1 /* calibrate.c: default delay calibration
3 * Excised from init/main.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/jiffies.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/timex.h>
11 #include <linux/smp.h>
13 unsigned long lpj_fine
;
14 unsigned long preset_lpj
;
15 static int __init
lpj_setup(char *str
)
17 preset_lpj
= simple_strtoul(str
,NULL
,0);
21 __setup("lpj=", lpj_setup
);
23 #ifdef ARCH_HAS_READ_CURRENT_TIMER
25 /* This routine uses the read_current_timer() routine and gets the
26 * loops per jiffy directly, instead of guessing it using delay().
27 * Also, this code tries to handle non-maskable asynchronous events
30 #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
31 #define MAX_DIRECT_CALIBRATION_RETRIES 5
33 static unsigned long __cpuinit
calibrate_delay_direct(void)
35 unsigned long pre_start
, start
, post_start
;
36 unsigned long pre_end
, end
, post_end
;
37 unsigned long start_jiffies
;
38 unsigned long timer_rate_min
, timer_rate_max
;
39 unsigned long good_timer_sum
= 0;
40 unsigned long good_timer_count
= 0;
43 if (read_current_timer(&pre_start
) < 0 )
48 * while ( jiffies < start_jiffies+1)
49 * start = read_current_timer();
50 * will not do. As we don't really know whether jiffy switch
51 * happened first or timer_value was read first. And some asynchronous
52 * event can happen between these two events introducing errors in lpj.
55 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
56 * 2. check jiffy switch
57 * 3. start <- timer value before or after jiffy switch
58 * 4. post_start <- When we are sure that jiffy switch has happened
60 * Note, we don't know anything about order of 2 and 3.
61 * Now, by looking at post_start and pre_start difference, we can
62 * check whether any asynchronous event happened or not
65 for (i
= 0; i
< MAX_DIRECT_CALIBRATION_RETRIES
; i
++) {
67 read_current_timer(&start
);
68 start_jiffies
= jiffies
;
69 while (time_before_eq(jiffies
, start_jiffies
+ 1)) {
71 read_current_timer(&start
);
73 read_current_timer(&post_start
);
77 while (time_before_eq(jiffies
, start_jiffies
+ 1 +
78 DELAY_CALIBRATION_TICKS
)) {
80 read_current_timer(&end
);
82 read_current_timer(&post_end
);
84 timer_rate_max
= (post_end
- pre_start
) /
85 DELAY_CALIBRATION_TICKS
;
86 timer_rate_min
= (pre_end
- post_start
) /
87 DELAY_CALIBRATION_TICKS
;
90 * If the upper limit and lower limit of the timer_rate is
91 * >= 12.5% apart, redo calibration.
93 if (pre_start
!= 0 && pre_end
!= 0 &&
94 (timer_rate_max
- timer_rate_min
) < (timer_rate_max
>> 3)) {
96 good_timer_sum
+= timer_rate_max
;
100 if (good_timer_count
)
101 return (good_timer_sum
/good_timer_count
);
103 printk(KERN_WARNING
"calibrate_delay_direct() failed to get a good "
104 "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
108 static unsigned long __cpuinit
calibrate_delay_direct(void) {return 0;}
112 * This is the number of bits of precision for the loops_per_jiffy. Each
113 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
114 * to start with a good estimate.
115 * For the boot cpu we can skip the delay calibration and assign it a value
116 * calculated based on the timer frequency.
117 * For the rest of the CPUs we cannot assume that the timer frequency is same as
118 * the cpu frequency, hence do the calibration for those.
122 static unsigned long __cpuinit
calibrate_delay_converge(void)
124 /* First stage - slowly accelerate to find initial bounds */
125 unsigned long lpj
, lpj_base
, ticks
, loopadd
, loopadd_base
, chop_limit
;
126 int trials
= 0, band
= 0, trial_in_band
= 0;
130 /* wait for "start of" clock tick */
132 while (ticks
== jiffies
)
137 if (++trial_in_band
== (1<<band
)) {
143 } while (ticks
== jiffies
);
145 * We overshot, so retreat to a clear underestimate. Then estimate
146 * the largest likely undershoot. This defines our chop bounds.
149 loopadd_base
= lpj
* band
;
150 lpj_base
= lpj
* trials
;
154 loopadd
= loopadd_base
;
157 * Do a binary approximation to get lpj set to
158 * equal one clock (up to LPS_PREC bits)
160 chop_limit
= lpj
>> LPS_PREC
;
161 while (loopadd
> chop_limit
) {
164 while (ticks
== jiffies
)
168 if (jiffies
!= ticks
) /* longer than 1 tick */
173 * If we incremented every single time possible, presume we've
174 * massively underestimated initially, and retry with a higher
175 * start, and larger range. (Only seen on x86_64, due to SMIs)
177 if (lpj
+ loopadd
* 2 == lpj_base
+ loopadd_base
* 2) {
186 void __cpuinit
calibrate_delay(void)
191 loops_per_jiffy
= preset_lpj
;
193 pr_info("Calibrating delay loop (skipped) "
195 } else if ((!printed
) && lpj_fine
) {
196 loops_per_jiffy
= lpj_fine
;
197 pr_info("Calibrating delay loop (skipped), "
198 "value calculated using timer frequency.. ");
199 } else if ((loops_per_jiffy
= calibrate_delay_direct()) != 0) {
201 pr_info("Calibrating delay using timer "
202 "specific routine.. ");
205 pr_info("Calibrating delay loop... ");
206 loops_per_jiffy
= calibrate_delay_converge();
209 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
210 loops_per_jiffy
/(500000/HZ
),
211 (loops_per_jiffy
/(5000/HZ
)) % 100, loops_per_jiffy
);