staging: vme_user: declare private variables as static
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / vme / devices / vme_user.c
blobf7fa02d0d87be04a25d7a0e8a9480a60774a1663
1 /*
2 * VMEbus User access driver
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
7 * Based on work by:
8 * Tom Armistead and Ajit Prem
9 * Copyright 2004 Motorola Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 #include <linux/cdev.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/ioctl.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/pci.h>
30 #include <linux/semaphore.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/syscalls.h>
34 #include <linux/mutex.h>
35 #include <linux/types.h>
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
40 #include "../vme.h"
41 #include "vme_user.h"
43 static DEFINE_MUTEX(vme_user_mutex);
44 static char driver_name[] = "vme_user";
46 static int bus[USER_BUS_MAX];
47 static int bus_num;
49 /* Currently Documentation/devices.txt defines the following for VME:
51 * 221 char VME bus
52 * 0 = /dev/bus/vme/m0 First master image
53 * 1 = /dev/bus/vme/m1 Second master image
54 * 2 = /dev/bus/vme/m2 Third master image
55 * 3 = /dev/bus/vme/m3 Fourth master image
56 * 4 = /dev/bus/vme/s0 First slave image
57 * 5 = /dev/bus/vme/s1 Second slave image
58 * 6 = /dev/bus/vme/s2 Third slave image
59 * 7 = /dev/bus/vme/s3 Fourth slave image
60 * 8 = /dev/bus/vme/ctl Control
62 * It is expected that all VME bus drivers will use the
63 * same interface. For interface documentation see
64 * http://www.vmelinux.org/.
66 * However the VME driver at http://www.vmelinux.org/ is rather old and doesn't
67 * even support the tsi148 chipset (which has 8 master and 8 slave windows).
68 * We'll run with this or now as far as possible, however it probably makes
69 * sense to get rid of the old mappings and just do everything dynamically.
71 * So for now, we'll restrict the driver to providing 4 masters and 4 slaves as
72 * defined above and try to support at least some of the interface from
73 * http://www.vmelinux.org/ as an alternative drive can be written providing a
74 * saner interface later.
76 * The vmelinux.org driver never supported slave images, the devices reserved
77 * for slaves were repurposed to support all 8 master images on the UniverseII!
78 * We shall support 4 masters and 4 slaves with this driver.
80 #define VME_MAJOR 221 /* VME Major Device Number */
81 #define VME_DEVS 9 /* Number of dev entries */
83 #define MASTER_MINOR 0
84 #define MASTER_MAX 3
85 #define SLAVE_MINOR 4
86 #define SLAVE_MAX 7
87 #define CONTROL_MINOR 8
89 #define PCI_BUF_SIZE 0x20000 /* Size of one slave image buffer */
92 * Structure to handle image related parameters.
94 typedef struct {
95 void __iomem *kern_buf; /* Buffer address in kernel space */
96 dma_addr_t pci_buf; /* Buffer address in PCI address space */
97 unsigned long long size_buf; /* Buffer size */
98 struct semaphore sem; /* Semaphore for locking image */
99 struct device *device; /* Sysfs device */
100 struct vme_resource *resource; /* VME resource */
101 int users; /* Number of current users */
102 } image_desc_t;
103 static image_desc_t image[VME_DEVS];
105 typedef struct {
106 unsigned long reads;
107 unsigned long writes;
108 unsigned long ioctls;
109 unsigned long irqs;
110 unsigned long berrs;
111 unsigned long dmaErrors;
112 unsigned long timeouts;
113 unsigned long external;
114 } driver_stats_t;
115 static driver_stats_t statistics;
117 static struct cdev *vme_user_cdev; /* Character device */
118 static struct class *vme_user_sysfs_class; /* Sysfs class */
119 static struct device *vme_user_bridge; /* Pointer to bridge device */
122 static const int type[VME_DEVS] = { MASTER_MINOR, MASTER_MINOR,
123 MASTER_MINOR, MASTER_MINOR,
124 SLAVE_MINOR, SLAVE_MINOR,
125 SLAVE_MINOR, SLAVE_MINOR,
126 CONTROL_MINOR
130 static int vme_user_open(struct inode *, struct file *);
131 static int vme_user_release(struct inode *, struct file *);
132 static ssize_t vme_user_read(struct file *, char *, size_t, loff_t *);
133 static ssize_t vme_user_write(struct file *, const char *, size_t, loff_t *);
134 static loff_t vme_user_llseek(struct file *, loff_t, int);
135 static long vme_user_unlocked_ioctl(struct file *, unsigned int, unsigned long);
137 static int __init vme_user_probe(struct device *, int, int);
138 static int __exit vme_user_remove(struct device *, int, int);
140 static struct file_operations vme_user_fops = {
141 .open = vme_user_open,
142 .release = vme_user_release,
143 .read = vme_user_read,
144 .write = vme_user_write,
145 .llseek = vme_user_llseek,
146 .unlocked_ioctl = vme_user_unlocked_ioctl,
151 * Reset all the statistic counters
153 static void reset_counters(void)
155 statistics.reads = 0;
156 statistics.writes = 0;
157 statistics.ioctls = 0;
158 statistics.irqs = 0;
159 statistics.berrs = 0;
160 statistics.dmaErrors = 0;
161 statistics.timeouts = 0;
164 static int vme_user_open(struct inode *inode, struct file *file)
166 int err;
167 unsigned int minor = MINOR(inode->i_rdev);
169 down(&image[minor].sem);
170 /* Only allow device to be opened if a resource is allocated */
171 if (image[minor].resource == NULL) {
172 printk(KERN_ERR "No resources allocated for device\n");
173 err = -EINVAL;
174 goto err_res;
177 /* Increment user count */
178 image[minor].users++;
180 up(&image[minor].sem);
182 return 0;
184 err_res:
185 up(&image[minor].sem);
187 return err;
190 static int vme_user_release(struct inode *inode, struct file *file)
192 unsigned int minor = MINOR(inode->i_rdev);
194 down(&image[minor].sem);
196 /* Decrement user count */
197 image[minor].users--;
199 up(&image[minor].sem);
201 return 0;
205 * We are going ot alloc a page during init per window for small transfers.
206 * Small transfers will go VME -> buffer -> user space. Larger (more than a
207 * page) transfers will lock the user space buffer into memory and then
208 * transfer the data directly into the user space buffers.
210 static ssize_t resource_to_user(int minor, char __user *buf, size_t count,
211 loff_t *ppos)
213 ssize_t retval;
214 ssize_t copied = 0;
216 if (count <= image[minor].size_buf) {
217 /* We copy to kernel buffer */
218 copied = vme_master_read(image[minor].resource,
219 image[minor].kern_buf, count, *ppos);
220 if (copied < 0)
221 return (int)copied;
223 retval = __copy_to_user(buf, image[minor].kern_buf,
224 (unsigned long)copied);
225 if (retval != 0) {
226 copied = (copied - retval);
227 printk(KERN_INFO "User copy failed\n");
228 return -EINVAL;
231 } else {
232 /* XXX Need to write this */
233 printk(KERN_INFO "Currently don't support large transfers\n");
234 /* Map in pages from userspace */
236 /* Call vme_master_read to do the transfer */
237 return -EINVAL;
240 return copied;
244 * We are going ot alloc a page during init per window for small transfers.
245 * Small transfers will go user space -> buffer -> VME. Larger (more than a
246 * page) transfers will lock the user space buffer into memory and then
247 * transfer the data directly from the user space buffers out to VME.
249 static ssize_t resource_from_user(unsigned int minor, const char *buf,
250 size_t count, loff_t *ppos)
252 ssize_t retval;
253 ssize_t copied = 0;
255 if (count <= image[minor].size_buf) {
256 retval = __copy_from_user(image[minor].kern_buf, buf,
257 (unsigned long)count);
258 if (retval != 0)
259 copied = (copied - retval);
260 else
261 copied = count;
263 copied = vme_master_write(image[minor].resource,
264 image[minor].kern_buf, copied, *ppos);
265 } else {
266 /* XXX Need to write this */
267 printk(KERN_INFO "Currently don't support large transfers\n");
268 /* Map in pages from userspace */
270 /* Call vme_master_write to do the transfer */
271 return -EINVAL;
274 return copied;
277 static ssize_t buffer_to_user(unsigned int minor, char __user *buf,
278 size_t count, loff_t *ppos)
280 void __iomem *image_ptr;
281 ssize_t retval;
283 image_ptr = image[minor].kern_buf + *ppos;
285 retval = __copy_to_user(buf, image_ptr, (unsigned long)count);
286 if (retval != 0) {
287 retval = (count - retval);
288 printk(KERN_WARNING "Partial copy to userspace\n");
289 } else
290 retval = count;
292 /* Return number of bytes successfully read */
293 return retval;
296 static ssize_t buffer_from_user(unsigned int minor, const char *buf,
297 size_t count, loff_t *ppos)
299 void __iomem *image_ptr;
300 size_t retval;
302 image_ptr = image[minor].kern_buf + *ppos;
304 retval = __copy_from_user(image_ptr, buf, (unsigned long)count);
305 if (retval != 0) {
306 retval = (count - retval);
307 printk(KERN_WARNING "Partial copy to userspace\n");
308 } else
309 retval = count;
311 /* Return number of bytes successfully read */
312 return retval;
315 static ssize_t vme_user_read(struct file *file, char *buf, size_t count,
316 loff_t *ppos)
318 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
319 ssize_t retval;
320 size_t image_size;
321 size_t okcount;
323 down(&image[minor].sem);
325 /* XXX Do we *really* want this helper - we can use vme_*_get ? */
326 image_size = vme_get_size(image[minor].resource);
328 /* Ensure we are starting at a valid location */
329 if ((*ppos < 0) || (*ppos > (image_size - 1))) {
330 up(&image[minor].sem);
331 return 0;
334 /* Ensure not reading past end of the image */
335 if (*ppos + count > image_size)
336 okcount = image_size - *ppos;
337 else
338 okcount = count;
340 switch (type[minor]) {
341 case MASTER_MINOR:
342 retval = resource_to_user(minor, buf, okcount, ppos);
343 break;
344 case SLAVE_MINOR:
345 retval = buffer_to_user(minor, buf, okcount, ppos);
346 break;
347 default:
348 retval = -EINVAL;
351 up(&image[minor].sem);
353 if (retval > 0)
354 *ppos += retval;
356 return retval;
359 static ssize_t vme_user_write(struct file *file, const char *buf, size_t count,
360 loff_t *ppos)
362 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
363 ssize_t retval;
364 size_t image_size;
365 size_t okcount;
367 down(&image[minor].sem);
369 image_size = vme_get_size(image[minor].resource);
371 /* Ensure we are starting at a valid location */
372 if ((*ppos < 0) || (*ppos > (image_size - 1))) {
373 up(&image[minor].sem);
374 return 0;
377 /* Ensure not reading past end of the image */
378 if (*ppos + count > image_size)
379 okcount = image_size - *ppos;
380 else
381 okcount = count;
383 switch (type[minor]) {
384 case MASTER_MINOR:
385 retval = resource_from_user(minor, buf, okcount, ppos);
386 break;
387 case SLAVE_MINOR:
388 retval = buffer_from_user(minor, buf, okcount, ppos);
389 break;
390 default:
391 retval = -EINVAL;
394 up(&image[minor].sem);
396 if (retval > 0)
397 *ppos += retval;
399 return retval;
402 static loff_t vme_user_llseek(struct file *file, loff_t off, int whence)
404 loff_t absolute = -1;
405 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
406 size_t image_size;
408 down(&image[minor].sem);
409 image_size = vme_get_size(image[minor].resource);
411 switch (whence) {
412 case SEEK_SET:
413 absolute = off;
414 break;
415 case SEEK_CUR:
416 absolute = file->f_pos + off;
417 break;
418 case SEEK_END:
419 absolute = image_size + off;
420 break;
421 default:
422 up(&image[minor].sem);
423 return -EINVAL;
424 break;
427 if ((absolute < 0) || (absolute >= image_size)) {
428 up(&image[minor].sem);
429 return -EINVAL;
432 file->f_pos = absolute;
434 up(&image[minor].sem);
436 return absolute;
440 * The ioctls provided by the old VME access method (the one at vmelinux.org)
441 * are most certainly wrong as the effectively push the registers layout
442 * through to user space. Given that the VME core can handle multiple bridges,
443 * with different register layouts this is most certainly not the way to go.
445 * We aren't using the structures defined in the Motorola driver either - these
446 * are also quite low level, however we should use the definitions that have
447 * already been defined.
449 static int vme_user_ioctl(struct inode *inode, struct file *file,
450 unsigned int cmd, unsigned long arg)
452 struct vme_master master;
453 struct vme_slave slave;
454 unsigned long copied;
455 unsigned int minor = MINOR(inode->i_rdev);
456 int retval;
457 dma_addr_t pci_addr;
459 statistics.ioctls++;
461 switch (type[minor]) {
462 case CONTROL_MINOR:
463 break;
464 case MASTER_MINOR:
465 switch (cmd) {
466 case VME_GET_MASTER:
467 memset(&master, 0, sizeof(struct vme_master));
469 /* XXX We do not want to push aspace, cycle and width
470 * to userspace as they are
472 retval = vme_master_get(image[minor].resource,
473 &master.enable, &master.vme_addr,
474 &master.size, &master.aspace,
475 &master.cycle, &master.dwidth);
477 copied = copy_to_user((char *)arg, &master,
478 sizeof(struct vme_master));
479 if (copied != 0) {
480 printk(KERN_WARNING "Partial copy to "
481 "userspace\n");
482 return -EFAULT;
485 return retval;
486 break;
488 case VME_SET_MASTER:
490 copied = copy_from_user(&master, (char *)arg,
491 sizeof(master));
492 if (copied != 0) {
493 printk(KERN_WARNING "Partial copy from "
494 "userspace\n");
495 return -EFAULT;
498 /* XXX We do not want to push aspace, cycle and width
499 * to userspace as they are
501 return vme_master_set(image[minor].resource,
502 master.enable, master.vme_addr, master.size,
503 master.aspace, master.cycle, master.dwidth);
505 break;
507 break;
508 case SLAVE_MINOR:
509 switch (cmd) {
510 case VME_GET_SLAVE:
511 memset(&slave, 0, sizeof(struct vme_slave));
513 /* XXX We do not want to push aspace, cycle and width
514 * to userspace as they are
516 retval = vme_slave_get(image[minor].resource,
517 &slave.enable, &slave.vme_addr,
518 &slave.size, &pci_addr, &slave.aspace,
519 &slave.cycle);
521 copied = copy_to_user((char *)arg, &slave,
522 sizeof(struct vme_slave));
523 if (copied != 0) {
524 printk(KERN_WARNING "Partial copy to "
525 "userspace\n");
526 return -EFAULT;
529 return retval;
530 break;
532 case VME_SET_SLAVE:
534 copied = copy_from_user(&slave, (char *)arg,
535 sizeof(slave));
536 if (copied != 0) {
537 printk(KERN_WARNING "Partial copy from "
538 "userspace\n");
539 return -EFAULT;
542 /* XXX We do not want to push aspace, cycle and width
543 * to userspace as they are
545 return vme_slave_set(image[minor].resource,
546 slave.enable, slave.vme_addr, slave.size,
547 image[minor].pci_buf, slave.aspace,
548 slave.cycle);
550 break;
552 break;
555 return -EINVAL;
558 static long
559 vme_user_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
561 int ret;
563 mutex_lock(&vme_user_mutex);
564 ret = vme_user_ioctl(file->f_path.dentry->d_inode, file, cmd, arg);
565 mutex_unlock(&vme_user_mutex);
567 return ret;
572 * Unallocate a previously allocated buffer
574 static void buf_unalloc(int num)
576 if (image[num].kern_buf) {
577 #ifdef VME_DEBUG
578 printk(KERN_DEBUG "UniverseII:Releasing buffer at %p\n",
579 image[num].pci_buf);
580 #endif
582 vme_free_consistent(image[num].resource, image[num].size_buf,
583 image[num].kern_buf, image[num].pci_buf);
585 image[num].kern_buf = NULL;
586 image[num].pci_buf = 0;
587 image[num].size_buf = 0;
589 #ifdef VME_DEBUG
590 } else {
591 printk(KERN_DEBUG "UniverseII: Buffer not allocated\n");
592 #endif
596 static struct vme_driver vme_user_driver = {
597 .name = driver_name,
598 .probe = vme_user_probe,
599 .remove = vme_user_remove,
603 static int __init vme_user_init(void)
605 int retval = 0;
606 int i;
607 struct vme_device_id *ids;
609 printk(KERN_INFO "VME User Space Access Driver\n");
611 if (bus_num == 0) {
612 printk(KERN_ERR "%s: No cards, skipping registration\n",
613 driver_name);
614 retval = -ENODEV;
615 goto err_nocard;
618 /* Let's start by supporting one bus, we can support more than one
619 * in future revisions if that ever becomes necessary.
621 if (bus_num > USER_BUS_MAX) {
622 printk(KERN_ERR "%s: Driver only able to handle %d buses\n",
623 driver_name, USER_BUS_MAX);
624 bus_num = USER_BUS_MAX;
628 /* Dynamically create the bind table based on module parameters */
629 ids = kmalloc(sizeof(struct vme_device_id) * (bus_num + 1), GFP_KERNEL);
630 if (ids == NULL) {
631 printk(KERN_ERR "%s: Unable to allocate ID table\n",
632 driver_name);
633 retval = -ENOMEM;
634 goto err_id;
637 memset(ids, 0, (sizeof(struct vme_device_id) * (bus_num + 1)));
639 for (i = 0; i < bus_num; i++) {
640 ids[i].bus = bus[i];
642 * We register the driver against the slot occupied by *this*
643 * card, since it's really a low level way of controlling
644 * the VME bridge
646 ids[i].slot = VME_SLOT_CURRENT;
649 vme_user_driver.bind_table = ids;
651 retval = vme_register_driver(&vme_user_driver);
652 if (retval != 0)
653 goto err_reg;
655 return retval;
657 err_reg:
658 kfree(ids);
659 err_id:
660 err_nocard:
661 return retval;
665 * In this simple access driver, the old behaviour is being preserved as much
666 * as practical. We will therefore reserve the buffers and request the images
667 * here so that we don't have to do it later.
669 static int __init vme_user_probe(struct device *dev, int cur_bus, int cur_slot)
671 int i, err;
672 char name[12];
674 /* Save pointer to the bridge device */
675 if (vme_user_bridge != NULL) {
676 printk(KERN_ERR "%s: Driver can only be loaded for 1 device\n",
677 driver_name);
678 err = -EINVAL;
679 goto err_dev;
681 vme_user_bridge = dev;
683 /* Initialise descriptors */
684 for (i = 0; i < VME_DEVS; i++) {
685 image[i].kern_buf = NULL;
686 image[i].pci_buf = 0;
687 sema_init(&image[i].sem, 1);
688 image[i].device = NULL;
689 image[i].resource = NULL;
690 image[i].users = 0;
693 /* Initialise statistics counters */
694 reset_counters();
696 /* Assign major and minor numbers for the driver */
697 err = register_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS,
698 driver_name);
699 if (err) {
700 printk(KERN_WARNING "%s: Error getting Major Number %d for "
701 "driver.\n", driver_name, VME_MAJOR);
702 goto err_region;
705 /* Register the driver as a char device */
706 vme_user_cdev = cdev_alloc();
707 vme_user_cdev->ops = &vme_user_fops;
708 vme_user_cdev->owner = THIS_MODULE;
709 err = cdev_add(vme_user_cdev, MKDEV(VME_MAJOR, 0), VME_DEVS);
710 if (err) {
711 printk(KERN_WARNING "%s: cdev_all failed\n", driver_name);
712 goto err_char;
715 /* Request slave resources and allocate buffers (128kB wide) */
716 for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
717 /* XXX Need to properly request attributes */
718 /* For ca91cx42 bridge there are only two slave windows
719 * supporting A16 addressing, so we request A24 supported
720 * by all windows.
722 image[i].resource = vme_slave_request(vme_user_bridge,
723 VME_A24, VME_SCT);
724 if (image[i].resource == NULL) {
725 printk(KERN_WARNING "Unable to allocate slave "
726 "resource\n");
727 goto err_slave;
729 image[i].size_buf = PCI_BUF_SIZE;
730 image[i].kern_buf = vme_alloc_consistent(image[i].resource,
731 image[i].size_buf, &image[i].pci_buf);
732 if (image[i].kern_buf == NULL) {
733 printk(KERN_WARNING "Unable to allocate memory for "
734 "buffer\n");
735 image[i].pci_buf = 0;
736 vme_slave_free(image[i].resource);
737 err = -ENOMEM;
738 goto err_slave;
743 * Request master resources allocate page sized buffers for small
744 * reads and writes
746 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) {
747 /* XXX Need to properly request attributes */
748 image[i].resource = vme_master_request(vme_user_bridge,
749 VME_A32, VME_SCT, VME_D32);
750 if (image[i].resource == NULL) {
751 printk(KERN_WARNING "Unable to allocate master "
752 "resource\n");
753 goto err_master;
755 image[i].size_buf = PCI_BUF_SIZE;
756 image[i].kern_buf = kmalloc(image[i].size_buf, GFP_KERNEL);
757 if (image[i].kern_buf == NULL) {
758 printk(KERN_WARNING "Unable to allocate memory for "
759 "master window buffers\n");
760 err = -ENOMEM;
761 goto err_master_buf;
765 /* Create sysfs entries - on udev systems this creates the dev files */
766 vme_user_sysfs_class = class_create(THIS_MODULE, driver_name);
767 if (IS_ERR(vme_user_sysfs_class)) {
768 printk(KERN_ERR "Error creating vme_user class.\n");
769 err = PTR_ERR(vme_user_sysfs_class);
770 goto err_class;
773 /* Add sysfs Entries */
774 for (i = 0; i < VME_DEVS; i++) {
775 switch (type[i]) {
776 case MASTER_MINOR:
777 sprintf(name, "bus/vme/m%%d");
778 break;
779 case CONTROL_MINOR:
780 sprintf(name, "bus/vme/ctl");
781 break;
782 case SLAVE_MINOR:
783 sprintf(name, "bus/vme/s%%d");
784 break;
785 default:
786 err = -EINVAL;
787 goto err_sysfs;
788 break;
791 image[i].device =
792 device_create(vme_user_sysfs_class, NULL,
793 MKDEV(VME_MAJOR, i), NULL, name,
794 (type[i] == SLAVE_MINOR) ? i - (MASTER_MAX + 1) : i);
795 if (IS_ERR(image[i].device)) {
796 printk(KERN_INFO "%s: Error creating sysfs device\n",
797 driver_name);
798 err = PTR_ERR(image[i].device);
799 goto err_sysfs;
803 return 0;
805 /* Ensure counter set correcty to destroy all sysfs devices */
806 i = VME_DEVS;
807 err_sysfs:
808 while (i > 0) {
809 i--;
810 device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
812 class_destroy(vme_user_sysfs_class);
814 /* Ensure counter set correcty to unalloc all master windows */
815 i = MASTER_MAX + 1;
816 err_master_buf:
817 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++)
818 kfree(image[i].kern_buf);
819 err_master:
820 while (i > MASTER_MINOR) {
821 i--;
822 vme_master_free(image[i].resource);
826 * Ensure counter set correcty to unalloc all slave windows and buffers
828 i = SLAVE_MAX + 1;
829 err_slave:
830 while (i > SLAVE_MINOR) {
831 i--;
832 vme_slave_free(image[i].resource);
833 buf_unalloc(i);
835 err_class:
836 cdev_del(vme_user_cdev);
837 err_char:
838 unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
839 err_region:
840 err_dev:
841 return err;
844 static int __exit vme_user_remove(struct device *dev, int cur_bus, int cur_slot)
846 int i;
848 /* Remove sysfs Entries */
849 for (i = 0; i < VME_DEVS; i++)
850 device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
851 class_destroy(vme_user_sysfs_class);
853 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++)
854 kfree(image[i].kern_buf);
856 for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
857 vme_slave_set(image[i].resource, 0, 0, 0, 0, VME_A32, 0);
858 vme_slave_free(image[i].resource);
859 buf_unalloc(i);
862 /* Unregister device driver */
863 cdev_del(vme_user_cdev);
865 /* Unregiser the major and minor device numbers */
866 unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
868 return 0;
871 static void __exit vme_user_exit(void)
873 vme_unregister_driver(&vme_user_driver);
875 kfree(vme_user_driver.bind_table);
879 MODULE_PARM_DESC(bus, "Enumeration of VMEbus to which the driver is connected");
880 module_param_array(bus, int, &bus_num, 0);
882 MODULE_DESCRIPTION("VME User Space Access Driver");
883 MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
884 MODULE_LICENSE("GPL");
886 module_init(vme_user_init);
887 module_exit(vme_user_exit);