thp: memcg huge memory
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blob92e14dcfe737ebf41a8b37fd58993bcc41035c6a
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 void anon_vma_free(struct anon_vma *anon_vma)
75 kmem_cache_free(anon_vma_cachep, anon_vma);
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
88 /**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
96 * The common case will be that we already have one, but if
97 * not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
113 * This must be called with the mmap_sem held for reading.
115 int anon_vma_prepare(struct vm_area_struct *vma)
117 struct anon_vma *anon_vma = vma->anon_vma;
118 struct anon_vma_chain *avc;
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
123 struct anon_vma *allocated;
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
129 anon_vma = find_mergeable_anon_vma(vma);
130 allocated = NULL;
131 if (!anon_vma) {
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
134 goto out_enomem_free_avc;
135 allocated = anon_vma;
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
140 anon_vma->root = anon_vma;
143 anon_vma_lock(anon_vma);
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm->page_table_lock);
146 if (likely(!vma->anon_vma)) {
147 vma->anon_vma = anon_vma;
148 avc->anon_vma = anon_vma;
149 avc->vma = vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 allocated = NULL;
153 avc = NULL;
155 spin_unlock(&mm->page_table_lock);
156 anon_vma_unlock(anon_vma);
158 if (unlikely(allocated))
159 anon_vma_free(allocated);
160 if (unlikely(avc))
161 anon_vma_chain_free(avc);
163 return 0;
165 out_enomem_free_avc:
166 anon_vma_chain_free(avc);
167 out_enomem:
168 return -ENOMEM;
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 struct anon_vma_chain *avc,
173 struct anon_vma *anon_vma)
175 avc->vma = vma;
176 avc->anon_vma = anon_vma;
177 list_add(&avc->same_vma, &vma->anon_vma_chain);
179 anon_vma_lock(anon_vma);
181 * It's critical to add new vmas to the tail of the anon_vma,
182 * see comment in huge_memory.c:__split_huge_page().
184 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
185 anon_vma_unlock(anon_vma);
189 * Attach the anon_vmas from src to dst.
190 * Returns 0 on success, -ENOMEM on failure.
192 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
194 struct anon_vma_chain *avc, *pavc;
196 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
197 avc = anon_vma_chain_alloc();
198 if (!avc)
199 goto enomem_failure;
200 anon_vma_chain_link(dst, avc, pavc->anon_vma);
202 return 0;
204 enomem_failure:
205 unlink_anon_vmas(dst);
206 return -ENOMEM;
210 * Attach vma to its own anon_vma, as well as to the anon_vmas that
211 * the corresponding VMA in the parent process is attached to.
212 * Returns 0 on success, non-zero on failure.
214 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
216 struct anon_vma_chain *avc;
217 struct anon_vma *anon_vma;
219 /* Don't bother if the parent process has no anon_vma here. */
220 if (!pvma->anon_vma)
221 return 0;
224 * First, attach the new VMA to the parent VMA's anon_vmas,
225 * so rmap can find non-COWed pages in child processes.
227 if (anon_vma_clone(vma, pvma))
228 return -ENOMEM;
230 /* Then add our own anon_vma. */
231 anon_vma = anon_vma_alloc();
232 if (!anon_vma)
233 goto out_error;
234 avc = anon_vma_chain_alloc();
235 if (!avc)
236 goto out_error_free_anon_vma;
239 * The root anon_vma's spinlock is the lock actually used when we
240 * lock any of the anon_vmas in this anon_vma tree.
242 anon_vma->root = pvma->anon_vma->root;
244 * With KSM refcounts, an anon_vma can stay around longer than the
245 * process it belongs to. The root anon_vma needs to be pinned
246 * until this anon_vma is freed, because the lock lives in the root.
248 get_anon_vma(anon_vma->root);
249 /* Mark this anon_vma as the one where our new (COWed) pages go. */
250 vma->anon_vma = anon_vma;
251 anon_vma_chain_link(vma, avc, anon_vma);
253 return 0;
255 out_error_free_anon_vma:
256 anon_vma_free(anon_vma);
257 out_error:
258 unlink_anon_vmas(vma);
259 return -ENOMEM;
262 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
264 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
265 int empty;
267 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
268 if (!anon_vma)
269 return;
271 anon_vma_lock(anon_vma);
272 list_del(&anon_vma_chain->same_anon_vma);
274 /* We must garbage collect the anon_vma if it's empty */
275 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
276 anon_vma_unlock(anon_vma);
278 if (empty) {
279 /* We no longer need the root anon_vma */
280 if (anon_vma->root != anon_vma)
281 drop_anon_vma(anon_vma->root);
282 anon_vma_free(anon_vma);
286 void unlink_anon_vmas(struct vm_area_struct *vma)
288 struct anon_vma_chain *avc, *next;
291 * Unlink each anon_vma chained to the VMA. This list is ordered
292 * from newest to oldest, ensuring the root anon_vma gets freed last.
294 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
295 anon_vma_unlink(avc);
296 list_del(&avc->same_vma);
297 anon_vma_chain_free(avc);
301 static void anon_vma_ctor(void *data)
303 struct anon_vma *anon_vma = data;
305 spin_lock_init(&anon_vma->lock);
306 anonvma_external_refcount_init(anon_vma);
307 INIT_LIST_HEAD(&anon_vma->head);
310 void __init anon_vma_init(void)
312 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
313 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
314 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
318 * Getting a lock on a stable anon_vma from a page off the LRU is
319 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
321 struct anon_vma *__page_lock_anon_vma(struct page *page)
323 struct anon_vma *anon_vma, *root_anon_vma;
324 unsigned long anon_mapping;
326 rcu_read_lock();
327 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
328 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
329 goto out;
330 if (!page_mapped(page))
331 goto out;
333 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
334 root_anon_vma = ACCESS_ONCE(anon_vma->root);
335 spin_lock(&root_anon_vma->lock);
338 * If this page is still mapped, then its anon_vma cannot have been
339 * freed. But if it has been unmapped, we have no security against
340 * the anon_vma structure being freed and reused (for another anon_vma:
341 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
342 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
343 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
345 if (page_mapped(page))
346 return anon_vma;
348 spin_unlock(&root_anon_vma->lock);
349 out:
350 rcu_read_unlock();
351 return NULL;
354 void page_unlock_anon_vma(struct anon_vma *anon_vma)
355 __releases(&anon_vma->root->lock)
356 __releases(RCU)
358 anon_vma_unlock(anon_vma);
359 rcu_read_unlock();
363 * At what user virtual address is page expected in @vma?
364 * Returns virtual address or -EFAULT if page's index/offset is not
365 * within the range mapped the @vma.
367 inline unsigned long
368 vma_address(struct page *page, struct vm_area_struct *vma)
370 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
371 unsigned long address;
373 if (unlikely(is_vm_hugetlb_page(vma)))
374 pgoff = page->index << huge_page_order(page_hstate(page));
375 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
376 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
377 /* page should be within @vma mapping range */
378 return -EFAULT;
380 return address;
384 * At what user virtual address is page expected in vma?
385 * Caller should check the page is actually part of the vma.
387 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
389 if (PageAnon(page)) {
390 struct anon_vma *page__anon_vma = page_anon_vma(page);
392 * Note: swapoff's unuse_vma() is more efficient with this
393 * check, and needs it to match anon_vma when KSM is active.
395 if (!vma->anon_vma || !page__anon_vma ||
396 vma->anon_vma->root != page__anon_vma->root)
397 return -EFAULT;
398 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
399 if (!vma->vm_file ||
400 vma->vm_file->f_mapping != page->mapping)
401 return -EFAULT;
402 } else
403 return -EFAULT;
404 return vma_address(page, vma);
408 * Check that @page is mapped at @address into @mm.
410 * If @sync is false, page_check_address may perform a racy check to avoid
411 * the page table lock when the pte is not present (helpful when reclaiming
412 * highly shared pages).
414 * On success returns with pte mapped and locked.
416 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
417 unsigned long address, spinlock_t **ptlp, int sync)
419 pgd_t *pgd;
420 pud_t *pud;
421 pmd_t *pmd;
422 pte_t *pte;
423 spinlock_t *ptl;
425 if (unlikely(PageHuge(page))) {
426 pte = huge_pte_offset(mm, address);
427 ptl = &mm->page_table_lock;
428 goto check;
431 pgd = pgd_offset(mm, address);
432 if (!pgd_present(*pgd))
433 return NULL;
435 pud = pud_offset(pgd, address);
436 if (!pud_present(*pud))
437 return NULL;
439 pmd = pmd_offset(pud, address);
440 if (!pmd_present(*pmd))
441 return NULL;
442 if (pmd_trans_huge(*pmd))
443 return NULL;
445 pte = pte_offset_map(pmd, address);
446 /* Make a quick check before getting the lock */
447 if (!sync && !pte_present(*pte)) {
448 pte_unmap(pte);
449 return NULL;
452 ptl = pte_lockptr(mm, pmd);
453 check:
454 spin_lock(ptl);
455 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
456 *ptlp = ptl;
457 return pte;
459 pte_unmap_unlock(pte, ptl);
460 return NULL;
464 * page_mapped_in_vma - check whether a page is really mapped in a VMA
465 * @page: the page to test
466 * @vma: the VMA to test
468 * Returns 1 if the page is mapped into the page tables of the VMA, 0
469 * if the page is not mapped into the page tables of this VMA. Only
470 * valid for normal file or anonymous VMAs.
472 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
474 unsigned long address;
475 pte_t *pte;
476 spinlock_t *ptl;
478 address = vma_address(page, vma);
479 if (address == -EFAULT) /* out of vma range */
480 return 0;
481 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
482 if (!pte) /* the page is not in this mm */
483 return 0;
484 pte_unmap_unlock(pte, ptl);
486 return 1;
490 * Subfunctions of page_referenced: page_referenced_one called
491 * repeatedly from either page_referenced_anon or page_referenced_file.
493 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
494 unsigned long address, unsigned int *mapcount,
495 unsigned long *vm_flags)
497 struct mm_struct *mm = vma->vm_mm;
498 int referenced = 0;
501 * Don't want to elevate referenced for mlocked page that gets this far,
502 * in order that it progresses to try_to_unmap and is moved to the
503 * unevictable list.
505 if (vma->vm_flags & VM_LOCKED) {
506 *mapcount = 0; /* break early from loop */
507 *vm_flags |= VM_LOCKED;
508 goto out;
511 /* Pretend the page is referenced if the task has the
512 swap token and is in the middle of a page fault. */
513 if (mm != current->mm && has_swap_token(mm) &&
514 rwsem_is_locked(&mm->mmap_sem))
515 referenced++;
517 if (unlikely(PageTransHuge(page))) {
518 pmd_t *pmd;
520 spin_lock(&mm->page_table_lock);
521 pmd = page_check_address_pmd(page, mm, address,
522 PAGE_CHECK_ADDRESS_PMD_FLAG);
523 if (pmd && !pmd_trans_splitting(*pmd) &&
524 pmdp_clear_flush_young_notify(vma, address, pmd))
525 referenced++;
526 spin_unlock(&mm->page_table_lock);
527 } else {
528 pte_t *pte;
529 spinlock_t *ptl;
531 pte = page_check_address(page, mm, address, &ptl, 0);
532 if (!pte)
533 goto out;
535 if (ptep_clear_flush_young_notify(vma, address, pte)) {
537 * Don't treat a reference through a sequentially read
538 * mapping as such. If the page has been used in
539 * another mapping, we will catch it; if this other
540 * mapping is already gone, the unmap path will have
541 * set PG_referenced or activated the page.
543 if (likely(!VM_SequentialReadHint(vma)))
544 referenced++;
546 pte_unmap_unlock(pte, ptl);
549 (*mapcount)--;
551 if (referenced)
552 *vm_flags |= vma->vm_flags;
553 out:
554 return referenced;
557 static int page_referenced_anon(struct page *page,
558 struct mem_cgroup *mem_cont,
559 unsigned long *vm_flags)
561 unsigned int mapcount;
562 struct anon_vma *anon_vma;
563 struct anon_vma_chain *avc;
564 int referenced = 0;
566 anon_vma = page_lock_anon_vma(page);
567 if (!anon_vma)
568 return referenced;
570 mapcount = page_mapcount(page);
571 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
572 struct vm_area_struct *vma = avc->vma;
573 unsigned long address = vma_address(page, vma);
574 if (address == -EFAULT)
575 continue;
577 * If we are reclaiming on behalf of a cgroup, skip
578 * counting on behalf of references from different
579 * cgroups
581 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
582 continue;
583 referenced += page_referenced_one(page, vma, address,
584 &mapcount, vm_flags);
585 if (!mapcount)
586 break;
589 page_unlock_anon_vma(anon_vma);
590 return referenced;
594 * page_referenced_file - referenced check for object-based rmap
595 * @page: the page we're checking references on.
596 * @mem_cont: target memory controller
597 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
599 * For an object-based mapped page, find all the places it is mapped and
600 * check/clear the referenced flag. This is done by following the page->mapping
601 * pointer, then walking the chain of vmas it holds. It returns the number
602 * of references it found.
604 * This function is only called from page_referenced for object-based pages.
606 static int page_referenced_file(struct page *page,
607 struct mem_cgroup *mem_cont,
608 unsigned long *vm_flags)
610 unsigned int mapcount;
611 struct address_space *mapping = page->mapping;
612 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
613 struct vm_area_struct *vma;
614 struct prio_tree_iter iter;
615 int referenced = 0;
618 * The caller's checks on page->mapping and !PageAnon have made
619 * sure that this is a file page: the check for page->mapping
620 * excludes the case just before it gets set on an anon page.
622 BUG_ON(PageAnon(page));
625 * The page lock not only makes sure that page->mapping cannot
626 * suddenly be NULLified by truncation, it makes sure that the
627 * structure at mapping cannot be freed and reused yet,
628 * so we can safely take mapping->i_mmap_lock.
630 BUG_ON(!PageLocked(page));
632 spin_lock(&mapping->i_mmap_lock);
635 * i_mmap_lock does not stabilize mapcount at all, but mapcount
636 * is more likely to be accurate if we note it after spinning.
638 mapcount = page_mapcount(page);
640 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
641 unsigned long address = vma_address(page, vma);
642 if (address == -EFAULT)
643 continue;
645 * If we are reclaiming on behalf of a cgroup, skip
646 * counting on behalf of references from different
647 * cgroups
649 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
650 continue;
651 referenced += page_referenced_one(page, vma, address,
652 &mapcount, vm_flags);
653 if (!mapcount)
654 break;
657 spin_unlock(&mapping->i_mmap_lock);
658 return referenced;
662 * page_referenced - test if the page was referenced
663 * @page: the page to test
664 * @is_locked: caller holds lock on the page
665 * @mem_cont: target memory controller
666 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
668 * Quick test_and_clear_referenced for all mappings to a page,
669 * returns the number of ptes which referenced the page.
671 int page_referenced(struct page *page,
672 int is_locked,
673 struct mem_cgroup *mem_cont,
674 unsigned long *vm_flags)
676 int referenced = 0;
677 int we_locked = 0;
679 *vm_flags = 0;
680 if (page_mapped(page) && page_rmapping(page)) {
681 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
682 we_locked = trylock_page(page);
683 if (!we_locked) {
684 referenced++;
685 goto out;
688 if (unlikely(PageKsm(page)))
689 referenced += page_referenced_ksm(page, mem_cont,
690 vm_flags);
691 else if (PageAnon(page))
692 referenced += page_referenced_anon(page, mem_cont,
693 vm_flags);
694 else if (page->mapping)
695 referenced += page_referenced_file(page, mem_cont,
696 vm_flags);
697 if (we_locked)
698 unlock_page(page);
700 out:
701 if (page_test_and_clear_young(page))
702 referenced++;
704 return referenced;
707 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
708 unsigned long address)
710 struct mm_struct *mm = vma->vm_mm;
711 pte_t *pte;
712 spinlock_t *ptl;
713 int ret = 0;
715 pte = page_check_address(page, mm, address, &ptl, 1);
716 if (!pte)
717 goto out;
719 if (pte_dirty(*pte) || pte_write(*pte)) {
720 pte_t entry;
722 flush_cache_page(vma, address, pte_pfn(*pte));
723 entry = ptep_clear_flush_notify(vma, address, pte);
724 entry = pte_wrprotect(entry);
725 entry = pte_mkclean(entry);
726 set_pte_at(mm, address, pte, entry);
727 ret = 1;
730 pte_unmap_unlock(pte, ptl);
731 out:
732 return ret;
735 static int page_mkclean_file(struct address_space *mapping, struct page *page)
737 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
738 struct vm_area_struct *vma;
739 struct prio_tree_iter iter;
740 int ret = 0;
742 BUG_ON(PageAnon(page));
744 spin_lock(&mapping->i_mmap_lock);
745 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
746 if (vma->vm_flags & VM_SHARED) {
747 unsigned long address = vma_address(page, vma);
748 if (address == -EFAULT)
749 continue;
750 ret += page_mkclean_one(page, vma, address);
753 spin_unlock(&mapping->i_mmap_lock);
754 return ret;
757 int page_mkclean(struct page *page)
759 int ret = 0;
761 BUG_ON(!PageLocked(page));
763 if (page_mapped(page)) {
764 struct address_space *mapping = page_mapping(page);
765 if (mapping) {
766 ret = page_mkclean_file(mapping, page);
767 if (page_test_dirty(page)) {
768 page_clear_dirty(page, 1);
769 ret = 1;
774 return ret;
776 EXPORT_SYMBOL_GPL(page_mkclean);
779 * page_move_anon_rmap - move a page to our anon_vma
780 * @page: the page to move to our anon_vma
781 * @vma: the vma the page belongs to
782 * @address: the user virtual address mapped
784 * When a page belongs exclusively to one process after a COW event,
785 * that page can be moved into the anon_vma that belongs to just that
786 * process, so the rmap code will not search the parent or sibling
787 * processes.
789 void page_move_anon_rmap(struct page *page,
790 struct vm_area_struct *vma, unsigned long address)
792 struct anon_vma *anon_vma = vma->anon_vma;
794 VM_BUG_ON(!PageLocked(page));
795 VM_BUG_ON(!anon_vma);
796 VM_BUG_ON(page->index != linear_page_index(vma, address));
798 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
799 page->mapping = (struct address_space *) anon_vma;
803 * __page_set_anon_rmap - set up new anonymous rmap
804 * @page: Page to add to rmap
805 * @vma: VM area to add page to.
806 * @address: User virtual address of the mapping
807 * @exclusive: the page is exclusively owned by the current process
809 static void __page_set_anon_rmap(struct page *page,
810 struct vm_area_struct *vma, unsigned long address, int exclusive)
812 struct anon_vma *anon_vma = vma->anon_vma;
814 BUG_ON(!anon_vma);
816 if (PageAnon(page))
817 return;
820 * If the page isn't exclusively mapped into this vma,
821 * we must use the _oldest_ possible anon_vma for the
822 * page mapping!
824 if (!exclusive)
825 anon_vma = anon_vma->root;
827 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
828 page->mapping = (struct address_space *) anon_vma;
829 page->index = linear_page_index(vma, address);
833 * __page_check_anon_rmap - sanity check anonymous rmap addition
834 * @page: the page to add the mapping to
835 * @vma: the vm area in which the mapping is added
836 * @address: the user virtual address mapped
838 static void __page_check_anon_rmap(struct page *page,
839 struct vm_area_struct *vma, unsigned long address)
841 #ifdef CONFIG_DEBUG_VM
843 * The page's anon-rmap details (mapping and index) are guaranteed to
844 * be set up correctly at this point.
846 * We have exclusion against page_add_anon_rmap because the caller
847 * always holds the page locked, except if called from page_dup_rmap,
848 * in which case the page is already known to be setup.
850 * We have exclusion against page_add_new_anon_rmap because those pages
851 * are initially only visible via the pagetables, and the pte is locked
852 * over the call to page_add_new_anon_rmap.
854 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
855 BUG_ON(page->index != linear_page_index(vma, address));
856 #endif
860 * page_add_anon_rmap - add pte mapping to an anonymous page
861 * @page: the page to add the mapping to
862 * @vma: the vm area in which the mapping is added
863 * @address: the user virtual address mapped
865 * The caller needs to hold the pte lock, and the page must be locked in
866 * the anon_vma case: to serialize mapping,index checking after setting,
867 * and to ensure that PageAnon is not being upgraded racily to PageKsm
868 * (but PageKsm is never downgraded to PageAnon).
870 void page_add_anon_rmap(struct page *page,
871 struct vm_area_struct *vma, unsigned long address)
873 do_page_add_anon_rmap(page, vma, address, 0);
877 * Special version of the above for do_swap_page, which often runs
878 * into pages that are exclusively owned by the current process.
879 * Everybody else should continue to use page_add_anon_rmap above.
881 void do_page_add_anon_rmap(struct page *page,
882 struct vm_area_struct *vma, unsigned long address, int exclusive)
884 int first = atomic_inc_and_test(&page->_mapcount);
885 if (first)
886 __inc_zone_page_state(page, NR_ANON_PAGES);
887 if (unlikely(PageKsm(page)))
888 return;
890 VM_BUG_ON(!PageLocked(page));
891 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
892 if (first)
893 __page_set_anon_rmap(page, vma, address, exclusive);
894 else
895 __page_check_anon_rmap(page, vma, address);
899 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
900 * @page: the page to add the mapping to
901 * @vma: the vm area in which the mapping is added
902 * @address: the user virtual address mapped
904 * Same as page_add_anon_rmap but must only be called on *new* pages.
905 * This means the inc-and-test can be bypassed.
906 * Page does not have to be locked.
908 void page_add_new_anon_rmap(struct page *page,
909 struct vm_area_struct *vma, unsigned long address)
911 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
912 SetPageSwapBacked(page);
913 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
914 __inc_zone_page_state(page, NR_ANON_PAGES);
915 __page_set_anon_rmap(page, vma, address, 1);
916 if (page_evictable(page, vma))
917 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
918 else
919 add_page_to_unevictable_list(page);
923 * page_add_file_rmap - add pte mapping to a file page
924 * @page: the page to add the mapping to
926 * The caller needs to hold the pte lock.
928 void page_add_file_rmap(struct page *page)
930 if (atomic_inc_and_test(&page->_mapcount)) {
931 __inc_zone_page_state(page, NR_FILE_MAPPED);
932 mem_cgroup_update_file_mapped(page, 1);
937 * page_remove_rmap - take down pte mapping from a page
938 * @page: page to remove mapping from
940 * The caller needs to hold the pte lock.
942 void page_remove_rmap(struct page *page)
944 /* page still mapped by someone else? */
945 if (!atomic_add_negative(-1, &page->_mapcount))
946 return;
949 * Now that the last pte has gone, s390 must transfer dirty
950 * flag from storage key to struct page. We can usually skip
951 * this if the page is anon, so about to be freed; but perhaps
952 * not if it's in swapcache - there might be another pte slot
953 * containing the swap entry, but page not yet written to swap.
955 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
956 page_clear_dirty(page, 1);
957 set_page_dirty(page);
960 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
961 * and not charged by memcg for now.
963 if (unlikely(PageHuge(page)))
964 return;
965 if (PageAnon(page)) {
966 mem_cgroup_uncharge_page(page);
967 __dec_zone_page_state(page, NR_ANON_PAGES);
968 } else {
969 __dec_zone_page_state(page, NR_FILE_MAPPED);
970 mem_cgroup_update_file_mapped(page, -1);
973 * It would be tidy to reset the PageAnon mapping here,
974 * but that might overwrite a racing page_add_anon_rmap
975 * which increments mapcount after us but sets mapping
976 * before us: so leave the reset to free_hot_cold_page,
977 * and remember that it's only reliable while mapped.
978 * Leaving it set also helps swapoff to reinstate ptes
979 * faster for those pages still in swapcache.
984 * Subfunctions of try_to_unmap: try_to_unmap_one called
985 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
987 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
988 unsigned long address, enum ttu_flags flags)
990 struct mm_struct *mm = vma->vm_mm;
991 pte_t *pte;
992 pte_t pteval;
993 spinlock_t *ptl;
994 int ret = SWAP_AGAIN;
996 pte = page_check_address(page, mm, address, &ptl, 0);
997 if (!pte)
998 goto out;
1001 * If the page is mlock()d, we cannot swap it out.
1002 * If it's recently referenced (perhaps page_referenced
1003 * skipped over this mm) then we should reactivate it.
1005 if (!(flags & TTU_IGNORE_MLOCK)) {
1006 if (vma->vm_flags & VM_LOCKED)
1007 goto out_mlock;
1009 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1010 goto out_unmap;
1012 if (!(flags & TTU_IGNORE_ACCESS)) {
1013 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1014 ret = SWAP_FAIL;
1015 goto out_unmap;
1019 /* Nuke the page table entry. */
1020 flush_cache_page(vma, address, page_to_pfn(page));
1021 pteval = ptep_clear_flush_notify(vma, address, pte);
1023 /* Move the dirty bit to the physical page now the pte is gone. */
1024 if (pte_dirty(pteval))
1025 set_page_dirty(page);
1027 /* Update high watermark before we lower rss */
1028 update_hiwater_rss(mm);
1030 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1031 if (PageAnon(page))
1032 dec_mm_counter(mm, MM_ANONPAGES);
1033 else
1034 dec_mm_counter(mm, MM_FILEPAGES);
1035 set_pte_at(mm, address, pte,
1036 swp_entry_to_pte(make_hwpoison_entry(page)));
1037 } else if (PageAnon(page)) {
1038 swp_entry_t entry = { .val = page_private(page) };
1040 if (PageSwapCache(page)) {
1042 * Store the swap location in the pte.
1043 * See handle_pte_fault() ...
1045 if (swap_duplicate(entry) < 0) {
1046 set_pte_at(mm, address, pte, pteval);
1047 ret = SWAP_FAIL;
1048 goto out_unmap;
1050 if (list_empty(&mm->mmlist)) {
1051 spin_lock(&mmlist_lock);
1052 if (list_empty(&mm->mmlist))
1053 list_add(&mm->mmlist, &init_mm.mmlist);
1054 spin_unlock(&mmlist_lock);
1056 dec_mm_counter(mm, MM_ANONPAGES);
1057 inc_mm_counter(mm, MM_SWAPENTS);
1058 } else if (PAGE_MIGRATION) {
1060 * Store the pfn of the page in a special migration
1061 * pte. do_swap_page() will wait until the migration
1062 * pte is removed and then restart fault handling.
1064 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1065 entry = make_migration_entry(page, pte_write(pteval));
1067 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1068 BUG_ON(pte_file(*pte));
1069 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1070 /* Establish migration entry for a file page */
1071 swp_entry_t entry;
1072 entry = make_migration_entry(page, pte_write(pteval));
1073 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1074 } else
1075 dec_mm_counter(mm, MM_FILEPAGES);
1077 page_remove_rmap(page);
1078 page_cache_release(page);
1080 out_unmap:
1081 pte_unmap_unlock(pte, ptl);
1082 out:
1083 return ret;
1085 out_mlock:
1086 pte_unmap_unlock(pte, ptl);
1090 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1091 * unstable result and race. Plus, We can't wait here because
1092 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1093 * if trylock failed, the page remain in evictable lru and later
1094 * vmscan could retry to move the page to unevictable lru if the
1095 * page is actually mlocked.
1097 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1098 if (vma->vm_flags & VM_LOCKED) {
1099 mlock_vma_page(page);
1100 ret = SWAP_MLOCK;
1102 up_read(&vma->vm_mm->mmap_sem);
1104 return ret;
1108 * objrmap doesn't work for nonlinear VMAs because the assumption that
1109 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1110 * Consequently, given a particular page and its ->index, we cannot locate the
1111 * ptes which are mapping that page without an exhaustive linear search.
1113 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1114 * maps the file to which the target page belongs. The ->vm_private_data field
1115 * holds the current cursor into that scan. Successive searches will circulate
1116 * around the vma's virtual address space.
1118 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1119 * more scanning pressure is placed against them as well. Eventually pages
1120 * will become fully unmapped and are eligible for eviction.
1122 * For very sparsely populated VMAs this is a little inefficient - chances are
1123 * there there won't be many ptes located within the scan cluster. In this case
1124 * maybe we could scan further - to the end of the pte page, perhaps.
1126 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1127 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1128 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1129 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1131 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1132 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1134 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1135 struct vm_area_struct *vma, struct page *check_page)
1137 struct mm_struct *mm = vma->vm_mm;
1138 pgd_t *pgd;
1139 pud_t *pud;
1140 pmd_t *pmd;
1141 pte_t *pte;
1142 pte_t pteval;
1143 spinlock_t *ptl;
1144 struct page *page;
1145 unsigned long address;
1146 unsigned long end;
1147 int ret = SWAP_AGAIN;
1148 int locked_vma = 0;
1150 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1151 end = address + CLUSTER_SIZE;
1152 if (address < vma->vm_start)
1153 address = vma->vm_start;
1154 if (end > vma->vm_end)
1155 end = vma->vm_end;
1157 pgd = pgd_offset(mm, address);
1158 if (!pgd_present(*pgd))
1159 return ret;
1161 pud = pud_offset(pgd, address);
1162 if (!pud_present(*pud))
1163 return ret;
1165 pmd = pmd_offset(pud, address);
1166 if (!pmd_present(*pmd))
1167 return ret;
1170 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1171 * keep the sem while scanning the cluster for mlocking pages.
1173 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1174 locked_vma = (vma->vm_flags & VM_LOCKED);
1175 if (!locked_vma)
1176 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1179 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1181 /* Update high watermark before we lower rss */
1182 update_hiwater_rss(mm);
1184 for (; address < end; pte++, address += PAGE_SIZE) {
1185 if (!pte_present(*pte))
1186 continue;
1187 page = vm_normal_page(vma, address, *pte);
1188 BUG_ON(!page || PageAnon(page));
1190 if (locked_vma) {
1191 mlock_vma_page(page); /* no-op if already mlocked */
1192 if (page == check_page)
1193 ret = SWAP_MLOCK;
1194 continue; /* don't unmap */
1197 if (ptep_clear_flush_young_notify(vma, address, pte))
1198 continue;
1200 /* Nuke the page table entry. */
1201 flush_cache_page(vma, address, pte_pfn(*pte));
1202 pteval = ptep_clear_flush_notify(vma, address, pte);
1204 /* If nonlinear, store the file page offset in the pte. */
1205 if (page->index != linear_page_index(vma, address))
1206 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1208 /* Move the dirty bit to the physical page now the pte is gone. */
1209 if (pte_dirty(pteval))
1210 set_page_dirty(page);
1212 page_remove_rmap(page);
1213 page_cache_release(page);
1214 dec_mm_counter(mm, MM_FILEPAGES);
1215 (*mapcount)--;
1217 pte_unmap_unlock(pte - 1, ptl);
1218 if (locked_vma)
1219 up_read(&vma->vm_mm->mmap_sem);
1220 return ret;
1223 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1225 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1227 if (!maybe_stack)
1228 return false;
1230 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1231 VM_STACK_INCOMPLETE_SETUP)
1232 return true;
1234 return false;
1238 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1239 * rmap method
1240 * @page: the page to unmap/unlock
1241 * @flags: action and flags
1243 * Find all the mappings of a page using the mapping pointer and the vma chains
1244 * contained in the anon_vma struct it points to.
1246 * This function is only called from try_to_unmap/try_to_munlock for
1247 * anonymous pages.
1248 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1249 * where the page was found will be held for write. So, we won't recheck
1250 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1251 * 'LOCKED.
1253 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1255 struct anon_vma *anon_vma;
1256 struct anon_vma_chain *avc;
1257 int ret = SWAP_AGAIN;
1259 anon_vma = page_lock_anon_vma(page);
1260 if (!anon_vma)
1261 return ret;
1263 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1264 struct vm_area_struct *vma = avc->vma;
1265 unsigned long address;
1268 * During exec, a temporary VMA is setup and later moved.
1269 * The VMA is moved under the anon_vma lock but not the
1270 * page tables leading to a race where migration cannot
1271 * find the migration ptes. Rather than increasing the
1272 * locking requirements of exec(), migration skips
1273 * temporary VMAs until after exec() completes.
1275 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1276 is_vma_temporary_stack(vma))
1277 continue;
1279 address = vma_address(page, vma);
1280 if (address == -EFAULT)
1281 continue;
1282 ret = try_to_unmap_one(page, vma, address, flags);
1283 if (ret != SWAP_AGAIN || !page_mapped(page))
1284 break;
1287 page_unlock_anon_vma(anon_vma);
1288 return ret;
1292 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1293 * @page: the page to unmap/unlock
1294 * @flags: action and flags
1296 * Find all the mappings of a page using the mapping pointer and the vma chains
1297 * contained in the address_space struct it points to.
1299 * This function is only called from try_to_unmap/try_to_munlock for
1300 * object-based pages.
1301 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1302 * where the page was found will be held for write. So, we won't recheck
1303 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1304 * 'LOCKED.
1306 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1308 struct address_space *mapping = page->mapping;
1309 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1310 struct vm_area_struct *vma;
1311 struct prio_tree_iter iter;
1312 int ret = SWAP_AGAIN;
1313 unsigned long cursor;
1314 unsigned long max_nl_cursor = 0;
1315 unsigned long max_nl_size = 0;
1316 unsigned int mapcount;
1318 spin_lock(&mapping->i_mmap_lock);
1319 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1320 unsigned long address = vma_address(page, vma);
1321 if (address == -EFAULT)
1322 continue;
1323 ret = try_to_unmap_one(page, vma, address, flags);
1324 if (ret != SWAP_AGAIN || !page_mapped(page))
1325 goto out;
1328 if (list_empty(&mapping->i_mmap_nonlinear))
1329 goto out;
1332 * We don't bother to try to find the munlocked page in nonlinears.
1333 * It's costly. Instead, later, page reclaim logic may call
1334 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1336 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1337 goto out;
1339 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1340 shared.vm_set.list) {
1341 cursor = (unsigned long) vma->vm_private_data;
1342 if (cursor > max_nl_cursor)
1343 max_nl_cursor = cursor;
1344 cursor = vma->vm_end - vma->vm_start;
1345 if (cursor > max_nl_size)
1346 max_nl_size = cursor;
1349 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1350 ret = SWAP_FAIL;
1351 goto out;
1355 * We don't try to search for this page in the nonlinear vmas,
1356 * and page_referenced wouldn't have found it anyway. Instead
1357 * just walk the nonlinear vmas trying to age and unmap some.
1358 * The mapcount of the page we came in with is irrelevant,
1359 * but even so use it as a guide to how hard we should try?
1361 mapcount = page_mapcount(page);
1362 if (!mapcount)
1363 goto out;
1364 cond_resched_lock(&mapping->i_mmap_lock);
1366 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1367 if (max_nl_cursor == 0)
1368 max_nl_cursor = CLUSTER_SIZE;
1370 do {
1371 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1372 shared.vm_set.list) {
1373 cursor = (unsigned long) vma->vm_private_data;
1374 while ( cursor < max_nl_cursor &&
1375 cursor < vma->vm_end - vma->vm_start) {
1376 if (try_to_unmap_cluster(cursor, &mapcount,
1377 vma, page) == SWAP_MLOCK)
1378 ret = SWAP_MLOCK;
1379 cursor += CLUSTER_SIZE;
1380 vma->vm_private_data = (void *) cursor;
1381 if ((int)mapcount <= 0)
1382 goto out;
1384 vma->vm_private_data = (void *) max_nl_cursor;
1386 cond_resched_lock(&mapping->i_mmap_lock);
1387 max_nl_cursor += CLUSTER_SIZE;
1388 } while (max_nl_cursor <= max_nl_size);
1391 * Don't loop forever (perhaps all the remaining pages are
1392 * in locked vmas). Reset cursor on all unreserved nonlinear
1393 * vmas, now forgetting on which ones it had fallen behind.
1395 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1396 vma->vm_private_data = NULL;
1397 out:
1398 spin_unlock(&mapping->i_mmap_lock);
1399 return ret;
1403 * try_to_unmap - try to remove all page table mappings to a page
1404 * @page: the page to get unmapped
1405 * @flags: action and flags
1407 * Tries to remove all the page table entries which are mapping this
1408 * page, used in the pageout path. Caller must hold the page lock.
1409 * Return values are:
1411 * SWAP_SUCCESS - we succeeded in removing all mappings
1412 * SWAP_AGAIN - we missed a mapping, try again later
1413 * SWAP_FAIL - the page is unswappable
1414 * SWAP_MLOCK - page is mlocked.
1416 int try_to_unmap(struct page *page, enum ttu_flags flags)
1418 int ret;
1420 BUG_ON(!PageLocked(page));
1421 BUG_ON(PageTransHuge(page));
1423 if (unlikely(PageKsm(page)))
1424 ret = try_to_unmap_ksm(page, flags);
1425 else if (PageAnon(page))
1426 ret = try_to_unmap_anon(page, flags);
1427 else
1428 ret = try_to_unmap_file(page, flags);
1429 if (ret != SWAP_MLOCK && !page_mapped(page))
1430 ret = SWAP_SUCCESS;
1431 return ret;
1435 * try_to_munlock - try to munlock a page
1436 * @page: the page to be munlocked
1438 * Called from munlock code. Checks all of the VMAs mapping the page
1439 * to make sure nobody else has this page mlocked. The page will be
1440 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1442 * Return values are:
1444 * SWAP_AGAIN - no vma is holding page mlocked, or,
1445 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1446 * SWAP_FAIL - page cannot be located at present
1447 * SWAP_MLOCK - page is now mlocked.
1449 int try_to_munlock(struct page *page)
1451 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1453 if (unlikely(PageKsm(page)))
1454 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1455 else if (PageAnon(page))
1456 return try_to_unmap_anon(page, TTU_MUNLOCK);
1457 else
1458 return try_to_unmap_file(page, TTU_MUNLOCK);
1461 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1463 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1464 * if necessary. Be careful to do all the tests under the lock. Once
1465 * we know we are the last user, nobody else can get a reference and we
1466 * can do the freeing without the lock.
1468 void drop_anon_vma(struct anon_vma *anon_vma)
1470 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1471 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1472 struct anon_vma *root = anon_vma->root;
1473 int empty = list_empty(&anon_vma->head);
1474 int last_root_user = 0;
1475 int root_empty = 0;
1478 * The refcount on a non-root anon_vma got dropped. Drop
1479 * the refcount on the root and check if we need to free it.
1481 if (empty && anon_vma != root) {
1482 BUG_ON(atomic_read(&root->external_refcount) <= 0);
1483 last_root_user = atomic_dec_and_test(&root->external_refcount);
1484 root_empty = list_empty(&root->head);
1486 anon_vma_unlock(anon_vma);
1488 if (empty) {
1489 anon_vma_free(anon_vma);
1490 if (root_empty && last_root_user)
1491 anon_vma_free(root);
1495 #endif
1497 #ifdef CONFIG_MIGRATION
1499 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1500 * Called by migrate.c to remove migration ptes, but might be used more later.
1502 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1503 struct vm_area_struct *, unsigned long, void *), void *arg)
1505 struct anon_vma *anon_vma;
1506 struct anon_vma_chain *avc;
1507 int ret = SWAP_AGAIN;
1510 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1511 * because that depends on page_mapped(); but not all its usages
1512 * are holding mmap_sem. Users without mmap_sem are required to
1513 * take a reference count to prevent the anon_vma disappearing
1515 anon_vma = page_anon_vma(page);
1516 if (!anon_vma)
1517 return ret;
1518 anon_vma_lock(anon_vma);
1519 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1520 struct vm_area_struct *vma = avc->vma;
1521 unsigned long address = vma_address(page, vma);
1522 if (address == -EFAULT)
1523 continue;
1524 ret = rmap_one(page, vma, address, arg);
1525 if (ret != SWAP_AGAIN)
1526 break;
1528 anon_vma_unlock(anon_vma);
1529 return ret;
1532 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1533 struct vm_area_struct *, unsigned long, void *), void *arg)
1535 struct address_space *mapping = page->mapping;
1536 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1537 struct vm_area_struct *vma;
1538 struct prio_tree_iter iter;
1539 int ret = SWAP_AGAIN;
1541 if (!mapping)
1542 return ret;
1543 spin_lock(&mapping->i_mmap_lock);
1544 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1545 unsigned long address = vma_address(page, vma);
1546 if (address == -EFAULT)
1547 continue;
1548 ret = rmap_one(page, vma, address, arg);
1549 if (ret != SWAP_AGAIN)
1550 break;
1553 * No nonlinear handling: being always shared, nonlinear vmas
1554 * never contain migration ptes. Decide what to do about this
1555 * limitation to linear when we need rmap_walk() on nonlinear.
1557 spin_unlock(&mapping->i_mmap_lock);
1558 return ret;
1561 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1562 struct vm_area_struct *, unsigned long, void *), void *arg)
1564 VM_BUG_ON(!PageLocked(page));
1566 if (unlikely(PageKsm(page)))
1567 return rmap_walk_ksm(page, rmap_one, arg);
1568 else if (PageAnon(page))
1569 return rmap_walk_anon(page, rmap_one, arg);
1570 else
1571 return rmap_walk_file(page, rmap_one, arg);
1573 #endif /* CONFIG_MIGRATION */
1575 #ifdef CONFIG_HUGETLB_PAGE
1577 * The following three functions are for anonymous (private mapped) hugepages.
1578 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1579 * and no lru code, because we handle hugepages differently from common pages.
1581 static void __hugepage_set_anon_rmap(struct page *page,
1582 struct vm_area_struct *vma, unsigned long address, int exclusive)
1584 struct anon_vma *anon_vma = vma->anon_vma;
1586 BUG_ON(!anon_vma);
1588 if (PageAnon(page))
1589 return;
1590 if (!exclusive)
1591 anon_vma = anon_vma->root;
1593 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1594 page->mapping = (struct address_space *) anon_vma;
1595 page->index = linear_page_index(vma, address);
1598 void hugepage_add_anon_rmap(struct page *page,
1599 struct vm_area_struct *vma, unsigned long address)
1601 struct anon_vma *anon_vma = vma->anon_vma;
1602 int first;
1604 BUG_ON(!PageLocked(page));
1605 BUG_ON(!anon_vma);
1606 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1607 first = atomic_inc_and_test(&page->_mapcount);
1608 if (first)
1609 __hugepage_set_anon_rmap(page, vma, address, 0);
1612 void hugepage_add_new_anon_rmap(struct page *page,
1613 struct vm_area_struct *vma, unsigned long address)
1615 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1616 atomic_set(&page->_mapcount, 0);
1617 __hugepage_set_anon_rmap(page, vma, address, 1);
1619 #endif /* CONFIG_HUGETLB_PAGE */