueues
3106 * Note this does not restore interrupts like task_rq_unlock,
3107 * you need to do so manually after calling.
3109 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3110 __releases(rq1->lock)
3111 __releases(rq2->lock)
3113 spin_unlock(&rq1->lock);
3114 if (rq1 != rq2)
3115 spin_unlock(&rq2->lock);
3116 else
3117 __release(rq2->lock);
3121 * If dest_cpu is allowed for this process, migrate the task to it.
3122 * This is accomplished by forcing the cpu_allowed mask to only
3123 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3124 * the cpu_allowed mask is restored.
3126 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3128 struct migration_req req;
3129 unsigned long flags;
3130 struct rq *rq;
3132 rq = task_rq_lock(p, &flags);
3133 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3134 || unlikely(!cpu_active(dest_cpu)))
3135 goto out;
3137 /* force the process onto the specified CPU */
3138 if (migrate_task(p, dest_cpu, &req)) {
3139 /* Need to wait for migration thread (might exit: take ref). */
3140 struct task_struct *mt = rq->migration_thread;
3142 get_task_struct(mt);
3143 task_rq_unlock(rq, &flags);
3144 wake_up_process(mt);
3145 put_task_struct(mt);
3146 wait_for_completion(&req.done);
3148 return;
3150 out:
3151 task_rq_unlock(rq, &flags);
3155 * sched_exec - execve() is a valuable balancing opportunity, because at
3156 * this point the task has the smallest effective memory and cache footprint.
3158 void sched_exec(void)
3160 int new_cpu, this_cpu = get_cpu();
3161 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3162 put_cpu();
3163 if (new_cpu != this_cpu)
3164 sched_migrate_task(current, new_cpu);
3168 * pull_task - move a task from a remote runqueue to the local runqueue.
3169 * Both runqueues must be locked.
3171 static void pull_task(struct rq *src_rq, struct task_struct *p,
3172 struct rq *this_rq, int this_cpu)
3174 deactivate_task(src_rq, p, 0);
3175 set_task_cpu(p, this_cpu);
3176 activate_task(this_rq, p, 0);
3178 * Note that idle threads have a prio of MAX_PRIO, for this test
3179 * to be always true for them.
3181 check_preempt_curr(this_rq, p, 0);
3185 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3187 static
3188 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3189 struct sched_domain *sd, enum cpu_idle_type idle,
3190 int *all_pinned)
3192 int tsk_cache_hot = 0;
3194 * We do not migrate tasks that are:
3195 * 1) running (obviously), or
3196 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3197 * 3) are cache-hot on their current CPU.
3199 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3200 schedstat_inc(p, se.nr_failed_migrations_affine);
3201 return 0;
3203 *all_pinned = 0;
3205 if (task_running(rq, p)) {
3206 schedstat_inc(p, se.nr_failed_migrations_running);
3207 return 0;
3211 * Aggressive migration if:
3212 * 1) task is cache cold, or
3213 * 2) too many balance attempts have failed.
3216 tsk_cache_hot = task_hot(p, rq->clock, sd);
3217 if (!tsk_cache_hot ||
3218 sd->nr_balance_failed > sd->cache_nice_tries) {
3219 #ifdef CONFIG_SCHEDSTATS
3220 if (tsk_cache_hot) {
3221 schedstat_inc(sd, lb_hot_gained[idle]);
3222 schedstat_inc(p, se.nr_forced_migrations);
3224 #endif
3225 return 1;
3228 if (tsk_cache_hot) {
3229 schedstat_inc(p, se.nr_failed_migrations_hot);
3230 return 0;
3232 return 1;
3235 static unsigned long
3236 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3237 unsigned long max_load_move, struct sched_domain *sd,
3238 enum cpu_idle_type idle, int *all_pinned,
3239 int *this_best_prio, struct rq_iterator *iterator)
3241 int loops = 0, pulled = 0, pinned = 0;
3242 struct task_struct *p;
3243 long rem_load_move = max_load_move;
3245 if (max_load_move == 0)
3246 goto out;
3248 pinned = 1;
3251 * Start the load-balancing iterator:
3253 p = iterator->start(iterator->arg);
3254 next:
3255 if (!p || loops++ > sysctl_sched_nr_migrate)
3256 goto out;
3258 if ((p->se.load.weight >> 1) > rem_load_move ||
3259 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3260 p = iterator->next(iterator->arg);
3261 goto next;
3264 pull_task(busiest, p, this_rq, this_cpu);
3265 pulled++;
3266 rem_load_move -= p->se.load.weight;
3268 #ifdef CONFIG_PREEMPT
3270 * NEWIDLE balancing is a source of latency, so preemptible kernels
3271 * will stop after the first task is pulled to minimize the critical
3272 * section.
3274 if (idle == CPU_NEWLY_IDLE)
3275 goto out;
3276 #endif
3279 * We only want to steal up to the prescribed amount of weighted load.
3281 if (rem_load_move > 0) {
3282 if (p->prio < *this_best_prio)
3283 *this_best_prio = p->prio;
3284 p = iterator->next(iterator->arg);
3285 goto next;
3287 out:
3289 * Right now, this is one of only two places pull_task() is called,
3290 * so we can safely collect pull_task() stats here rather than
3291 * inside pull_task().
3293 schedstat_add(sd, lb_gained[idle], pulled);
3295 if (all_pinned)
3296 *all_pinned = pinned;
3298 return max_load_move - rem_load_move;
3302 * move_tasks tries to move up to max_load_move weighted load from busiest to
3303 * this_rq, as part of a balancing operation within domain "sd".
3304 * Returns 1 if successful and 0 otherwise.
3306 * Called with both runqueues locked.
3308 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3309 unsigned long max_load_move,
3310 struct sched_domain *sd, enum cpu_idle_type idle,
3311 int *all_pinned)
3313 const struct sched_class *class = sched_class_highest;
3314 unsigned long total_load_moved = 0;
3315 int this_best_prio = this_rq->curr->prio;
3317 do {
3318 total_load_moved +=
3319 class->load_balance(this_rq, this_cpu, busiest,
3320 max_load_move - total_load_moved,
3321 sd, idle, all_pinned, &this_best_prio);
3322 class = class->next;
3324 #ifdef CONFIG_PREEMPT
3326 * NEWIDLE balancing is a source of latency, so preemptible
3327 * kernels will stop after the first task is pulled to minimize
3328 * the critical section.
3330 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3331 break;
3332 #endif
3333 } while (class && max_load_move > total_load_moved);
3335 return total_load_moved > 0;
3338 static int
3339 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3340 struct sched_domain *sd, enum cpu_idle_type idle,
3341 struct rq_iterator *iterator)
3343 struct task_struct *p = iterator->start(iterator->arg);
3344 int pinned = 0;
3346 while (p) {
3347 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3348 pull_task(busiest, p, this_rq, this_cpu);
3350 * Right now, this is only the second place pull_task()
3351 * is called, so we can safely collect pull_task()
3352 * stats here rather than inside pull_task().
3354 schedstat_inc(sd, lb_gained[idle]);
3356 return 1;
3358 p = iterator->next(iterator->arg);
3361 return 0;
3365 * move_one_task tries to move exactly one task from busiest to this_rq, as
3366 * part of active balancing operations within "domain".
3367 * Returns 1 if successful and 0 otherwise.
3369 * Called with both runqueues locked.
3371 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3372 struct sched_domain *sd, enum cpu_idle_type idle)
3374 const struct sched_class *class;
3376 for (class = sched_class_highest; class; class = class->next)
3377 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3378 return 1;
3380 return 0;
3382 /********** Helpers for find_busiest_group ************************/
3384 * sd_lb_stats - Structure to store the statistics of a sched_domain
3385 * during load balancing.
3387 struct sd_lb_stats {
3388 struct sched_group *busiest; /* Busiest group in this sd */
3389 struct sched_group *this; /* Local group in this sd */
3390 unsigned long total_load; /* Total load of all groups in sd */
3391 unsigned long total_pwr; /* Total power of all groups in sd */
3392 unsigned long avg_load; /* Average load across all groups in sd */
3394 /** Statistics of this group */
3395 unsigned long this_load;
3396 unsigned long this_load_per_task;
3397 unsigned long this_nr_running;
3399 /* Statistics of the busiest group */
3400 unsigned long max_load;
3401 unsigned long busiest_load_per_task;
3402 unsigned long busiest_nr_running;
3404 int group_imb; /* Is there imbalance in this sd */
3405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3406 int power_savings_balance; /* Is powersave balance needed for this sd */
3407 struct sched_group *group_min; /* Least loaded group in sd */
3408 struct sched_group *group_leader; /* Group which relieves group_min */
3409 unsigned long min_load_per_task; /* load_per_task in group_min */
3410 unsigned long leader_nr_running; /* Nr running of group_leader */
3411 unsigned long min_nr_running; /* Nr running of group_min */
3412 #endif
3416 * sg_lb_stats - stats of a sched_group required for load_balancing
3418 struct sg_lb_stats {
3419 unsigned long avg_load; /*Avg load across the CPUs of the group */
3420 unsigned long group_load; /* Total load over the CPUs of the group */
3421 unsigned long sum_nr_running; /* Nr tasks running in the group */
3422 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3423 unsigned long group_capacity;
3424 int group_imb; /* Is there an imbalance in the group ? */
3428 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3429 * @group: The group whose first cpu is to be returned.
3431 static inline unsigned int group_first_cpu(struct sched_group *group)
3433 return cpumask_first(sched_group_cpus(group));
3437 * get_sd_load_idx - Obtain the load index for a given sched domain.
3438 * @sd: The sched_domain whose load_idx is to be obtained.
3439 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3441 static inline int get_sd_load_idx(struct sched_domain *sd,
3442 enum cpu_idle_type idle)
3444 int load_idx;
3446 switch (idle) {
3447 case CPU_NOT_IDLE:
3448 load_idx = sd->busy_idx;
3449 break;
3451 case CPU_NEWLY_IDLE:
3452 load_idx = sd->newidle_idx;
3453 break;
3454 default:
3455 load_idx = sd->idle_idx;
3456 break;
3459 return load_idx;
3463 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3465 * init_sd_power_savings_stats - Initialize power savings statistics for
3466 * the given sched_domain, during load balancing.
3468 * @sd: Sched domain whose power-savings statistics are to be initialized.
3469 * @sds: Variable containing the statistics for sd.
3470 * @idle: Idle status of the CPU at which we're performing load-balancing.
3472 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3473 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3476 * Busy processors will not participate in power savings
3477 * balance.
3479 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3480 sds->power_savings_balance = 0;
3481 else {
3482 sds->power_savings_balance = 1;
3483 sds->min_nr_running = ULONG_MAX;
3484 sds->leader_nr_running = 0;
3489 * update_sd_power_savings_stats - Update the power saving stats for a
3490 * sched_domain while performing load balancing.
3492 * @group: sched_group belonging to the sched_domain under consideration.
3493 * @sds: Variable containing the statistics of the sched_domain
3494 * @local_group: Does group contain the CPU for which we're performing
3495 * load balancing ?
3496 * @sgs: Variable containing the statistics of the group.
3498 static inline void update_sd_power_savings_stats(struct sched_group *group,
3499 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3502 if (!sds->power_savings_balance)
3503 return;
3506 * If the local group is idle or completely loaded
3507 * no need to do power savings balance at this domain
3509 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3510 !sds->this_nr_running))
3511 sds->power_savings_balance = 0;
3514 * If a group is already running at full capacity or idle,
3515 * don't include that group in power savings calculations
3517 if (!sds->power_savings_balance ||
3518 sgs->sum_nr_running >= sgs->group_capacity ||
3519 !sgs->sum_nr_running)
3520 return;
3523 * Calculate the group which has the least non-idle load.
3524 * This is the group from where we need to pick up the load
3525 * for saving power
3527 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3528 (sgs->sum_nr_running == sds->min_nr_running &&
3529 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3530 sds->group_min = group;
3531 sds->min_nr_running = sgs->sum_nr_running;
3532 sds->min_load_per_task = sgs->sum_weighted_load /
3533 sgs->sum_nr_running;
3537 * Calculate the group which is almost near its
3538 * capacity but still has some space to pick up some load
3539 * from other group and save more power
3541 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3542 return;
3544 if (sgs->sum_nr_running > sds->leader_nr_running ||
3545 (sgs->sum_nr_running == sds->leader_nr_running &&
3546 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3547 sds->group_leader = group;
3548 sds->leader_nr_running = sgs->sum_nr_running;
3553 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3554 * @sds: Variable containing the statistics of the sched_domain
3555 * under consideration.
3556 * @this_cpu: Cpu at which we're currently performing load-balancing.
3557 * @imbalance: Variable to store the imbalance.
3559 * Description:
3560 * Check if we have potential to perform some power-savings balance.
3561 * If yes, set the busiest group to be the least loaded group in the
3562 * sched_domain, so that it's CPUs can be put to idle.
3564 * Returns 1 if there is potential to perform power-savings balance.
3565 * Else returns 0.
3567 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3568 int this_cpu, unsigned long *imbalance)
3570 if (!sds->power_savings_balance)
3571 return 0;
3573 if (sds->this != sds->group_leader ||
3574 sds->group_leader == sds->group_min)
3575 return 0;
3577 *imbalance = sds->min_load_per_task;
3578 sds->busiest = sds->group_min;
3580 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3581 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3582 group_first_cpu(sds->group_leader);
3585 return 1;
3588 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3589 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3590 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3592 return;
3595 static inline void update_sd_power_savings_stats(struct sched_group *group,
3596 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3598 return;
3601 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3602 int this_cpu, unsigned long *imbalance)
3604 return 0;
3606 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3610 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3611 * @group: sched_group whose statistics are to be updated.
3612 * @this_cpu: Cpu for which load balance is currently performed.
3613 * @idle: Idle status of this_cpu
3614 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3615 * @sd_idle: Idle status of the sched_domain containing group.
3616 * @local_group: Does group contain this_cpu.
3617 * @cpus: Set of cpus considered for load balancing.
3618 * @balance: Should we balance.
3619 * @sgs: variable to hold the statistics for this group.
3621 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3622 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3623 int local_group, const struct cpumask *cpus,
3624 int *balance, struct sg_lb_stats *sgs)
3626 unsigned long load, max_cpu_load, min_cpu_load;
3627 int i;
3628 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3629 unsigned long sum_avg_load_per_task;
3630 unsigned long avg_load_per_task;
3632 if (local_group)
3633 balance_cpu = group_first_cpu(group);
3635 /* Tally up the load of all CPUs in the group */
3636 sum_avg_load_per_task = avg_load_per_task = 0;
3637 max_cpu_load = 0;
3638 min_cpu_load = ~0UL;
3640 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3641 struct rq *rq = cpu_rq(i);
3643 if (*sd_idle && rq->nr_running)
3644 *sd_idle = 0;
3646 /* Bias balancing toward cpus of our domain */
3647 if (local_group) {
3648 if (idle_cpu(i) && !first_idle_cpu) {
3649 first_idle_cpu = 1;
3650 balance_cpu = i;
3653 load = target_load(i, load_idx);
3654 } else {
3655 load = source_load(i, load_idx);
3656 if (load > max_cpu_load)
3657 max_cpu_load = load;
3658 if (min_cpu_load > load)
3659 min_cpu_load = load;
3662 sgs->group_load += load;
3663 sgs->sum_nr_running += rq->nr_running;
3664 sgs->sum_weighted_load += weighted_cpuload(i);
3666 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3670 * First idle cpu or the first cpu(busiest) in this sched group
3671 * is eligible for doing load balancing at this and above
3672 * domains. In the newly idle case, we will allow all the cpu's
3673 * to do the newly idle load balance.
3675 if (idle != CPU_NEWLY_IDLE && local_group &&
3676 balance_cpu != this_cpu && balance) {
3677 *balance = 0;
3678 return;
3681 /* Adjust by relative CPU power of the group */
3682 sgs->avg_load = sg_div_cpu_power(group,
3683 sgs->group_load * SCHED_LOAD_SCALE);
3687 * Consider the group unbalanced when the imbalance is larger
3688 * than the average weight of two tasks.
3690 * APZ: with cgroup the avg task weight can vary wildly and
3691 * might not be a suitable number - should we keep a
3692 * normalized nr_running number somewhere that negates
3693 * the hierarchy?
3695 avg_load_per_task = sg_div_cpu_power(group,
3696 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3698 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3699 sgs->group_imb = 1;
3701 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3706 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3707 * @sd: sched_domain whose statistics are to be updated.
3708 * @this_cpu: Cpu for which load balance is currently performed.
3709 * @idle: Idle status of this_cpu
3710 * @sd_idle: Idle status of the sched_domain containing group.
3711 * @cpus: Set of cpus considered for load balancing.
3712 * @balance: Should we balance.
3713 * @sds: variable to hold the statistics for this sched_domain.
3715 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3716 enum cpu_idle_type idle, int *sd_idle,
3717 const struct cpumask *cpus, int *balance,
3718 struct sd_lb_stats *sds)
3720 struct sched_group *group = sd->groups;
3721 struct sg_lb_stats sgs;
3722 int load_idx;
3724 init_sd_power_savings_stats(sd, sds, idle);
3725 load_idx = get_sd_load_idx(sd, idle);
3727 do {
3728 int local_group;
3730 local_group = cpumask_test_cpu(this_cpu,
3731 sched_group_cpus(group));
3732 memset(&sgs, 0, sizeof(sgs));
3733 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3734 local_group, cpus, balance, &sgs);
3736 if (local_group && balance && !(*balance))
3737 return;
3739 sds->total_load += sgs.group_load;
3740 sds->total_pwr += group->__cpu_power;
3742 if (local_group) {
3743 sds->this_load = sgs.avg_load;
3744 sds->this = group;
3745 sds->this_nr_running = sgs.sum_nr_running;
3746 sds->this_load_per_task = sgs.sum_weighted_load;
3747 } else if (sgs.avg_load > sds->max_load &&
3748 (sgs.sum_nr_running > sgs.group_capacity ||
3749 sgs.group_imb)) {
3750 sds->max_load = sgs.avg_load;
3751 sds->busiest = group;
3752 sds->busiest_nr_running = sgs.sum_nr_running;
3753 sds->busiest_load_per_task = sgs.sum_weighted_load;
3754 sds->group_imb = sgs.group_imb;
3757 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3758 group = group->next;
3759 } while (group != sd->groups);
3764 * fix_small_imbalance - Calculate the minor imbalance that exists
3765 * amongst the groups of a sched_domain, during
3766 * load balancing.
3767 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3768 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3769 * @imbalance: Variable to store the imbalance.
3771 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3772 int this_cpu, unsigned long *imbalance)
3774 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3775 unsigned int imbn = 2;
3777 if (sds->this_nr_running) {
3778 sds->this_load_per_task /= sds->this_nr_running;
3779 if (sds->busiest_load_per_task >
3780 sds->this_load_per_task)
3781 imbn = 1;
3782 } else
3783 sds->this_load_per_task =
3784 cpu_avg_load_per_task(this_cpu);
3786 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3787 sds->busiest_load_per_task * imbn) {
3788 *imbalance = sds->busiest_load_per_task;
3789 return;
3793 * OK, we don't have enough imbalance to justify moving tasks,
3794 * however we may be able to increase total CPU power used by
3795 * moving them.
3798 pwr_now += sds->busiest->__cpu_power *
3799 min(sds->busiest_load_per_task, sds->max_load);
3800 pwr_now += sds->this->__cpu_power *
3801 min(sds->this_load_per_task, sds->this_load);
3802 pwr_now /= SCHED_LOAD_SCALE;
3804 /* Amount of load we'd subtract */
3805 tmp = sg_div_cpu_power(sds->busiest,
3806 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3807 if (sds->max_load > tmp)
3808 pwr_move += sds->busiest->__cpu_power *
3809 min(sds->busiest_load_per_task, sds->max_load - tmp);
3811 /* Amount of load we'd add */
3812 if (sds->max_load * sds->busiest->__cpu_power <
3813 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3814 tmp = sg_div_cpu_power(sds->this,
3815 sds->max_load * sds->busiest->__cpu_power);
3816 else
3817 tmp = sg_div_cpu_power(sds->this,
3818 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3819 pwr_move += sds->this->__cpu_power *
3820 min(sds->this_load_per_task, sds->this_load + tmp);
3821 pwr_move /= SCHED_LOAD_SCALE;
3823 /* Move if we gain throughput */
3824 if (pwr_move > pwr_now)
3825 *imbalance = sds->busiest_load_per_task;
3829 * calculate_imbalance - Calculate the amount of imbalance present within the
3830 * groups of a given sched_domain during load balance.
3831 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3832 * @this_cpu: Cpu for which currently load balance is being performed.
3833 * @imbalance: The variable to store the imbalance.
3835 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3836 unsigned long *imbalance)
3838 unsigned long max_pull;
3840 * In the presence of smp nice balancing, certain scenarios can have
3841 * max load less than avg load(as we skip the groups at or below
3842 * its cpu_power, while calculating max_load..)
3844 if (sds->max_load < sds->avg_load) {
3845 *imbalance = 0;
3846 return fix_small_imbalance(sds, this_cpu, imbalance);
3849 /* Don't want to pull so many tasks that a group would go idle */
3850 max_pull = min(sds->max_load - sds->avg_load,
3851 sds->max_load - sds->busiest_load_per_task);
3853 /* How much load to actually move to equalise the imbalance */
3854 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3855 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3856 / SCHED_LOAD_SCALE;
3859 * if *imbalance is less than the average load per runnable task
3860 * there is no gaurantee that any tasks will be moved so we'll have
3861 * a think about bumping its value to force at least one task to be
3862 * moved
3864 if (*imbalance < sds->busiest_load_per_task)
3865 return fix_small_imbalance(sds, this_cpu, imbalance);
3868 /******* find_busiest_group() helpers end here *********************/
3871 * find_busiest_group - Returns the busiest group within the sched_domain
3872 * if there is an imbalance. If there isn't an imbalance, and
3873 * the user has opted for power-savings, it returns a group whose
3874 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3875 * such a group exists.
3877 * Also calculates the amount of weighted load which should be moved
3878 * to restore balance.
3880 * @sd: The sched_domain whose busiest group is to be returned.
3881 * @this_cpu: The cpu for which load balancing is currently being performed.
3882 * @imbalance: Variable which stores amount of weighted load which should
3883 * be moved to restore balance/put a group to idle.
3884 * @idle: The idle status of this_cpu.
3885 * @sd_idle: The idleness of sd
3886 * @cpus: The set of CPUs under consideration for load-balancing.
3887 * @balance: Pointer to a variable indicating if this_cpu
3888 * is the appropriate cpu to perform load balancing at this_level.
3890 * Returns: - the busiest group if imbalance exists.
3891 * - If no imbalance and user has opted for power-savings balance,
3892 * return the least loaded group whose CPUs can be
3893 * put to idle by rebalancing its tasks onto our group.
3895 static struct sched_group *
3896 find_busiest_group(struct sched_domain *sd, int this_cpu,
3897 unsigned long *imbalance, enum cpu_idle_type idle,
3898 int *sd_idle, const struct cpumask *cpus, int *balance)
3900 struct sd_lb_stats sds;
3902 memset(&sds, 0, sizeof(sds));
3905 * Compute the various statistics relavent for load balancing at
3906 * this level.
3908 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3909 balance, &sds);
3911 /* Cases where imbalance does not exist from POV of this_cpu */
3912 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3913 * at this level.
3914 * 2) There is no busy sibling group to pull from.
3915 * 3) This group is the busiest group.
3916 * 4) This group is more busy than the avg busieness at this
3917 * sched_domain.
3918 * 5) The imbalance is within the specified limit.
3919 * 6) Any rebalance would lead to ping-pong
3921 if (balance && !(*balance))
3922 goto ret;
3924 if (!sds.busiest || sds.busiest_nr_running == 0)
3925 goto out_balanced;
3927 if (sds.this_load >= sds.max_load)
3928 goto out_balanced;
3930 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3932 if (sds.this_load >= sds.avg_load)
3933 goto out_balanced;
3935 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3936 goto out_balanced;
3938 sds.busiest_load_per_task /= sds.busiest_nr_running;
3939 if (sds.group_imb)
3940 sds.busiest_load_per_task =
3941 min(sds.busiest_load_per_task, sds.avg_load);
3944 * We're trying to get all the cpus to the average_load, so we don't
3945 * want to push ourselves above the average load, nor do we wish to
3946 * reduce the max loaded cpu below the average load, as either of these
3947 * actions would just result in more rebalancing later, and ping-pong
3948 * tasks around. Thus we look for the minimum possible imbalance.
3949 * Negative imbalances (*we* are more loaded than anyone else) will
3950 * be counted as no imbalance for these purposes -- we can't fix that
3951 * by pulling tasks to us. Be careful of negative numbers as they'll
3952 * appear as very large values with unsigned longs.
3954 if (sds.max_load <= sds.busiest_load_per_task)
3955 goto out_balanced;
3957 /* Looks like there is an imbalance. Compute it */
3958 calculate_imbalance(&sds, this_cpu, imbalance);
3959 return sds.busiest;
3961 out_balanced:
3963 * There is no obvious imbalance. But check if we can do some balancing
3964 * to save power.
3966 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3967 return sds.busiest;
3968 ret:
3969 *imbalance = 0;
3970 return NULL;
3974 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3976 static struct rq *
3977 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3978 unsigned long imbalance, const struct cpumask *cpus)
3980 struct rq *busiest = NULL, *rq;
3981 unsigned long max_load = 0;
3982 int i;
3984 for_each_cpu(i, sched_group_cpus(group)) {
3985 unsigned long wl;
3987 if (!cpumask_test_cpu(i, cpus))
3988 continue;
3990 rq = cpu_rq(i);
3991 wl = weighted_cpuload(i);
3993 if (rq->nr_running == 1 && wl > imbalance)
3994 continue;
3996 if (wl > max_load) {
3997 max_load = wl;
3998 busiest = rq;
4002 return busiest;
4006 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4007 * so long as it is large enough.
4009 #define MAX_PINNED_INTERVAL 512
4011 /* Working cpumask for load_balance and load_balance_newidle. */
4012 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4015 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4016 * tasks if there is an imbalance.
4018 static int load_balance(int this_cpu, struct rq *this_rq,
4019 struct sched_domain *sd, enum cpu_idle_type idle,
4020 int *balance)
4022 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4023 struct sched_group *group;
4024 unsigned long imbalance;
4025 struct rq *busiest;
4026 unsigned long flags;
4027 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4029 cpumask_setall(cpus);
4032 * When power savings policy is enabled for the parent domain, idle
4033 * sibling can pick up load irrespective of busy siblings. In this case,
4034 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4035 * portraying it as CPU_NOT_IDLE.
4037 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4038 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4039 sd_idle = 1;
4041 schedstat_inc(sd, lb_count[idle]);
4043 redo:
4044 update_shares(sd);
4045 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4046 cpus, balance);
4048 if (*balance == 0)
4049 goto out_balanced;
4051 if (!group) {
4052 schedstat_inc(sd, lb_nobusyg[idle]);
4053 goto out_balanced;
4056 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4057 if (!busiest) {
4058 schedstat_inc(sd, lb_nobusyq[idle]);
4059 goto out_balanced;
4062 BUG_ON(busiest == this_rq);
4064 schedstat_add(sd, lb_imbalance[idle], imbalance);
4066 ld_moved = 0;
4067 if (busiest->nr_running > 1) {
4069 * Attempt to move tasks. If find_busiest_group has found
4070 * an imbalance but busiest->nr_running <= 1, the group is
4071 * still unbalanced. ld_moved simply stays zero, so it is
4072 * correctly treated as an imbalance.
4074 local_irq_save(flags);
4075 double_rq_lock(this_rq, busiest);
4076 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4077 imbalance, sd, idle, &all_pinned);
4078 double_rq_unlock(this_rq, busiest);
4079 local_irq_restore(flags);
4082 * some other cpu did the load balance for us.
4084 if (ld_moved && this_cpu != smp_processor_id())
4085 resched_cpu(this_cpu);
4087 /* All tasks on this runqueue were pinned by CPU affinity */
4088 if (unlikely(all_pinned)) {
4089 cpumask_clear_cpu(cpu_of(busiest), cpus);
4090 if (!cpumask_empty(cpus))
4091 goto redo;
4092 goto out_balanced;
4096 if (!ld_moved) {
4097 schedstat_inc(sd, lb_failed[idle]);
4098 sd->nr_balance_failed++;
4100 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4102 spin_lock_irqsave(&busiest->lock, flags);
4104 /* don't kick the migration_thread, if the curr
4105 * task on busiest cpu can't be moved to this_cpu
4107 if (!cpumask_test_cpu(this_cpu,
4108 &busiest->curr->cpus_allowed)) {
4109 spin_unlock_irqrestore(&busiest->lock, flags);
4110 all_pinned = 1;
4111 goto out_one_pinned;
4114 if (!busiest->active_balance) {
4115 busiest->active_balance = 1;
4116 busiest->push_cpu = this_cpu;
4117 active_balance = 1;
4119 spin_unlock_irqrestore(&busiest->lock, flags);
4120 if (active_balance)
4121 wake_up_process(busiest->migration_thread);
4124 * We've kicked active balancing, reset the failure
4125 * counter.
4127 sd->nr_balance_failed = sd->cache_nice_tries+1;
4129 } else
4130 sd->nr_balance_failed = 0;
4132 if (likely(!active_balance)) {
4133 /* We were unbalanced, so reset the balancing interval */
4134 sd->balance_interval = sd->min_interval;
4135 } else {
4137 * If we've begun active balancing, start to back off. This
4138 * case may not be covered by the all_pinned logic if there
4139 * is only 1 task on the busy runqueue (because we don't call
4140 * move_tasks).
4142 if (sd->balance_interval < sd->max_interval)
4143 sd->balance_interval *= 2;
4146 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4147 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4148 ld_moved = -1;
4150 goto out;
4152 out_balanced:
4153 schedstat_inc(sd, lb_balanced[idle]);
4155 sd->nr_balance_failed = 0;
4157 out_one_pinned:
4158 /* tune up the balancing interval */
4159 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4160 (sd->balance_interval < sd->max_interval))
4161 sd->balance_interval *= 2;
4163 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4164 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4165 ld_moved = -1;
4166 else
4167 ld_moved = 0;
4168 out:
4169 if (ld_moved)
4170 update_shares(sd);
4171 return ld_moved;
4175 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4176 * tasks if there is an imbalance.
4178 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4179 * this_rq is locked.
4181 static int
4182 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4184 struct sched_group *group;
4185 struct rq *busiest = NULL;
4186 unsigned long imbalance;
4187 int ld_moved = 0;
4188 int sd_idle = 0;
4189 int all_pinned = 0;
4190 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4192 cpumask_setall(cpus);
4195 * When power savings policy is enabled for the parent domain, idle
4196 * sibling can pick up load irrespective of busy siblings. In this case,
4197 * let the state of idle sibling percolate up as IDLE, instead of
4198 * portraying it as CPU_NOT_IDLE.
4200 if (sd->flags & SD_SHARE_CPUPOWER &&
4201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4202 sd_idle = 1;
4204 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4205 redo:
4206 update_shares_locked(this_rq, sd);
4207 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4208 &sd_idle, cpus, NULL);
4209 if (!group) {
4210 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4211 goto out_balanced;
4214 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4215 if (!busiest) {
4216 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4217 goto out_balanced;
4220 BUG_ON(busiest == this_rq);
4222 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4224 ld_moved = 0;
4225 if (busiest->nr_running > 1) {
4226 /* Attempt to move tasks */
4227 double_lock_balance(this_rq, busiest);
4228 /* this_rq->clock is already updated */
4229 update_rq_clock(busiest);
4230 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4231 imbalance, sd, CPU_NEWLY_IDLE,
4232 &all_pinned);
4233 double_unlock_balance(this_rq, busiest);
4235 if (unlikely(all_pinned)) {
4236 cpumask_clear_cpu(cpu_of(busiest), cpus);
4237 if (!cpumask_empty(cpus))
4238 goto redo;
4242 if (!ld_moved) {
4243 int active_balance = 0;
4245 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4246 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4247 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4248 return -1;
4250 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4251 return -1;
4253 if (sd->nr_balance_failed++ < 2)
4254 return -1;
4257 * The only task running in a non-idle cpu can be moved to this
4258 * cpu in an attempt to completely freeup the other CPU
4259 * package. The same method used to move task in load_balance()
4260 * have been extended for load_balance_newidle() to speedup
4261 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4263 * The package power saving logic comes from
4264 * find_busiest_group(). If there are no imbalance, then
4265 * f_b_g() will return NULL. However when sched_mc={1,2} then
4266 * f_b_g() will select a group from which a running task may be
4267 * pulled to this cpu in order to make the other package idle.
4268 * If there is no opportunity to make a package idle and if
4269 * there are no imbalance, then f_b_g() will return NULL and no
4270 * action will be taken in load_balance_newidle().
4272 * Under normal task pull operation due to imbalance, there
4273 * will be more than one task in the source run queue and
4274 * move_tasks() will succeed. ld_moved will be true and this
4275 * active balance code will not be triggered.
4278 /* Lock busiest in correct order while this_rq is held */
4279 double_lock_balance(this_rq, busiest);
4282 * don't kick the migration_thread, if the curr
4283 * task on busiest cpu can't be moved to this_cpu
4285 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4286 double_unlock_balance(this_rq, busiest);
4287 all_pinned = 1;
4288 return ld_moved;
4291 if (!busiest->active_balance) {
4292 busiest->active_balance = 1;
4293 busiest->push_cpu = this_cpu;
4294 active_balance = 1;
4297 double_unlock_balance(this_rq, busiest);
4299 * Should not call ttwu while holding a rq->lock
4301 spin_unlock(&this_rq->lock);
4302 if (active_balance)
4303 wake_up_process(busiest->migration_thread);
4304 spin_lock(&this_rq->lock);
4306 } else
4307 sd->nr_balance_failed = 0;
4309 update_shares_locked(this_rq, sd);
4310 return ld_moved;
4312 out_balanced:
4313 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4314 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4315 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4316 return -1;
4317 sd->nr_balance_failed = 0;
4319 return 0;
4323 * idle_balance is called by schedule() if this_cpu is about to become
4324 * idle. Attempts to pull tasks from other CPUs.
4326 static void idle_balance(int this_cpu, struct rq *this_rq)
4328 struct sched_domain *sd;
4329 int pulled_task = 0;
4330 unsigned long next_balance = jiffies + HZ;
4332 for_each_domain(this_cpu, sd) {
4333 unsigned long interval;
4335 if (!(sd->flags & SD_LOAD_BALANCE))
4336 continue;
4338 if (sd->flags & SD_BALANCE_NEWIDLE)
4339 /* If we've pulled tasks over stop searching: */
4340 pulled_task = load_balance_newidle(this_cpu, this_rq,
4341 sd);
4343 interval = msecs_to_jiffies(sd->balance_interval);
4344 if (time_after(next_balance, sd->last_balance + interval))
4345 next_balance = sd->last_balance + interval;
4346 if (pulled_task)
4347 break;
4349 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4351 * We are going idle. next_balance may be set based on
4352 * a busy processor. So reset next_balance.
4354 this_rq->next_balance = next_balance;
4359 * active_load_balance is run by migration threads. It pushes running tasks
4360 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4361 * running on each physical CPU where possible, and avoids physical /
4362 * logical imbalances.
4364 * Called with busiest_rq locked.
4366 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4368 int target_cpu = busiest_rq->push_cpu;
4369 struct sched_domain *sd;
4370 struct rq *target_rq;
4372 /* Is there any task to move? */
4373 if (busiest_rq->nr_running <= 1)
4374 return;
4376 target_rq = cpu_rq(target_cpu);
4379 * This condition is "impossible", if it occurs
4380 * we need to fix it. Originally reported by
4381 * Bjorn Helgaas on a 128-cpu setup.
4383 BUG_ON(busiest_rq == target_rq);
4385 /* move a task from busiest_rq to target_rq */
4386 double_lock_balance(busiest_rq, target_rq);
4387 update_rq_clock(busiest_rq);
4388 update_rq_clock(target_rq);
4390 /* Search for an sd spanning us and the target CPU. */
4391 for_each_domain(target_cpu, sd) {
4392 if ((sd->flags & SD_LOAD_BALANCE) &&
4393 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4394 break;
4397 if (likely(sd)) {
4398 schedstat_inc(sd, alb_count);
4400 if (move_one_task(target_rq, target_cpu, busiest_rq,
4401 sd, CPU_IDLE))
4402 schedstat_inc(sd, alb_pushed);
4403 else
4404 schedstat_inc(sd, alb_failed);
4406 double_unlock_balance(busiest_rq, target_rq);
4409 #ifdef CONFIG_NO_HZ
4410 static struct {
4411 atomic_t load_balancer;
4412 cpumask_var_t cpu_mask;
4413 cpumask_var_t ilb_grp_nohz_mask;
4414 } nohz ____cacheline_aligned = {
4415 .load_balancer = ATOMIC_INIT(-1),
4418 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4420 * lowest_flag_domain - Return lowest sched_domain containing flag.
4421 * @cpu: The cpu whose lowest level of sched domain is to
4422 * be returned.
4423 * @flag: The flag to check for the lowest sched_domain
4424 * for the given cpu.
4426 * Returns the lowest sched_domain of a cpu which contains the given flag.
4428 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4430 struct sched_domain *sd;
4432 for_each_domain(cpu, sd)
4433 if (sd && (sd->flags & flag))
4434 break;
4436 return sd;
4440 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4441 * @cpu: The cpu whose domains we're iterating over.
4442 * @sd: variable holding the value of the power_savings_sd
4443 * for cpu.
4444 * @flag: The flag to filter the sched_domains to be iterated.
4446 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4447 * set, starting from the lowest sched_domain to the highest.
4449 #define for_each_flag_domain(cpu, sd, flag) \
4450 for (sd = lowest_flag_domain(cpu, flag); \
4451 (sd && (sd->flags & flag)); sd = sd->parent)
4454 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4455 * @ilb_group: group to be checked for semi-idleness
4457 * Returns: 1 if the group is semi-idle. 0 otherwise.
4459 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4460 * and atleast one non-idle CPU. This helper function checks if the given
4461 * sched_group is semi-idle or not.
4463 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4465 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4466 sched_group_cpus(ilb_group));
4469 * A sched_group is semi-idle when it has atleast one busy cpu
4470 * and atleast one idle cpu.
4472 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4473 return 0;
4475 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4476 return 0;
4478 return 1;
4481 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4482 * @cpu: The cpu which is nominating a new idle_load_balancer.
4484 * Returns: Returns the id of the idle load balancer if it exists,
4485 * Else, returns >= nr_cpu_ids.
4487 * This algorithm picks the idle load balancer such that it belongs to a
4488 * semi-idle powersavings sched_domain. The idea is to try and avoid
4489 * completely idle packages/cores just for the purpose of idle load balancing
4490 * when there are other idle cpu's which are better suited for that job.
4492 static int find_new_ilb(int cpu)
4494 struct sched_domain *sd;
4495 struct sched_group *ilb_group;
4498 * Have idle load balancer selection from semi-idle packages only
4499 * when power-aware load balancing is enabled
4501 if (!(sched_smt_power_savings || sched_mc_power_savings))
4502 goto out_done;
4505 * Optimize for the case when we have no idle CPUs or only one
4506 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4508 if (cpumask_weight(nohz.cpu_mask) < 2)
4509 goto out_done;
4511 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4512 ilb_group = sd->groups;
4514 do {
4515 if (is_semi_idle_group(ilb_group))
4516 return cpumask_first(nohz.ilb_grp_nohz_mask);
4518 ilb_group = ilb_group->next;
4520 } while (ilb_group != sd->groups);
4523 out_done:
4524 return cpumask_first(nohz.cpu_mask);
4526 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4527 static inline int find_new_ilb(int call_cpu)
4529 return cpumask_first(nohz.cpu_mask);
4531 #endif
4534 * This routine will try to nominate the ilb (idle load balancing)
4535 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4536 * load balancing on behalf of all those cpus. If all the cpus in the system
4537 * go into this tickless mode, then there will be no ilb owner (as there is
4538 * no need for one) and all the cpus will sleep till the next wakeup event
4539 * arrives...
4541 * For the ilb owner, tick is not stopped. And this tick will be used
4542 * for idle load balancing. ilb owner will still be part of
4543 * nohz.cpu_mask..
4545 * While stopping the tick, this cpu will become the ilb owner if there
4546 * is no other owner. And will be the owner till that cpu becomes busy
4547 * or if all cpus in the system stop their ticks at which point
4548 * there is no need for ilb owner.
4550 * When the ilb owner becomes busy, it nominates another owner, during the
4551 * next busy scheduler_tick()
4553 int select_nohz_load_balancer(int stop_tick)
4555 int cpu = smp_processor_id();
4557 if (stop_tick) {
4558 cpu_rq(cpu)->in_nohz_recently = 1;
4560 if (!cpu_active(cpu)) {
4561 if (atomic_read(&nohz.load_balancer) != cpu)
4562 return 0;
4565 * If we are going offline and still the leader,
4566 * give up!
4568 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4569 BUG();
4571 return 0;
4574 cpumask_set_cpu(cpu, nohz.cpu_mask);
4576 /* time for ilb owner also to sleep */
4577 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4578 if (atomic_read(&nohz.load_balancer) == cpu)
4579 atomic_set(&nohz.load_balancer, -1);
4580 return 0;
4583 if (atomic_read(&nohz.load_balancer) == -1) {
4584 /* make me the ilb owner */
4585 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4586 return 1;
4587 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4588 int new_ilb;
4590 if (!(sched_smt_power_savings ||
4591 sched_mc_power_savings))
4592 return 1;
4594 * Check to see if there is a more power-efficient
4595 * ilb.
4597 new_ilb = find_new_ilb(cpu);
4598 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4599 atomic_set(&nohz.load_balancer, -1);
4600 resched_cpu(new_ilb);
4601 return 0;
4603 return 1;
4605 } else {
4606 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4607 return 0;
4609 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4611 if (atomic_read(&nohz.load_balancer) == cpu)
4612 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4613 BUG();
4615 return 0;
4617 #endif
4619 static DEFINE_SPINLOCK(balancing);
4622 * It checks each scheduling domain to see if it is due to be balanced,
4623 * and initiates a balancing operation if so.
4625 * Balancing parameters are set up in arch_init_sched_domains.
4627 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4629 int balance = 1;
4630 struct rq *rq = cpu_rq(cpu);
4631 unsigned long interval;
4632 struct sched_domain *sd;
4633 /* Earliest time when we have to do rebalance again */
4634 unsigned long next_balance = jiffies + 60*HZ;
4635 int update_next_balance = 0;
4636 int need_serialize;
4638 for_each_domain(cpu, sd) {
4639 if (!(sd->flags & SD_LOAD_BALANCE))
4640 continue;
4642 interval = sd->balance_interval;
4643 if (idle != CPU_IDLE)
4644 interval *= sd->busy_factor;
4646 /* scale ms to jiffies */
4647 interval = msecs_to_jiffies(interval);
4648 if (unlikely(!interval))
4649 interval = 1;
4650 if (interval > HZ*NR_CPUS/10)
4651 interval = HZ*NR_CPUS/10;
4653 need_serialize = sd->flags & SD_SERIALIZE;
4655 if (need_serialize) {
4656 if (!spin_trylock(&balancing))
4657 goto out;
4660 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4661 if (load_balance(cpu, rq, sd, idle, &balance)) {
4663 * We've pulled tasks over so either we're no
4664 * longer idle, or one of our SMT siblings is
4665 * not idle.
4667 idle = CPU_NOT_IDLE;
4669 sd->last_balance = jiffies;
4671 if (need_serialize)
4672 spin_unlock(&balancing);
4673 out:
4674 if (time_after(next_balance, sd->last_balance + interval)) {
4675 next_balance = sd->last_balance + interval;
4676 update_next_balance = 1;
4680 * Stop the load balance at this level. There is another
4681 * CPU in our sched group which is doing load balancing more
4682 * actively.
4684 if (!balance)
4685 break;
4689 * next_balance will be updated only when there is a need.
4690 * When the cpu is attached to null domain for ex, it will not be
4691 * updated.
4693 if (likely(update_next_balance))
4694 rq->next_balance = next_balance;
4698 * run_rebalance_domains is triggered when needed from the scheduler tick.
4699 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4700 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4702 static void run_rebalance_domains(struct softirq_action *h)
4704 int this_cpu = smp_processor_id();
4705 struct rq *this_rq = cpu_rq(this_cpu);
4706 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4707 CPU_IDLE : CPU_NOT_IDLE;
4709 rebalance_domains(this_cpu, idle);
4711 #ifdef CONFIG_NO_HZ
4713 * If this cpu is the owner for idle load balancing, then do the
4714 * balancing on behalf of the other idle cpus whose ticks are
4715 * stopped.
4717 if (this_rq->idle_at_tick &&
4718 atomic_read(&nohz.load_balancer) == this_cpu) {
4719 struct rq *rq;
4720 int balance_cpu;
4722 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4723 if (balance_cpu == this_cpu)
4724 continue;
4727 * If this cpu gets work to do, stop the load balancing
4728 * work being done for other cpus. Next load
4729 * balancing owner will pick it up.
4731 if (need_resched())
4732 break;
4734 rebalance_domains(balance_cpu, CPU_IDLE);
4736 rq = cpu_rq(balance_cpu);
4737 if (time_after(this_rq->next_balance, rq->next_balance))
4738 this_rq->next_balance = rq->next_balance;
4741 #endif
4744 static inline int on_null_domain(int cpu)
4746 return !rcu_dereference(cpu_rq(cpu)->sd);
4750 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4752 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4753 * idle load balancing owner or decide to stop the periodic load balancing,
4754 * if the whole system is idle.
4756 static inline void trigger_load_balance(struct rq *rq, int cpu)
4758 #ifdef CONFIG_NO_HZ
4760 * If we were in the nohz mode recently and busy at the current
4761 * scheduler tick, then check if we need to nominate new idle
4762 * load balancer.
4764 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4765 rq->in_nohz_recently = 0;
4767 if (atomic_read(&nohz.load_balancer) == cpu) {
4768 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4769 atomic_set(&nohz.load_balancer, -1);
4772 if (atomic_read(&nohz.load_balancer) == -1) {
4773 int ilb = find_new_ilb(cpu);
4775 if (ilb < nr_cpu_ids)
4776 resched_cpu(ilb);
4781 * If this cpu is idle and doing idle load balancing for all the
4782 * cpus with ticks stopped, is it time for that to stop?
4784 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4785 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4786 resched_cpu(cpu);
4787 return;
4791 * If this cpu is idle and the idle load balancing is done by
4792 * someone else, then no need raise the SCHED_SOFTIRQ
4794 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4795 cpumask_test_cpu(cpu, nohz.cpu_mask))
4796 return;
4797 #endif
4798 /* Don't need to rebalance while attached to NULL domain */
4799 if (time_after_eq(jiffies, rq->next_balance) &&
4800 likely(!on_null_domain(cpu)))
4801 raise_softirq(SCHED_SOFTIRQ);
4804 #else /* CONFIG_SMP */
4807 * on UP we do not need to balance between CPUs:
4809 static inline void idle_balance(int cpu, struct rq *rq)
4813 #endif
4815 DEFINE_PER_CPU(struct kernel_stat, kstat);
4817 EXPORT_PER_CPU_SYMBOL(kstat);
4820 * Return any ns on the sched_clock that have not yet been accounted in
4821 * @p in case that task is currently running.
4823 * Called with task_rq_lock() held on @rq.
4825 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4827 u64 ns = 0;
4829 if (task_current(rq, p)) {
4830 update_rq_clock(rq);
4831 ns = rq->clock - p->se.exec_start;
4832 if ((s64)ns < 0)
4833 ns = 0;
4836 return ns;
4839 unsigned long long task_delta_exec(struct task_struct *p)
4841 unsigned long flags;
4842 struct rq *rq;
4843 u64 ns = 0;
4845 rq = task_rq_lock(p, &flags);
4846 ns = do_task_delta_exec(p, rq);
4847 task_rq_unlock(rq, &flags);
4849 return ns;
4853 * Return accounted runtime for the task.
4854 * In case the task is currently running, return the runtime plus current's
4855 * pending runtime that have not been accounted yet.
4857 unsigned long long task_sched_runtime(struct task_struct *p)
4859 unsigned long flags;
4860 struct rq *rq;
4861 u64 ns = 0;
4863 rq = task_rq_lock(p, &flags);
4864 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4865 task_rq_unlock(rq, &flags);
4867 return ns;
4871 * Return sum_exec_runtime for the thread group.
4872 * In case the task is currently running, return the sum plus current's
4873 * pending runtime that have not been accounted yet.
4875 * Note that the thread group might have other running tasks as well,
4876 * so the return value not includes other pending runtime that other
4877 * running tasks might have.
4879 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4881 struct task_cputime totals;
4882 unsigned long flags;
4883 struct rq *rq;
4884 u64 ns;
4886 rq = task_rq_lock(p, &flags);
4887 thread_group_cputime(p, &totals);
4888 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4889 task_rq_unlock(rq, &flags);
4891 return ns;
4895 * Account user cpu time to a process.
4896 * @p: the process that the cpu time gets accounted to
4897 * @cputime: the cpu time spent in user space since the last update
4898 * @cputime_scaled: cputime scaled by cpu frequency
4900 void account_user_time(struct task_struct *p, cputime_t cputime,
4901 cputime_t cputime_scaled)
4903 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4904 cputime64_t tmp;
4906 /* Add user time to process. */
4907 p->utime = cputime_add(p->utime, cputime);
4908 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4909 account_group_user_time(p, cputime);
4911 /* Add user time to cpustat. */
4912 tmp = cputime_to_cputime64(cputime);
4913 if (TASK_NICE(p) > 0)
4914 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4915 else
4916 cpustat->user = cputime64_add(cpustat->user, tmp);
4918 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4919 /* Account for user time used */
4920 acct_update_integrals(p);
4924 * Account guest cpu time to a process.
4925 * @p: the process that the cpu time gets accounted to
4926 * @cputime: the cpu time spent in virtual machine since the last update
4927 * @cputime_scaled: cputime scaled by cpu frequency
4929 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4930 cputime_t cputime_scaled)
4932 cputime64_t tmp;
4933 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4935 tmp = cputime_to_cputime64(cputime);
4937 /* Add guest time to process. */
4938 p->utime = cputime_add(p->utime, cputime);
4939 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4940 account_group_user_time(p, cputime);
4941 p->gtime = cputime_add(p->gtime, cputime);
4943 /* Add guest time to cpustat. */
4944 cpustat->user = cputime64_add(cpustat->user, tmp);
4945 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4949 * Account system cpu time to a process.
4950 * @p: the process that the cpu time gets accounted to
4951 * @hardirq_offset: the offset to subtract from hardirq_count()
4952 * @cputime: the cpu time spent in kernel space since the last update
4953 * @cputime_scaled: cputime scaled by cpu frequency
4955 void account_system_time(struct task_struct *p, int hardirq_offset,
4956 cputime_t cputime, cputime_t cputime_scaled)
4958 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4959 cputime64_t tmp;
4961 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4962 account_guest_time(p, cputime, cputime_scaled);
4963 return;
4966 /* Add system time to process. */
4967 p->stime = cputime_add(p->stime, cputime);
4968 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4969 account_group_system_time(p, cputime);
4971 /* Add system time to cpustat. */
4972 tmp = cputime_to_cputime64(cputime);
4973 if (hardirq_count() - hardirq_offset)
4974 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4975 else if (softirq_count())
4976 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4977 else
4978 cpustat->system = cputime64_add(cpustat->system, tmp);
4980 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4982 /* Account for system time used */
4983 acct_update_integrals(p);
4987 * Account for involuntary wait time.
4988 * @steal: the cpu time spent in involuntary wait
4990 void account_steal_time(cputime_t cputime)
4992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4993 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4995 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4999 * Account for idle time.
5000 * @cputime: the cpu time spent in idle wait
5002 void account_idle_time(cputime_t cputime)
5004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5005 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5006 struct rq *rq = this_rq();
5008 if (atomic_read(&rq->nr_iowait) > 0)
5009 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5010 else
5011 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5014 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5017 * Account a single tick of cpu time.
5018 * @p: the process that the cpu time gets accounted to
5019 * @user_tick: indicates if the tick is a user or a system tick
5021 void account_process_tick(struct task_struct *p, int user_tick)
5023 cputime_t one_jiffy = jiffies_to_cputime(1);
5024 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5025 struct rq *rq = this_rq();
5027 if (user_tick)
5028 account_user_time(p, one_jiffy, one_jiffy_scaled);
5029 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5030 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5031 one_jiffy_scaled);
5032 else
5033 account_idle_time(one_jiffy);
5037 * Account multiple ticks of steal time.
5038 * @p: the process from which the cpu time has been stolen
5039 * @ticks: number of stolen ticks
5041 void account_steal_ticks(unsigned long ticks)
5043 account_steal_time(jiffies_to_cputime(ticks));
5047 * Account multiple ticks of idle time.
5048 * @ticks: number of stolen ticks
5050 void account_idle_ticks(unsigned long ticks)
5052 account_idle_time(jiffies_to_cputime(ticks));
5055 #endif
5058 * Use precise platform statistics if available:
5060 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5061 cputime_t task_utime(struct task_struct *p)
5063 return p->utime;
5066 cputime_t task_stime(struct task_struct *p)
5068 return p->stime;
5070 #else
5071 cputime_t task_utime(struct task_struct *p)
5073 clock_t utime = cputime_to_clock_t(p->utime),
5074 total = utime + cputime_to_clock_t(p->stime);
5075 u64 temp;
5078 * Use CFS's precise accounting:
5080 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5082 if (total) {
5083 temp *= utime;
5084 do_div(temp, total);
5086 utime = (clock_t)temp;
5088 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5089 return p->prev_utime;
5092 cputime_t task_stime(struct task_struct *p)
5094 clock_t stime;
5097 * Use CFS's precise accounting. (we subtract utime from
5098 * the total, to make sure the total observed by userspace
5099 * grows monotonically - apps rely on that):
5101 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5102 cputime_to_clock_t(task_utime(p));
5104 if (stime >= 0)
5105 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5107 return p->prev_stime;
5109 #endif
5111 inline cputime_t task_gtime(struct task_struct *p)
5113 return p->gtime;
5117 * This function gets called by the timer code, with HZ frequency.
5118 * We call it with interrupts disabled.
5120 * It also gets called by the fork code, when changing the parent's
5121 * timeslices.
5123 void scheduler_tick(void)
5125 int cpu = smp_processor_id();
5126 struct rq *rq = cpu_rq(cpu);
5127 struct task_struct *curr = rq->curr;
5129 sched_clock_tick();
5131 spin_lock(&rq->lock);
5132 update_rq_clock(rq);
5133 update_cpu_load(rq);
5134 curr->sched_class->task_tick(rq, curr, 0);
5135 spin_unlock(&rq->lock);
5137 perf_counter_task_tick(curr, cpu);
5139 #ifdef CONFIG_SMP
5140 rq->idle_at_tick = idle_cpu(cpu);
5141 trigger_load_balance(rq, cpu);
5142 #endif
5145 notrace unsigned long get_parent_ip(unsigned long addr)
5147 if (in_lock_functions(addr)) {
5148 addr = CALLER_ADDR2;
5149 if (in_lock_functions(addr))
5150 addr = CALLER_ADDR3;
5152 return addr;
5155 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5156 defined(CONFIG_PREEMPT_TRACER))
5158 void __kprobes add_preempt_count(int val)
5160 #ifdef CONFIG_DEBUG_PREEMPT
5162 * Underflow?
5164 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5165 return;
5166 #endif
5167 preempt_count() += val;
5168 #ifdef CONFIG_DEBUG_PREEMPT
5170 * Spinlock count overflowing soon?
5172 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5173 PREEMPT_MASK - 10);
5174 #endif
5175 if (preempt_count() == val)
5176 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5178 EXPORT_SYMBOL(add_preempt_count);
5180 void __kprobes sub_preempt_count(int val)
5182 #ifdef CONFIG_DEBUG_PREEMPT
5184 * Underflow?
5186 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5187 return;
5189 * Is the spinlock portion underflowing?
5191 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5192 !(preempt_count() & PREEMPT_MASK)))
5193 return;
5194 #endif
5196 if (preempt_count() == val)
5197 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5198 preempt_count() -= val;
5200 EXPORT_SYMBOL(sub_preempt_count);
5202 #endif
5205 * Print scheduling while atomic bug:
5207 static noinline void __schedule_bug(struct task_struct *prev)
5209 struct pt_regs *regs = get_irq_regs();
5211 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5212 prev->comm, prev->pid, preempt_count());
5214 debug_show_held_locks(prev);
5215 print_modules();
5216 if (irqs_disabled())
5217 print_irqtrace_events(prev);
5219 if (regs)
5220 show_regs(regs);
5221 else
5222 dump_stack();
5226 * Various schedule()-time debugging checks and statistics:
5228 static inline void schedule_debug(struct task_struct *prev)
5231 * Test if we are atomic. Since do_exit() needs to call into
5232 * schedule() atomically, we ignore that path for now.
5233 * Otherwise, whine if we are scheduling when we should not be.
5235 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5236 __schedule_bug(prev);
5238 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5240 schedstat_inc(this_rq(), sched_count);
5241 #ifdef CONFIG_SCHEDSTATS
5242 if (unlikely(prev->lock_depth >= 0)) {
5243 schedstat_inc(this_rq(), bkl_count);
5244 schedstat_inc(prev, sched_info.bkl_count);
5246 #endif
5249 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5251 if (prev->state == TASK_RUNNING) {
5252 u64 runtime = prev->se.sum_exec_runtime;
5254 runtime -= prev->se.prev_sum_exec_runtime;
5255 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5258 * In order to avoid avg_overlap growing stale when we are
5259 * indeed overlapping and hence not getting put to sleep, grow
5260 * the avg_overlap on preemption.
5262 * We use the average preemption runtime because that
5263 * correlates to the amount of cache footprint a task can
5264 * build up.
5266 update_avg(&prev->se.avg_overlap, runtime);
5268 prev->sched_class->put_prev_task(rq, prev);
5272 * Pick up the highest-prio task:
5274 static inline struct task_struct *
5275 pick_next_task(struct rq *rq)
5277 const struct sched_class *class;
5278 struct task_struct *p;
5281 * Optimization: we know that if all tasks are in
5282 * the fair class we can call that function directly:
5284 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5285 p = fair_sched_class.pick_next_task(rq);
5286 if (likely(p))
5287 return p;
5290 class = sched_class_highest;
5291 for ( ; ; ) {
5292 p = class->pick_next_task(rq);
5293 if (p)
5294 return p;
5296 * Will never be NULL as the idle class always
5297 * returns a non-NULL p:
5299 class = class->next;
5304 * schedule() is the main scheduler function.
5306 asmlinkage void __sched schedule(void)
5308 struct task_struct *prev, *next;
5309 unsigned long *switch_count;
5310 struct rq *rq;
5311 int cpu;
5313 need_resched:
5314 preempt_disable();
5315 cpu = smp_processor_id();
5316 rq = cpu_rq(cpu);
5317 rcu_qsctr_inc(cpu);
5318 prev = rq->curr;
5319 switch_count = &prev->nivcsw;
5321 release_kernel_lock(prev);
5322 need_resched_nonpreemptible:
5324 schedule_debug(prev);
5326 if (sched_feat(HRTICK))
5327 hrtick_clear(rq);
5329 spin_lock_irq(&rq->lock);
5330 update_rq_clock(rq);
5331 clear_tsk_need_resched(prev);
5333 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5334 if (unlikely(signal_pending_state(prev->state, prev)))
5335 prev->state = TASK_RUNNING;
5336 else
5337 deactivate_task(rq, prev, 1);
5338 switch_count = &prev->nvcsw;
5341 #ifdef CONFIG_SMP
5342 if (prev->sched_class->pre_schedule)
5343 prev->sched_class->pre_schedule(rq, prev);
5344 #endif
5346 if (unlikely(!rq->nr_running))
5347 idle_balance(cpu, rq);
5349 put_prev_task(rq, prev);
5350 next = pick_next_task(rq);
5352 if (likely(prev != next)) {
5353 sched_info_switch(prev, next);
5354 perf_counter_task_sched_out(prev, next, cpu);
5356 rq->nr_switches++;
5357 rq->curr = next;
5358 ++*switch_count;
5360 context_switch(rq, prev, next); /* unlocks the rq */
5362 * the context switch might have flipped the stack from under
5363 * us, hence refresh the local variables.
5365 cpu = smp_processor_id();
5366 rq = cpu_rq(cpu);
5367 } else
5368 spin_unlock_irq(&rq->lock);
5370 if (unlikely(reacquire_kernel_lock(current) < 0))
5371 goto need_resched_nonpreemptible;
5373 preempt_enable_no_resched();
5374 if (need_resched())
5375 goto need_resched;
5377 EXPORT_SYMBOL(schedule);
5379 #ifdef CONFIG_SMP
5381 * Look out! "owner" is an entirely speculative pointer
5382 * access and not reliable.
5384 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5386 unsigned int cpu;
5387 struct rq *rq;
5389 if (!sched_feat(OWNER_SPIN))
5390 return 0;
5392 #ifdef CONFIG_DEBUG_PAGEALLOC
5394 * Need to access the cpu field knowing that
5395 * DEBUG_PAGEALLOC could have unmapped it if
5396 * the mutex owner just released it and exited.
5398 if (probe_kernel_address(&owner->cpu, cpu))
5399 goto out;
5400 #else
5401 cpu = owner->cpu;
5402 #endif
5405 * Even if the access succeeded (likely case),
5406 * the cpu field may no longer be valid.
5408 if (cpu >= nr_cpumask_bits)
5409 goto out;
5412 * We need to validate that we can do a
5413 * get_cpu() and that we have the percpu area.
5415 if (!cpu_online(cpu))
5416 goto out;
5418 rq = cpu_rq(cpu);
5420 for (;;) {
5422 * Owner changed, break to re-assess state.
5424 if (lock->owner != owner)
5425 break;
5428 * Is that owner really running on that cpu?
5430 if (task_thread_info(rq->curr) != owner || need_resched())
5431 return 0;
5433 cpu_relax();
5435 out:
5436 return 1;
5438 #endif
5440 #ifdef CONFIG_PREEMPT
5442 * this is the entry point to schedule() from in-kernel preemption
5443 * off of preempt_enable. Kernel preemptions off return from interrupt
5444 * occur there and call schedule directly.
5446 asmlinkage void __sched preempt_schedule(void)
5448 struct thread_info *ti = current_thread_info();
5451 * If there is a non-zero preempt_count or interrupts are disabled,
5452 * we do not want to preempt the current task. Just return..
5454 if (likely(ti->preempt_count || irqs_disabled()))
5455 return;
5457 do {
5458 add_preempt_count(PREEMPT_ACTIVE);
5459 schedule();
5460 sub_preempt_count(PREEMPT_ACTIVE);
5463 * Check again in case we missed a preemption opportunity
5464 * between schedule and now.
5466 barrier();
5467 } while (need_resched());
5469 EXPORT_SYMBOL(preempt_schedule);
5472 * this is the entry point to schedule() from kernel preemption
5473 * off of irq context.
5474 * Note, that this is called and return with irqs disabled. This will
5475 * protect us against recursive calling from irq.
5477 asmlinkage void __sched preempt_schedule_irq(void)
5479 struct thread_info *ti = current_thread_info();
5481 /* Catch callers which need to be fixed */
5482 BUG_ON(ti->preempt_count || !irqs_disabled());
5484 do {
5485 add_preempt_count(PREEMPT_ACTIVE);
5486 local_irq_enable();
5487 schedule();
5488 local_irq_disable();
5489 sub_preempt_count(PREEMPT_ACTIVE);
5492 * Check again in case we missed a preemption opportunity
5493 * between schedule and now.
5495 barrier();
5496 } while (need_resched());
5499 #endif /* CONFIG_PREEMPT */
5501 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5502 void *key)
5504 return try_to_wake_up(curr->private, mode, sync);
5506 EXPORT_SYMBOL(default_wake_function);
5509 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5510 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5511 * number) then we wake all the non-exclusive tasks and one exclusive task.
5513 * There are circumstances in which we can try to wake a task which has already
5514 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5515 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5517 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5518 int nr_exclusive, int sync, void *key)
5520 wait_queue_t *curr, *next;
5522 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5523 unsigned flags = curr->flags;
5525 if (curr->func(curr, mode, sync, key) &&
5526 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5527 break;
5532 * __wake_up - wake up threads blocked on a waitqueue.
5533 * @q: the waitqueue
5534 * @mode: which threads
5535 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5536 * @key: is directly passed to the wakeup function
5538 * It may be assumed that this function implies a write memory barrier before
5539 * changing the task state if and only if any tasks are woken up.
5541 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5542 int nr_exclusive, void *key)
5544 unsigned long flags;
5546 spin_lock_irqsave(&q->lock, flags);
5547 __wake_up_common(q, mode, nr_exclusive, 0, key);
5548 spin_unlock_irqrestore(&q->lock, flags);
5550 EXPORT_SYMBOL(__wake_up);
5553 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5555 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5557 __wake_up_common(q, mode, 1, 0, NULL);
5560 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5562 __wake_up_common(q, mode, 1, 0, key);
5566 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5567 * @q: the waitqueue
5568 * @mode: which threads
5569 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5570 * @key: opaque value to be passed to wakeup targets
5572 * The sync wakeup differs that the waker knows that it will schedule
5573 * away soon, so while the target thread will be woken up, it will not
5574 * be migrated to another CPU - ie. the two threads are 'synchronized'
5575 * with each other. This can prevent needless bouncing between CPUs.
5577 * On UP it can prevent extra preemption.
5579 * It may be assumed that this function implies a write memory barrier before
5580 * changing the task state if and only if any tasks are woken up.
5582 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5583 int nr_exclusive, void *key)
5585 unsigned long flags;
5586 int sync = 1;
5588 if (unlikely(!q))
5589 return;
5591 if (unlikely(!nr_exclusive))
5592 sync = 0;
5594 spin_lock_irqsave(&q->lock, flags);
5595 __wake_up_common(q, mode, nr_exclusive, sync, key);
5596 spin_unlock_irqrestore(&q->lock, flags);
5598 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5601 * __wake_up_sync - see __wake_up_sync_key()
5603 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5605 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5607 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5610 * complete: - signals a single thread waiting on this completion
5611 * @x: holds the state of this particular completion
5613 * This will wake up a single thread waiting on this completion. Threads will be
5614 * awakened in the same order in which they were queued.
5616 * See also complete_all(), wait_for_completion() and related routines.
5618 * It may be assumed that this function implies a write memory barrier before
5619 * changing the task state if and only if any tasks are woken up.
5621 void complete(struct completion *x)
5623 unsigned long flags;
5625 spin_lock_irqsave(&x->wait.lock, flags);
5626 x->done++;
5627 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5628 spin_unlock_irqrestore(&x->wait.lock, flags);
5630 EXPORT_SYMBOL(complete);
5633 * complete_all: - signals all threads waiting on this completion
5634 * @x: holds the state of this particular completion
5636 * This will wake up all threads waiting on this particular completion event.
5638 * It may be assumed that this function implies a write memory barrier before
5639 * changing the task state if and only if any tasks are woken up.
5641 void complete_all(struct completion *x)
5643 unsigned long flags;
5645 spin_lock_irqsave(&x->wait.lock, flags);
5646 x->done += UINT_MAX/2;
5647 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5648 spin_unlock_irqrestore(&x->wait.lock, flags);
5650 EXPORT_SYMBOL(complete_all);
5652 static inline long __sched
5653 do_wait_for_common(struct completion *x, long timeout, int state)
5655 if (!x->done) {
5656 DECLARE_WAITQUEUE(wait, current);
5658 wait.flags |= WQ_FLAG_EXCLUSIVE;
5659 __add_wait_queue_tail(&x->wait, &wait);
5660 do {
5661 if (signal_pending_state(state, current)) {
5662 timeout = -ERESTARTSYS;
5663 break;
5665 __set_current_state(state);
5666 spin_unlock_irq(&x->wait.lock);
5667 timeout = schedule_timeout(timeout);
5668 spin_lock_irq(&x->wait.lock);
5669 } while (!x->done && timeout);
5670 __remove_wait_queue(&x->wait, &wait);
5671 if (!x->done)
5672 return timeout;
5674 x->done--;
5675 return timeout ?: 1;
5678 static long __sched
5679 wait_for_common(struct completion *x, long timeout, int state)
5681 might_sleep();
5683 spin_lock_irq(&x->wait.lock);
5684 timeout = do_wait_for_common(x, timeout, state);
5685 spin_unlock_irq(&x->wait.lock);
5686 return timeout;
5690 * wait_for_completion: - waits for completion of a task
5691 * @x: holds the state of this particular completion
5693 * This waits to be signaled for completion of a specific task. It is NOT
5694 * interruptible and there is no timeout.
5696 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5697 * and interrupt capability. Also see complete().
5699 void __sched wait_for_completion(struct completion *x)
5701 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5703 EXPORT_SYMBOL(wait_for_completion);
5706 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5707 * @x: holds the state of this particular completion
5708 * @timeout: timeout value in jiffies
5710 * This waits for either a completion of a specific task to be signaled or for a
5711 * specified timeout to expire. The timeout is in jiffies. It is not
5712 * interruptible.
5714 unsigned long __sched
5715 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5717 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5719 EXPORT_SYMBOL(wait_for_completion_timeout);
5722 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5723 * @x: holds the state of this particular completion
5725 * This waits for completion of a specific task to be signaled. It is
5726 * interruptible.
5728 int __sched wait_for_completion_interruptible(struct completion *x)
5730 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5731 if (t == -ERESTARTSYS)
5732 return t;
5733 return 0;
5735 EXPORT_SYMBOL(wait_for_completion_interruptible);
5738 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5739 * @x: holds the state of this particular completion
5740 * @timeout: timeout value in jiffies
5742 * This waits for either a completion of a specific task to be signaled or for a
5743 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5745 unsigned long __sched
5746 wait_for_completion_interruptible_timeout(struct completion *x,
5747 unsigned long timeout)
5749 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5751 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5754 * wait_for_completion_killable: - waits for completion of a task (killable)
5755 * @x: holds the state of this particular completion
5757 * This waits to be signaled for completion of a specific task. It can be
5758 * interrupted by a kill signal.
5760 int __sched wait_for_completion_killable(struct completion *x)
5762 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5763 if (t == -ERESTARTSYS)
5764 return t;
5765 return 0;
5767 EXPORT_SYMBOL(wait_for_completion_killable);
5770 * try_wait_for_completion - try to decrement a completion without blocking
5771 * @x: completion structure
5773 * Returns: 0 if a decrement cannot be done without blocking
5774 * 1 if a decrement succeeded.
5776 * If a completion is being used as a counting completion,
5777 * attempt to decrement the counter without blocking. This
5778 * enables us to avoid waiting if the resource the completion
5779 * is protecting is not available.
5781 bool try_wait_for_completion(struct completion *x)
5783 int ret = 1;
5785 spin_lock_irq(&x->wait.lock);
5786 if (!x->done)
5787 ret = 0;
5788 else
5789 x->done--;
5790 spin_unlock_irq(&x->wait.lock);
5791 return ret;
5793 EXPORT_SYMBOL(try_wait_for_completion);
5796 * completion_done - Test to see if a completion has any waiters
5797 * @x: completion structure
5799 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5800 * 1 if there are no waiters.
5803 bool completion_done(struct completion *x)
5805 int ret = 1;
5807 spin_lock_irq(&x->wait.lock);
5808 if (!x->done)
5809 ret = 0;
5810 spin_unlock_irq(&x->wait.lock);
5811 return ret;
5813 EXPORT_SYMBOL(completion_done);
5815 static long __sched
5816 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5818 unsigned long flags;
5819 wait_queue_t wait;
5821 init_waitqueue_entry(&wait, current);
5823 __set_current_state(state);
5825 spin_lock_irqsave(&q->lock, flags);
5826 __add_wait_queue(q, &wait);
5827 spin_unlock(&q->lock);
5828 timeout = schedule_timeout(timeout);
5829 spin_lock_irq(&q->lock);
5830 __remove_wait_queue(q, &wait);
5831 spin_unlock_irqrestore(&q->lock, flags);
5833 return timeout;
5836 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5838 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5840 EXPORT_SYMBOL(interruptible_sleep_on);
5842 long __sched
5843 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5845 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5847 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5849 void __sched sleep_on(wait_queue_head_t *q)
5851 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5853 EXPORT_SYMBOL(sleep_on);
5855 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5857 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5859 EXPORT_SYMBOL(sleep_on_timeout);
5861 #ifdef CONFIG_RT_MUTEXES
5864 * rt_mutex_setprio - set the current priority of a task
5865 * @p: task
5866 * @prio: prio value (kernel-internal form)
5868 * This function changes the 'effective' priority of a task. It does
5869 * not touch ->normal_prio like __setscheduler().
5871 * Used by the rt_mutex code to implement priority inheritance logic.
5873 void rt_mutex_setprio(struct task_struct *p, int prio)
5875 unsigned long flags;
5876 int oldprio, on_rq, running;
5877 struct rq *rq;
5878 const struct sched_class *prev_class = p->sched_class;
5880 BUG_ON(prio < 0 || prio > MAX_PRIO);
5882 rq = task_rq_lock(p, &flags);
5883 update_rq_clock(rq);
5885 oldprio = p->prio;
5886 on_rq = p->se.on_rq;
5887 running = task_current(rq, p);
5888 if (on_rq)
5889 dequeue_task(rq, p, 0);
5890 if (running)
5891 p->sched_class->put_prev_task(rq, p);
5893 if (rt_prio(prio))
5894 p->sched_class = &rt_sched_class;
5895 else
5896 p->sched_class = &fair_sched_class;
5898 p->prio = prio;
5900 if (running)
5901 p->sched_class->set_curr_task(rq);
5902 if (on_rq) {
5903 enqueue_task(rq, p, 0);
5905 check_class_changed(rq, p, prev_class, oldprio, running);
5907 task_rq_unlock(rq, &flags);
5910 #endif
5912 void set_user_nice(struct task_struct *p, long nice)
5914 int old_prio, delta, on_rq;
5915 unsigned long flags;
5916 struct rq *rq;
5918 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5919 return;
5921 * We have to be careful, if called from sys_setpriority(),
5922 * the task might be in the middle of scheduling on another CPU.
5924 rq = task_rq_lock(p, &flags);
5925 update_rq_clock(rq);
5927 * The RT priorities are set via sched_setscheduler(), but we still
5928 * allow the 'normal' nice value to be set - but as expected
5929 * it wont have any effect on scheduling until the task is
5930 * SCHED_FIFO/SCHED_RR:
5932 if (task_has_rt_policy(p)) {
5933 p->static_prio = NICE_TO_PRIO(nice);
5934 goto out_unlock;
5936 on_rq = p->se.on_rq;
5937 if (on_rq)
5938 dequeue_task(rq, p, 0);
5940 p->static_prio = NICE_TO_PRIO(nice);
5941 set_load_weight(p);
5942 old_prio = p->prio;
5943 p->prio = effective_prio(p);
5944 delta = p->prio - old_prio;
5946 if (on_rq) {
5947 enqueue_task(rq, p, 0);
5949 * If the task increased its priority or is running and
5950 * lowered its priority, then reschedule its CPU:
5952 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5953 resched_task(rq->curr);
5955 out_unlock:
5956 task_rq_unlock(rq, &flags);
5958 EXPORT_SYMBOL(set_user_nice);
5961 * can_nice - check if a task can reduce its nice value
5962 * @p: task
5963 * @nice: nice value
5965 int can_nice(const struct task_struct *p, const int nice)
5967 /* convert nice value [19,-20] to rlimit style value [1,40] */
5968 int nice_rlim = 20 - nice;
5970 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5971 capable(CAP_SYS_NICE));
5974 #ifdef __ARCH_WANT_SYS_NICE
5977 * sys_nice - change the priority of the current process.
5978 * @increment: priority increment
5980 * sys_setpriority is a more generic, but much slower function that
5981 * does similar things.
5983 SYSCALL_DEFINE1(nice, int, increment)
5985 long nice, retval;
5988 * Setpriority might change our priority at the same moment.
5989 * We don't have to worry. Conceptually one call occurs first
5990 * and we have a single winner.
5992 if (increment < -40)
5993 increment = -40;
5994 if (increment > 40)
5995 increment = 40;
5997 nice = TASK_NICE(current) + increment;
5998 if (nice < -20)
5999 nice = -20;
6000 if (nice > 19)
6001 nice = 19;
6003 if (increment < 0 && !can_nice(current, nice))
6004 return -EPERM;
6006 retval = security_task_setnice(current, nice);
6007 if (retval)
6008 return retval;
6010 set_user_nice(current, nice);
6011 return 0;
6014 #endif
6017 * task_prio - return the priority value of a given task.
6018 * @p: the task in question.
6020 * This is the priority value as seen by users in /proc.
6021 * RT tasks are offset by -200. Normal tasks are centered
6022 * around 0, value goes from -16 to +15.
6024 int task_prio(const struct task_struct *p)
6026 return p->prio - MAX_RT_PRIO;
6030 * task_nice - return the nice value of a given task.
6031 * @p: the task in question.
6033 int task_nice(const struct task_struct *p)
6035 return TASK_NICE(p);
6037 EXPORT_SYMBOL(task_nice);
6040 * idle_cpu - is a given cpu idle currently?
6041 * @cpu: the processor in question.
6043 int idle_cpu(int cpu)
6045 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6049 * idle_task - return the idle task for a given cpu.
6050 * @cpu: the processor in question.
6052 struct task_struct *idle_task(int cpu)
6054 return cpu_rq(cpu)->idle;
6058 * find_process_by_pid - find a process with a matching PID value.
6059 * @pid: the pid in question.
6061 static struct task_struct *find_process_by_pid(pid_t pid)
6063 return pid ? find_task_by_vpid(pid) : current;
6066 /* Actually do priority change: must hold rq lock. */
6067 static void
6068 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6070 BUG_ON(p->se.on_rq);
6072 p->policy = policy;
6073 switch (p->policy) {
6074 case SCHED_NORMAL:
6075 case SCHED_BATCH:
6076 case SCHED_IDLE:
6077 p->sched_class = &fair_sched_class;
6078 break;
6079 case SCHED_FIFO:
6080 case SCHED_RR:
6081 p->sched_class = &rt_sched_class;
6082 break;
6085 p->rt_priority = prio;
6086 p->normal_prio = normal_prio(p);
6087 /* we are holding p->pi_lock already */
6088 p->prio = rt_mutex_getprio(p);
6089 set_load_weight(p);
6093 * check the target process has a UID that matches the current process's
6095 static bool check_same_owner(struct task_struct *p)
6097 const struct cred *cred = current_cred(), *pcred;
6098 bool match;
6100 rcu_read_lock();
6101 pcred = __task_cred(p);
6102 match = (cred->euid == pcred->euid ||
6103 cred->euid == pcred->uid);
6104 rcu_read_unlock();
6105 return match;
6108 static int __sched_setscheduler(struct task_struct *p, int policy,
6109 struct sched_param *param, bool user)
6111 int retval, oldprio, oldpolicy = -1, on_rq, running;
6112 unsigned long flags;
6113 const struct sched_class *prev_class = p->sched_class;
6114 struct rq *rq;
6115 int reset_on_fork;
6117 /* may grab non-irq protected spin_locks */
6118 BUG_ON(in_interrupt());
6119 recheck:
6120 /* double check policy once rq lock held */
6121 if (policy < 0) {
6122 reset_on_fork = p->sched_reset_on_fork;
6123 policy = oldpolicy = p->policy;
6124 } else {
6125 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6126 policy &= ~SCHED_RESET_ON_FORK;
6128 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6129 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6130 policy != SCHED_IDLE)
6131 return -EINVAL;
6135 * Valid priorities for SCHED_FIFO and SCHED_RR are
6136 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6137 * SCHED_BATCH and SCHED_IDLE is 0.
6139 if (param->sched_priority < 0 ||
6140 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6141 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6142 return -EINVAL;
6143 if (rt_policy(policy) != (param->sched_priority != 0))
6144 return -EINVAL;
6147 * Allow unprivileged RT tasks to decrease priority:
6149 if (user && !capable(CAP_SYS_NICE)) {
6150 if (rt_policy(policy)) {
6151 unsigned long rlim_rtprio;
6153 if (!lock_task_sighand(p, &flags))
6154 return -ESRCH;
6155 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6156 unlock_task_sighand(p, &flags);
6158 /* can't set/change the rt policy */
6159 if (policy != p->policy && !rlim_rtprio)
6160 return -EPERM;
6162 /* can't increase priority */
6163 if (param->sched_priority > p->rt_priority &&
6164 param->sched_priority > rlim_rtprio)
6165 return -EPERM;
6168 * Like positive nice levels, dont allow tasks to
6169 * move out of SCHED_IDLE either:
6171 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6172 return -EPERM;
6174 /* can't change other user's priorities */
6175 if (!check_same_owner(p))
6176 return -EPERM;
6178 /* Normal users shall not reset the sched_reset_on_fork flag */
6179 if (p->sched_reset_on_fork && !reset_on_fork)
6180 return -EPERM;
6183 if (user) {
6184 #ifdef CONFIG_RT_GROUP_SCHED
6186 * Do not allow realtime tasks into groups that have no runtime
6187 * assigned.
6189 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6190 task_group(p)->rt_bandwidth.rt_runtime == 0)
6191 return -EPERM;
6192 #endif
6194 retval = security_task_setscheduler(p, policy, param);
6195 if (retval)
6196 return retval;
6200 * make sure no PI-waiters arrive (or leave) while we are
6201 * changing the priority of the task:
6203 spin_lock_irqsave(&p->pi_lock, flags);
6205 * To be able to change p->policy safely, the apropriate
6206 * runqueue lock must be held.
6208 rq = __task_rq_lock(p);
6209 /* recheck policy now with rq lock held */
6210 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6211 policy = oldpolicy = -1;
6212 __task_rq_unlock(rq);
6213 spin_unlock_irqrestore(&p->pi_lock, flags);
6214 goto recheck;
6216 update_rq_clock(rq);
6217 on_rq = p->se.on_rq;
6218 running = task_current(rq, p);
6219 if (on_rq)
6220 deactivate_task(rq, p, 0);
6221 if (running)
6222 p->sched_class->put_prev_task(rq, p);
6224 p->sched_reset_on_fork = reset_on_fork;
6226 oldprio = p->prio;
6227 __setscheduler(rq, p, policy, param->sched_priority);
6229 if (running)
6230 p->sched_class->set_curr_task(rq);
6231 if (on_rq) {
6232 activate_task(rq, p, 0);
6234 check_class_changed(rq, p, prev_class, oldprio, running);
6236 __task_rq_unlock(rq);
6237 spin_unlock_irqrestore(&p->pi_lock, flags);
6239 rt_mutex_adjust_pi(p);
6241 return 0;
6245 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6246 * @p: the task in question.
6247 * @policy: new policy.
6248 * @param: structure containing the new RT priority.
6250 * NOTE that the task may be already dead.
6252 int sched_setscheduler(struct task_struct *p, int policy,
6253 struct sched_param *param)
6255 return __sched_setscheduler(p, policy, param, true);
6257 EXPORT_SYMBOL_GPL(sched_setscheduler);
6260 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6261 * @p: the task in question.
6262 * @policy: new policy.
6263 * @param: structure containing the new RT priority.
6265 * Just like sched_setscheduler, only don't bother checking if the
6266 * current context has permission. For example, this is needed in
6267 * stop_machine(): we create temporary high priority worker threads,
6268 * but our caller might not have that capability.
6270 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6271 struct sched_param *param)
6273 return __sched_setscheduler(p, policy, param, false);
6276 static int
6277 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6279 struct sched_param lparam;
6280 struct task_struct *p;
6281 int retval;
6283 if (!param || pid < 0)
6284 return -EINVAL;
6285 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6286 return -EFAULT;
6288 rcu_read_lock();
6289 retval = -ESRCH;
6290 p = find_process_by_pid(pid);
6291 if (p != NULL)
6292 retval = sched_setscheduler(p, policy, &lparam);
6293 rcu_read_unlock();
6295 return retval;
6299 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6300 * @pid: the pid in question.
6301 * @policy: new policy.
6302 * @param: structure containing the new RT priority.
6304 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6305 struct sched_param __user *, param)
6307 /* negative values for policy are not valid */
6308 if (policy < 0)
6309 return -EINVAL;
6311 return do_sched_setscheduler(pid, policy, param);
6315 * sys_sched_setparam - set/change the RT priority of a thread
6316 * @pid: the pid in question.
6317 * @param: structure containing the new RT priority.
6319 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6321 return do_sched_setscheduler(pid, -1, param);
6325 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6326 * @pid: the pid in question.
6328 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6330 struct task_struct *p;
6331 int retval;
6333 if (pid < 0)
6334 return -EINVAL;
6336 retval = -ESRCH;
6337 read_lock(&tasklist_lock);
6338 p = find_process_by_pid(pid);
6339 if (p) {
6340 retval = security_task_getscheduler(p);
6341 if (!retval)
6342 retval = p->policy
6343 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6345 read_unlock(&tasklist_lock);
6346 return retval;
6350 * sys_sched_getparam - get the RT priority of a thread
6351 * @pid: the pid in question.
6352 * @param: structure containing the RT priority.
6354 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6356 struct sched_param lp;
6357 struct task_struct *p;
6358 int retval;
6360 if (!param || pid < 0)
6361 return -EINVAL;
6363 read_lock(&tasklist_lock);
6364 p = find_process_by_pid(pid);
6365 retval = -ESRCH;
6366 if (!p)
6367 goto out_unlock;
6369 retval = security_task_getscheduler(p);
6370 if (retval)
6371 goto out_unlock;
6373 lp.sched_priority = p->rt_priority;
6374 read_unlock(&tasklist_lock);
6377 * This one might sleep, we cannot do it with a spinlock held ...
6379 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6381 return retval;
6383 out_unlock:
6384 read_unlock(&tasklist_lock);
6385 return retval;
6388 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6390 cpumask_var_t cpus_allowed, new_mask;
6391 struct task_struct *p;
6392 int retval;
6394 get_online_cpus();
6395 read_lock(&tasklist_lock);
6397 p = find_process_by_pid(pid);
6398 if (!p) {
6399 read_unlock(&tasklist_lock);
6400 put_online_cpus();
6401 return -ESRCH;
6405 * It is not safe to call set_cpus_allowed with the
6406 * tasklist_lock held. We will bump the task_struct's
6407 * usage count and then drop tasklist_lock.
6409 get_task_struct(p);
6410 read_unlock(&tasklist_lock);
6412 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6413 retval = -ENOMEM;
6414 goto out_put_task;
6416 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6417 retval = -ENOMEM;
6418 goto out_free_cpus_allowed;
6420 retval = -EPERM;
6421 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6422 goto out_unlock;
6424 retval = security_task_setscheduler(p, 0, NULL);
6425 if (retval)
6426 goto out_unlock;
6428 cpuset_cpus_allowed(p, cpus_allowed);
6429 cpumask_and(new_mask, in_mask, cpus_allowed);
6430 again:
6431 retval = set_cpus_allowed_ptr(p, new_mask);
6433 if (!retval) {
6434 cpuset_cpus_allowed(p, cpus_allowed);
6435 if (!cpumask_subset(new_mask, cpus_allowed)) {
6437 * We must have raced with a concurrent cpuset
6438 * update. Just reset the cpus_allowed to the
6439 * cpuset's cpus_allowed
6441 cpumask_copy(new_mask, cpus_allowed);
6442 goto again;
6445 out_unlock:
6446 free_cpumask_var(new_mask);
6447 out_free_cpus_allowed:
6448 free_cpumask_var(cpus_allowed);
6449 out_put_task:
6450 put_task_struct(p);
6451 put_online_cpus();
6452 return retval;
6455 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6456 struct cpumask *new_mask)
6458 if (len < cpumask_size())
6459 cpumask_clear(new_mask);
6460 else if (len > cpumask_size())
6461 len = cpumask_size();
6463 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6467 * sys_sched_setaffinity - set the cpu affinity of a process
6468 * @pid: pid of the process
6469 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6470 * @user_mask_ptr: user-space pointer to the new cpu mask
6472 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6473 unsigned long __user *, user_mask_ptr)
6475 cpumask_var_t new_mask;
6476 int retval;
6478 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6479 return -ENOMEM;
6481 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6482 if (retval == 0)
6483 retval = sched_setaffinity(pid, new_mask);
6484 free_cpumask_var(new_mask);
6485 return retval;
6488 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6490 struct task_struct *p;
6491 int retval;
6493 get_online_cpus();
6494 read_lock(&tasklist_lock);
6496 retval = -ESRCH;
6497 p = find_process_by_pid(pid);
6498 if (!p)
6499 goto out_unlock;
6501 retval = security_task_getscheduler(p);
6502 if (retval)
6503 goto out_unlock;
6505 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6507 out_unlock:
6508 read_unlock(&tasklist_lock);
6509 put_online_cpus();
6511 return retval;
6515 * sys_sched_getaffinity - get the cpu affinity of a process
6516 * @pid: pid of the process
6517 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6518 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6520 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6521 unsigned long __user *, user_mask_ptr)
6523 int ret;
6524 cpumask_var_t mask;
6526 if (len < cpumask_size())
6527 return -EINVAL;
6529 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6530 return -ENOMEM;
6532 ret = sched_getaffinity(pid, mask);
6533 if (ret == 0) {
6534 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6535 ret = -EFAULT;
6536 else
6537 ret = cpumask_size();
6539 free_cpumask_var(mask);
6541 return ret;
6545 * sys_sched_yield - yield the current processor to other threads.
6547 * This function yields the current CPU to other tasks. If there are no
6548 * other threads running on this CPU then this function will return.
6550 SYSCALL_DEFINE0(sched_yield)
6552 struct rq *rq = this_rq_lock();
6554 schedstat_inc(rq, yld_count);
6555 current->sched_class->yield_task(rq);
6558 * Since we are going to call schedule() anyway, there's
6559 * no need to preempt or enable interrupts:
6561 __release(rq->lock);
6562 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6563 _raw_spin_unlock(&rq->lock);
6564 preempt_enable_no_resched();
6566 schedule();
6568 return 0;
6571 static void __cond_resched(void)
6573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6574 __might_sleep(__FILE__, __LINE__);
6575 #endif
6577 * The BKS might be reacquired before we have dropped
6578 * PREEMPT_ACTIVE, which could trigger a second
6579 * cond_resched() call.
6581 do {
6582 add_preempt_count(PREEMPT_ACTIVE);
6583 schedule();
6584 sub_preempt_count(PREEMPT_ACTIVE);
6585 } while (need_resched());
6588 int __sched _cond_resched(void)
6590 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6591 system_state == SYSTEM_RUNNING) {
6592 __cond_resched();
6593 return 1;
6595 return 0;
6597 EXPORT_SYMBOL(_cond_resched);
6600 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6601 * call schedule, and on return reacquire the lock.
6603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6604 * operations here to prevent schedule() from being called twice (once via
6605 * spin_unlock(), once by hand).
6607 int cond_resched_lock(spinlock_t *lock)
6609 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6610 int ret = 0;
6612 if (spin_needbreak(lock) || resched) {
6613 spin_unlock(lock);
6614 if (resched && need_resched())
6615 __cond_resched();
6616 else
6617 cpu_relax();
6618 ret = 1;
6619 spin_lock(lock);
6621 return ret;
6623 EXPORT_SYMBOL(cond_resched_lock);
6625 int __sched cond_resched_softirq(void)
6627 BUG_ON(!in_softirq());
6629 if (need_resched() && system_state == SYSTEM_RUNNING) {
6630 local_bh_enable();
6631 __cond_resched();
6632 local_bh_disable();
6633 return 1;
6635 return 0;
6637 EXPORT_SYMBOL(cond_resched_softirq);
6640 * yield - yield the current processor to other threads.
6642 * This is a shortcut for kernel-space yielding - it marks the
6643 * thread runnable and calls sys_sched_yield().
6645 void __sched yield(void)
6647 set_current_state(TASK_RUNNING);
6648 sys_sched_yield();
6650 EXPORT_SYMBOL(yield);
6653 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6654 * that process accounting knows that this is a task in IO wait state.
6656 * But don't do that if it is a deliberate, throttling IO wait (this task
6657 * has set its backing_dev_info: the queue against which it should throttle)
6659 void __sched io_schedule(void)
6661 struct rq *rq = &__raw_get_cpu_var(runqueues);
6663 delayacct_blkio_start();
6664 atomic_inc(&rq->nr_iowait);
6665 schedule();
6666 atomic_dec(&rq->nr_iowait);
6667 delayacct_blkio_end();
6669 EXPORT_SYMBOL(io_schedule);
6671 long __sched io_schedule_timeout(long timeout)
6673 struct rq *rq = &__raw_get_cpu_var(runqueues);
6674 long ret;
6676 delayacct_blkio_start();
6677 atomic_inc(&rq->nr_iowait);
6678 ret = schedule_timeout(timeout);
6679 atomic_dec(&rq->nr_iowait);
6680 delayacct_blkio_end();
6681 return ret;
6685 * sys_sched_get_priority_max - return maximum RT priority.
6686 * @policy: scheduling class.
6688 * this syscall returns the maximum rt_priority that can be used
6689 * by a given scheduling class.
6691 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6693 int ret = -EINVAL;
6695 switch (policy) {
6696 case SCHED_FIFO:
6697 case SCHED_RR:
6698 ret = MAX_USER_RT_PRIO-1;
6699 break;
6700 case SCHED_NORMAL:
6701 case SCHED_BATCH:
6702 case SCHED_IDLE:
6703 ret = 0;
6704 break;
6706 return ret;
6710 * sys_sched_get_priority_min - return minimum RT priority.
6711 * @policy: scheduling class.
6713 * this syscall returns the minimum rt_priority that can be used
6714 * by a given scheduling class.
6716 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6718 int ret = -EINVAL;
6720 switch (policy) {
6721 case SCHED_FIFO:
6722 case SCHED_RR:
6723 ret = 1;
6724 break;
6725 case SCHED_NORMAL:
6726 case SCHED_BATCH:
6727 case SCHED_IDLE:
6728 ret = 0;
6730 return ret;
6734 * sys_sched_rr_get_interval - return the default timeslice of a process.
6735 * @pid: pid of the process.
6736 * @interval: userspace pointer to the timeslice value.
6738 * this syscall writes the default timeslice value of a given process
6739 * into the user-space timespec buffer. A value of '0' means infinity.
6741 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6742 struct timespec __user *, interval)
6744 struct task_struct *p;
6745 unsigned int time_slice;
6746 int retval;
6747 struct timespec t;
6749 if (pid < 0)
6750 return -EINVAL;
6752 retval = -ESRCH;
6753 read_lock(&tasklist_lock);
6754 p = find_process_by_pid(pid);
6755 if (!p)
6756 goto out_unlock;
6758 retval = security_task_getscheduler(p);
6759 if (retval)
6760 goto out_unlock;
6763 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6764 * tasks that are on an otherwise idle runqueue:
6766 time_slice = 0;
6767 if (p->policy == SCHED_RR) {
6768 time_slice = DEF_TIMESLICE;
6769 } else if (p->policy != SCHED_FIFO) {
6770 struct sched_entity *se = &p->se;
6771 unsigned long flags;
6772 struct rq *rq;
6774 rq = task_rq_lock(p, &flags);
6775 if (rq->cfs.load.weight)
6776 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6777 task_rq_unlock(rq, &flags);
6779 read_unlock(&tasklist_lock);
6780 jiffies_to_timespec(time_slice, &t);
6781 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6782 return retval;
6784 out_unlock:
6785 read_unlock(&tasklist_lock);
6786 return retval;
6789 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6791 void sched_show_task(struct task_struct *p)
6793 unsigned long free = 0;
6794 unsigned state;
6796 state = p->state ? __ffs(p->state) + 1 : 0;
6797 printk(KERN_INFO "%-13.13s %c", p->comm,
6798 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6799 #if BITS_PER_LONG == 32
6800 if (state == TASK_RUNNING)
6801 printk(KERN_CONT " running ");
6802 else
6803 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6804 #else
6805 if (state == TASK_RUNNING)
6806 printk(KERN_CONT " running task ");
6807 else
6808 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6809 #endif
6810 #ifdef CONFIG_DEBUG_STACK_USAGE
6811 free = stack_not_used(p);
6812 #endif
6813 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6814 task_pid_nr(p), task_pid_nr(p->real_parent),
6815 (unsigned long)task_thread_info(p)->flags);
6817 show_stack(p, NULL);
6820 void show_state_filter(unsigned long state_filter)
6822 struct task_struct *g, *p;
6824 #if BITS_PER_LONG == 32
6825 printk(KERN_INFO
6826 " task PC stack pid father\n");
6827 #else
6828 printk(KERN_INFO
6829 " task PC stack pid father\n");
6830 #endif
6831 read_lock(&tasklist_lock);
6832 do_each_thread(g, p) {
6834 * reset the NMI-timeout, listing all files on a slow
6835 * console might take alot of time:
6837 touch_nmi_watchdog();
6838 if (!state_filter || (p->state & state_filter))
6839 sched_show_task(p);
6840 } while_each_thread(g, p);
6842 touch_all_softlockup_watchdogs();
6844 #ifdef CONFIG_SCHED_DEBUG
6845 sysrq_sched_debug_show();
6846 #endif
6847 read_unlock(&tasklist_lock);
6849 * Only show locks if all tasks are dumped:
6851 if (state_filter == -1)
6852 debug_show_all_locks();
6855 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6857 idle->sched_class = &idle_sched_class;
6861 * init_idle - set up an idle thread for a given CPU
6862 * @idle: task in question
6863 * @cpu: cpu the idle task belongs to
6865 * NOTE: this function does not set the idle thread's NEED_RESCHED
6866 * flag, to make booting more robust.
6868 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6870 struct rq *rq = cpu_rq(cpu);
6871 unsigned long flags;
6873 spin_lock_irqsave(&rq->lock, flags);
6875 __sched_fork(idle);
6876 idle->se.exec_start = sched_clock();
6878 idle->prio = idle->normal_prio = MAX_PRIO;
6879 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6880 __set_task_cpu(idle, cpu);
6882 rq->curr = rq->idle = idle;
6883 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6884 idle->oncpu = 1;
6885 #endif
6886 spin_unlock_irqrestore(&rq->lock, flags);
6888 /* Set the preempt count _outside_ the spinlocks! */
6889 #if defined(CONFIG_PREEMPT)
6890 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6891 #else
6892 task_thread_info(idle)->preempt_count = 0;
6893 #endif
6895 * The idle tasks have their own, simple scheduling class:
6897 idle->sched_class = &idle_sched_class;
6898 ftrace_graph_init_task(idle);
6902 * In a system that switches off the HZ timer nohz_cpu_mask
6903 * indicates which cpus entered this state. This is used
6904 * in the rcu update to wait only for active cpus. For system
6905 * which do not switch off the HZ timer nohz_cpu_mask should
6906 * always be CPU_BITS_NONE.
6908 cpumask_var_t nohz_cpu_mask;
6911 * Increase the granularity value when there are more CPUs,
6912 * because with more CPUs the 'effective latency' as visible
6913 * to users decreases. But the relationship is not linear,
6914 * so pick a second-best guess by going with the log2 of the
6915 * number of CPUs.
6917 * This idea comes from the SD scheduler of Con Kolivas:
6919 static inline void sched_init_granularity(void)
6921 unsigned int factor = 1 + ilog2(num_online_cpus());
6922 const unsigned long limit = 200000000;
6924 sysctl_sched_min_granularity *= factor;
6925 if (sysctl_sched_min_granularity > limit)
6926 sysctl_sched_min_granularity = limit;
6928 sysctl_sched_latency *= factor;
6929 if (sysctl_sched_latency > limit)
6930 sysctl_sched_latency = limit;
6932 sysctl_sched_wakeup_granularity *= factor;
6934 sysctl_sched_shares_ratelimit *= factor;
6937 #ifdef CONFIG_SMP
6939 * This is how migration works:
6941 * 1) we queue a struct migration_req structure in the source CPU's
6942 * runqueue and wake up that CPU's migration thread.
6943 * 2) we down() the locked semaphore => thread blocks.
6944 * 3) migration thread wakes up (implicitly it forces the migrated
6945 * thread off the CPU)
6946 * 4) it gets the migration request and checks whether the migrated
6947 * task is still in the wrong runqueue.
6948 * 5) if it's in the wrong runqueue then the migration thread removes
6949 * it and puts it into the right queue.
6950 * 6) migration thread up()s the semaphore.
6951 * 7) we wake up and the migration is done.
6955 * Change a given task's CPU affinity. Migrate the thread to a
6956 * proper CPU and schedule it away if the CPU it's executing on
6957 * is removed from the allowed bitmask.
6959 * NOTE: the caller must have a valid reference to the task, the
6960 * task must not exit() & deallocate itself prematurely. The
6961 * call is not atomic; no spinlocks may be held.
6963 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6965 struct migration_req req;
6966 unsigned long flags;
6967 struct rq *rq;
6968 int ret = 0;
6970 rq = task_rq_lock(p, &flags);
6971 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6972 ret = -EINVAL;
6973 goto out;
6976 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6977 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6978 ret = -EINVAL;
6979 goto out;
6982 if (p->sched_class->set_cpus_allowed)
6983 p->sched_class->set_cpus_allowed(p, new_mask);
6984 else {
6985 cpumask_copy(&p->cpus_allowed, new_mask);
6986 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6989 /* Can the task run on the task's current CPU? If so, we're done */
6990 if (cpumask_test_cpu(task_cpu(p), new_mask))
6991 goto out;
6993 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6994 /* Need help from migration thread: drop lock and wait. */
6995 task_rq_unlock(rq, &flags);
6996 wake_up_process(rq->migration_thread);
6997 wait_for_completion(&req.done);
6998 tlb_migrate_finish(p->mm);
6999 return 0;
7001 out:
7002 task_rq_unlock(rq, &flags);
7004 return ret;
7006 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7009 * Move (not current) task off this cpu, onto dest cpu. We're doing
7010 * this because either it can't run here any more (set_cpus_allowed()
7011 * away from this CPU, or CPU going down), or because we're
7012 * attempting to rebalance this task on exec (sched_exec).
7014 * So we race with normal scheduler movements, but that's OK, as long
7015 * as the task is no longer on this CPU.
7017 * Returns non-zero if task was successfully migrated.
7019 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7021 struct rq *rq_dest, *rq_src;
7022 int ret = 0, on_rq;
7024 if (unlikely(!cpu_active(dest_cpu)))
7025 return ret;
7027 rq_src = cpu_rq(src_cpu);
7028 rq_dest = cpu_rq(dest_cpu);
7030 double_rq_lock(rq_src, rq_dest);
7031 /* Already moved. */
7032 if (task_cpu(p) != src_cpu)
7033 goto done;
7034 /* Affinity changed (again). */
7035 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7036 goto fail;
7038 on_rq = p->se.on_rq;
7039 if (on_rq)
7040 deactivate_task(rq_src, p, 0);
7042 set_task_cpu(p, dest_cpu);
7043 if (on_rq) {
7044 activate_task(rq_dest, p, 0);
7045 check_preempt_curr(rq_dest, p, 0);
7047 done:
7048 ret = 1;
7049 fail:
7050 double_rq_unlock(rq_src, rq_dest);
7051 return ret;
7055 * migration_thread - this is a highprio system thread that performs
7056 * thread migration by bumping thread off CPU then 'pushing' onto
7057 * another runqueue.
7059 static int migration_thread(void *data)
7061 int cpu = (long)data;
7062 struct rq *rq;
7064 rq = cpu_rq(cpu);
7065 BUG_ON(rq->migration_thread != current);
7067 set_current_state(TASK_INTERRUPTIBLE);
7068 while (!kthread_should_stop()) {
7069 struct migration_req *req;
7070 struct list_head *head;
7072 spin_lock_irq(&rq->lock);
7074 if (cpu_is_offline(cpu)) {
7075 spin_unlock_irq(&rq->lock);
7076 goto wait_to_die;
7079 if (rq->active_balance) {
7080 active_load_balance(rq, cpu);
7081 rq->active_balance = 0;
7084 head = &rq->migration_queue;
7086 if (list_empty(head)) {
7087 spin_unlock_irq(&rq->lock);
7088 schedule();
7089 set_current_state(TASK_INTERRUPTIBLE);
7090 continue;
7092 req = list_entry(head->next, struct migration_req, list);
7093 list_del_init(head->next);
7095 spin_unlock(&rq->lock);
7096 __migrate_task(req->task, cpu, req->dest_cpu);
7097 local_irq_enable();
7099 complete(&req->done);
7101 __set_current_state(TASK_RUNNING);
7102 return 0;
7104 wait_to_die:
7105 /* Wait for kthread_stop */
7106 set_current_state(TASK_INTERRUPTIBLE);
7107 while (!kthread_should_stop()) {
7108 schedule();
7109 set_current_state(TASK_INTERRUPTIBLE);
7111 __set_current_state(TASK_RUNNING);
7112 return 0;
7115 #ifdef CONFIG_HOTPLUG_CPU
7117 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7119 int ret;
7121 local_irq_disable();
7122 ret = __migrate_task(p, src_cpu, dest_cpu);
7123 local_irq_enable();
7124 return ret;
7128 * Figure out where task on dead CPU should go, use force if necessary.
7130 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7132 int dest_cpu;
7133 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7135 again:
7136 /* Look for allowed, online CPU in same node. */
7137 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7138 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7139 goto move;
7141 /* Any allowed, online CPU? */
7142 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7143 if (dest_cpu < nr_cpu_ids)
7144 goto move;
7146 /* No more Mr. Nice Guy. */
7147 if (dest_cpu >= nr_cpu_ids) {
7148 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7149 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7152 * Don't tell them about moving exiting tasks or
7153 * kernel threads (both mm NULL), since they never
7154 * leave kernel.
7156 if (p->mm && printk_ratelimit()) {
7157 printk(KERN_INFO "process %d (%s) no "
7158 "longer affine to cpu%d\n",
7159 task_pid_nr(p), p->comm, dead_cpu);
7163 move:
7164 /* It can have affinity changed while we were choosing. */
7165 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7166 goto again;
7170 * While a dead CPU has no uninterruptible tasks queued at this point,
7171 * it might still have a nonzero ->nr_uninterruptible counter, because
7172 * for performance reasons the counter is not stricly tracking tasks to
7173 * their home CPUs. So we just add the counter to another CPU's counter,
7174 * to keep the global sum constant after CPU-down:
7176 static void migrate_nr_uninterruptible(struct rq *rq_src)
7178 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7179 unsigned long flags;
7181 local_irq_save(flags);
7182 double_rq_lock(rq_src, rq_dest);
7183 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7184 rq_src->nr_uninterruptible = 0;
7185 double_rq_unlock(rq_src, rq_dest);
7186 local_irq_restore(flags);
7189 /* Run through task list and migrate tasks from the dead cpu. */
7190 static void migrate_live_tasks(int src_cpu)
7192 struct task_struct *p, *t;
7194 read_lock(&tasklist_lock);
7196 do_each_thread(t, p) {
7197 if (p == current)
7198 continue;
7200 if (task_cpu(p) == src_cpu)
7201 move_task_off_dead_cpu(src_cpu, p);
7202 } while_each_thread(t, p);
7204 read_unlock(&tasklist_lock);
7208 * Schedules idle task to be the next runnable task on current CPU.
7209 * It does so by boosting its priority to highest possible.
7210 * Used by CPU offline code.
7212 void sched_idle_next(void)
7214 int this_cpu = smp_processor_id();
7215 struct rq *rq = cpu_rq(this_cpu);
7216 struct task_struct *p = rq->idle;
7217 unsigned long flags;
7219 /* cpu has to be offline */
7220 BUG_ON(cpu_online(this_cpu));
7223 * Strictly not necessary since rest of the CPUs are stopped by now
7224 * and interrupts disabled on the current cpu.
7226 spin_lock_irqsave(&rq->lock, flags);
7228 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7230 update_rq_clock(rq);
7231 activate_task(rq, p, 0);
7233 spin_unlock_irqrestore(&rq->lock, flags);
7237 * Ensures that the idle task is using init_mm right before its cpu goes
7238 * offline.
7240 void idle_task_exit(void)
7242 struct mm_struct *mm = current->active_mm;
7244 BUG_ON(cpu_online(smp_processor_id()));
7246 if (mm != &init_mm)
7247 switch_mm(mm, &init_mm, current);
7248 mmdrop(mm);
7251 /* called under rq->lock with disabled interrupts */
7252 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7254 struct rq *rq = cpu_rq(dead_cpu);
7256 /* Must be exiting, otherwise would be on tasklist. */
7257 BUG_ON(!p->exit_state);
7259 /* Cannot have done final schedule yet: would have vanished. */
7260 BUG_ON(p->state == TASK_DEAD);
7262 get_task_struct(p);
7265 * Drop lock around migration; if someone else moves it,
7266 * that's OK. No task can be added to this CPU, so iteration is
7267 * fine.
7269 spin_unlock_irq(&rq->lock);
7270 move_task_off_dead_cpu(dead_cpu, p);
7271 spin_lock_irq(&rq->lock);
7273 put_task_struct(p);
7276 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7277 static void migrate_dead_tasks(unsigned int dead_cpu)
7279 struct rq *rq = cpu_rq(dead_cpu);
7280 struct task_struct *next;
7282 for ( ; ; ) {
7283 if (!rq->nr_running)
7284 break;
7285 update_rq_clock(rq);
7286 next = pick_next_task(rq);
7287 if (!next)
7288 break;
7289 next->sched_class->put_prev_task(rq, next);
7290 migrate_dead(dead_cpu, next);
7296 * remove the tasks which were accounted by rq from calc_load_tasks.
7298 static void calc_global_load_remove(struct rq *rq)
7300 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7302 #endif /* CONFIG_HOTPLUG_CPU */
7304 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7306 static struct ctl_table sd_ctl_dir[] = {
7308 .procname = "sched_domain",
7309 .mode = 0555,
7311 {0, },
7314 static struct ctl_table sd_ctl_root[] = {
7316 .ctl_name = CTL_KERN,
7317 .procname = "kernel",
7318 .mode = 0555,
7319 .child = sd_ctl_dir,
7321 {0, },
7324 static struct ctl_table *sd_alloc_ctl_entry(int n)
7326 struct ctl_table *entry =
7327 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7329 return entry;
7332 static void sd_free_ctl_entry(struct ctl_table **tablep)
7334 struct ctl_table *entry;
7337 * In the intermediate directories, both the child directory and
7338 * procname are dynamically allocated and could fail but the mode
7339 * will always be set. In the lowest directory the names are
7340 * static strings and all have proc handlers.
7342 for (entry = *tablep; entry->mode; entry++) {
7343 if (entry->child)
7344 sd_free_ctl_entry(&entry->child);
7345 if (entry->proc_handler == NULL)
7346 kfree(entry->procname);
7349 kfree(*tablep);
7350 *tablep = NULL;
7353 static void
7354 set_table_entry(struct ctl_table *entry,
7355 const char *procname, void *data, int maxlen,
7356 mode_t mode, proc_handler *proc_handler)
7358 entry->procname = procname;
7359 entry->data = data;
7360 entry->maxlen = maxlen;
7361 entry->mode = mode;
7362 entry->proc_handler = proc_handler;
7365 static struct ctl_table *
7366 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7368 struct ctl_table *table = sd_alloc_ctl_entry(13);
7370 if (table == NULL)
7371 return NULL;
7373 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7374 sizeof(long), 0644, proc_doulongvec_minmax);
7375 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7376 sizeof(long), 0644, proc_doulongvec_minmax);
7377 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7378 sizeof(int), 0644, proc_dointvec_minmax);
7379 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7380 sizeof(int), 0644, proc_dointvec_minmax);
7381 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7382 sizeof(int), 0644, proc_dointvec_minmax);
7383 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7384 sizeof(int), 0644, proc_dointvec_minmax);
7385 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7386 sizeof(int), 0644, proc_dointvec_minmax);
7387 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7388 sizeof(int), 0644, proc_dointvec_minmax);
7389 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7390 sizeof(int), 0644, proc_dointvec_minmax);
7391 set_table_entry(&table[9], "cache_nice_tries",
7392 &sd->cache_nice_tries,
7393 sizeof(int), 0644, proc_dointvec_minmax);
7394 set_table_entry(&table[10], "flags", &sd->flags,
7395 sizeof(int), 0644, proc_dointvec_minmax);
7396 set_table_entry(&table[11], "name", sd->name,
7397 CORENAME_MAX_SIZE, 0444, proc_dostring);
7398 /* &table[12] is terminator */
7400 return table;
7403 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7405 struct ctl_table *entry, *table;
7406 struct sched_domain *sd;
7407 int domain_num = 0, i;
7408 char buf[32];
7410 for_each_domain(cpu, sd)
7411 domain_num++;
7412 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7413 if (table == NULL)
7414 return NULL;
7416 i = 0;
7417 for_each_domain(cpu, sd) {
7418 snprintf(buf, 32, "domain%d", i);
7419 entry->procname = kstrdup(buf, GFP_KERNEL);
7420 entry->mode = 0555;
7421 entry->child = sd_alloc_ctl_domain_table(sd);
7422 entry++;
7423 i++;
7425 return table;
7428 static struct ctl_table_header *sd_sysctl_header;
7429 static void register_sched_domain_sysctl(void)
7431 int i, cpu_num = num_online_cpus();
7432 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7433 char buf[32];
7435 WARN_ON(sd_ctl_dir[0].child);
7436 sd_ctl_dir[0].child = entry;
7438 if (entry == NULL)
7439 return;
7441 for_each_online_cpu(i) {
7442 snprintf(buf, 32, "cpu%d", i);
7443 entry->procname = kstrdup(buf, GFP_KERNEL);
7444 entry->mode = 0555;
7445 entry->child = sd_alloc_ctl_cpu_table(i);
7446 entry++;
7449 WARN_ON(sd_sysctl_header);
7450 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7453 /* may be called multiple times per register */
7454 static void unregister_sched_domain_sysctl(void)
7456 if (sd_sysctl_header)
7457 unregister_sysctl_table(sd_sysctl_header);
7458 sd_sysctl_header = NULL;
7459 if (sd_ctl_dir[0].child)
7460 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7462 #else
7463 static void register_sched_domain_sysctl(void)
7466 static void unregister_sched_domain_sysctl(void)
7469 #endif
7471 static void set_rq_online(struct rq *rq)
7473 if (!rq->online) {
7474 const struct sched_class *class;
7476 cpumask_set_cpu(rq->cpu, rq->rd->online);
7477 rq->online = 1;
7479 for_each_class(class) {
7480 if (class->rq_online)
7481 class->rq_online(rq);
7486 static void set_rq_offline(struct rq *rq)
7488 if (rq->online) {
7489 const struct sched_class *class;
7491 for_each_class(class) {
7492 if (class->rq_offline)
7493 class->rq_offline(rq);
7496 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7497 rq->online = 0;
7502 * migration_call - callback that gets triggered when a CPU is added.
7503 * Here we can start up the necessary migration thread for the new CPU.
7505 static int __cpuinit
7506 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7508 struct task_struct *p;
7509 int cpu = (long)hcpu;
7510 unsigned long flags;
7511 struct rq *rq;
7513 switch (action) {
7515 case CPU_UP_PREPARE:
7516 case CPU_UP_PREPARE_FROZEN:
7517 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7518 if (IS_ERR(p))
7519 return NOTIFY_BAD;
7520 kthread_bind(p, cpu);
7521 /* Must be high prio: stop_machine expects to yield to it. */
7522 rq = task_rq_lock(p, &flags);
7523 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7524 task_rq_unlock(rq, &flags);
7525 cpu_rq(cpu)->migration_thread = p;
7526 break;
7528 case CPU_ONLINE:
7529 case CPU_ONLINE_FROZEN:
7530 /* Strictly unnecessary, as first user will wake it. */
7531 wake_up_process(cpu_rq(cpu)->migration_thread);
7533 /* Update our root-domain */
7534 rq = cpu_rq(cpu);
7535 spin_lock_irqsave(&rq->lock, flags);
7536 rq->calc_load_update = calc_load_update;
7537 rq->calc_load_active = 0;
7538 if (rq->rd) {
7539 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7541 set_rq_online(rq);
7543 spin_unlock_irqrestore(&rq->lock, flags);
7544 break;
7546 #ifdef CONFIG_HOTPLUG_CPU
7547 case CPU_UP_CANCELED:
7548 case CPU_UP_CANCELED_FROZEN:
7549 if (!cpu_rq(cpu)->migration_thread)
7550 break;
7551 /* Unbind it from offline cpu so it can run. Fall thru. */
7552 kthread_bind(cpu_rq(cpu)->migration_thread,
7553 cpumask_any(cpu_online_mask));
7554 kthread_stop(cpu_rq(cpu)->migration_thread);
7555 cpu_rq(cpu)->migration_thread = NULL;
7556 break;
7558 case CPU_DEAD:
7559 case CPU_DEAD_FROZEN:
7560 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7561 migrate_live_tasks(cpu);
7562 rq = cpu_rq(cpu);
7563 kthread_stop(rq->migration_thread);
7564 rq->migration_thread = NULL;
7565 /* Idle task back to normal (off runqueue, low prio) */
7566 spin_lock_irq(&rq->lock);
7567 update_rq_clock(rq);
7568 deactivate_task(rq, rq->idle, 0);
7569 rq->idle->static_prio = MAX_PRIO;
7570 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7571 rq->idle->sched_class = &idle_sched_class;
7572 migrate_dead_tasks(cpu);
7573 spin_unlock_irq(&rq->lock);
7574 cpuset_unlock();
7575 migrate_nr_uninterruptible(rq);
7576 BUG_ON(rq->nr_running != 0);
7577 calc_global_load_remove(rq);
7579 * No need to migrate the tasks: it was best-effort if
7580 * they didn't take sched_hotcpu_mutex. Just wake up
7581 * the requestors.
7583 spin_lock_irq(&rq->lock);
7584 while (!list_empty(&rq->migration_queue)) {
7585 struct migration_req *req;
7587 req = list_entry(rq->migration_queue.next,
7588 struct migration_req, list);
7589 list_del_init(&req->list);
7590 spin_unlock_irq(&rq->lock);
7591 complete(&req->done);
7592 spin_lock_irq(&rq->lock);
7594 spin_unlock_irq(&rq->lock);
7595 break;
7597 case CPU_DYING:
7598 case CPU_DYING_FROZEN:
7599 /* Update our root-domain */
7600 rq = cpu_rq(cpu);
7601 spin_lock_irqsave(&rq->lock, flags);
7602 if (rq->rd) {
7603 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7604 set_rq_offline(rq);
7606 spin_unlock_irqrestore(&rq->lock, flags);
7607 break;
7608 #endif
7610 return NOTIFY_OK;
7614 * Register at high priority so that task migration (migrate_all_tasks)
7615 * happens before everything else. This has to be lower priority than
7616 * the notifier in the perf_counter subsystem, though.
7618 static struct notifier_block __cpuinitdata migration_notifier = {
7619 .notifier_call = migration_call,
7620 .priority = 10
7623 static int __init migration_init(void)
7625 void *cpu = (void *)(long)smp_processor_id();
7626 int err;
7628 /* Start one for the boot CPU: */
7629 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7630 BUG_ON(err == NOTIFY_BAD);
7631 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7632 register_cpu_notifier(&migration_notifier);
7634 return err;
7636 early_initcall(migration_init);
7637 #endif
7639 #ifdef CONFIG_SMP
7641 #ifdef CONFIG_SCHED_DEBUG
7643 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7644 struct cpumask *groupmask)
7646 struct sched_group *group = sd->groups;
7647 char str[256];
7649 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7650 cpumask_clear(groupmask);
7652 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7654 if (!(sd->flags & SD_LOAD_BALANCE)) {
7655 printk("does not load-balance\n");
7656 if (sd->parent)
7657 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7658 " has parent");
7659 return -1;
7662 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7664 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7665 printk(KERN_ERR "ERROR: domain->span does not contain "
7666 "CPU%d\n", cpu);
7668 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7669 printk(KERN_ERR "ERROR: domain->groups does not contain"
7670 " CPU%d\n", cpu);
7673 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7674 do {
7675 if (!group) {
7676 printk("\n");
7677 printk(KERN_ERR "ERROR: group is NULL\n");
7678 break;
7681 if (!group->__cpu_power) {
7682 printk(KERN_CONT "\n");
7683 printk(KERN_ERR "ERROR: domain->cpu_power not "
7684 "set\n");
7685 break;
7688 if (!cpumask_weight(sched_group_cpus(group))) {
7689 printk(KERN_CONT "\n");
7690 printk(KERN_ERR "ERROR: empty group\n");
7691 break;
7694 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7695 printk(KERN_CONT "\n");
7696 printk(KERN_ERR "ERROR: repeated CPUs\n");
7697 break;
7700 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7702 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7704 printk(KERN_CONT " %s", str);
7705 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7706 printk(KERN_CONT " (__cpu_power = %d)",
7707 group->__cpu_power);
7710 group = group->next;
7711 } while (group != sd->groups);
7712 printk(KERN_CONT "\n");
7714 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7715 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7717 if (sd->parent &&
7718 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7719 printk(KERN_ERR "ERROR: parent span is not a superset "
7720 "of domain->span\n");
7721 return 0;
7724 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7726 cpumask_var_t groupmask;
7727 int level = 0;
7729 if (!sd) {
7730 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7731 return;
7734 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7736 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7737 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7738 return;
7741 for (;;) {
7742 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7743 break;
7744 level++;
7745 sd = sd->parent;
7746 if (!sd)
7747 break;
7749 free_cpumask_var(groupmask);
7751 #else /* !CONFIG_SCHED_DEBUG */
7752 # define sched_domain_debug(sd, cpu) do { } while (0)
7753 #endif /* CONFIG_SCHED_DEBUG */
7755 static int sd_degenerate(struct sched_domain *sd)
7757 if (cpumask_weight(sched_domain_span(sd)) == 1)
7758 return 1;
7760 /* Following flags need at least 2 groups */
7761 if (sd->flags & (SD_LOAD_BALANCE |
7762 SD_BALANCE_NEWIDLE |
7763 SD_BALANCE_FORK |
7764 SD_BALANCE_EXEC |
7765 SD_SHARE_CPUPOWER |
7766 SD_SHARE_PKG_RESOURCES)) {
7767 if (sd->groups != sd->groups->next)
7768 return 0;
7771 /* Following flags don't use groups */
7772 if (sd->flags & (SD_WAKE_IDLE |
7773 SD_WAKE_AFFINE |
7774 SD_WAKE_BALANCE))
7775 return 0;
7777 return 1;
7780 static int
7781 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7783 unsigned long cflags = sd->flags, pflags = parent->flags;
7785 if (sd_degenerate(parent))
7786 return 1;
7788 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7789 return 0;
7791 /* Does parent contain flags not in child? */
7792 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7793 if (cflags & SD_WAKE_AFFINE)
7794 pflags &= ~SD_WAKE_BALANCE;
7795 /* Flags needing groups don't count if only 1 group in parent */
7796 if (parent->groups == parent->groups->next) {
7797 pflags &= ~(SD_LOAD_BALANCE |
7798 SD_BALANCE_NEWIDLE |
7799 SD_BALANCE_FORK |
7800 SD_BALANCE_EXEC |
7801 SD_SHARE_CPUPOWER |
7802 SD_SHARE_PKG_RESOURCES);
7803 if (nr_node_ids == 1)
7804 pflags &= ~SD_SERIALIZE;
7806 if (~cflags & pflags)
7807 return 0;
7809 return 1;
7812 static void free_rootdomain(struct root_domain *rd)
7814 cpupri_cleanup(&rd->cpupri);
7816 free_cpumask_var(rd->rto_mask);
7817 free_cpumask_var(rd->online);
7818 free_cpumask_var(rd->span);
7819 kfree(rd);
7822 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7824 struct root_domain *old_rd = NULL;
7825 unsigned long flags;
7827 spin_lock_irqsave(&rq->lock, flags);
7829 if (rq->rd) {
7830 old_rd = rq->rd;
7832 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7833 set_rq_offline(rq);
7835 cpumask_clear_cpu(rq->cpu, old_rd->span);
7838 * If we dont want to free the old_rt yet then
7839 * set old_rd to NULL to skip the freeing later
7840 * in this function:
7842 if (!atomic_dec_and_test(&old_rd->refcount))
7843 old_rd = NULL;
7846 atomic_inc(&rd->refcount);
7847 rq->rd = rd;
7849 cpumask_set_cpu(rq->cpu, rd->span);
7850 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7851 set_rq_online(rq);
7853 spin_unlock_irqrestore(&rq->lock, flags);
7855 if (old_rd)
7856 free_rootdomain(old_rd);
7859 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7861 gfp_t gfp = GFP_KERNEL;
7863 memset(rd, 0, sizeof(*rd));
7865 if (bootmem)
7866 gfp = GFP_NOWAIT;
7868 if (!alloc_cpumask_var(&rd->span, gfp))
7869 goto out;
7870 if (!alloc_cpumask_var(&rd->online, gfp))
7871 goto free_span;
7872 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7873 goto free_online;
7875 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7876 goto free_rto_mask;
7877 return 0;
7879 free_rto_mask:
7880 free_cpumask_var(rd->rto_mask);
7881 free_online:
7882 free_cpumask_var(rd->online);
7883 free_span:
7884 free_cpumask_var(rd->span);
7885 out:
7886 return -ENOMEM;
7889 static void init_defrootdomain(void)
7891 init_rootdomain(&def_root_domain, true);
7893 atomic_set(&def_root_domain.refcount, 1);
7896 static struct root_domain *alloc_rootdomain(void)
7898 struct root_domain *rd;
7900 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7901 if (!rd)
7902 return NULL;
7904 if (init_rootdomain(rd, false) != 0) {
7905 kfree(rd);
7906 return NULL;
7909 return rd;
7913 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7914 * hold the hotplug lock.
7916 static void
7917 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7919 struct rq *rq = cpu_rq(cpu);
7920 struct sched_domain *tmp;
7922 /* Remove the sched domains which do not contribute to scheduling. */
7923 for (tmp = sd; tmp; ) {
7924 struct sched_domain *parent = tmp->parent;
7925 if (!parent)
7926 break;
7928 if (sd_parent_degenerate(tmp, parent)) {
7929 tmp->parent = parent->parent;
7930 if (parent->parent)
7931 parent->parent->child = tmp;
7932 } else
7933 tmp = tmp->parent;
7936 if (sd && sd_degenerate(sd)) {
7937 sd = sd->parent;
7938 if (sd)
7939 sd->child = NULL;
7942 sched_domain_debug(sd, cpu);
7944 rq_attach_root(rq, rd);
7945 rcu_assign_pointer(rq->sd, sd);
7948 /* cpus with isolated domains */
7949 static cpumask_var_t cpu_isolated_map;
7951 /* Setup the mask of cpus configured for isolated domains */
7952 static int __init isolated_cpu_setup(char *str)
7954 cpulist_parse(str, cpu_isolated_map);
7955 return 1;
7958 __setup("isolcpus=", isolated_cpu_setup);
7961 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7962 * to a function which identifies what group(along with sched group) a CPU
7963 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7964 * (due to the fact that we keep track of groups covered with a struct cpumask).
7966 * init_sched_build_groups will build a circular linked list of the groups
7967 * covered by the given span, and will set each group's ->cpumask correctly,
7968 * and ->cpu_power to 0.
7970 static void
7971 init_sched_build_groups(const struct cpumask *span,
7972 const struct cpumask *cpu_map,
7973 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7974 struct sched_group **sg,
7975 struct cpumask *tmpmask),
7976 struct cpumask *covered, struct cpumask *tmpmask)
7978 struct sched_group *first = NULL, *last = NULL;
7979 int i;
7981 cpumask_clear(covered);
7983 for_each_cpu(i, span) {
7984 struct sched_group *sg;
7985 int group = group_fn(i, cpu_map, &sg, tmpmask);
7986 int j;
7988 if (cpumask_test_cpu(i, covered))
7989 continue;
7991 cpumask_clear(sched_group_cpus(sg));
7992 sg->__cpu_power = 0;
7994 for_each_cpu(j, span) {
7995 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7996 continue;
7998 cpumask_set_cpu(j, covered);
7999 cpumask_set_cpu(j, sched_group_cpus(sg));
8001 if (!first)
8002 first = sg;
8003 if (last)
8004 last->next = sg;
8005 last = sg;
8007 last->next = first;
8010 #define SD_NODES_PER_DOMAIN 16
8012 #ifdef CONFIG_NUMA
8015 * find_next_best_node - find the next node to include in a sched_domain
8016 * @node: node whose sched_domain we're building
8017 * @used_nodes: nodes already in the sched_domain
8019 * Find the next node to include in a given scheduling domain. Simply
8020 * finds the closest node not already in the @used_nodes map.
8022 * Should use nodemask_t.
8024 static int find_next_best_node(int node, nodemask_t *used_nodes)
8026 int i, n, val, min_val, best_node = 0;
8028 min_val = INT_MAX;
8030 for (i = 0; i < nr_node_ids; i++) {
8031 /* Start at @node */
8032 n = (node + i) % nr_node_ids;
8034 if (!nr_cpus_node(n))
8035 continue;
8037 /* Skip already used nodes */
8038 if (node_isset(n, *used_nodes))
8039 continue;
8041 /* Simple min distance search */
8042 val = node_distance(node, n);
8044 if (val < min_val) {
8045 min_val = val;
8046 best_node = n;
8050 node_set(best_node, *used_nodes);
8051 return best_node;
8055 * sched_domain_node_span - get a cpumask for a node's sched_domain
8056 * @node: node whose cpumask we're constructing
8057 * @span: resulting cpumask
8059 * Given a node, construct a good cpumask for its sched_domain to span. It
8060 * should be one that prevents unnecessary balancing, but also spreads tasks
8061 * out optimally.
8063 static void sched_domain_node_span(int node, struct cpumask *span)
8065 nodemask_t used_nodes;
8066 int i;
8068 cpumask_clear(span);
8069 nodes_clear(used_nodes);
8071 cpumask_or(span, span, cpumask_of_node(node));
8072 node_set(node, used_nodes);
8074 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8075 int next_node = find_next_best_node(node, &used_nodes);
8077 cpumask_or(span, span, cpumask_of_node(next_node));
8080 #endif /* CONFIG_NUMA */
8082 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8085 * The cpus mask in sched_group and sched_domain hangs off the end.
8087 * ( See the the comments in include/linux/sched.h:struct sched_group
8088 * and struct sched_domain. )
8090 struct static_sched_group {
8091 struct sched_group sg;
8092 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8095 struct static_sched_domain {
8096 struct sched_domain sd;
8097 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8101 * SMT sched-domains:
8103 #ifdef CONFIG_SCHED_SMT
8104 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8105 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8107 static int
8108 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8109 struct sched_group **sg, struct cpumask *unused)
8111 if (sg)
8112 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8113 return cpu;
8115 #endif /* CONFIG_SCHED_SMT */
8118 * multi-core sched-domains:
8120 #ifdef CONFIG_SCHED_MC
8121 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8122 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8123 #endif /* CONFIG_SCHED_MC */
8125 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8126 static int
8127 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8128 struct sched_group **sg, struct cpumask *mask)
8130 int group;
8132 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8133 group = cpumask_first(mask);
8134 if (sg)
8135 *sg = &per_cpu(sched_group_core, group).sg;
8136 return group;
8138 #elif defined(CONFIG_SCHED_MC)
8139 static int
8140 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8141 struct sched_group **sg, struct cpumask *unused)
8143 if (sg)
8144 *sg = &per_cpu(sched_group_core, cpu).sg;
8145 return cpu;
8147 #endif
8149 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8150 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8152 static int
8153 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8154 struct sched_group **sg, struct cpumask *mask)
8156 int group;
8157 #ifdef CONFIG_SCHED_MC
8158 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8159 group = cpumask_first(mask);
8160 #elif defined(CONFIG_SCHED_SMT)
8161 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8162 group = cpumask_first(mask);
8163 #else
8164 group = cpu;
8165 #endif
8166 if (sg)
8167 *sg = &per_cpu(sched_group_phys, group).sg;
8168 return group;
8171 #ifdef CONFIG_NUMA
8173 * The init_sched_build_groups can't handle what we want to do with node
8174 * groups, so roll our own. Now each node has its own list of groups which
8175 * gets dynamically allocated.
8177 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8178 static struct sched_group ***sched_group_nodes_bycpu;
8180 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8181 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8183 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8184 struct sched_group **sg,
8185 struct cpumask *nodemask)
8187 int group;
8189 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8190 group = cpumask_first(nodemask);
8192 if (sg)
8193 *sg = &per_cpu(sched_group_allnodes, group).sg;
8194 return group;
8197 static void init_numa_sched_groups_power(struct sched_group *group_head)
8199 struct sched_group *sg = group_head;
8200 int j;
8202 if (!sg)
8203 return;
8204 do {
8205 for_each_cpu(j, sched_group_cpus(sg)) {
8206 struct sched_domain *sd;
8208 sd = &per_cpu(phys_domains, j).sd;
8209 if (j != group_first_cpu(sd->groups)) {
8211 * Only add "power" once for each
8212 * physical package.
8214 continue;
8217 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8219 sg = sg->next;
8220 } while (sg != group_head);
8222 #endif /* CONFIG_NUMA */
8224 #ifdef CONFIG_NUMA
8225 /* Free memory allocated for various sched_group structures */
8226 static void free_sched_groups(const struct cpumask *cpu_map,
8227 struct cpumask *nodemask)
8229 int cpu, i;
8231 for_each_cpu(cpu, cpu_map) {
8232 struct sched_group **sched_group_nodes
8233 = sched_group_nodes_bycpu[cpu];
8235 if (!sched_group_nodes)
8236 continue;
8238 for (i = 0; i < nr_node_ids; i++) {
8239 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8241 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8242 if (cpumask_empty(nodemask))
8243 continue;
8245 if (sg == NULL)
8246 continue;
8247 sg = sg->next;
8248 next_sg:
8249 oldsg = sg;
8250 sg = sg->next;
8251 kfree(oldsg);
8252 if (oldsg != sched_group_nodes[i])
8253 goto next_sg;
8255 kfree(sched_group_nodes);
8256 sched_group_nodes_bycpu[cpu] = NULL;
8259 #else /* !CONFIG_NUMA */
8260 static void free_sched_groups(const struct cpumask *cpu_map,
8261 struct cpumask *nodemask)
8264 #endif /* CONFIG_NUMA */
8267 * Initialize sched groups cpu_power.
8269 * cpu_power indicates the capacity of sched group, which is used while
8270 * distributing the load between different sched groups in a sched domain.
8271 * Typically cpu_power for all the groups in a sched domain will be same unless
8272 * there are asymmetries in the topology. If there are asymmetries, group
8273 * having more cpu_power will pickup more load compared to the group having
8274 * less cpu_power.
8276 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8277 * the maximum number of tasks a group can handle in the presence of other idle
8278 * or lightly loaded groups in the same sched domain.
8280 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8282 struct sched_domain *child;
8283 struct sched_group *group;
8285 WARN_ON(!sd || !sd->groups);
8287 if (cpu != group_first_cpu(sd->groups))
8288 return;
8290 child = sd->child;
8292 sd->groups->__cpu_power = 0;
8295 * For perf policy, if the groups in child domain share resources
8296 * (for example cores sharing some portions of the cache hierarchy
8297 * or SMT), then set this domain groups cpu_power such that each group
8298 * can handle only one task, when there are other idle groups in the
8299 * same sched domain.
8301 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8302 (child->flags &
8303 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8304 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8305 return;
8309 * add cpu_power of each child group to this groups cpu_power
8311 group = child->groups;
8312 do {
8313 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8314 group = group->next;
8315 } while (group != child->groups);
8319 * Initializers for schedule domains
8320 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8323 #ifdef CONFIG_SCHED_DEBUG
8324 # define SD_INIT_NAME(sd, type) sd->name = #type
8325 #else
8326 # define SD_INIT_NAME(sd, type) do { } while (0)
8327 #endif
8329 #define SD_INIT(sd, type) sd_init_##type(sd)
8331 #define SD_INIT_FUNC(type) \
8332 static noinline void sd_init_##type(struct sched_domain *sd) \
8334 memset(sd, 0, sizeof(*sd)); \
8335 *sd = SD_##type##_INIT; \
8336 sd->level = SD_LV_##type; \
8337 SD_INIT_NAME(sd, type); \
8340 SD_INIT_FUNC(CPU)
8341 #ifdef CONFIG_NUMA
8342 SD_INIT_FUNC(ALLNODES)
8343 SD_INIT_FUNC(NODE)
8344 #endif
8345 #ifdef CONFIG_SCHED_SMT
8346 SD_INIT_FUNC(SIBLING)
8347 #endif
8348 #ifdef CONFIG_SCHED_MC
8349 SD_INIT_FUNC(MC)
8350 #endif
8352 static int default_relax_domain_level = -1;
8354 static int __init setup_relax_domain_level(char *str)
8356 unsigned long val;
8358 val = simple_strtoul(str, NULL, 0);
8359 if (val < SD_LV_MAX)
8360 default_relax_domain_level = val;
8362 return 1;
8364 __setup("relax_domain_level=", setup_relax_domain_level);
8366 static void set_domain_attribute(struct sched_domain *sd,
8367 struct sched_domain_attr *attr)
8369 int request;
8371 if (!attr || attr->relax_domain_level < 0) {
8372 if (default_relax_domain_level < 0)
8373 return;
8374 else
8375 request = default_relax_domain_level;
8376 } else
8377 request = attr->relax_domain_level;
8378 if (request < sd->level) {
8379 /* turn off idle balance on this domain */
8380 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8381 } else {
8382 /* turn on idle balance on this domain */
8383 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8388 * Build sched domains for a given set of cpus and attach the sched domains
8389 * to the individual cpus
8391 static int __build_sched_domains(const struct cpumask *cpu_map,
8392 struct sched_domain_attr *attr)
8394 int i, err = -ENOMEM;
8395 struct root_domain *rd;
8396 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8397 tmpmask;
8398 #ifdef CONFIG_NUMA
8399 cpumask_var_t domainspan, covered, notcovered;
8400 struct sched_group **sched_group_nodes = NULL;
8401 int sd_allnodes = 0;
8403 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8404 goto out;
8405 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8406 goto free_domainspan;
8407 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8408 goto free_covered;
8409 #endif
8411 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8412 goto free_notcovered;
8413 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8414 goto free_nodemask;
8415 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8416 goto free_this_sibling_map;
8417 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8418 goto free_this_core_map;
8419 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8420 goto free_send_covered;
8422 #ifdef CONFIG_NUMA
8424 * Allocate the per-node list of sched groups
8426 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8427 GFP_KERNEL);
8428 if (!sched_group_nodes) {
8429 printk(KERN_WARNING "Can not alloc sched group node list\n");
8430 goto free_tmpmask;
8432 #endif
8434 rd = alloc_rootdomain();
8435 if (!rd) {
8436 printk(KERN_WARNING "Cannot alloc root domain\n");
8437 goto free_sched_groups;
8440 #ifdef CONFIG_NUMA
8441 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8442 #endif
8445 * Set up domains for cpus specified by the cpu_map.
8447 for_each_cpu(i, cpu_map) {
8448 struct sched_domain *sd = NULL, *p;
8450 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8452 #ifdef CONFIG_NUMA
8453 if (cpumask_weight(cpu_map) >
8454 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8455 sd = &per_cpu(allnodes_domains, i).sd;
8456 SD_INIT(sd, ALLNODES);
8457 set_domain_attribute(sd, attr);
8458 cpumask_copy(sched_domain_span(sd), cpu_map);
8459 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8460 p = sd;
8461 sd_allnodes = 1;
8462 } else
8463 p = NULL;
8465 sd = &per_cpu(node_domains, i).sd;
8466 SD_INIT(sd, NODE);
8467 set_domain_attribute(sd, attr);
8468 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8469 sd->parent = p;
8470 if (p)
8471 p->child = sd;
8472 cpumask_and(sched_domain_span(sd),
8473 sched_domain_span(sd), cpu_map);
8474 #endif
8476 p = sd;
8477 sd = &per_cpu(phys_domains, i).sd;
8478 SD_INIT(sd, CPU);
8479 set_domain_attribute(sd, attr);
8480 cpumask_copy(sched_domain_span(sd), nodemask);
8481 sd->parent = p;
8482 if (p)
8483 p->child = sd;
8484 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8486 #ifdef CONFIG_SCHED_MC
8487 p = sd;
8488 sd = &per_cpu(core_domains, i).sd;
8489 SD_INIT(sd, MC);
8490 set_domain_attribute(sd, attr);
8491 cpumask_and(sched_domain_span(sd), cpu_map,
8492 cpu_coregroup_mask(i));
8493 sd->parent = p;
8494 p->child = sd;
8495 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8496 #endif
8498 #ifdef CONFIG_SCHED_SMT
8499 p = sd;
8500 sd = &per_cpu(cpu_domains, i).sd;
8501 SD_INIT(sd, SIBLING);
8502 set_domain_attribute(sd, attr);
8503 cpumask_and(sched_domain_span(sd),
8504 topology_thread_cpumask(i), cpu_map);
8505 sd->parent = p;
8506 p->child = sd;
8507 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8508 #endif
8511 #ifdef CONFIG_SCHED_SMT
8512 /* Set up CPU (sibling) groups */
8513 for_each_cpu(i, cpu_map) {
8514 cpumask_and(this_sibling_map,
8515 topology_thread_cpumask(i), cpu_map);
8516 if (i != cpumask_first(this_sibling_map))
8517 continue;
8519 init_sched_build_groups(this_sibling_map, cpu_map,
8520 &cpu_to_cpu_group,
8521 send_covered, tmpmask);
8523 #endif
8525 #ifdef CONFIG_SCHED_MC
8526 /* Set up multi-core groups */
8527 for_each_cpu(i, cpu_map) {
8528 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8529 if (i != cpumask_first(this_core_map))
8530 continue;
8532 init_sched_build_groups(this_core_map, cpu_map,
8533 &cpu_to_core_group,
8534 send_covered, tmpmask);
8536 #endif
8538 /* Set up physical groups */
8539 for (i = 0; i < nr_node_ids; i++) {
8540 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8541 if (cpumask_empty(nodemask))
8542 continue;
8544 init_sched_build_groups(nodemask, cpu_map,
8545 &cpu_to_phys_group,
8546 send_covered, tmpmask);
8549 #ifdef CONFIG_NUMA
8550 /* Set up node groups */
8551 if (sd_allnodes) {
8552 init_sched_build_groups(cpu_map, cpu_map,
8553 &cpu_to_allnodes_group,
8554 send_covered, tmpmask);
8557 for (i = 0; i < nr_node_ids; i++) {
8558 /* Set up node groups */
8559 struct sched_group *sg, *prev;
8560 int j;
8562 cpumask_clear(covered);
8563 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8564 if (cpumask_empty(nodemask)) {
8565 sched_group_nodes[i] = NULL;
8566 continue;
8569 sched_domain_node_span(i, domainspan);
8570 cpumask_and(domainspan, domainspan, cpu_map);
8572 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8573 GFP_KERNEL, i);
8574 if (!sg) {
8575 printk(KERN_WARNING "Can not alloc domain group for "
8576 "node %d\n", i);
8577 goto error;
8579 sched_group_nodes[i] = sg;
8580 for_each_cpu(j, nodemask) {
8581 struct sched_domain *sd;
8583 sd = &per_cpu(node_domains, j).sd;
8584 sd->groups = sg;
8586 sg->__cpu_power = 0;
8587 cpumask_copy(sched_group_cpus(sg), nodemask);
8588 sg->next = sg;
8589 cpumask_or(covered, covered, nodemask);
8590 prev = sg;
8592 for (j = 0; j < nr_node_ids; j++) {
8593 int n = (i + j) % nr_node_ids;
8595 cpumask_complement(notcovered, covered);
8596 cpumask_and(tmpmask, notcovered, cpu_map);
8597 cpumask_and(tmpmask, tmpmask, domainspan);
8598 if (cpumask_empty(tmpmask))
8599 break;
8601 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8602 if (cpumask_empty(tmpmask))
8603 continue;
8605 sg = kmalloc_node(sizeof(struct sched_group) +
8606 cpumask_size(),
8607 GFP_KERNEL, i);
8608 if (!sg) {
8609 printk(KERN_WARNING
8610 "Can not alloc domain group for node %d\n", j);
8611 goto error;
8613 sg->__cpu_power = 0;
8614 cpumask_copy(sched_group_cpus(sg), tmpmask);
8615 sg->next = prev->next;
8616 cpumask_or(covered, covered, tmpmask);
8617 prev->next = sg;
8618 prev = sg;
8621 #endif
8623 /* Calculate CPU power for physical packages and nodes */
8624 #ifdef CONFIG_SCHED_SMT
8625 for_each_cpu(i, cpu_map) {
8626 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8628 init_sched_groups_power(i, sd);
8630 #endif
8631 #ifdef CONFIG_SCHED_MC
8632 for_each_cpu(i, cpu_map) {
8633 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8635 init_sched_groups_power(i, sd);
8637 #endif
8639 for_each_cpu(i, cpu_map) {
8640 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8642 init_sched_groups_power(i, sd);
8645 #ifdef CONFIG_NUMA
8646 for (i = 0; i < nr_node_ids; i++)
8647 init_numa_sched_groups_power(sched_group_nodes[i]);
8649 if (sd_allnodes) {
8650 struct sched_group *sg;
8652 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8653 tmpmask);
8654 init_numa_sched_groups_power(sg);
8656 #endif
8658 /* Attach the domains */
8659 for_each_cpu(i, cpu_map) {
8660 struct sched_domain *sd;
8661 #ifdef CONFIG_SCHED_SMT
8662 sd = &per_cpu(cpu_domains, i).sd;
8663 #elif defined(CONFIG_SCHED_MC)
8664 sd = &per_cpu(core_domains, i).sd;
8665 #else
8666 sd = &per_cpu(phys_domains, i).sd;
8667 #endif
8668 cpu_attach_domain(sd, rd, i);
8671 err = 0;
8673 free_tmpmask:
8674 free_cpumask_var(tmpmask);
8675 free_send_covered:
8676 free_cpumask_var(send_covered);
8677 free_this_core_map:
8678 free_cpumask_var(this_core_map);
8679 free_this_sibling_map:
8680 free_cpumask_var(this_sibling_map);
8681 free_nodemask:
8682 free_cpumask_var(nodemask);
8683 free_notcovered:
8684 #ifdef CONFIG_NUMA
8685 free_cpumask_var(notcovered);
8686 free_covered:
8687 free_cpumask_var(covered);
8688 free_domainspan:
8689 free_cpumask_var(domainspan);
8690 out:
8691 #endif
8692 return err;
8694 free_sched_groups:
8695 #ifdef CONFIG_NUMA
8696 kfree(sched_group_nodes);
8697 #endif
8698 goto free_tmpmask;
8700 #ifdef CONFIG_NUMA
8701 error:
8702 free_sched_groups(cpu_map, tmpmask);
8703 free_rootdomain(rd);
8704 goto free_tmpmask;
8705 #endif
8708 static int build_sched_domains(const struct cpumask *cpu_map)
8710 return __build_sched_domains(cpu_map, NULL);
8713 static struct cpumask *doms_cur; /* current sched domains */
8714 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8715 static struct sched_domain_attr *dattr_cur;
8716 /* attribues of custom domains in 'doms_cur' */
8719 * Special case: If a kmalloc of a doms_cur partition (array of
8720 * cpumask) fails, then fallback to a single sched domain,
8721 * as determined by the single cpumask fallback_doms.
8723 static cpumask_var_t fallback_doms;
8726 * arch_update_cpu_topology lets virtualized architectures update the
8727 * cpu core maps. It is supposed to return 1 if the topology changed
8728 * or 0 if it stayed the same.
8730 int __attribute__((weak)) arch_update_cpu_topology(void)
8732 return 0;
8736 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8737 * For now this just excludes isolated cpus, but could be used to
8738 * exclude other special cases in the future.
8740 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8742 int err;
8744 arch_update_cpu_topology();
8745 ndoms_cur = 1;
8746 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8747 if (!doms_cur)
8748 doms_cur = fallback_doms;
8749 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8750 dattr_cur = NULL;
8751 err = build_sched_domains(doms_cur);
8752 register_sched_domain_sysctl();
8754 return err;
8757 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8758 struct cpumask *tmpmask)
8760 free_sched_groups(cpu_map, tmpmask);
8764 * Detach sched domains from a group of cpus specified in cpu_map
8765 * These cpus will now be attached to the NULL domain
8767 static void detach_destroy_domains(const struct cpumask *cpu_map)
8769 /* Save because hotplug lock held. */
8770 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8771 int i;
8773 for_each_cpu(i, cpu_map)
8774 cpu_attach_domain(NULL, &def_root_domain, i);
8775 synchronize_sched();
8776 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8779 /* handle null as "default" */
8780 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8781 struct sched_domain_attr *new, int idx_new)
8783 struct sched_domain_attr tmp;
8785 /* fast path */
8786 if (!new && !cur)
8787 return 1;
8789 tmp = SD_ATTR_INIT;
8790 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8791 new ? (new + idx_new) : &tmp,
8792 sizeof(struct sched_domain_attr));
8796 * Partition sched domains as specified by the 'ndoms_new'
8797 * cpumasks in the array doms_new[] of cpumasks. This compares
8798 * doms_new[] to the current sched domain partitioning, doms_cur[].
8799 * It destroys each deleted domain and builds each new domain.
8801 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8802 * The masks don't intersect (don't overlap.) We should setup one
8803 * sched domain for each mask. CPUs not in any of the cpumasks will
8804 * not be load balanced. If the same cpumask appears both in the
8805 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8806 * it as it is.
8808 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8809 * ownership of it and will kfree it when done with it. If the caller
8810 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8811 * ndoms_new == 1, and partition_sched_domains() will fallback to
8812 * the single partition 'fallback_doms', it also forces the domains
8813 * to be rebuilt.
8815 * If doms_new == NULL it will be replaced with cpu_online_mask.
8816 * ndoms_new == 0 is a special case for destroying existing domains,
8817 * and it will not create the default domain.
8819 * Call with hotplug lock held
8821 /* FIXME: Change to struct cpumask *doms_new[] */
8822 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8823 struct sched_domain_attr *dattr_new)
8825 int i, j, n;
8826 int new_topology;
8828 mutex_lock(&sched_domains_mutex);
8830 /* always unregister in case we don't destroy any domains */
8831 unregister_sched_domain_sysctl();
8833 /* Let architecture update cpu core mappings. */
8834 new_topology = arch_update_cpu_topology();
8836 n = doms_new ? ndoms_new : 0;
8838 /* Destroy deleted domains */
8839 for (i = 0; i < ndoms_cur; i++) {
8840 for (j = 0; j < n && !new_topology; j++) {
8841 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8842 && dattrs_equal(dattr_cur, i, dattr_new, j))
8843 goto match1;
8845 /* no match - a current sched domain not in new doms_new[] */
8846 detach_destroy_domains(doms_cur + i);
8847 match1:
8851 if (doms_new == NULL) {
8852 ndoms_cur = 0;
8853 doms_new = fallback_doms;
8854 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8855 WARN_ON_ONCE(dattr_new);
8858 /* Build new domains */
8859 for (i = 0; i < ndoms_new; i++) {
8860 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8861 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8862 && dattrs_equal(dattr_new, i, dattr_cur, j))
8863 goto match2;
8865 /* no match - add a new doms_new */
8866 __build_sched_domains(doms_new + i,
8867 dattr_new ? dattr_new + i : NULL);
8868 match2:
8872 /* Remember the new sched domains */
8873 if (doms_cur != fallback_doms)
8874 kfree(doms_cur);
8875 kfree(dattr_cur); /* kfree(NULL) is safe */
8876 doms_cur = doms_new;
8877 dattr_cur = dattr_new;
8878 ndoms_cur = ndoms_new;
8880 register_sched_domain_sysctl();
8882 mutex_unlock(&sched_domains_mutex);
8885 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8886 static void arch_reinit_sched_domains(void)
8888 get_online_cpus();
8890 /* Destroy domains first to force the rebuild */
8891 partition_sched_domains(0, NULL, NULL);
8893 rebuild_sched_domains();
8894 put_online_cpus();
8897 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8899 unsigned int level = 0;
8901 if (sscanf(buf, "%u", &level) != 1)
8902 return -EINVAL;
8905 * level is always be positive so don't check for
8906 * level < POWERSAVINGS_BALANCE_NONE which is 0
8907 * What happens on 0 or 1 byte write,
8908 * need to check for count as well?
8911 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8912 return -EINVAL;
8914 if (smt)
8915 sched_smt_power_savings = level;
8916 else
8917 sched_mc_power_savings = level;
8919 arch_reinit_sched_domains();
8921 return count;
8924 #ifdef CONFIG_SCHED_MC
8925 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8926 char *page)
8928 return sprintf(page, "%u\n", sched_mc_power_savings);
8930 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8931 const char *buf, size_t count)
8933 return sched_power_savings_store(buf, count, 0);
8935 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8936 sched_mc_power_savings_show,
8937 sched_mc_power_savings_store);
8938 #endif
8940 #ifdef CONFIG_SCHED_SMT
8941 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8942 char *page)
8944 return sprintf(page, "%u\n", sched_smt_power_savings);
8946 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8947 const char *buf, size_t count)
8949 return sched_power_savings_store(buf, count, 1);
8951 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8952 sched_smt_power_savings_show,
8953 sched_smt_power_savings_store);
8954 #endif
8956 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8958 int err = 0;
8960 #ifdef CONFIG_SCHED_SMT
8961 if (smt_capable())
8962 err = sysfs_create_file(&cls->kset.kobj,
8963 &attr_sched_smt_power_savings.attr);
8964 #endif
8965 #ifdef CONFIG_SCHED_MC
8966 if (!err && mc_capable())
8967 err = sysfs_create_file(&cls->kset.kobj,
8968 &attr_sched_mc_power_savings.attr);
8969 #endif
8970 return err;
8972 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8974 #ifndef CONFIG_CPUSETS
8976 * Add online and remove offline CPUs from the scheduler domains.
8977 * When cpusets are enabled they take over this function.
8979 static int update_sched_domains(struct notifier_block *nfb,
8980 unsigned long action, void *hcpu)
8982 switch (action) {
8983 case CPU_ONLINE:
8984 case CPU_ONLINE_FROZEN:
8985 case CPU_DEAD:
8986 case CPU_DEAD_FROZEN:
8987 partition_sched_domains(1, NULL, NULL);
8988 return NOTIFY_OK;
8990 default:
8991 return NOTIFY_DONE;
8994 #endif
8996 static int update_runtime(struct notifier_block *nfb,
8997 unsigned long action, void *hcpu)
8999 int cpu = (int)(long)hcpu;
9001 switch (action) {
9002 case CPU_DOWN_PREPARE:
9003 case CPU_DOWN_PREPARE_FROZEN:
9004 disable_runtime(cpu_rq(cpu));
9005 return NOTIFY_OK;
9007 case CPU_DOWN_FAILED:
9008 case CPU_DOWN_FAILED_FROZEN:
9009 case CPU_ONLINE:
9010 case CPU_ONLINE_FROZEN:
9011 enable_runtime(cpu_rq(cpu));
9012 return NOTIFY_OK;
9014 default:
9015 return NOTIFY_DONE;
9019 void __init sched_init_smp(void)
9021 cpumask_var_t non_isolated_cpus;
9023 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9025 #if defined(CONFIG_NUMA)
9026 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9027 GFP_KERNEL);
9028 BUG_ON(sched_group_nodes_bycpu == NULL);
9029 #endif
9030 get_online_cpus();
9031 mutex_lock(&sched_domains_mutex);
9032 arch_init_sched_domains(cpu_online_mask);
9033 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9034 if (cpumask_empty(non_isolated_cpus))
9035 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9036 mutex_unlock(&sched_domains_mutex);
9037 put_online_cpus();
9039 #ifndef CONFIG_CPUSETS
9040 /* XXX: Theoretical race here - CPU may be hotplugged now */
9041 hotcpu_notifier(update_sched_domains, 0);
9042 #endif
9044 /* RT runtime code needs to handle some hotplug events */
9045 hotcpu_notifier(update_runtime, 0);
9047 init_hrtick();
9049 /* Move init over to a non-isolated CPU */
9050 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9051 BUG();
9052 sched_init_granularity();
9053 free_cpumask_var(non_isolated_cpus);
9055 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9056 init_sched_rt_class();
9058 #else
9059 void __init sched_init_smp(void)
9061 sched_init_granularity();
9063 #endif /* CONFIG_SMP */
9065 int in_sched_functions(unsigned long addr)
9067 return in_lock_functions(addr) ||
9068 (addr >= (unsigned long)__sched_text_start
9069 && addr < (unsigned long)__sched_text_end);
9072 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9074 cfs_rq->tasks_timeline = RB_ROOT;
9075 INIT_LIST_HEAD(&cfs_rq->tasks);
9076 #ifdef CONFIG_FAIR_GROUP_SCHED
9077 cfs_rq->rq = rq;
9078 #endif
9079 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9082 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9084 struct rt_prio_array *array;
9085 int i;
9087 array = &rt_rq->active;
9088 for (i = 0; i < MAX_RT_PRIO; i++) {
9089 INIT_LIST_HEAD(array->queue + i);
9090 __clear_bit(i, array->bitmap);
9092 /* delimiter for bitsearch: */
9093 __set_bit(MAX_RT_PRIO, array->bitmap);
9095 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9096 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9097 #ifdef CONFIG_SMP
9098 rt_rq->highest_prio.next = MAX_RT_PRIO;
9099 #endif
9100 #endif
9101 #ifdef CONFIG_SMP
9102 rt_rq->rt_nr_migratory = 0;
9103 rt_rq->overloaded = 0;
9104 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9105 #endif
9107 rt_rq->rt_time = 0;
9108 rt_rq->rt_throttled = 0;
9109 rt_rq->rt_runtime = 0;
9110 spin_lock_init(&rt_rq->rt_runtime_lock);
9112 #ifdef CONFIG_RT_GROUP_SCHED
9113 rt_rq->rt_nr_boosted = 0;
9114 rt_rq->rq = rq;
9115 #endif
9118 #ifdef CONFIG_FAIR_GROUP_SCHED
9119 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9120 struct sched_entity *se, int cpu, int add,
9121 struct sched_entity *parent)
9123 struct rq *rq = cpu_rq(cpu);
9124 tg->cfs_rq[cpu] = cfs_rq;
9125 init_cfs_rq(cfs_rq, rq);
9126 cfs_rq->tg = tg;
9127 if (add)
9128 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9130 tg->se[cpu] = se;
9131 /* se could be NULL for init_task_group */
9132 if (!se)
9133 return;
9135 if (!parent)
9136 se->cfs_rq = &rq->cfs;
9137 else
9138 se->cfs_rq = parent->my_q;
9140 se->my_q = cfs_rq;
9141 se->load.weight = tg->shares;
9142 se->load.inv_weight = 0;
9143 se->parent = parent;
9145 #endif
9147 #ifdef CONFIG_RT_GROUP_SCHED
9148 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9149 struct sched_rt_entity *rt_se, int cpu, int add,
9150 struct sched_rt_entity *parent)
9152 struct rq *rq = cpu_rq(cpu);
9154 tg->rt_rq[cpu] = rt_rq;
9155 init_rt_rq(rt_rq, rq);
9156 rt_rq->tg = tg;
9157 rt_rq->rt_se = rt_se;
9158 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9159 if (add)
9160 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9162 tg->rt_se[cpu] = rt_se;
9163 if (!rt_se)
9164 return;
9166 if (!parent)
9167 rt_se->rt_rq = &rq->rt;
9168 else
9169 rt_se->rt_rq = parent->my_q;
9171 rt_se->my_q = rt_rq;
9172 rt_se->parent = parent;
9173 INIT_LIST_HEAD(&rt_se->run_list);
9175 #endif
9177 void __init sched_init(void)
9179 int i, j;
9180 unsigned long alloc_size = 0, ptr;
9182 #ifdef CONFIG_FAIR_GROUP_SCHED
9183 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9184 #endif
9185 #ifdef CONFIG_RT_GROUP_SCHED
9186 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9187 #endif
9188 #ifdef CONFIG_USER_SCHED
9189 alloc_size *= 2;
9190 #endif
9191 #ifdef CONFIG_CPUMASK_OFFSTACK
9192 alloc_size += num_possible_cpus() * cpumask_size();
9193 #endif
9195 * As sched_init() is called before page_alloc is setup,
9196 * we use alloc_bootmem().
9198 if (alloc_size) {
9199 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9201 #ifdef CONFIG_FAIR_GROUP_SCHED
9202 init_task_group.se = (struct sched_entity **)ptr;
9203 ptr += nr_cpu_ids * sizeof(void **);
9205 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9206 ptr += nr_cpu_ids * sizeof(void **);
9208 #ifdef CONFIG_USER_SCHED
9209 root_task_group.se = (struct sched_entity **)ptr;
9210 ptr += nr_cpu_ids * sizeof(void **);
9212 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9213 ptr += nr_cpu_ids * sizeof(void **);
9214 #endif /* CONFIG_USER_SCHED */
9215 #endif /* CONFIG_FAIR_GROUP_SCHED */
9216 #ifdef CONFIG_RT_GROUP_SCHED
9217 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9218 ptr += nr_cpu_ids * sizeof(void **);
9220 init_task_group.rt_rq = (struct rt_rq **)ptr;
9221 ptr += nr_cpu_ids * sizeof(void **);
9223 #ifdef CONFIG_USER_SCHED
9224 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9225 ptr += nr_cpu_ids * sizeof(void **);
9227 root_task_group.rt_rq = (struct rt_rq **)ptr;
9228 ptr += nr_cpu_ids * sizeof(void **);
9229 #endif /* CONFIG_USER_SCHED */
9230 #endif /* CONFIG_RT_GROUP_SCHED */
9231 #ifdef CONFIG_CPUMASK_OFFSTACK
9232 for_each_possible_cpu(i) {
9233 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9234 ptr += cpumask_size();
9236 #endif /* CONFIG_CPUMASK_OFFSTACK */
9239 #ifdef CONFIG_SMP
9240 init_defrootdomain();
9241 #endif
9243 init_rt_bandwidth(&def_rt_bandwidth,
9244 global_rt_period(), global_rt_runtime());
9246 #ifdef CONFIG_RT_GROUP_SCHED
9247 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9248 global_rt_period(), global_rt_runtime());
9249 #ifdef CONFIG_USER_SCHED
9250 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9251 global_rt_period(), RUNTIME_INF);
9252 #endif /* CONFIG_USER_SCHED */
9253 #endif /* CONFIG_RT_GROUP_SCHED */
9255 #ifdef CONFIG_GROUP_SCHED
9256 list_add(&init_task_group.list, &task_groups);
9257 INIT_LIST_HEAD(&init_task_group.children);
9259 #ifdef CONFIG_USER_SCHED
9260 INIT_LIST_HEAD(&root_task_group.children);
9261 init_task_group.parent = &root_task_group;
9262 list_add(&init_task_group.siblings, &root_task_group.children);
9263 #endif /* CONFIG_USER_SCHED */
9264 #endif /* CONFIG_GROUP_SCHED */
9266 for_each_possible_cpu(i) {
9267 struct rq *rq;
9269 rq = cpu_rq(i);
9270 spin_lock_init(&rq->lock);
9271 rq->nr_running = 0;
9272 rq->calc_load_active = 0;
9273 rq->calc_load_update = jiffies + LOAD_FREQ;
9274 init_cfs_rq(&rq->cfs, rq);
9275 init_rt_rq(&rq->rt, rq);
9276 #ifdef CONFIG_FAIR_GROUP_SCHED
9277 init_task_group.shares = init_task_group_load;
9278 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9279 #ifdef CONFIG_CGROUP_SCHED
9281 * How much cpu bandwidth does init_task_group get?
9283 * In case of task-groups formed thr' the cgroup filesystem, it
9284 * gets 100% of the cpu resources in the system. This overall
9285 * system cpu resource is divided among the tasks of
9286 * init_task_group and its child task-groups in a fair manner,
9287 * based on each entity's (task or task-group's) weight
9288 * (se->load.weight).
9290 * In other words, if init_task_group has 10 tasks of weight
9291 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9292 * then A0's share of the cpu resource is:
9294 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9296 * We achieve this by letting init_task_group's tasks sit
9297 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9299 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9300 #elif defined CONFIG_USER_SCHED
9301 root_task_group.shares = NICE_0_LOAD;
9302 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9304 * In case of task-groups formed thr' the user id of tasks,
9305 * init_task_group represents tasks belonging to root user.
9306 * Hence it forms a sibling of all subsequent groups formed.
9307 * In this case, init_task_group gets only a fraction of overall
9308 * system cpu resource, based on the weight assigned to root
9309 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9310 * by letting tasks of init_task_group sit in a separate cfs_rq
9311 * (init_cfs_rq) and having one entity represent this group of
9312 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9314 init_tg_cfs_entry(&init_task_group,
9315 &per_cpu(init_cfs_rq, i),
9316 &per_cpu(init_sched_entity, i), i, 1,
9317 root_task_group.se[i]);
9319 #endif
9320 #endif /* CONFIG_FAIR_GROUP_SCHED */
9322 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9323 #ifdef CONFIG_RT_GROUP_SCHED
9324 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9325 #ifdef CONFIG_CGROUP_SCHED
9326 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9327 #elif defined CONFIG_USER_SCHED
9328 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9329 init_tg_rt_entry(&init_task_group,
9330 &per_cpu(init_rt_rq, i),
9331 &per_cpu(init_sched_rt_entity, i), i, 1,
9332 root_task_group.rt_se[i]);
9333 #endif
9334 #endif
9336 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9337 rq->cpu_load[j] = 0;
9338 #ifdef CONFIG_SMP
9339 rq->sd = NULL;
9340 rq->rd = NULL;
9341 rq->active_balance = 0;
9342 rq->next_balance = jiffies;
9343 rq->push_cpu = 0;
9344 rq->cpu = i;
9345 rq->online = 0;
9346 rq->migration_thread = NULL;
9347 INIT_LIST_HEAD(&rq->migration_queue);
9348 rq_attach_root(rq, &def_root_domain);
9349 #endif
9350 init_rq_hrtick(rq);
9351 atomic_set(&rq->nr_iowait, 0);
9354 set_load_weight(&init_task);
9356 #ifdef CONFIG_PREEMPT_NOTIFIERS
9357 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9358 #endif
9360 #ifdef CONFIG_SMP
9361 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9362 #endif
9364 #ifdef CONFIG_RT_MUTEXES
9365 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9366 #endif
9369 * The boot idle thread does lazy MMU switching as well:
9371 atomic_inc(&init_mm.mm_count);
9372 enter_lazy_tlb(&init_mm, current);
9375 * Make us the idle thread. Technically, schedule() should not be
9376 * called from this thread, however somewhere below it might be,
9377 * but because we are the idle thread, we just pick up running again
9378 * when this runqueue becomes "idle".
9380 init_idle(current, smp_processor_id());
9382 calc_load_update = jiffies + LOAD_FREQ;
9385 * During early bootup we pretend to be a normal task:
9387 current->sched_class = &fair_sched_class;
9389 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9390 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9391 #ifdef CONFIG_SMP
9392 #ifdef CONFIG_NO_HZ
9393 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9394 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9395 #endif
9396 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9397 #endif /* SMP */
9399 perf_counter_init();
9401 scheduler_running = 1;
9404 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9405 void __might_sleep(char *file, int line)
9407 #ifdef in_atomic
9408 static unsigned long prev_jiffy; /* ratelimiting */
9410 if ((!in_atomic() && !irqs_disabled()) ||
9411 system_state != SYSTEM_RUNNING || oops_in_progress)
9412 return;
9413 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9414 return;
9415 prev_jiffy = jiffies;
9417 printk(KERN_ERR
9418 "BUG: sleeping function called from invalid context at %s:%d\n",
9419 file, line);
9420 printk(KERN_ERR
9421 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9422 in_atomic(), irqs_disabled(),
9423 current->pid, current->comm);
9425 debug_show_held_locks(current);
9426 if (irqs_disabled())
9427 print_irqtrace_events(current);
9428 dump_stack();
9429 #endif
9431 EXPORT_SYMBOL(__might_sleep);
9432 #endif
9434 #ifdef CONFIG_MAGIC_SYSRQ
9435 static void normalize_task(struct rq *rq, struct task_struct *p)
9437 int on_rq;
9439 update_rq_clock(rq);
9440 on_rq = p->se.on_rq;
9441 if (on_rq)
9442 deactivate_task(rq, p, 0);
9443 __setscheduler(rq, p, SCHED_NORMAL, 0);
9444 if (on_rq) {
9445 activate_task(rq, p, 0);
9446 resched_task(rq->curr);
9450 void normalize_rt_tasks(void)
9452 struct task_struct *g, *p;
9453 unsigned long flags;
9454 struct rq *rq;
9456 read_lock_irqsave(&tasklist_lock, flags);
9457 do_each_thread(g, p) {
9459 * Only normalize user tasks:
9461 if (!p->mm)
9462 continue;
9464 p->se.exec_start = 0;
9465 #ifdef CONFIG_SCHEDSTATS
9466 p->se.wait_start = 0;
9467 p->se.sleep_start = 0;
9468 p->se.block_start = 0;
9469 #endif
9471 if (!rt_task(p)) {
9473 * Renice negative nice level userspace
9474 * tasks back to 0:
9476 if (TASK_NICE(p) < 0 && p->mm)
9477 set_user_nice(p, 0);
9478 continue;
9481 spin_lock(&p->pi_lock);
9482 rq = __task_rq_lock(p);
9484 normalize_task(rq, p);
9486 __task_rq_unlock(rq);
9487 spin_unlock(&p->pi_lock);
9488 } while_each_thread(g, p);
9490 read_unlock_irqrestore(&tasklist_lock, flags);
9493 #endif /* CONFIG_MAGIC_SYSRQ */
9495 #ifdef CONFIG_IA64
9497 * These functions are only useful for the IA64 MCA handling.
9499 * They can only be called when the whole system has been
9500 * stopped - every CPU needs to be quiescent, and no scheduling
9501 * activity can take place. Using them for anything else would
9502 * be a serious bug, and as a result, they aren't even visible
9503 * under any other configuration.
9507 * curr_task - return the current task for a given cpu.
9508 * @cpu: the processor in question.
9510 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9512 struct task_struct *curr_task(int cpu)
9514 return cpu_curr(cpu);
9518 * set_curr_task - set the current task for a given cpu.
9519 * @cpu: the processor in question.
9520 * @p: the task pointer to set.
9522 * Description: This function must only be used when non-maskable interrupts
9523 * are serviced on a separate stack. It allows the architecture to switch the
9524 * notion of the current task on a cpu in a non-blocking manner. This function
9525 * must be called with all CPU's synchronized, and interrupts disabled, the
9526 * and caller must save the original value of the current task (see
9527 * curr_task() above) and restore that value before reenabling interrupts and
9528 * re-starting the system.
9530 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9532 void set_curr_task(int cpu, struct task_struct *p)
9534 cpu_curr(cpu) = p;
9537 #endif
9539 #ifdef CONFIG_FAIR_GROUP_SCHED
9540 static void free_fair_sched_group(struct task_group *tg)
9542 int i;
9544 for_each_possible_cpu(i) {
9545 if (tg->cfs_rq)
9546 kfree(tg->cfs_rq[i]);
9547 if (tg->se)
9548 kfree(tg->se[i]);
9551 kfree(tg->cfs_rq);
9552 kfree(tg->se);
9555 static
9556 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9558 struct cfs_rq *cfs_rq;
9559 struct sched_entity *se;
9560 struct rq *rq;
9561 int i;
9563 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9564 if (!tg->cfs_rq)
9565 goto err;
9566 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9567 if (!tg->se)
9568 goto err;
9570 tg->shares = NICE_0_LOAD;
9572 for_each_possible_cpu(i) {
9573 rq = cpu_rq(i);
9575 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9576 GFP_KERNEL, cpu_to_node(i));
9577 if (!cfs_rq)
9578 goto err;
9580 se = kzalloc_node(sizeof(struct sched_entity),
9581 GFP_KERNEL, cpu_to_node(i));
9582 if (!se)
9583 goto err;
9585 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9588 return 1;
9590 err:
9591 return 0;
9594 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9596 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9597 &cpu_rq(cpu)->leaf_cfs_rq_list);
9600 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9602 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9604 #else /* !CONFG_FAIR_GROUP_SCHED */
9605 static inline void free_fair_sched_group(struct task_group *tg)
9609 static inline
9610 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9612 return 1;
9615 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9619 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9622 #endif /* CONFIG_FAIR_GROUP_SCHED */
9624 #ifdef CONFIG_RT_GROUP_SCHED
9625 static void free_rt_sched_group(struct task_group *tg)
9627 int i;
9629 destroy_rt_bandwidth(&tg->rt_bandwidth);
9631 for_each_possible_cpu(i) {
9632 if (tg->rt_rq)
9633 kfree(tg->rt_rq[i]);
9634 if (tg->rt_se)
9635 kfree(tg->rt_se[i]);
9638 kfree(tg->rt_rq);
9639 kfree(tg->rt_se);
9642 static
9643 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9645 struct rt_rq *rt_rq;
9646 struct sched_rt_entity *rt_se;
9647 struct rq *rq;
9648 int i;
9650 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9651 if (!tg->rt_rq)
9652 goto err;
9653 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9654 if (!tg->rt_se)
9655 goto err;
9657 init_rt_bandwidth(&tg->rt_bandwidth,
9658 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9660 for_each_possible_cpu(i) {
9661 rq = cpu_rq(i);
9663 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9664 GFP_KERNEL, cpu_to_node(i));
9665 if (!rt_rq)
9666 goto err;
9668 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9669 GFP_KERNEL, cpu_to_node(i));
9670 if (!rt_se)
9671 goto err;
9673 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9676 return 1;
9678 err:
9679 return 0;
9682 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9684 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9685 &cpu_rq(cpu)->leaf_rt_rq_list);
9688 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9690 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9692 #else /* !CONFIG_RT_GROUP_SCHED */
9693 static inline void free_rt_sched_group(struct task_group *tg)
9697 static inline
9698 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9700 return 1;
9703 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9707 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9710 #endif /* CONFIG_RT_GROUP_SCHED */
9712 #ifdef CONFIG_GROUP_SCHED
9713 static void free_sched_group(struct task_group *tg)
9715 free_fair_sched_group(tg);
9716 free_rt_sched_group(tg);
9717 kfree(tg);
9720 /* allocate runqueue etc for a new task group */
9721 struct task_group *sched_create_group(struct task_group *parent)
9723 struct task_group *tg;
9724 unsigned long flags;
9725 int i;
9727 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9728 if (!tg)
9729 return ERR_PTR(-ENOMEM);
9731 if (!alloc_fair_sched_group(tg, parent))
9732 goto err;
9734 if (!alloc_rt_sched_group(tg, parent))
9735 goto err;
9737 spin_lock_irqsave(&task_group_lock, flags);
9738 for_each_possible_cpu(i) {
9739 register_fair_sched_group(tg, i);
9740 register_rt_sched_group(tg, i);
9742 list_add_rcu(&tg->list, &task_groups);
9744 WARN_ON(!parent); /* root should already exist */
9746 tg->parent = parent;
9747 INIT_LIST_HEAD(&tg->children);
9748 list_add_rcu(&tg->siblings, &parent->children);
9749 spin_unlock_irqrestore(&task_group_lock, flags);
9751 return tg;
9753 err:
9754 free_sched_group(tg);
9755 return ERR_PTR(-ENOMEM);
9758 /* rcu callback to free various structures associated with a task group */
9759 static void free_sched_group_rcu(struct rcu_head *rhp)
9761 /* now it should be safe to free those cfs_rqs */
9762 free_sched_group(container_of(rhp, struct task_group, rcu));
9765 /* Destroy runqueue etc associated with a task group */
9766 void sched_destroy_group(struct task_group *tg)
9768 unsigned long flags;
9769 int i;
9771 spin_lock_irqsave(&task_group_lock, flags);
9772 for_each_possible_cpu(i) {
9773 unregister_fair_sched_group(tg, i);
9774 unregister_rt_sched_group(tg, i);
9776 list_del_rcu(&tg->list);
9777 list_del_rcu(&tg->siblings);
9778 spin_unlock_irqrestore(&task_group_lock, flags);
9780 /* wait for possible concurrent references to cfs_rqs complete */
9781 call_rcu(&tg->rcu, free_sched_group_rcu);
9784 /* change task's runqueue when it moves between groups.
9785 * The caller of this function should have put the task in its new group
9786 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9787 * reflect its new group.
9789 void sched_move_task(struct task_struct *tsk)
9791 int on_rq, running;
9792 unsigned long flags;
9793 struct rq *rq;
9795 rq = task_rq_lock(tsk, &flags);
9797 update_rq_clock(rq);
9799 running = task_current(rq, tsk);
9800 on_rq = tsk->se.on_rq;
9802 if (on_rq)
9803 dequeue_task(rq, tsk, 0);
9804 if (unlikely(running))
9805 tsk->sched_class->put_prev_task(rq, tsk);
9807 set_task_rq(tsk, task_cpu(tsk));
9809 #ifdef CONFIG_FAIR_GROUP_SCHED
9810 if (tsk->sched_class->moved_group)
9811 tsk->sched_class->moved_group(tsk);
9812 #endif
9814 if (unlikely(running))
9815 tsk->sched_class->set_curr_task(rq);
9816 if (on_rq)
9817 enqueue_task(rq, tsk, 0);
9819 task_rq_unlock(rq, &flags);
9821 #endif /* CONFIG_GROUP_SCHED */
9823 #ifdef CONFIG_FAIR_GROUP_SCHED
9824 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9826 struct cfs_rq *cfs_rq = se->cfs_rq;
9827 int on_rq;
9829 on_rq = se->on_rq;
9830 if (on_rq)
9831 dequeue_entity(cfs_rq, se, 0);
9833 se->load.weight = shares;
9834 se->load.inv_weight = 0;
9836 if (on_rq)
9837 enqueue_entity(cfs_rq, se, 0);
9840 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9842 struct cfs_rq *cfs_rq = se->cfs_rq;
9843 struct rq *rq = cfs_rq->rq;
9844 unsigned long flags;
9846 spin_lock_irqsave(&rq->lock, flags);
9847 __set_se_shares(se, shares);
9848 spin_unlock_irqrestore(&rq->lock, flags);
9851 static DEFINE_MUTEX(shares_mutex);
9853 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9855 int i;
9856 unsigned long flags;
9859 * We can't change the weight of the root cgroup.
9861 if (!tg->se[0])
9862 return -EINVAL;
9864 if (shares < MIN_SHARES)
9865 shares = MIN_SHARES;
9866 else if (shares > MAX_SHARES)
9867 shares = MAX_SHARES;
9869 mutex_lock(&shares_mutex);
9870 if (tg->shares == shares)
9871 goto done;
9873 spin_lock_irqsave(&task_group_lock, flags);
9874 for_each_possible_cpu(i)
9875 unregister_fair_sched_group(tg, i);
9876 list_del_rcu(&tg->siblings);
9877 spin_unlock_irqrestore(&task_group_lock, flags);
9879 /* wait for any ongoing reference to this group to finish */
9880 synchronize_sched();
9883 * Now we are free to modify the group's share on each cpu
9884 * w/o tripping rebalance_share or load_balance_fair.
9886 tg->shares = shares;
9887 for_each_possible_cpu(i) {
9889 * force a rebalance
9891 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9892 set_se_shares(tg->se[i], shares);
9896 * Enable load balance activity on this group, by inserting it back on
9897 * each cpu's rq->leaf_cfs_rq_list.
9899 spin_lock_irqsave(&task_group_lock, flags);
9900 for_each_possible_cpu(i)
9901 register_fair_sched_group(tg, i);
9902 list_add_rcu(&tg->siblings, &tg->parent->children);
9903 spin_unlock_irqrestore(&task_group_lock, flags);
9904 done:
9905 mutex_unlock(&shares_mutex);
9906 return 0;
9909 unsigned long sched_group_shares(struct task_group *tg)
9911 return tg->shares;
9913 #endif
9915 #ifdef CONFIG_RT_GROUP_SCHED
9917 * Ensure that the real time constraints are schedulable.
9919 static DEFINE_MUTEX(rt_constraints_mutex);
9921 static unsigned long to_ratio(u64 period, u64 runtime)
9923 if (runtime == RUNTIME_INF)
9924 return 1ULL << 20;
9926 return div64_u64(runtime << 20, period);
9929 /* Must be called with tasklist_lock held */
9930 static inline int tg_has_rt_tasks(struct task_group *tg)
9932 struct task_struct *g, *p;
9934 do_each_thread(g, p) {
9935 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9936 return 1;
9937 } while_each_thread(g, p);
9939 return 0;
9942 struct rt_schedulable_data {
9943 struct task_group *tg;
9944 u64 rt_period;
9945 u64 rt_runtime;
9948 static int tg_schedulable(struct task_group *tg, void *data)
9950 struct rt_schedulable_data *d = data;
9951 struct task_group *child;
9952 unsigned long total, sum = 0;
9953 u64 period, runtime;
9955 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9956 runtime = tg->rt_bandwidth.rt_runtime;
9958 if (tg == d->tg) {
9959 period = d->rt_period;
9960 runtime = d->rt_runtime;
9963 #ifdef CONFIG_USER_SCHED
9964 if (tg == &root_task_group) {
9965 period = global_rt_period();
9966 runtime = global_rt_runtime();
9968 #endif
9971 * Cannot have more runtime than the period.
9973 if (runtime > period && runtime != RUNTIME_INF)
9974 return -EINVAL;
9977 * Ensure we don't starve existing RT tasks.
9979 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9980 return -EBUSY;
9982 total = to_ratio(period, runtime);
9985 * Nobody can have more than the global setting allows.
9987 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9988 return -EINVAL;
9991 * The sum of our children's runtime should not exceed our own.
9993 list_for_each_entry_rcu(child, &tg->children, siblings) {
9994 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9995 runtime = child->rt_bandwidth.rt_runtime;
9997 if (child == d->tg) {
9998 period = d->rt_period;
9999 runtime = d->rt_runtime;
10002 sum += to_ratio(period, runtime);
10005 if (sum > total)
10006 return -EINVAL;
10008 return 0;
10011 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10013 struct rt_schedulable_data data = {
10014 .tg = tg,
10015 .rt_period = period,
10016 .rt_runtime = runtime,
10019 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10022 static int tg_set_bandwidth(struct task_group *tg,
10023 u64 rt_period, u64 rt_runtime)
10025 int i, err = 0;
10027 mutex_lock(&rt_constraints_mutex);
10028 read_lock(&tasklist_lock);
10029 err = __rt_schedulable(tg, rt_period, rt_runtime);
10030 if (err)
10031 goto unlock;
10033 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10034 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10035 tg->rt_bandwidth.rt_runtime = rt_runtime;
10037 for_each_possible_cpu(i) {
10038 struct rt_rq *rt_rq = tg->rt_rq[i];
10040 spin_lock(&rt_rq->rt_runtime_lock);
10041 rt_rq->rt_runtime = rt_runtime;
10042 spin_unlock(&rt_rq->rt_runtime_lock);
10044 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10045 unlock:
10046 read_unlock(&tasklist_lock);
10047 mutex_unlock(&rt_constraints_mutex);
10049 return err;
10052 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10054 u64 rt_runtime, rt_period;
10056 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10057 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10058 if (rt_runtime_us < 0)
10059 rt_runtime = RUNTIME_INF;
10061 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10064 long sched_group_rt_runtime(struct task_group *tg)
10066 u64 rt_runtime_us;
10068 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10069 return -1;
10071 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10072 do_div(rt_runtime_us, NSEC_PER_USEC);
10073 return rt_runtime_us;
10076 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10078 u64 rt_runtime, rt_period;
10080 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10081 rt_runtime = tg->rt_bandwidth.rt_runtime;
10083 if (rt_period == 0)
10084 return -EINVAL;
10086 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10089 long sched_group_rt_period(struct task_group *tg)
10091 u64 rt_period_us;
10093 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10094 do_div(rt_period_us, NSEC_PER_USEC);
10095 return rt_period_us;
10098 static int sched_rt_global_constraints(void)
10100 u64 runtime, period;
10101 int ret = 0;
10103 if (sysctl_sched_rt_period <= 0)
10104 return -EINVAL;
10106 runtime = global_rt_runtime();
10107 period = global_rt_period();
10110 * Sanity check on the sysctl variables.
10112 if (runtime > period && runtime != RUNTIME_INF)
10113 return -EINVAL;
10115 mutex_lock(&rt_constraints_mutex);
10116 read_lock(&tasklist_lock);
10117 ret = __rt_schedulable(NULL, 0, 0);
10118 read_unlock(&tasklist_lock);
10119 mutex_unlock(&rt_constraints_mutex);
10121 return ret;
10124 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10126 /* Don't accept realtime tasks when there is no way for them to run */
10127 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10128 return 0;
10130 return 1;
10133 #else /* !CONFIG_RT_GROUP_SCHED */
10134 static int sched_rt_global_constraints(void)
10136 unsigned long flags;
10137 int i;
10139 if (sysctl_sched_rt_period <= 0)
10140 return -EINVAL;
10143 * There's always some RT tasks in the root group
10144 * -- migration, kstopmachine etc..
10146 if (sysctl_sched_rt_runtime == 0)
10147 return -EBUSY;
10149 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10150 for_each_possible_cpu(i) {
10151 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10153 spin_lock(&rt_rq->rt_runtime_lock);
10154 rt_rq->rt_runtime = global_rt_runtime();
10155 spin_unlock(&rt_rq->rt_runtime_lock);
10157 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10159 return 0;
10161 #endif /* CONFIG_RT_GROUP_SCHED */
10163 int sched_rt_handler(struct ctl_table *table, int write,
10164 struct file *filp, void __user *buffer, size_t *lenp,
10165 loff_t *ppos)
10167 int ret;
10168 int old_period, old_runtime;
10169 static DEFINE_MUTEX(mutex);
10171 mutex_lock(&mutex);
10172 old_period = sysctl_sched_rt_period;
10173 old_runtime = sysctl_sched_rt_runtime;
10175 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10177 if (!ret && write) {
10178 ret = sched_rt_global_constraints();
10179 if (ret) {
10180 sysctl_sched_rt_period = old_period;
10181 sysctl_sched_rt_runtime = old_runtime;
10182 } else {
10183 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10184 def_rt_bandwidth.rt_period =
10185 ns_to_ktime(global_rt_period());
10188 mutex_unlock(&mutex);
10190 return ret;
10193 #ifdef CONFIG_CGROUP_SCHED
10195 /* return corresponding task_group object of a cgroup */
10196 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10198 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10199 struct task_group, css);
10202 static struct cgroup_subsys_state *
10203 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10205 struct task_group *tg, *parent;
10207 if (!cgrp->parent) {
10208 /* This is early initialization for the top cgroup */
10209 return &init_task_group.css;
10212 parent = cgroup_tg(cgrp->parent);
10213 tg = sched_create_group(parent);
10214 if (IS_ERR(tg))
10215 return ERR_PTR(-ENOMEM);
10217 return &tg->css;
10220 static void
10221 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10223 struct task_group *tg = cgroup_tg(cgrp);
10225 sched_destroy_group(tg);
10228 static int
10229 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10230 struct task_struct *tsk)
10232 #ifdef CONFIG_RT_GROUP_SCHED
10233 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10234 return -EINVAL;
10235 #else
10236 /* We don't support RT-tasks being in separate groups */
10237 if (tsk->sched_class != &fair_sched_class)
10238 return -EINVAL;
10239 #endif
10241 return 0;
10244 static void
10245 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10246 struct cgroup *old_cont, struct task_struct *tsk)
10248 sched_move_task(tsk);
10251 #ifdef CONFIG_FAIR_GROUP_SCHED
10252 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10253 u64 shareval)
10255 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10258 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10260 struct task_group *tg = cgroup_tg(cgrp);
10262 return (u64) tg->shares;
10264 #endif /* CONFIG_FAIR_GROUP_SCHED */
10266 #ifdef CONFIG_RT_GROUP_SCHED
10267 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10268 s64 val)
10270 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10273 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10275 return sched_group_rt_runtime(cgroup_tg(cgrp));
10278 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10279 u64 rt_period_us)
10281 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10284 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10286 return sched_group_rt_period(cgroup_tg(cgrp));
10288 #endif /* CONFIG_RT_GROUP_SCHED */
10290 static struct cftype cpu_files[] = {
10291 #ifdef CONFIG_FAIR_GROUP_SCHED
10293 .name = "shares",
10294 .read_u64 = cpu_shares_read_u64,
10295 .write_u64 = cpu_shares_write_u64,
10297 #endif
10298 #ifdef CONFIG_RT_GROUP_SCHED
10300 .name = "rt_runtime_us",
10301 .read_s64 = cpu_rt_runtime_read,
10302 .write_s64 = cpu_rt_runtime_write,
10305 .name = "rt_period_us",
10306 .read_u64 = cpu_rt_period_read_uint,
10307 .write_u64 = cpu_rt_period_write_uint,
10309 #endif
10312 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10314 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10317 struct cgroup_subsys cpu_cgroup_subsys = {
10318 .name = "cpu",
10319 .create = cpu_cgroup_create,
10320 .destroy = cpu_cgroup_destroy,
10321 .can_attach = cpu_cgroup_can_attach,
10322 .attach = cpu_cgroup_attach,
10323 .populate = cpu_cgroup_populate,
10324 .subsys_id = cpu_cgroup_subsys_id,
10325 .early_init = 1,
10328 #endif /* CONFIG_CGROUP_SCHED */
10330 #ifdef CONFIG_CGROUP_CPUACCT
10333 * CPU accounting code for task groups.
10335 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10336 * (balbir@in.ibm.com).
10339 /* track cpu usage of a group of tasks and its child groups */
10340 struct cpuacct {
10341 struct cgroup_subsys_state css;
10342 /* cpuusage holds pointer to a u64-type object on every cpu */
10343 u64 *cpuusage;
10344 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10345 struct cpuacct *parent;
10348 struct cgroup_subsys cpuacct_subsys;
10350 /* return cpu accounting group corresponding to this container */
10351 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10353 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10354 struct cpuacct, css);
10357 /* return cpu accounting group to which this task belongs */
10358 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10360 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10361 struct cpuacct, css);
10364 /* create a new cpu accounting group */
10365 static struct cgroup_subsys_state *cpuacct_create(
10366 struct cgroup_subsys *ss, struct cgroup *cgrp)
10368 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10369 int i;
10371 if (!ca)
10372 goto out;
10374 ca->cpuusage = alloc_percpu(u64);
10375 if (!ca->cpuusage)
10376 goto out_free_ca;
10378 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10379 if (percpu_counter_init(&ca->cpustat[i], 0))
10380 goto out_free_counters;
10382 if (cgrp->parent)
10383 ca->parent = cgroup_ca(cgrp->parent);
10385 return &ca->css;
10387 out_free_counters:
10388 while (--i >= 0)
10389 percpu_counter_destroy(&ca->cpustat[i]);
10390 free_percpu(ca->cpuusage);
10391 out_free_ca:
10392 kfree(ca);
10393 out:
10394 return ERR_PTR(-ENOMEM);
10397 /* destroy an existing cpu accounting group */
10398 static void
10399 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10401 struct cpuacct *ca = cgroup_ca(cgrp);
10402 int i;
10404 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10405 percpu_counter_destroy(&ca->cpustat[i]);
10406 free_percpu(ca->cpuusage);
10407 kfree(ca);
10410 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10412 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10413 u64 data;
10415 #ifndef CONFIG_64BIT
10417 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10419 spin_lock_irq(&cpu_rq(cpu)->lock);
10420 data = *cpuusage;
10421 spin_unlock_irq(&cpu_rq(cpu)->lock);
10422 #else
10423 data = *cpuusage;
10424 #endif
10426 return data;
10429 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10431 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10433 #ifndef CONFIG_64BIT
10435 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10437 spin_lock_irq(&cpu_rq(cpu)->lock);
10438 *cpuusage = val;
10439 spin_unlock_irq(&cpu_rq(cpu)->lock);
10440 #else
10441 *cpuusage = val;
10442 #endif
10445 /* return total cpu usage (in nanoseconds) of a group */
10446 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10448 struct cpuacct *ca = cgroup_ca(cgrp);
10449 u64 totalcpuusage = 0;
10450 int i;
10452 for_each_present_cpu(i)
10453 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10455 return totalcpuusage;
10458 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10459 u64 reset)
10461 struct cpuacct *ca = cgroup_ca(cgrp);
10462 int err = 0;
10463 int i;
10465 if (reset) {
10466 err = -EINVAL;
10467 goto out;
10470 for_each_present_cpu(i)
10471 cpuacct_cpuusage_write(ca, i, 0);
10473 out:
10474 return err;
10477 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10478 struct seq_file *m)
10480 struct cpuacct *ca = cgroup_ca(cgroup);
10481 u64 percpu;
10482 int i;
10484 for_each_present_cpu(i) {
10485 percpu = cpuacct_cpuusage_read(ca, i);
10486 seq_printf(m, "%llu ", (unsigned long long) percpu);
10488 seq_printf(m, "\n");
10489 return 0;
10492 static const char *cpuacct_stat_desc[] = {
10493 [CPUACCT_STAT_USER] = "user",
10494 [CPUACCT_STAT_SYSTEM] = "system",
10497 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10498 struct cgroup_map_cb *cb)
10500 struct cpuacct *ca = cgroup_ca(cgrp);
10501 int i;
10503 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10504 s64 val = percpu_counter_read(&ca->cpustat[i]);
10505 val = cputime64_to_clock_t(val);
10506 cb->fill(cb, cpuacct_stat_desc[i], val);
10508 return 0;
10511 static struct cftype files[] = {
10513 .name = "usage",
10514 .read_u64 = cpuusage_read,
10515 .write_u64 = cpuusage_write,
10518 .name = "usage_percpu",
10519 .read_seq_string = cpuacct_percpu_seq_read,
10522 .name = "stat",
10523 .read_map = cpuacct_stats_show,
10527 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10529 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10533 * charge this task's execution time to its accounting group.
10535 * called with rq->lock held.
10537 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10539 struct cpuacct *ca;
10540 int cpu;
10542 if (unlikely(!cpuacct_subsys.active))
10543 return;
10545 cpu = task_cpu(tsk);
10547 rcu_read_lock();
10549 ca = task_ca(tsk);
10551 for (; ca; ca = ca->parent) {
10552 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10553 *cpuusage += cputime;
10556 rcu_read_unlock();
10560 * Charge the system/user time to the task's accounting group.
10562 static void cpuacct_update_stats(struct task_struct *tsk,
10563 enum cpuacct_stat_index idx, cputime_t val)
10565 struct cpuacct *ca;
10567 if (unlikely(!cpuacct_subsys.active))
10568 return;
10570 rcu_read_lock();
10571 ca = task_ca(tsk);
10573 do {
10574 percpu_counter_add(&ca->cpustat[idx], val);
10575 ca = ca->parent;
10576 } while (ca);
10577 rcu_read_unlock();
10580 struct cgroup_subsys cpuacct_subsys = {
10581 .name = "cpuacct",
10582 .create = cpuacct_create,
10583 .destroy = cpuacct_destroy,
10584 .populate = cpuacct_populate,
10585 .subsys_id = cpuacct_subsys_id,
10587 #endif /* CONFIG_CGROUP_CPUACCT */