thp: memcg huge memory
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blobe7664b9f706c39cd999784dc4423e8d5dcaf03d5
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
78 * Array of node states.
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 [N_CPU] = { { [0] = 1UL } },
89 #endif /* NUMA */
91 EXPORT_SYMBOL(node_states);
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
108 static gfp_t saved_gfp_mask;
110 void pm_restore_gfp_mask(void)
112 WARN_ON(!mutex_is_locked(&pm_mutex));
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
119 void pm_restrict_gfp_mask(void)
121 WARN_ON(!mutex_is_locked(&pm_mutex));
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
126 #endif /* CONFIG_PM_SLEEP */
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
132 static void __free_pages_ok(struct page *page, unsigned int order);
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
154 #endif
158 EXPORT_SYMBOL(totalram_pages);
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 "DMA32",
166 #endif
167 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 "HighMem",
170 #endif
171 "Movable",
174 int min_free_kbytes = 1024;
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205 static unsigned long __initdata required_kernelcore;
206 static unsigned long __initdata required_movablecore;
207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
221 int page_group_by_mobility_disabled __read_mostly;
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
233 bool oom_killer_disabled __read_mostly;
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
250 return ret;
253 static int page_is_consistent(struct zone *zone, struct page *page)
255 if (!pfn_valid_within(page_to_pfn(page)))
256 return 0;
257 if (zone != page_zone(page))
258 return 0;
260 return 1;
263 * Temporary debugging check for pages not lying within a given zone.
265 static int bad_range(struct zone *zone, struct page *page)
267 if (page_outside_zone_boundaries(zone, page))
268 return 1;
269 if (!page_is_consistent(zone, page))
270 return 1;
272 return 0;
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
277 return 0;
279 #endif
281 static void bad_page(struct page *page)
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
302 if (nr_unshown) {
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
305 nr_unshown);
306 nr_unshown = 0;
308 nr_shown = 0;
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
314 current->comm, page_to_pfn(page));
315 dump_page(page);
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
321 add_taint(TAINT_BAD_PAGE);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page *page)
341 __free_pages_ok(page, compound_order(page));
344 void prep_compound_page(struct page *page, unsigned long order)
346 int i;
347 int nr_pages = 1 << order;
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
355 __SetPageTail(p);
356 p->first_page = page;
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
373 __ClearPageHead(page);
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
382 __ClearPageTail(p);
385 return bad;
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 int i;
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
401 static inline void set_page_order(struct page *page, int order)
403 set_page_private(page, order);
404 __SetPageBuddy(page);
407 static inline void rmv_page_order(struct page *page)
409 __ClearPageBuddy(page);
410 set_page_private(page, 0);
414 * Locate the struct page for both the matching buddy in our
415 * pair (buddy1) and the combined O(n+1) page they form (page).
417 * 1) Any buddy B1 will have an order O twin B2 which satisfies
418 * the following equation:
419 * B2 = B1 ^ (1 << O)
420 * For example, if the starting buddy (buddy2) is #8 its order
421 * 1 buddy is #10:
422 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
424 * 2) Any buddy B will have an order O+1 parent P which
425 * satisfies the following equation:
426 * P = B & ~(1 << O)
428 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
430 static inline struct page *
431 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
433 unsigned long buddy_idx = page_idx ^ (1 << order);
435 return page + (buddy_idx - page_idx);
438 static inline unsigned long
439 __find_combined_index(unsigned long page_idx, unsigned int order)
441 return (page_idx & ~(1 << order));
445 * This function checks whether a page is free && is the buddy
446 * we can do coalesce a page and its buddy if
447 * (a) the buddy is not in a hole &&
448 * (b) the buddy is in the buddy system &&
449 * (c) a page and its buddy have the same order &&
450 * (d) a page and its buddy are in the same zone.
452 * For recording whether a page is in the buddy system, we use PG_buddy.
453 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
455 * For recording page's order, we use page_private(page).
457 static inline int page_is_buddy(struct page *page, struct page *buddy,
458 int order)
460 if (!pfn_valid_within(page_to_pfn(buddy)))
461 return 0;
463 if (page_zone_id(page) != page_zone_id(buddy))
464 return 0;
466 if (PageBuddy(buddy) && page_order(buddy) == order) {
467 VM_BUG_ON(page_count(buddy) != 0);
468 return 1;
470 return 0;
474 * Freeing function for a buddy system allocator.
476 * The concept of a buddy system is to maintain direct-mapped table
477 * (containing bit values) for memory blocks of various "orders".
478 * The bottom level table contains the map for the smallest allocatable
479 * units of memory (here, pages), and each level above it describes
480 * pairs of units from the levels below, hence, "buddies".
481 * At a high level, all that happens here is marking the table entry
482 * at the bottom level available, and propagating the changes upward
483 * as necessary, plus some accounting needed to play nicely with other
484 * parts of the VM system.
485 * At each level, we keep a list of pages, which are heads of continuous
486 * free pages of length of (1 << order) and marked with PG_buddy. Page's
487 * order is recorded in page_private(page) field.
488 * So when we are allocating or freeing one, we can derive the state of the
489 * other. That is, if we allocate a small block, and both were
490 * free, the remainder of the region must be split into blocks.
491 * If a block is freed, and its buddy is also free, then this
492 * triggers coalescing into a block of larger size.
494 * -- wli
497 static inline void __free_one_page(struct page *page,
498 struct zone *zone, unsigned int order,
499 int migratetype)
501 unsigned long page_idx;
502 unsigned long combined_idx;
503 struct page *buddy;
505 if (unlikely(PageCompound(page)))
506 if (unlikely(destroy_compound_page(page, order)))
507 return;
509 VM_BUG_ON(migratetype == -1);
511 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
513 VM_BUG_ON(page_idx & ((1 << order) - 1));
514 VM_BUG_ON(bad_range(zone, page));
516 while (order < MAX_ORDER-1) {
517 buddy = __page_find_buddy(page, page_idx, order);
518 if (!page_is_buddy(page, buddy, order))
519 break;
521 /* Our buddy is free, merge with it and move up one order. */
522 list_del(&buddy->lru);
523 zone->free_area[order].nr_free--;
524 rmv_page_order(buddy);
525 combined_idx = __find_combined_index(page_idx, order);
526 page = page + (combined_idx - page_idx);
527 page_idx = combined_idx;
528 order++;
530 set_page_order(page, order);
533 * If this is not the largest possible page, check if the buddy
534 * of the next-highest order is free. If it is, it's possible
535 * that pages are being freed that will coalesce soon. In case,
536 * that is happening, add the free page to the tail of the list
537 * so it's less likely to be used soon and more likely to be merged
538 * as a higher order page
540 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
541 struct page *higher_page, *higher_buddy;
542 combined_idx = __find_combined_index(page_idx, order);
543 higher_page = page + combined_idx - page_idx;
544 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
545 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
546 list_add_tail(&page->lru,
547 &zone->free_area[order].free_list[migratetype]);
548 goto out;
552 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
553 out:
554 zone->free_area[order].nr_free++;
558 * free_page_mlock() -- clean up attempts to free and mlocked() page.
559 * Page should not be on lru, so no need to fix that up.
560 * free_pages_check() will verify...
562 static inline void free_page_mlock(struct page *page)
564 __dec_zone_page_state(page, NR_MLOCK);
565 __count_vm_event(UNEVICTABLE_MLOCKFREED);
568 static inline int free_pages_check(struct page *page)
570 if (unlikely(page_mapcount(page) |
571 (page->mapping != NULL) |
572 (atomic_read(&page->_count) != 0) |
573 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
574 bad_page(page);
575 return 1;
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
596 int migratetype = 0;
597 int batch_free = 0;
598 int to_free = count;
600 spin_lock(&zone->lock);
601 zone->all_unreclaimable = 0;
602 zone->pages_scanned = 0;
604 while (to_free) {
605 struct page *page;
606 struct list_head *list;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
615 do {
616 batch_free++;
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
622 do {
623 page = list_entry(list->prev, struct page, lru);
624 /* must delete as __free_one_page list manipulates */
625 list_del(&page->lru);
626 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
627 __free_one_page(page, zone, 0, page_private(page));
628 trace_mm_page_pcpu_drain(page, 0, page_private(page));
629 } while (--to_free && --batch_free && !list_empty(list));
631 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
632 spin_unlock(&zone->lock);
635 static void free_one_page(struct zone *zone, struct page *page, int order,
636 int migratetype)
638 spin_lock(&zone->lock);
639 zone->all_unreclaimable = 0;
640 zone->pages_scanned = 0;
642 __free_one_page(page, zone, order, migratetype);
643 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
644 spin_unlock(&zone->lock);
647 static bool free_pages_prepare(struct page *page, unsigned int order)
649 int i;
650 int bad = 0;
652 trace_mm_page_free_direct(page, order);
653 kmemcheck_free_shadow(page, order);
655 if (PageAnon(page))
656 page->mapping = NULL;
657 for (i = 0; i < (1 << order); i++)
658 bad += free_pages_check(page + i);
659 if (bad)
660 return false;
662 if (!PageHighMem(page)) {
663 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
664 debug_check_no_obj_freed(page_address(page),
665 PAGE_SIZE << order);
667 arch_free_page(page, order);
668 kernel_map_pages(page, 1 << order, 0);
670 return true;
673 static void __free_pages_ok(struct page *page, unsigned int order)
675 unsigned long flags;
676 int wasMlocked = __TestClearPageMlocked(page);
678 if (!free_pages_prepare(page, order))
679 return;
681 local_irq_save(flags);
682 if (unlikely(wasMlocked))
683 free_page_mlock(page);
684 __count_vm_events(PGFREE, 1 << order);
685 free_one_page(page_zone(page), page, order,
686 get_pageblock_migratetype(page));
687 local_irq_restore(flags);
691 * permit the bootmem allocator to evade page validation on high-order frees
693 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
695 if (order == 0) {
696 __ClearPageReserved(page);
697 set_page_count(page, 0);
698 set_page_refcounted(page);
699 __free_page(page);
700 } else {
701 int loop;
703 prefetchw(page);
704 for (loop = 0; loop < BITS_PER_LONG; loop++) {
705 struct page *p = &page[loop];
707 if (loop + 1 < BITS_PER_LONG)
708 prefetchw(p + 1);
709 __ClearPageReserved(p);
710 set_page_count(p, 0);
713 set_page_refcounted(page);
714 __free_pages(page, order);
720 * The order of subdivision here is critical for the IO subsystem.
721 * Please do not alter this order without good reasons and regression
722 * testing. Specifically, as large blocks of memory are subdivided,
723 * the order in which smaller blocks are delivered depends on the order
724 * they're subdivided in this function. This is the primary factor
725 * influencing the order in which pages are delivered to the IO
726 * subsystem according to empirical testing, and this is also justified
727 * by considering the behavior of a buddy system containing a single
728 * large block of memory acted on by a series of small allocations.
729 * This behavior is a critical factor in sglist merging's success.
731 * -- wli
733 static inline void expand(struct zone *zone, struct page *page,
734 int low, int high, struct free_area *area,
735 int migratetype)
737 unsigned long size = 1 << high;
739 while (high > low) {
740 area--;
741 high--;
742 size >>= 1;
743 VM_BUG_ON(bad_range(zone, &page[size]));
744 list_add(&page[size].lru, &area->free_list[migratetype]);
745 area->nr_free++;
746 set_page_order(&page[size], high);
751 * This page is about to be returned from the page allocator
753 static inline int check_new_page(struct page *page)
755 if (unlikely(page_mapcount(page) |
756 (page->mapping != NULL) |
757 (atomic_read(&page->_count) != 0) |
758 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
759 bad_page(page);
760 return 1;
762 return 0;
765 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
767 int i;
769 for (i = 0; i < (1 << order); i++) {
770 struct page *p = page + i;
771 if (unlikely(check_new_page(p)))
772 return 1;
775 set_page_private(page, 0);
776 set_page_refcounted(page);
778 arch_alloc_page(page, order);
779 kernel_map_pages(page, 1 << order, 1);
781 if (gfp_flags & __GFP_ZERO)
782 prep_zero_page(page, order, gfp_flags);
784 if (order && (gfp_flags & __GFP_COMP))
785 prep_compound_page(page, order);
787 return 0;
791 * Go through the free lists for the given migratetype and remove
792 * the smallest available page from the freelists
794 static inline
795 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
796 int migratetype)
798 unsigned int current_order;
799 struct free_area * area;
800 struct page *page;
802 /* Find a page of the appropriate size in the preferred list */
803 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
804 area = &(zone->free_area[current_order]);
805 if (list_empty(&area->free_list[migratetype]))
806 continue;
808 page = list_entry(area->free_list[migratetype].next,
809 struct page, lru);
810 list_del(&page->lru);
811 rmv_page_order(page);
812 area->nr_free--;
813 expand(zone, page, order, current_order, area, migratetype);
814 return page;
817 return NULL;
822 * This array describes the order lists are fallen back to when
823 * the free lists for the desirable migrate type are depleted
825 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
826 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
827 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
828 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
833 * Move the free pages in a range to the free lists of the requested type.
834 * Note that start_page and end_pages are not aligned on a pageblock
835 * boundary. If alignment is required, use move_freepages_block()
837 static int move_freepages(struct zone *zone,
838 struct page *start_page, struct page *end_page,
839 int migratetype)
841 struct page *page;
842 unsigned long order;
843 int pages_moved = 0;
845 #ifndef CONFIG_HOLES_IN_ZONE
847 * page_zone is not safe to call in this context when
848 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
849 * anyway as we check zone boundaries in move_freepages_block().
850 * Remove at a later date when no bug reports exist related to
851 * grouping pages by mobility
853 BUG_ON(page_zone(start_page) != page_zone(end_page));
854 #endif
856 for (page = start_page; page <= end_page;) {
857 /* Make sure we are not inadvertently changing nodes */
858 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
860 if (!pfn_valid_within(page_to_pfn(page))) {
861 page++;
862 continue;
865 if (!PageBuddy(page)) {
866 page++;
867 continue;
870 order = page_order(page);
871 list_del(&page->lru);
872 list_add(&page->lru,
873 &zone->free_area[order].free_list[migratetype]);
874 page += 1 << order;
875 pages_moved += 1 << order;
878 return pages_moved;
881 static int move_freepages_block(struct zone *zone, struct page *page,
882 int migratetype)
884 unsigned long start_pfn, end_pfn;
885 struct page *start_page, *end_page;
887 start_pfn = page_to_pfn(page);
888 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
889 start_page = pfn_to_page(start_pfn);
890 end_page = start_page + pageblock_nr_pages - 1;
891 end_pfn = start_pfn + pageblock_nr_pages - 1;
893 /* Do not cross zone boundaries */
894 if (start_pfn < zone->zone_start_pfn)
895 start_page = page;
896 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
897 return 0;
899 return move_freepages(zone, start_page, end_page, migratetype);
902 static void change_pageblock_range(struct page *pageblock_page,
903 int start_order, int migratetype)
905 int nr_pageblocks = 1 << (start_order - pageblock_order);
907 while (nr_pageblocks--) {
908 set_pageblock_migratetype(pageblock_page, migratetype);
909 pageblock_page += pageblock_nr_pages;
913 /* Remove an element from the buddy allocator from the fallback list */
914 static inline struct page *
915 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
917 struct free_area * area;
918 int current_order;
919 struct page *page;
920 int migratetype, i;
922 /* Find the largest possible block of pages in the other list */
923 for (current_order = MAX_ORDER-1; current_order >= order;
924 --current_order) {
925 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
926 migratetype = fallbacks[start_migratetype][i];
928 /* MIGRATE_RESERVE handled later if necessary */
929 if (migratetype == MIGRATE_RESERVE)
930 continue;
932 area = &(zone->free_area[current_order]);
933 if (list_empty(&area->free_list[migratetype]))
934 continue;
936 page = list_entry(area->free_list[migratetype].next,
937 struct page, lru);
938 area->nr_free--;
941 * If breaking a large block of pages, move all free
942 * pages to the preferred allocation list. If falling
943 * back for a reclaimable kernel allocation, be more
944 * agressive about taking ownership of free pages
946 if (unlikely(current_order >= (pageblock_order >> 1)) ||
947 start_migratetype == MIGRATE_RECLAIMABLE ||
948 page_group_by_mobility_disabled) {
949 unsigned long pages;
950 pages = move_freepages_block(zone, page,
951 start_migratetype);
953 /* Claim the whole block if over half of it is free */
954 if (pages >= (1 << (pageblock_order-1)) ||
955 page_group_by_mobility_disabled)
956 set_pageblock_migratetype(page,
957 start_migratetype);
959 migratetype = start_migratetype;
962 /* Remove the page from the freelists */
963 list_del(&page->lru);
964 rmv_page_order(page);
966 /* Take ownership for orders >= pageblock_order */
967 if (current_order >= pageblock_order)
968 change_pageblock_range(page, current_order,
969 start_migratetype);
971 expand(zone, page, order, current_order, area, migratetype);
973 trace_mm_page_alloc_extfrag(page, order, current_order,
974 start_migratetype, migratetype);
976 return page;
980 return NULL;
984 * Do the hard work of removing an element from the buddy allocator.
985 * Call me with the zone->lock already held.
987 static struct page *__rmqueue(struct zone *zone, unsigned int order,
988 int migratetype)
990 struct page *page;
992 retry_reserve:
993 page = __rmqueue_smallest(zone, order, migratetype);
995 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
996 page = __rmqueue_fallback(zone, order, migratetype);
999 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1000 * is used because __rmqueue_smallest is an inline function
1001 * and we want just one call site
1003 if (!page) {
1004 migratetype = MIGRATE_RESERVE;
1005 goto retry_reserve;
1009 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1010 return page;
1014 * Obtain a specified number of elements from the buddy allocator, all under
1015 * a single hold of the lock, for efficiency. Add them to the supplied list.
1016 * Returns the number of new pages which were placed at *list.
1018 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1019 unsigned long count, struct list_head *list,
1020 int migratetype, int cold)
1022 int i;
1024 spin_lock(&zone->lock);
1025 for (i = 0; i < count; ++i) {
1026 struct page *page = __rmqueue(zone, order, migratetype);
1027 if (unlikely(page == NULL))
1028 break;
1031 * Split buddy pages returned by expand() are received here
1032 * in physical page order. The page is added to the callers and
1033 * list and the list head then moves forward. From the callers
1034 * perspective, the linked list is ordered by page number in
1035 * some conditions. This is useful for IO devices that can
1036 * merge IO requests if the physical pages are ordered
1037 * properly.
1039 if (likely(cold == 0))
1040 list_add(&page->lru, list);
1041 else
1042 list_add_tail(&page->lru, list);
1043 set_page_private(page, migratetype);
1044 list = &page->lru;
1046 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1047 spin_unlock(&zone->lock);
1048 return i;
1051 #ifdef CONFIG_NUMA
1053 * Called from the vmstat counter updater to drain pagesets of this
1054 * currently executing processor on remote nodes after they have
1055 * expired.
1057 * Note that this function must be called with the thread pinned to
1058 * a single processor.
1060 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1062 unsigned long flags;
1063 int to_drain;
1065 local_irq_save(flags);
1066 if (pcp->count >= pcp->batch)
1067 to_drain = pcp->batch;
1068 else
1069 to_drain = pcp->count;
1070 free_pcppages_bulk(zone, to_drain, pcp);
1071 pcp->count -= to_drain;
1072 local_irq_restore(flags);
1074 #endif
1077 * Drain pages of the indicated processor.
1079 * The processor must either be the current processor and the
1080 * thread pinned to the current processor or a processor that
1081 * is not online.
1083 static void drain_pages(unsigned int cpu)
1085 unsigned long flags;
1086 struct zone *zone;
1088 for_each_populated_zone(zone) {
1089 struct per_cpu_pageset *pset;
1090 struct per_cpu_pages *pcp;
1092 local_irq_save(flags);
1093 pset = per_cpu_ptr(zone->pageset, cpu);
1095 pcp = &pset->pcp;
1096 free_pcppages_bulk(zone, pcp->count, pcp);
1097 pcp->count = 0;
1098 local_irq_restore(flags);
1103 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1105 void drain_local_pages(void *arg)
1107 drain_pages(smp_processor_id());
1111 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1113 void drain_all_pages(void)
1115 on_each_cpu(drain_local_pages, NULL, 1);
1118 #ifdef CONFIG_HIBERNATION
1120 void mark_free_pages(struct zone *zone)
1122 unsigned long pfn, max_zone_pfn;
1123 unsigned long flags;
1124 int order, t;
1125 struct list_head *curr;
1127 if (!zone->spanned_pages)
1128 return;
1130 spin_lock_irqsave(&zone->lock, flags);
1132 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1133 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1134 if (pfn_valid(pfn)) {
1135 struct page *page = pfn_to_page(pfn);
1137 if (!swsusp_page_is_forbidden(page))
1138 swsusp_unset_page_free(page);
1141 for_each_migratetype_order(order, t) {
1142 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1143 unsigned long i;
1145 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1146 for (i = 0; i < (1UL << order); i++)
1147 swsusp_set_page_free(pfn_to_page(pfn + i));
1150 spin_unlock_irqrestore(&zone->lock, flags);
1152 #endif /* CONFIG_PM */
1155 * Free a 0-order page
1156 * cold == 1 ? free a cold page : free a hot page
1158 void free_hot_cold_page(struct page *page, int cold)
1160 struct zone *zone = page_zone(page);
1161 struct per_cpu_pages *pcp;
1162 unsigned long flags;
1163 int migratetype;
1164 int wasMlocked = __TestClearPageMlocked(page);
1166 if (!free_pages_prepare(page, 0))
1167 return;
1169 migratetype = get_pageblock_migratetype(page);
1170 set_page_private(page, migratetype);
1171 local_irq_save(flags);
1172 if (unlikely(wasMlocked))
1173 free_page_mlock(page);
1174 __count_vm_event(PGFREE);
1177 * We only track unmovable, reclaimable and movable on pcp lists.
1178 * Free ISOLATE pages back to the allocator because they are being
1179 * offlined but treat RESERVE as movable pages so we can get those
1180 * areas back if necessary. Otherwise, we may have to free
1181 * excessively into the page allocator
1183 if (migratetype >= MIGRATE_PCPTYPES) {
1184 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1185 free_one_page(zone, page, 0, migratetype);
1186 goto out;
1188 migratetype = MIGRATE_MOVABLE;
1191 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1192 if (cold)
1193 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1194 else
1195 list_add(&page->lru, &pcp->lists[migratetype]);
1196 pcp->count++;
1197 if (pcp->count >= pcp->high) {
1198 free_pcppages_bulk(zone, pcp->batch, pcp);
1199 pcp->count -= pcp->batch;
1202 out:
1203 local_irq_restore(flags);
1207 * split_page takes a non-compound higher-order page, and splits it into
1208 * n (1<<order) sub-pages: page[0..n]
1209 * Each sub-page must be freed individually.
1211 * Note: this is probably too low level an operation for use in drivers.
1212 * Please consult with lkml before using this in your driver.
1214 void split_page(struct page *page, unsigned int order)
1216 int i;
1218 VM_BUG_ON(PageCompound(page));
1219 VM_BUG_ON(!page_count(page));
1221 #ifdef CONFIG_KMEMCHECK
1223 * Split shadow pages too, because free(page[0]) would
1224 * otherwise free the whole shadow.
1226 if (kmemcheck_page_is_tracked(page))
1227 split_page(virt_to_page(page[0].shadow), order);
1228 #endif
1230 for (i = 1; i < (1 << order); i++)
1231 set_page_refcounted(page + i);
1235 * Similar to split_page except the page is already free. As this is only
1236 * being used for migration, the migratetype of the block also changes.
1237 * As this is called with interrupts disabled, the caller is responsible
1238 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1239 * are enabled.
1241 * Note: this is probably too low level an operation for use in drivers.
1242 * Please consult with lkml before using this in your driver.
1244 int split_free_page(struct page *page)
1246 unsigned int order;
1247 unsigned long watermark;
1248 struct zone *zone;
1250 BUG_ON(!PageBuddy(page));
1252 zone = page_zone(page);
1253 order = page_order(page);
1255 /* Obey watermarks as if the page was being allocated */
1256 watermark = low_wmark_pages(zone) + (1 << order);
1257 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1258 return 0;
1260 /* Remove page from free list */
1261 list_del(&page->lru);
1262 zone->free_area[order].nr_free--;
1263 rmv_page_order(page);
1264 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1266 /* Split into individual pages */
1267 set_page_refcounted(page);
1268 split_page(page, order);
1270 if (order >= pageblock_order - 1) {
1271 struct page *endpage = page + (1 << order) - 1;
1272 for (; page < endpage; page += pageblock_nr_pages)
1273 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1276 return 1 << order;
1280 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1281 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1282 * or two.
1284 static inline
1285 struct page *buffered_rmqueue(struct zone *preferred_zone,
1286 struct zone *zone, int order, gfp_t gfp_flags,
1287 int migratetype)
1289 unsigned long flags;
1290 struct page *page;
1291 int cold = !!(gfp_flags & __GFP_COLD);
1293 again:
1294 if (likely(order == 0)) {
1295 struct per_cpu_pages *pcp;
1296 struct list_head *list;
1298 local_irq_save(flags);
1299 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1300 list = &pcp->lists[migratetype];
1301 if (list_empty(list)) {
1302 pcp->count += rmqueue_bulk(zone, 0,
1303 pcp->batch, list,
1304 migratetype, cold);
1305 if (unlikely(list_empty(list)))
1306 goto failed;
1309 if (cold)
1310 page = list_entry(list->prev, struct page, lru);
1311 else
1312 page = list_entry(list->next, struct page, lru);
1314 list_del(&page->lru);
1315 pcp->count--;
1316 } else {
1317 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1319 * __GFP_NOFAIL is not to be used in new code.
1321 * All __GFP_NOFAIL callers should be fixed so that they
1322 * properly detect and handle allocation failures.
1324 * We most definitely don't want callers attempting to
1325 * allocate greater than order-1 page units with
1326 * __GFP_NOFAIL.
1328 WARN_ON_ONCE(order > 1);
1330 spin_lock_irqsave(&zone->lock, flags);
1331 page = __rmqueue(zone, order, migratetype);
1332 spin_unlock(&zone->lock);
1333 if (!page)
1334 goto failed;
1335 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1338 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1339 zone_statistics(preferred_zone, zone);
1340 local_irq_restore(flags);
1342 VM_BUG_ON(bad_range(zone, page));
1343 if (prep_new_page(page, order, gfp_flags))
1344 goto again;
1345 return page;
1347 failed:
1348 local_irq_restore(flags);
1349 return NULL;
1352 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1353 #define ALLOC_WMARK_MIN WMARK_MIN
1354 #define ALLOC_WMARK_LOW WMARK_LOW
1355 #define ALLOC_WMARK_HIGH WMARK_HIGH
1356 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1358 /* Mask to get the watermark bits */
1359 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1361 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1362 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1363 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1365 #ifdef CONFIG_FAIL_PAGE_ALLOC
1367 static struct fail_page_alloc_attr {
1368 struct fault_attr attr;
1370 u32 ignore_gfp_highmem;
1371 u32 ignore_gfp_wait;
1372 u32 min_order;
1374 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1376 struct dentry *ignore_gfp_highmem_file;
1377 struct dentry *ignore_gfp_wait_file;
1378 struct dentry *min_order_file;
1380 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1382 } fail_page_alloc = {
1383 .attr = FAULT_ATTR_INITIALIZER,
1384 .ignore_gfp_wait = 1,
1385 .ignore_gfp_highmem = 1,
1386 .min_order = 1,
1389 static int __init setup_fail_page_alloc(char *str)
1391 return setup_fault_attr(&fail_page_alloc.attr, str);
1393 __setup("fail_page_alloc=", setup_fail_page_alloc);
1395 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1397 if (order < fail_page_alloc.min_order)
1398 return 0;
1399 if (gfp_mask & __GFP_NOFAIL)
1400 return 0;
1401 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1404 return 0;
1406 return should_fail(&fail_page_alloc.attr, 1 << order);
1409 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1411 static int __init fail_page_alloc_debugfs(void)
1413 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1414 struct dentry *dir;
1415 int err;
1417 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1418 "fail_page_alloc");
1419 if (err)
1420 return err;
1421 dir = fail_page_alloc.attr.dentries.dir;
1423 fail_page_alloc.ignore_gfp_wait_file =
1424 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1425 &fail_page_alloc.ignore_gfp_wait);
1427 fail_page_alloc.ignore_gfp_highmem_file =
1428 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1429 &fail_page_alloc.ignore_gfp_highmem);
1430 fail_page_alloc.min_order_file =
1431 debugfs_create_u32("min-order", mode, dir,
1432 &fail_page_alloc.min_order);
1434 if (!fail_page_alloc.ignore_gfp_wait_file ||
1435 !fail_page_alloc.ignore_gfp_highmem_file ||
1436 !fail_page_alloc.min_order_file) {
1437 err = -ENOMEM;
1438 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1439 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1440 debugfs_remove(fail_page_alloc.min_order_file);
1441 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1444 return err;
1447 late_initcall(fail_page_alloc_debugfs);
1449 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1451 #else /* CONFIG_FAIL_PAGE_ALLOC */
1453 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1455 return 0;
1458 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1461 * Return true if free pages are above 'mark'. This takes into account the order
1462 * of the allocation.
1464 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1465 int classzone_idx, int alloc_flags, long free_pages)
1467 /* free_pages my go negative - that's OK */
1468 long min = mark;
1469 int o;
1471 free_pages -= (1 << order) + 1;
1472 if (alloc_flags & ALLOC_HIGH)
1473 min -= min / 2;
1474 if (alloc_flags & ALLOC_HARDER)
1475 min -= min / 4;
1477 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1478 return false;
1479 for (o = 0; o < order; o++) {
1480 /* At the next order, this order's pages become unavailable */
1481 free_pages -= z->free_area[o].nr_free << o;
1483 /* Require fewer higher order pages to be free */
1484 min >>= 1;
1486 if (free_pages <= min)
1487 return false;
1489 return true;
1492 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1493 int classzone_idx, int alloc_flags)
1495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1496 zone_page_state(z, NR_FREE_PAGES));
1499 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1500 int classzone_idx, int alloc_flags)
1502 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1504 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1505 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1507 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1508 free_pages);
1511 #ifdef CONFIG_NUMA
1513 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1514 * skip over zones that are not allowed by the cpuset, or that have
1515 * been recently (in last second) found to be nearly full. See further
1516 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1517 * that have to skip over a lot of full or unallowed zones.
1519 * If the zonelist cache is present in the passed in zonelist, then
1520 * returns a pointer to the allowed node mask (either the current
1521 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1523 * If the zonelist cache is not available for this zonelist, does
1524 * nothing and returns NULL.
1526 * If the fullzones BITMAP in the zonelist cache is stale (more than
1527 * a second since last zap'd) then we zap it out (clear its bits.)
1529 * We hold off even calling zlc_setup, until after we've checked the
1530 * first zone in the zonelist, on the theory that most allocations will
1531 * be satisfied from that first zone, so best to examine that zone as
1532 * quickly as we can.
1534 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1536 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1537 nodemask_t *allowednodes; /* zonelist_cache approximation */
1539 zlc = zonelist->zlcache_ptr;
1540 if (!zlc)
1541 return NULL;
1543 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1544 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1545 zlc->last_full_zap = jiffies;
1548 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1549 &cpuset_current_mems_allowed :
1550 &node_states[N_HIGH_MEMORY];
1551 return allowednodes;
1555 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1556 * if it is worth looking at further for free memory:
1557 * 1) Check that the zone isn't thought to be full (doesn't have its
1558 * bit set in the zonelist_cache fullzones BITMAP).
1559 * 2) Check that the zones node (obtained from the zonelist_cache
1560 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1561 * Return true (non-zero) if zone is worth looking at further, or
1562 * else return false (zero) if it is not.
1564 * This check -ignores- the distinction between various watermarks,
1565 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1566 * found to be full for any variation of these watermarks, it will
1567 * be considered full for up to one second by all requests, unless
1568 * we are so low on memory on all allowed nodes that we are forced
1569 * into the second scan of the zonelist.
1571 * In the second scan we ignore this zonelist cache and exactly
1572 * apply the watermarks to all zones, even it is slower to do so.
1573 * We are low on memory in the second scan, and should leave no stone
1574 * unturned looking for a free page.
1576 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1577 nodemask_t *allowednodes)
1579 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1580 int i; /* index of *z in zonelist zones */
1581 int n; /* node that zone *z is on */
1583 zlc = zonelist->zlcache_ptr;
1584 if (!zlc)
1585 return 1;
1587 i = z - zonelist->_zonerefs;
1588 n = zlc->z_to_n[i];
1590 /* This zone is worth trying if it is allowed but not full */
1591 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1595 * Given 'z' scanning a zonelist, set the corresponding bit in
1596 * zlc->fullzones, so that subsequent attempts to allocate a page
1597 * from that zone don't waste time re-examining it.
1599 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1601 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1602 int i; /* index of *z in zonelist zones */
1604 zlc = zonelist->zlcache_ptr;
1605 if (!zlc)
1606 return;
1608 i = z - zonelist->_zonerefs;
1610 set_bit(i, zlc->fullzones);
1613 #else /* CONFIG_NUMA */
1615 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1617 return NULL;
1620 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1621 nodemask_t *allowednodes)
1623 return 1;
1626 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1629 #endif /* CONFIG_NUMA */
1632 * get_page_from_freelist goes through the zonelist trying to allocate
1633 * a page.
1635 static struct page *
1636 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1637 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1638 struct zone *preferred_zone, int migratetype)
1640 struct zoneref *z;
1641 struct page *page = NULL;
1642 int classzone_idx;
1643 struct zone *zone;
1644 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1645 int zlc_active = 0; /* set if using zonelist_cache */
1646 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1648 classzone_idx = zone_idx(preferred_zone);
1649 zonelist_scan:
1651 * Scan zonelist, looking for a zone with enough free.
1652 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1654 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1655 high_zoneidx, nodemask) {
1656 if (NUMA_BUILD && zlc_active &&
1657 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1658 continue;
1659 if ((alloc_flags & ALLOC_CPUSET) &&
1660 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1661 goto try_next_zone;
1663 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1664 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1665 unsigned long mark;
1666 int ret;
1668 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1669 if (zone_watermark_ok(zone, order, mark,
1670 classzone_idx, alloc_flags))
1671 goto try_this_zone;
1673 if (zone_reclaim_mode == 0)
1674 goto this_zone_full;
1676 ret = zone_reclaim(zone, gfp_mask, order);
1677 switch (ret) {
1678 case ZONE_RECLAIM_NOSCAN:
1679 /* did not scan */
1680 goto try_next_zone;
1681 case ZONE_RECLAIM_FULL:
1682 /* scanned but unreclaimable */
1683 goto this_zone_full;
1684 default:
1685 /* did we reclaim enough */
1686 if (!zone_watermark_ok(zone, order, mark,
1687 classzone_idx, alloc_flags))
1688 goto this_zone_full;
1692 try_this_zone:
1693 page = buffered_rmqueue(preferred_zone, zone, order,
1694 gfp_mask, migratetype);
1695 if (page)
1696 break;
1697 this_zone_full:
1698 if (NUMA_BUILD)
1699 zlc_mark_zone_full(zonelist, z);
1700 try_next_zone:
1701 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1703 * we do zlc_setup after the first zone is tried but only
1704 * if there are multiple nodes make it worthwhile
1706 allowednodes = zlc_setup(zonelist, alloc_flags);
1707 zlc_active = 1;
1708 did_zlc_setup = 1;
1712 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1713 /* Disable zlc cache for second zonelist scan */
1714 zlc_active = 0;
1715 goto zonelist_scan;
1717 return page;
1720 static inline int
1721 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1722 unsigned long pages_reclaimed)
1724 /* Do not loop if specifically requested */
1725 if (gfp_mask & __GFP_NORETRY)
1726 return 0;
1729 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1730 * means __GFP_NOFAIL, but that may not be true in other
1731 * implementations.
1733 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1734 return 1;
1737 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1738 * specified, then we retry until we no longer reclaim any pages
1739 * (above), or we've reclaimed an order of pages at least as
1740 * large as the allocation's order. In both cases, if the
1741 * allocation still fails, we stop retrying.
1743 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1744 return 1;
1747 * Don't let big-order allocations loop unless the caller
1748 * explicitly requests that.
1750 if (gfp_mask & __GFP_NOFAIL)
1751 return 1;
1753 return 0;
1756 static inline struct page *
1757 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1758 struct zonelist *zonelist, enum zone_type high_zoneidx,
1759 nodemask_t *nodemask, struct zone *preferred_zone,
1760 int migratetype)
1762 struct page *page;
1764 /* Acquire the OOM killer lock for the zones in zonelist */
1765 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1766 schedule_timeout_uninterruptible(1);
1767 return NULL;
1771 * Go through the zonelist yet one more time, keep very high watermark
1772 * here, this is only to catch a parallel oom killing, we must fail if
1773 * we're still under heavy pressure.
1775 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1776 order, zonelist, high_zoneidx,
1777 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1778 preferred_zone, migratetype);
1779 if (page)
1780 goto out;
1782 if (!(gfp_mask & __GFP_NOFAIL)) {
1783 /* The OOM killer will not help higher order allocs */
1784 if (order > PAGE_ALLOC_COSTLY_ORDER)
1785 goto out;
1786 /* The OOM killer does not needlessly kill tasks for lowmem */
1787 if (high_zoneidx < ZONE_NORMAL)
1788 goto out;
1790 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1791 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1792 * The caller should handle page allocation failure by itself if
1793 * it specifies __GFP_THISNODE.
1794 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1796 if (gfp_mask & __GFP_THISNODE)
1797 goto out;
1799 /* Exhausted what can be done so it's blamo time */
1800 out_of_memory(zonelist, gfp_mask, order, nodemask);
1802 out:
1803 clear_zonelist_oom(zonelist, gfp_mask);
1804 return page;
1807 #ifdef CONFIG_COMPACTION
1808 /* Try memory compaction for high-order allocations before reclaim */
1809 static struct page *
1810 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1811 struct zonelist *zonelist, enum zone_type high_zoneidx,
1812 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1813 int migratetype, unsigned long *did_some_progress,
1814 bool sync_migration)
1816 struct page *page;
1817 struct task_struct *tsk = current;
1819 if (!order || compaction_deferred(preferred_zone))
1820 return NULL;
1822 tsk->flags |= PF_MEMALLOC;
1823 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1824 nodemask, sync_migration);
1825 tsk->flags &= ~PF_MEMALLOC;
1826 if (*did_some_progress != COMPACT_SKIPPED) {
1828 /* Page migration frees to the PCP lists but we want merging */
1829 drain_pages(get_cpu());
1830 put_cpu();
1832 page = get_page_from_freelist(gfp_mask, nodemask,
1833 order, zonelist, high_zoneidx,
1834 alloc_flags, preferred_zone,
1835 migratetype);
1836 if (page) {
1837 preferred_zone->compact_considered = 0;
1838 preferred_zone->compact_defer_shift = 0;
1839 count_vm_event(COMPACTSUCCESS);
1840 return page;
1844 * It's bad if compaction run occurs and fails.
1845 * The most likely reason is that pages exist,
1846 * but not enough to satisfy watermarks.
1848 count_vm_event(COMPACTFAIL);
1849 defer_compaction(preferred_zone);
1851 cond_resched();
1854 return NULL;
1856 #else
1857 static inline struct page *
1858 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1859 struct zonelist *zonelist, enum zone_type high_zoneidx,
1860 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1861 int migratetype, unsigned long *did_some_progress,
1862 bool sync_migration)
1864 return NULL;
1866 #endif /* CONFIG_COMPACTION */
1868 /* The really slow allocator path where we enter direct reclaim */
1869 static inline struct page *
1870 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1871 struct zonelist *zonelist, enum zone_type high_zoneidx,
1872 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1873 int migratetype, unsigned long *did_some_progress)
1875 struct page *page = NULL;
1876 struct reclaim_state reclaim_state;
1877 struct task_struct *p = current;
1878 bool drained = false;
1880 cond_resched();
1882 /* We now go into synchronous reclaim */
1883 cpuset_memory_pressure_bump();
1884 p->flags |= PF_MEMALLOC;
1885 lockdep_set_current_reclaim_state(gfp_mask);
1886 reclaim_state.reclaimed_slab = 0;
1887 p->reclaim_state = &reclaim_state;
1889 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1891 p->reclaim_state = NULL;
1892 lockdep_clear_current_reclaim_state();
1893 p->flags &= ~PF_MEMALLOC;
1895 cond_resched();
1897 if (unlikely(!(*did_some_progress)))
1898 return NULL;
1900 retry:
1901 page = get_page_from_freelist(gfp_mask, nodemask, order,
1902 zonelist, high_zoneidx,
1903 alloc_flags, preferred_zone,
1904 migratetype);
1907 * If an allocation failed after direct reclaim, it could be because
1908 * pages are pinned on the per-cpu lists. Drain them and try again
1910 if (!page && !drained) {
1911 drain_all_pages();
1912 drained = true;
1913 goto retry;
1916 return page;
1920 * This is called in the allocator slow-path if the allocation request is of
1921 * sufficient urgency to ignore watermarks and take other desperate measures
1923 static inline struct page *
1924 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1925 struct zonelist *zonelist, enum zone_type high_zoneidx,
1926 nodemask_t *nodemask, struct zone *preferred_zone,
1927 int migratetype)
1929 struct page *page;
1931 do {
1932 page = get_page_from_freelist(gfp_mask, nodemask, order,
1933 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1934 preferred_zone, migratetype);
1936 if (!page && gfp_mask & __GFP_NOFAIL)
1937 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1938 } while (!page && (gfp_mask & __GFP_NOFAIL));
1940 return page;
1943 static inline
1944 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1945 enum zone_type high_zoneidx,
1946 enum zone_type classzone_idx)
1948 struct zoneref *z;
1949 struct zone *zone;
1951 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1952 wakeup_kswapd(zone, order, classzone_idx);
1955 static inline int
1956 gfp_to_alloc_flags(gfp_t gfp_mask)
1958 struct task_struct *p = current;
1959 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1960 const gfp_t wait = gfp_mask & __GFP_WAIT;
1962 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1963 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1966 * The caller may dip into page reserves a bit more if the caller
1967 * cannot run direct reclaim, or if the caller has realtime scheduling
1968 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1969 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1971 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1973 if (!wait) {
1975 * Not worth trying to allocate harder for
1976 * __GFP_NOMEMALLOC even if it can't schedule.
1978 if (!(gfp_mask & __GFP_NOMEMALLOC))
1979 alloc_flags |= ALLOC_HARDER;
1981 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1982 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1984 alloc_flags &= ~ALLOC_CPUSET;
1985 } else if (unlikely(rt_task(p)) && !in_interrupt())
1986 alloc_flags |= ALLOC_HARDER;
1988 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1989 if (!in_interrupt() &&
1990 ((p->flags & PF_MEMALLOC) ||
1991 unlikely(test_thread_flag(TIF_MEMDIE))))
1992 alloc_flags |= ALLOC_NO_WATERMARKS;
1995 return alloc_flags;
1998 static inline struct page *
1999 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2000 struct zonelist *zonelist, enum zone_type high_zoneidx,
2001 nodemask_t *nodemask, struct zone *preferred_zone,
2002 int migratetype)
2004 const gfp_t wait = gfp_mask & __GFP_WAIT;
2005 struct page *page = NULL;
2006 int alloc_flags;
2007 unsigned long pages_reclaimed = 0;
2008 unsigned long did_some_progress;
2009 struct task_struct *p = current;
2010 bool sync_migration = false;
2013 * In the slowpath, we sanity check order to avoid ever trying to
2014 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2015 * be using allocators in order of preference for an area that is
2016 * too large.
2018 if (order >= MAX_ORDER) {
2019 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2020 return NULL;
2024 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2025 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2026 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2027 * using a larger set of nodes after it has established that the
2028 * allowed per node queues are empty and that nodes are
2029 * over allocated.
2031 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2032 goto nopage;
2034 restart:
2035 if (!(gfp_mask & __GFP_NO_KSWAPD))
2036 wake_all_kswapd(order, zonelist, high_zoneidx,
2037 zone_idx(preferred_zone));
2040 * OK, we're below the kswapd watermark and have kicked background
2041 * reclaim. Now things get more complex, so set up alloc_flags according
2042 * to how we want to proceed.
2044 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2046 /* This is the last chance, in general, before the goto nopage. */
2047 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2048 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2049 preferred_zone, migratetype);
2050 if (page)
2051 goto got_pg;
2053 rebalance:
2054 /* Allocate without watermarks if the context allows */
2055 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2056 page = __alloc_pages_high_priority(gfp_mask, order,
2057 zonelist, high_zoneidx, nodemask,
2058 preferred_zone, migratetype);
2059 if (page)
2060 goto got_pg;
2063 /* Atomic allocations - we can't balance anything */
2064 if (!wait)
2065 goto nopage;
2067 /* Avoid recursion of direct reclaim */
2068 if (p->flags & PF_MEMALLOC)
2069 goto nopage;
2071 /* Avoid allocations with no watermarks from looping endlessly */
2072 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2073 goto nopage;
2076 * Try direct compaction. The first pass is asynchronous. Subsequent
2077 * attempts after direct reclaim are synchronous
2079 page = __alloc_pages_direct_compact(gfp_mask, order,
2080 zonelist, high_zoneidx,
2081 nodemask,
2082 alloc_flags, preferred_zone,
2083 migratetype, &did_some_progress,
2084 sync_migration);
2085 if (page)
2086 goto got_pg;
2087 sync_migration = true;
2089 /* Try direct reclaim and then allocating */
2090 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2091 zonelist, high_zoneidx,
2092 nodemask,
2093 alloc_flags, preferred_zone,
2094 migratetype, &did_some_progress);
2095 if (page)
2096 goto got_pg;
2099 * If we failed to make any progress reclaiming, then we are
2100 * running out of options and have to consider going OOM
2102 if (!did_some_progress) {
2103 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2104 if (oom_killer_disabled)
2105 goto nopage;
2106 page = __alloc_pages_may_oom(gfp_mask, order,
2107 zonelist, high_zoneidx,
2108 nodemask, preferred_zone,
2109 migratetype);
2110 if (page)
2111 goto got_pg;
2113 if (!(gfp_mask & __GFP_NOFAIL)) {
2115 * The oom killer is not called for high-order
2116 * allocations that may fail, so if no progress
2117 * is being made, there are no other options and
2118 * retrying is unlikely to help.
2120 if (order > PAGE_ALLOC_COSTLY_ORDER)
2121 goto nopage;
2123 * The oom killer is not called for lowmem
2124 * allocations to prevent needlessly killing
2125 * innocent tasks.
2127 if (high_zoneidx < ZONE_NORMAL)
2128 goto nopage;
2131 goto restart;
2135 /* Check if we should retry the allocation */
2136 pages_reclaimed += did_some_progress;
2137 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2138 /* Wait for some write requests to complete then retry */
2139 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2140 goto rebalance;
2141 } else {
2143 * High-order allocations do not necessarily loop after
2144 * direct reclaim and reclaim/compaction depends on compaction
2145 * being called after reclaim so call directly if necessary
2147 page = __alloc_pages_direct_compact(gfp_mask, order,
2148 zonelist, high_zoneidx,
2149 nodemask,
2150 alloc_flags, preferred_zone,
2151 migratetype, &did_some_progress,
2152 sync_migration);
2153 if (page)
2154 goto got_pg;
2157 nopage:
2158 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2159 printk(KERN_WARNING "%s: page allocation failure."
2160 " order:%d, mode:0x%x\n",
2161 p->comm, order, gfp_mask);
2162 dump_stack();
2163 show_mem();
2165 return page;
2166 got_pg:
2167 if (kmemcheck_enabled)
2168 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2169 return page;
2174 * This is the 'heart' of the zoned buddy allocator.
2176 struct page *
2177 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2178 struct zonelist *zonelist, nodemask_t *nodemask)
2180 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2181 struct zone *preferred_zone;
2182 struct page *page;
2183 int migratetype = allocflags_to_migratetype(gfp_mask);
2185 gfp_mask &= gfp_allowed_mask;
2187 lockdep_trace_alloc(gfp_mask);
2189 might_sleep_if(gfp_mask & __GFP_WAIT);
2191 if (should_fail_alloc_page(gfp_mask, order))
2192 return NULL;
2195 * Check the zones suitable for the gfp_mask contain at least one
2196 * valid zone. It's possible to have an empty zonelist as a result
2197 * of GFP_THISNODE and a memoryless node
2199 if (unlikely(!zonelist->_zonerefs->zone))
2200 return NULL;
2202 get_mems_allowed();
2203 /* The preferred zone is used for statistics later */
2204 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2205 if (!preferred_zone) {
2206 put_mems_allowed();
2207 return NULL;
2210 /* First allocation attempt */
2211 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2212 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2213 preferred_zone, migratetype);
2214 if (unlikely(!page))
2215 page = __alloc_pages_slowpath(gfp_mask, order,
2216 zonelist, high_zoneidx, nodemask,
2217 preferred_zone, migratetype);
2218 put_mems_allowed();
2220 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2221 return page;
2223 EXPORT_SYMBOL(__alloc_pages_nodemask);
2226 * Common helper functions.
2228 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2230 struct page *page;
2233 * __get_free_pages() returns a 32-bit address, which cannot represent
2234 * a highmem page
2236 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2238 page = alloc_pages(gfp_mask, order);
2239 if (!page)
2240 return 0;
2241 return (unsigned long) page_address(page);
2243 EXPORT_SYMBOL(__get_free_pages);
2245 unsigned long get_zeroed_page(gfp_t gfp_mask)
2247 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2249 EXPORT_SYMBOL(get_zeroed_page);
2251 void __pagevec_free(struct pagevec *pvec)
2253 int i = pagevec_count(pvec);
2255 while (--i >= 0) {
2256 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2257 free_hot_cold_page(pvec->pages[i], pvec->cold);
2261 void __free_pages(struct page *page, unsigned int order)
2263 if (put_page_testzero(page)) {
2264 if (order == 0)
2265 free_hot_cold_page(page, 0);
2266 else
2267 __free_pages_ok(page, order);
2271 EXPORT_SYMBOL(__free_pages);
2273 void free_pages(unsigned long addr, unsigned int order)
2275 if (addr != 0) {
2276 VM_BUG_ON(!virt_addr_valid((void *)addr));
2277 __free_pages(virt_to_page((void *)addr), order);
2281 EXPORT_SYMBOL(free_pages);
2284 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2285 * @size: the number of bytes to allocate
2286 * @gfp_mask: GFP flags for the allocation
2288 * This function is similar to alloc_pages(), except that it allocates the
2289 * minimum number of pages to satisfy the request. alloc_pages() can only
2290 * allocate memory in power-of-two pages.
2292 * This function is also limited by MAX_ORDER.
2294 * Memory allocated by this function must be released by free_pages_exact().
2296 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2298 unsigned int order = get_order(size);
2299 unsigned long addr;
2301 addr = __get_free_pages(gfp_mask, order);
2302 if (addr) {
2303 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2304 unsigned long used = addr + PAGE_ALIGN(size);
2306 split_page(virt_to_page((void *)addr), order);
2307 while (used < alloc_end) {
2308 free_page(used);
2309 used += PAGE_SIZE;
2313 return (void *)addr;
2315 EXPORT_SYMBOL(alloc_pages_exact);
2318 * free_pages_exact - release memory allocated via alloc_pages_exact()
2319 * @virt: the value returned by alloc_pages_exact.
2320 * @size: size of allocation, same value as passed to alloc_pages_exact().
2322 * Release the memory allocated by a previous call to alloc_pages_exact.
2324 void free_pages_exact(void *virt, size_t size)
2326 unsigned long addr = (unsigned long)virt;
2327 unsigned long end = addr + PAGE_ALIGN(size);
2329 while (addr < end) {
2330 free_page(addr);
2331 addr += PAGE_SIZE;
2334 EXPORT_SYMBOL(free_pages_exact);
2336 static unsigned int nr_free_zone_pages(int offset)
2338 struct zoneref *z;
2339 struct zone *zone;
2341 /* Just pick one node, since fallback list is circular */
2342 unsigned int sum = 0;
2344 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2346 for_each_zone_zonelist(zone, z, zonelist, offset) {
2347 unsigned long size = zone->present_pages;
2348 unsigned long high = high_wmark_pages(zone);
2349 if (size > high)
2350 sum += size - high;
2353 return sum;
2357 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2359 unsigned int nr_free_buffer_pages(void)
2361 return nr_free_zone_pages(gfp_zone(GFP_USER));
2363 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2366 * Amount of free RAM allocatable within all zones
2368 unsigned int nr_free_pagecache_pages(void)
2370 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2373 static inline void show_node(struct zone *zone)
2375 if (NUMA_BUILD)
2376 printk("Node %d ", zone_to_nid(zone));
2379 void si_meminfo(struct sysinfo *val)
2381 val->totalram = totalram_pages;
2382 val->sharedram = 0;
2383 val->freeram = global_page_state(NR_FREE_PAGES);
2384 val->bufferram = nr_blockdev_pages();
2385 val->totalhigh = totalhigh_pages;
2386 val->freehigh = nr_free_highpages();
2387 val->mem_unit = PAGE_SIZE;
2390 EXPORT_SYMBOL(si_meminfo);
2392 #ifdef CONFIG_NUMA
2393 void si_meminfo_node(struct sysinfo *val, int nid)
2395 pg_data_t *pgdat = NODE_DATA(nid);
2397 val->totalram = pgdat->node_present_pages;
2398 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2399 #ifdef CONFIG_HIGHMEM
2400 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2401 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2402 NR_FREE_PAGES);
2403 #else
2404 val->totalhigh = 0;
2405 val->freehigh = 0;
2406 #endif
2407 val->mem_unit = PAGE_SIZE;
2409 #endif
2411 #define K(x) ((x) << (PAGE_SHIFT-10))
2414 * Show free area list (used inside shift_scroll-lock stuff)
2415 * We also calculate the percentage fragmentation. We do this by counting the
2416 * memory on each free list with the exception of the first item on the list.
2418 void show_free_areas(void)
2420 int cpu;
2421 struct zone *zone;
2423 for_each_populated_zone(zone) {
2424 show_node(zone);
2425 printk("%s per-cpu:\n", zone->name);
2427 for_each_online_cpu(cpu) {
2428 struct per_cpu_pageset *pageset;
2430 pageset = per_cpu_ptr(zone->pageset, cpu);
2432 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2433 cpu, pageset->pcp.high,
2434 pageset->pcp.batch, pageset->pcp.count);
2438 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2439 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2440 " unevictable:%lu"
2441 " dirty:%lu writeback:%lu unstable:%lu\n"
2442 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2443 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2444 global_page_state(NR_ACTIVE_ANON),
2445 global_page_state(NR_INACTIVE_ANON),
2446 global_page_state(NR_ISOLATED_ANON),
2447 global_page_state(NR_ACTIVE_FILE),
2448 global_page_state(NR_INACTIVE_FILE),
2449 global_page_state(NR_ISOLATED_FILE),
2450 global_page_state(NR_UNEVICTABLE),
2451 global_page_state(NR_FILE_DIRTY),
2452 global_page_state(NR_WRITEBACK),
2453 global_page_state(NR_UNSTABLE_NFS),
2454 global_page_state(NR_FREE_PAGES),
2455 global_page_state(NR_SLAB_RECLAIMABLE),
2456 global_page_state(NR_SLAB_UNRECLAIMABLE),
2457 global_page_state(NR_FILE_MAPPED),
2458 global_page_state(NR_SHMEM),
2459 global_page_state(NR_PAGETABLE),
2460 global_page_state(NR_BOUNCE));
2462 for_each_populated_zone(zone) {
2463 int i;
2465 show_node(zone);
2466 printk("%s"
2467 " free:%lukB"
2468 " min:%lukB"
2469 " low:%lukB"
2470 " high:%lukB"
2471 " active_anon:%lukB"
2472 " inactive_anon:%lukB"
2473 " active_file:%lukB"
2474 " inactive_file:%lukB"
2475 " unevictable:%lukB"
2476 " isolated(anon):%lukB"
2477 " isolated(file):%lukB"
2478 " present:%lukB"
2479 " mlocked:%lukB"
2480 " dirty:%lukB"
2481 " writeback:%lukB"
2482 " mapped:%lukB"
2483 " shmem:%lukB"
2484 " slab_reclaimable:%lukB"
2485 " slab_unreclaimable:%lukB"
2486 " kernel_stack:%lukB"
2487 " pagetables:%lukB"
2488 " unstable:%lukB"
2489 " bounce:%lukB"
2490 " writeback_tmp:%lukB"
2491 " pages_scanned:%lu"
2492 " all_unreclaimable? %s"
2493 "\n",
2494 zone->name,
2495 K(zone_page_state(zone, NR_FREE_PAGES)),
2496 K(min_wmark_pages(zone)),
2497 K(low_wmark_pages(zone)),
2498 K(high_wmark_pages(zone)),
2499 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2500 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2501 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2502 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2503 K(zone_page_state(zone, NR_UNEVICTABLE)),
2504 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2505 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2506 K(zone->present_pages),
2507 K(zone_page_state(zone, NR_MLOCK)),
2508 K(zone_page_state(zone, NR_FILE_DIRTY)),
2509 K(zone_page_state(zone, NR_WRITEBACK)),
2510 K(zone_page_state(zone, NR_FILE_MAPPED)),
2511 K(zone_page_state(zone, NR_SHMEM)),
2512 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2513 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2514 zone_page_state(zone, NR_KERNEL_STACK) *
2515 THREAD_SIZE / 1024,
2516 K(zone_page_state(zone, NR_PAGETABLE)),
2517 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2518 K(zone_page_state(zone, NR_BOUNCE)),
2519 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2520 zone->pages_scanned,
2521 (zone->all_unreclaimable ? "yes" : "no")
2523 printk("lowmem_reserve[]:");
2524 for (i = 0; i < MAX_NR_ZONES; i++)
2525 printk(" %lu", zone->lowmem_reserve[i]);
2526 printk("\n");
2529 for_each_populated_zone(zone) {
2530 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2532 show_node(zone);
2533 printk("%s: ", zone->name);
2535 spin_lock_irqsave(&zone->lock, flags);
2536 for (order = 0; order < MAX_ORDER; order++) {
2537 nr[order] = zone->free_area[order].nr_free;
2538 total += nr[order] << order;
2540 spin_unlock_irqrestore(&zone->lock, flags);
2541 for (order = 0; order < MAX_ORDER; order++)
2542 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2543 printk("= %lukB\n", K(total));
2546 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2548 show_swap_cache_info();
2551 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2553 zoneref->zone = zone;
2554 zoneref->zone_idx = zone_idx(zone);
2558 * Builds allocation fallback zone lists.
2560 * Add all populated zones of a node to the zonelist.
2562 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2563 int nr_zones, enum zone_type zone_type)
2565 struct zone *zone;
2567 BUG_ON(zone_type >= MAX_NR_ZONES);
2568 zone_type++;
2570 do {
2571 zone_type--;
2572 zone = pgdat->node_zones + zone_type;
2573 if (populated_zone(zone)) {
2574 zoneref_set_zone(zone,
2575 &zonelist->_zonerefs[nr_zones++]);
2576 check_highest_zone(zone_type);
2579 } while (zone_type);
2580 return nr_zones;
2585 * zonelist_order:
2586 * 0 = automatic detection of better ordering.
2587 * 1 = order by ([node] distance, -zonetype)
2588 * 2 = order by (-zonetype, [node] distance)
2590 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2591 * the same zonelist. So only NUMA can configure this param.
2593 #define ZONELIST_ORDER_DEFAULT 0
2594 #define ZONELIST_ORDER_NODE 1
2595 #define ZONELIST_ORDER_ZONE 2
2597 /* zonelist order in the kernel.
2598 * set_zonelist_order() will set this to NODE or ZONE.
2600 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2601 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2604 #ifdef CONFIG_NUMA
2605 /* The value user specified ....changed by config */
2606 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2607 /* string for sysctl */
2608 #define NUMA_ZONELIST_ORDER_LEN 16
2609 char numa_zonelist_order[16] = "default";
2612 * interface for configure zonelist ordering.
2613 * command line option "numa_zonelist_order"
2614 * = "[dD]efault - default, automatic configuration.
2615 * = "[nN]ode - order by node locality, then by zone within node
2616 * = "[zZ]one - order by zone, then by locality within zone
2619 static int __parse_numa_zonelist_order(char *s)
2621 if (*s == 'd' || *s == 'D') {
2622 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2623 } else if (*s == 'n' || *s == 'N') {
2624 user_zonelist_order = ZONELIST_ORDER_NODE;
2625 } else if (*s == 'z' || *s == 'Z') {
2626 user_zonelist_order = ZONELIST_ORDER_ZONE;
2627 } else {
2628 printk(KERN_WARNING
2629 "Ignoring invalid numa_zonelist_order value: "
2630 "%s\n", s);
2631 return -EINVAL;
2633 return 0;
2636 static __init int setup_numa_zonelist_order(char *s)
2638 int ret;
2640 if (!s)
2641 return 0;
2643 ret = __parse_numa_zonelist_order(s);
2644 if (ret == 0)
2645 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2647 return ret;
2649 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2652 * sysctl handler for numa_zonelist_order
2654 int numa_zonelist_order_handler(ctl_table *table, int write,
2655 void __user *buffer, size_t *length,
2656 loff_t *ppos)
2658 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2659 int ret;
2660 static DEFINE_MUTEX(zl_order_mutex);
2662 mutex_lock(&zl_order_mutex);
2663 if (write)
2664 strcpy(saved_string, (char*)table->data);
2665 ret = proc_dostring(table, write, buffer, length, ppos);
2666 if (ret)
2667 goto out;
2668 if (write) {
2669 int oldval = user_zonelist_order;
2670 if (__parse_numa_zonelist_order((char*)table->data)) {
2672 * bogus value. restore saved string
2674 strncpy((char*)table->data, saved_string,
2675 NUMA_ZONELIST_ORDER_LEN);
2676 user_zonelist_order = oldval;
2677 } else if (oldval != user_zonelist_order) {
2678 mutex_lock(&zonelists_mutex);
2679 build_all_zonelists(NULL);
2680 mutex_unlock(&zonelists_mutex);
2683 out:
2684 mutex_unlock(&zl_order_mutex);
2685 return ret;
2689 #define MAX_NODE_LOAD (nr_online_nodes)
2690 static int node_load[MAX_NUMNODES];
2693 * find_next_best_node - find the next node that should appear in a given node's fallback list
2694 * @node: node whose fallback list we're appending
2695 * @used_node_mask: nodemask_t of already used nodes
2697 * We use a number of factors to determine which is the next node that should
2698 * appear on a given node's fallback list. The node should not have appeared
2699 * already in @node's fallback list, and it should be the next closest node
2700 * according to the distance array (which contains arbitrary distance values
2701 * from each node to each node in the system), and should also prefer nodes
2702 * with no CPUs, since presumably they'll have very little allocation pressure
2703 * on them otherwise.
2704 * It returns -1 if no node is found.
2706 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2708 int n, val;
2709 int min_val = INT_MAX;
2710 int best_node = -1;
2711 const struct cpumask *tmp = cpumask_of_node(0);
2713 /* Use the local node if we haven't already */
2714 if (!node_isset(node, *used_node_mask)) {
2715 node_set(node, *used_node_mask);
2716 return node;
2719 for_each_node_state(n, N_HIGH_MEMORY) {
2721 /* Don't want a node to appear more than once */
2722 if (node_isset(n, *used_node_mask))
2723 continue;
2725 /* Use the distance array to find the distance */
2726 val = node_distance(node, n);
2728 /* Penalize nodes under us ("prefer the next node") */
2729 val += (n < node);
2731 /* Give preference to headless and unused nodes */
2732 tmp = cpumask_of_node(n);
2733 if (!cpumask_empty(tmp))
2734 val += PENALTY_FOR_NODE_WITH_CPUS;
2736 /* Slight preference for less loaded node */
2737 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2738 val += node_load[n];
2740 if (val < min_val) {
2741 min_val = val;
2742 best_node = n;
2746 if (best_node >= 0)
2747 node_set(best_node, *used_node_mask);
2749 return best_node;
2754 * Build zonelists ordered by node and zones within node.
2755 * This results in maximum locality--normal zone overflows into local
2756 * DMA zone, if any--but risks exhausting DMA zone.
2758 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2760 int j;
2761 struct zonelist *zonelist;
2763 zonelist = &pgdat->node_zonelists[0];
2764 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2766 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2767 MAX_NR_ZONES - 1);
2768 zonelist->_zonerefs[j].zone = NULL;
2769 zonelist->_zonerefs[j].zone_idx = 0;
2773 * Build gfp_thisnode zonelists
2775 static void build_thisnode_zonelists(pg_data_t *pgdat)
2777 int j;
2778 struct zonelist *zonelist;
2780 zonelist = &pgdat->node_zonelists[1];
2781 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2782 zonelist->_zonerefs[j].zone = NULL;
2783 zonelist->_zonerefs[j].zone_idx = 0;
2787 * Build zonelists ordered by zone and nodes within zones.
2788 * This results in conserving DMA zone[s] until all Normal memory is
2789 * exhausted, but results in overflowing to remote node while memory
2790 * may still exist in local DMA zone.
2792 static int node_order[MAX_NUMNODES];
2794 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2796 int pos, j, node;
2797 int zone_type; /* needs to be signed */
2798 struct zone *z;
2799 struct zonelist *zonelist;
2801 zonelist = &pgdat->node_zonelists[0];
2802 pos = 0;
2803 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2804 for (j = 0; j < nr_nodes; j++) {
2805 node = node_order[j];
2806 z = &NODE_DATA(node)->node_zones[zone_type];
2807 if (populated_zone(z)) {
2808 zoneref_set_zone(z,
2809 &zonelist->_zonerefs[pos++]);
2810 check_highest_zone(zone_type);
2814 zonelist->_zonerefs[pos].zone = NULL;
2815 zonelist->_zonerefs[pos].zone_idx = 0;
2818 static int default_zonelist_order(void)
2820 int nid, zone_type;
2821 unsigned long low_kmem_size,total_size;
2822 struct zone *z;
2823 int average_size;
2825 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2826 * If they are really small and used heavily, the system can fall
2827 * into OOM very easily.
2828 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2830 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2831 low_kmem_size = 0;
2832 total_size = 0;
2833 for_each_online_node(nid) {
2834 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2835 z = &NODE_DATA(nid)->node_zones[zone_type];
2836 if (populated_zone(z)) {
2837 if (zone_type < ZONE_NORMAL)
2838 low_kmem_size += z->present_pages;
2839 total_size += z->present_pages;
2840 } else if (zone_type == ZONE_NORMAL) {
2842 * If any node has only lowmem, then node order
2843 * is preferred to allow kernel allocations
2844 * locally; otherwise, they can easily infringe
2845 * on other nodes when there is an abundance of
2846 * lowmem available to allocate from.
2848 return ZONELIST_ORDER_NODE;
2852 if (!low_kmem_size || /* there are no DMA area. */
2853 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2854 return ZONELIST_ORDER_NODE;
2856 * look into each node's config.
2857 * If there is a node whose DMA/DMA32 memory is very big area on
2858 * local memory, NODE_ORDER may be suitable.
2860 average_size = total_size /
2861 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2862 for_each_online_node(nid) {
2863 low_kmem_size = 0;
2864 total_size = 0;
2865 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2866 z = &NODE_DATA(nid)->node_zones[zone_type];
2867 if (populated_zone(z)) {
2868 if (zone_type < ZONE_NORMAL)
2869 low_kmem_size += z->present_pages;
2870 total_size += z->present_pages;
2873 if (low_kmem_size &&
2874 total_size > average_size && /* ignore small node */
2875 low_kmem_size > total_size * 70/100)
2876 return ZONELIST_ORDER_NODE;
2878 return ZONELIST_ORDER_ZONE;
2881 static void set_zonelist_order(void)
2883 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2884 current_zonelist_order = default_zonelist_order();
2885 else
2886 current_zonelist_order = user_zonelist_order;
2889 static void build_zonelists(pg_data_t *pgdat)
2891 int j, node, load;
2892 enum zone_type i;
2893 nodemask_t used_mask;
2894 int local_node, prev_node;
2895 struct zonelist *zonelist;
2896 int order = current_zonelist_order;
2898 /* initialize zonelists */
2899 for (i = 0; i < MAX_ZONELISTS; i++) {
2900 zonelist = pgdat->node_zonelists + i;
2901 zonelist->_zonerefs[0].zone = NULL;
2902 zonelist->_zonerefs[0].zone_idx = 0;
2905 /* NUMA-aware ordering of nodes */
2906 local_node = pgdat->node_id;
2907 load = nr_online_nodes;
2908 prev_node = local_node;
2909 nodes_clear(used_mask);
2911 memset(node_order, 0, sizeof(node_order));
2912 j = 0;
2914 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2915 int distance = node_distance(local_node, node);
2918 * If another node is sufficiently far away then it is better
2919 * to reclaim pages in a zone before going off node.
2921 if (distance > RECLAIM_DISTANCE)
2922 zone_reclaim_mode = 1;
2925 * We don't want to pressure a particular node.
2926 * So adding penalty to the first node in same
2927 * distance group to make it round-robin.
2929 if (distance != node_distance(local_node, prev_node))
2930 node_load[node] = load;
2932 prev_node = node;
2933 load--;
2934 if (order == ZONELIST_ORDER_NODE)
2935 build_zonelists_in_node_order(pgdat, node);
2936 else
2937 node_order[j++] = node; /* remember order */
2940 if (order == ZONELIST_ORDER_ZONE) {
2941 /* calculate node order -- i.e., DMA last! */
2942 build_zonelists_in_zone_order(pgdat, j);
2945 build_thisnode_zonelists(pgdat);
2948 /* Construct the zonelist performance cache - see further mmzone.h */
2949 static void build_zonelist_cache(pg_data_t *pgdat)
2951 struct zonelist *zonelist;
2952 struct zonelist_cache *zlc;
2953 struct zoneref *z;
2955 zonelist = &pgdat->node_zonelists[0];
2956 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2957 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2958 for (z = zonelist->_zonerefs; z->zone; z++)
2959 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2962 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2964 * Return node id of node used for "local" allocations.
2965 * I.e., first node id of first zone in arg node's generic zonelist.
2966 * Used for initializing percpu 'numa_mem', which is used primarily
2967 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2969 int local_memory_node(int node)
2971 struct zone *zone;
2973 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2974 gfp_zone(GFP_KERNEL),
2975 NULL,
2976 &zone);
2977 return zone->node;
2979 #endif
2981 #else /* CONFIG_NUMA */
2983 static void set_zonelist_order(void)
2985 current_zonelist_order = ZONELIST_ORDER_ZONE;
2988 static void build_zonelists(pg_data_t *pgdat)
2990 int node, local_node;
2991 enum zone_type j;
2992 struct zonelist *zonelist;
2994 local_node = pgdat->node_id;
2996 zonelist = &pgdat->node_zonelists[0];
2997 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3000 * Now we build the zonelist so that it contains the zones
3001 * of all the other nodes.
3002 * We don't want to pressure a particular node, so when
3003 * building the zones for node N, we make sure that the
3004 * zones coming right after the local ones are those from
3005 * node N+1 (modulo N)
3007 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3008 if (!node_online(node))
3009 continue;
3010 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3011 MAX_NR_ZONES - 1);
3013 for (node = 0; node < local_node; node++) {
3014 if (!node_online(node))
3015 continue;
3016 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3017 MAX_NR_ZONES - 1);
3020 zonelist->_zonerefs[j].zone = NULL;
3021 zonelist->_zonerefs[j].zone_idx = 0;
3024 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3025 static void build_zonelist_cache(pg_data_t *pgdat)
3027 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3030 #endif /* CONFIG_NUMA */
3033 * Boot pageset table. One per cpu which is going to be used for all
3034 * zones and all nodes. The parameters will be set in such a way
3035 * that an item put on a list will immediately be handed over to
3036 * the buddy list. This is safe since pageset manipulation is done
3037 * with interrupts disabled.
3039 * The boot_pagesets must be kept even after bootup is complete for
3040 * unused processors and/or zones. They do play a role for bootstrapping
3041 * hotplugged processors.
3043 * zoneinfo_show() and maybe other functions do
3044 * not check if the processor is online before following the pageset pointer.
3045 * Other parts of the kernel may not check if the zone is available.
3047 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3048 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3049 static void setup_zone_pageset(struct zone *zone);
3052 * Global mutex to protect against size modification of zonelists
3053 * as well as to serialize pageset setup for the new populated zone.
3055 DEFINE_MUTEX(zonelists_mutex);
3057 /* return values int ....just for stop_machine() */
3058 static __init_refok int __build_all_zonelists(void *data)
3060 int nid;
3061 int cpu;
3063 #ifdef CONFIG_NUMA
3064 memset(node_load, 0, sizeof(node_load));
3065 #endif
3066 for_each_online_node(nid) {
3067 pg_data_t *pgdat = NODE_DATA(nid);
3069 build_zonelists(pgdat);
3070 build_zonelist_cache(pgdat);
3074 * Initialize the boot_pagesets that are going to be used
3075 * for bootstrapping processors. The real pagesets for
3076 * each zone will be allocated later when the per cpu
3077 * allocator is available.
3079 * boot_pagesets are used also for bootstrapping offline
3080 * cpus if the system is already booted because the pagesets
3081 * are needed to initialize allocators on a specific cpu too.
3082 * F.e. the percpu allocator needs the page allocator which
3083 * needs the percpu allocator in order to allocate its pagesets
3084 * (a chicken-egg dilemma).
3086 for_each_possible_cpu(cpu) {
3087 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3089 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3091 * We now know the "local memory node" for each node--
3092 * i.e., the node of the first zone in the generic zonelist.
3093 * Set up numa_mem percpu variable for on-line cpus. During
3094 * boot, only the boot cpu should be on-line; we'll init the
3095 * secondary cpus' numa_mem as they come on-line. During
3096 * node/memory hotplug, we'll fixup all on-line cpus.
3098 if (cpu_online(cpu))
3099 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3100 #endif
3103 return 0;
3107 * Called with zonelists_mutex held always
3108 * unless system_state == SYSTEM_BOOTING.
3110 void build_all_zonelists(void *data)
3112 set_zonelist_order();
3114 if (system_state == SYSTEM_BOOTING) {
3115 __build_all_zonelists(NULL);
3116 mminit_verify_zonelist();
3117 cpuset_init_current_mems_allowed();
3118 } else {
3119 /* we have to stop all cpus to guarantee there is no user
3120 of zonelist */
3121 #ifdef CONFIG_MEMORY_HOTPLUG
3122 if (data)
3123 setup_zone_pageset((struct zone *)data);
3124 #endif
3125 stop_machine(__build_all_zonelists, NULL, NULL);
3126 /* cpuset refresh routine should be here */
3128 vm_total_pages = nr_free_pagecache_pages();
3130 * Disable grouping by mobility if the number of pages in the
3131 * system is too low to allow the mechanism to work. It would be
3132 * more accurate, but expensive to check per-zone. This check is
3133 * made on memory-hotadd so a system can start with mobility
3134 * disabled and enable it later
3136 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3137 page_group_by_mobility_disabled = 1;
3138 else
3139 page_group_by_mobility_disabled = 0;
3141 printk("Built %i zonelists in %s order, mobility grouping %s. "
3142 "Total pages: %ld\n",
3143 nr_online_nodes,
3144 zonelist_order_name[current_zonelist_order],
3145 page_group_by_mobility_disabled ? "off" : "on",
3146 vm_total_pages);
3147 #ifdef CONFIG_NUMA
3148 printk("Policy zone: %s\n", zone_names[policy_zone]);
3149 #endif
3153 * Helper functions to size the waitqueue hash table.
3154 * Essentially these want to choose hash table sizes sufficiently
3155 * large so that collisions trying to wait on pages are rare.
3156 * But in fact, the number of active page waitqueues on typical
3157 * systems is ridiculously low, less than 200. So this is even
3158 * conservative, even though it seems large.
3160 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3161 * waitqueues, i.e. the size of the waitq table given the number of pages.
3163 #define PAGES_PER_WAITQUEUE 256
3165 #ifndef CONFIG_MEMORY_HOTPLUG
3166 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3168 unsigned long size = 1;
3170 pages /= PAGES_PER_WAITQUEUE;
3172 while (size < pages)
3173 size <<= 1;
3176 * Once we have dozens or even hundreds of threads sleeping
3177 * on IO we've got bigger problems than wait queue collision.
3178 * Limit the size of the wait table to a reasonable size.
3180 size = min(size, 4096UL);
3182 return max(size, 4UL);
3184 #else
3186 * A zone's size might be changed by hot-add, so it is not possible to determine
3187 * a suitable size for its wait_table. So we use the maximum size now.
3189 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3191 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3192 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3193 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3195 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3196 * or more by the traditional way. (See above). It equals:
3198 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3199 * ia64(16K page size) : = ( 8G + 4M)byte.
3200 * powerpc (64K page size) : = (32G +16M)byte.
3202 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3204 return 4096UL;
3206 #endif
3209 * This is an integer logarithm so that shifts can be used later
3210 * to extract the more random high bits from the multiplicative
3211 * hash function before the remainder is taken.
3213 static inline unsigned long wait_table_bits(unsigned long size)
3215 return ffz(~size);
3218 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3221 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3222 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3223 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3224 * higher will lead to a bigger reserve which will get freed as contiguous
3225 * blocks as reclaim kicks in
3227 static void setup_zone_migrate_reserve(struct zone *zone)
3229 unsigned long start_pfn, pfn, end_pfn;
3230 struct page *page;
3231 unsigned long block_migratetype;
3232 int reserve;
3234 /* Get the start pfn, end pfn and the number of blocks to reserve */
3235 start_pfn = zone->zone_start_pfn;
3236 end_pfn = start_pfn + zone->spanned_pages;
3237 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3238 pageblock_order;
3241 * Reserve blocks are generally in place to help high-order atomic
3242 * allocations that are short-lived. A min_free_kbytes value that
3243 * would result in more than 2 reserve blocks for atomic allocations
3244 * is assumed to be in place to help anti-fragmentation for the
3245 * future allocation of hugepages at runtime.
3247 reserve = min(2, reserve);
3249 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3250 if (!pfn_valid(pfn))
3251 continue;
3252 page = pfn_to_page(pfn);
3254 /* Watch out for overlapping nodes */
3255 if (page_to_nid(page) != zone_to_nid(zone))
3256 continue;
3258 /* Blocks with reserved pages will never free, skip them. */
3259 if (PageReserved(page))
3260 continue;
3262 block_migratetype = get_pageblock_migratetype(page);
3264 /* If this block is reserved, account for it */
3265 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3266 reserve--;
3267 continue;
3270 /* Suitable for reserving if this block is movable */
3271 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3272 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3273 move_freepages_block(zone, page, MIGRATE_RESERVE);
3274 reserve--;
3275 continue;
3279 * If the reserve is met and this is a previous reserved block,
3280 * take it back
3282 if (block_migratetype == MIGRATE_RESERVE) {
3283 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3284 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3290 * Initially all pages are reserved - free ones are freed
3291 * up by free_all_bootmem() once the early boot process is
3292 * done. Non-atomic initialization, single-pass.
3294 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3295 unsigned long start_pfn, enum memmap_context context)
3297 struct page *page;
3298 unsigned long end_pfn = start_pfn + size;
3299 unsigned long pfn;
3300 struct zone *z;
3302 if (highest_memmap_pfn < end_pfn - 1)
3303 highest_memmap_pfn = end_pfn - 1;
3305 z = &NODE_DATA(nid)->node_zones[zone];
3306 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3308 * There can be holes in boot-time mem_map[]s
3309 * handed to this function. They do not
3310 * exist on hotplugged memory.
3312 if (context == MEMMAP_EARLY) {
3313 if (!early_pfn_valid(pfn))
3314 continue;
3315 if (!early_pfn_in_nid(pfn, nid))
3316 continue;
3318 page = pfn_to_page(pfn);
3319 set_page_links(page, zone, nid, pfn);
3320 mminit_verify_page_links(page, zone, nid, pfn);
3321 init_page_count(page);
3322 reset_page_mapcount(page);
3323 SetPageReserved(page);
3325 * Mark the block movable so that blocks are reserved for
3326 * movable at startup. This will force kernel allocations
3327 * to reserve their blocks rather than leaking throughout
3328 * the address space during boot when many long-lived
3329 * kernel allocations are made. Later some blocks near
3330 * the start are marked MIGRATE_RESERVE by
3331 * setup_zone_migrate_reserve()
3333 * bitmap is created for zone's valid pfn range. but memmap
3334 * can be created for invalid pages (for alignment)
3335 * check here not to call set_pageblock_migratetype() against
3336 * pfn out of zone.
3338 if ((z->zone_start_pfn <= pfn)
3339 && (pfn < z->zone_start_pfn + z->spanned_pages)
3340 && !(pfn & (pageblock_nr_pages - 1)))
3341 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3343 INIT_LIST_HEAD(&page->lru);
3344 #ifdef WANT_PAGE_VIRTUAL
3345 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3346 if (!is_highmem_idx(zone))
3347 set_page_address(page, __va(pfn << PAGE_SHIFT));
3348 #endif
3352 static void __meminit zone_init_free_lists(struct zone *zone)
3354 int order, t;
3355 for_each_migratetype_order(order, t) {
3356 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3357 zone->free_area[order].nr_free = 0;
3361 #ifndef __HAVE_ARCH_MEMMAP_INIT
3362 #define memmap_init(size, nid, zone, start_pfn) \
3363 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3364 #endif
3366 static int zone_batchsize(struct zone *zone)
3368 #ifdef CONFIG_MMU
3369 int batch;
3372 * The per-cpu-pages pools are set to around 1000th of the
3373 * size of the zone. But no more than 1/2 of a meg.
3375 * OK, so we don't know how big the cache is. So guess.
3377 batch = zone->present_pages / 1024;
3378 if (batch * PAGE_SIZE > 512 * 1024)
3379 batch = (512 * 1024) / PAGE_SIZE;
3380 batch /= 4; /* We effectively *= 4 below */
3381 if (batch < 1)
3382 batch = 1;
3385 * Clamp the batch to a 2^n - 1 value. Having a power
3386 * of 2 value was found to be more likely to have
3387 * suboptimal cache aliasing properties in some cases.
3389 * For example if 2 tasks are alternately allocating
3390 * batches of pages, one task can end up with a lot
3391 * of pages of one half of the possible page colors
3392 * and the other with pages of the other colors.
3394 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3396 return batch;
3398 #else
3399 /* The deferral and batching of frees should be suppressed under NOMMU
3400 * conditions.
3402 * The problem is that NOMMU needs to be able to allocate large chunks
3403 * of contiguous memory as there's no hardware page translation to
3404 * assemble apparent contiguous memory from discontiguous pages.
3406 * Queueing large contiguous runs of pages for batching, however,
3407 * causes the pages to actually be freed in smaller chunks. As there
3408 * can be a significant delay between the individual batches being
3409 * recycled, this leads to the once large chunks of space being
3410 * fragmented and becoming unavailable for high-order allocations.
3412 return 0;
3413 #endif
3416 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3418 struct per_cpu_pages *pcp;
3419 int migratetype;
3421 memset(p, 0, sizeof(*p));
3423 pcp = &p->pcp;
3424 pcp->count = 0;
3425 pcp->high = 6 * batch;
3426 pcp->batch = max(1UL, 1 * batch);
3427 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3428 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3432 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3433 * to the value high for the pageset p.
3436 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3437 unsigned long high)
3439 struct per_cpu_pages *pcp;
3441 pcp = &p->pcp;
3442 pcp->high = high;
3443 pcp->batch = max(1UL, high/4);
3444 if ((high/4) > (PAGE_SHIFT * 8))
3445 pcp->batch = PAGE_SHIFT * 8;
3448 static __meminit void setup_zone_pageset(struct zone *zone)
3450 int cpu;
3452 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3454 for_each_possible_cpu(cpu) {
3455 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3457 setup_pageset(pcp, zone_batchsize(zone));
3459 if (percpu_pagelist_fraction)
3460 setup_pagelist_highmark(pcp,
3461 (zone->present_pages /
3462 percpu_pagelist_fraction));
3467 * Allocate per cpu pagesets and initialize them.
3468 * Before this call only boot pagesets were available.
3470 void __init setup_per_cpu_pageset(void)
3472 struct zone *zone;
3474 for_each_populated_zone(zone)
3475 setup_zone_pageset(zone);
3478 static noinline __init_refok
3479 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3481 int i;
3482 struct pglist_data *pgdat = zone->zone_pgdat;
3483 size_t alloc_size;
3486 * The per-page waitqueue mechanism uses hashed waitqueues
3487 * per zone.
3489 zone->wait_table_hash_nr_entries =
3490 wait_table_hash_nr_entries(zone_size_pages);
3491 zone->wait_table_bits =
3492 wait_table_bits(zone->wait_table_hash_nr_entries);
3493 alloc_size = zone->wait_table_hash_nr_entries
3494 * sizeof(wait_queue_head_t);
3496 if (!slab_is_available()) {
3497 zone->wait_table = (wait_queue_head_t *)
3498 alloc_bootmem_node(pgdat, alloc_size);
3499 } else {
3501 * This case means that a zone whose size was 0 gets new memory
3502 * via memory hot-add.
3503 * But it may be the case that a new node was hot-added. In
3504 * this case vmalloc() will not be able to use this new node's
3505 * memory - this wait_table must be initialized to use this new
3506 * node itself as well.
3507 * To use this new node's memory, further consideration will be
3508 * necessary.
3510 zone->wait_table = vmalloc(alloc_size);
3512 if (!zone->wait_table)
3513 return -ENOMEM;
3515 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3516 init_waitqueue_head(zone->wait_table + i);
3518 return 0;
3521 static int __zone_pcp_update(void *data)
3523 struct zone *zone = data;
3524 int cpu;
3525 unsigned long batch = zone_batchsize(zone), flags;
3527 for_each_possible_cpu(cpu) {
3528 struct per_cpu_pageset *pset;
3529 struct per_cpu_pages *pcp;
3531 pset = per_cpu_ptr(zone->pageset, cpu);
3532 pcp = &pset->pcp;
3534 local_irq_save(flags);
3535 free_pcppages_bulk(zone, pcp->count, pcp);
3536 setup_pageset(pset, batch);
3537 local_irq_restore(flags);
3539 return 0;
3542 void zone_pcp_update(struct zone *zone)
3544 stop_machine(__zone_pcp_update, zone, NULL);
3547 static __meminit void zone_pcp_init(struct zone *zone)
3550 * per cpu subsystem is not up at this point. The following code
3551 * relies on the ability of the linker to provide the
3552 * offset of a (static) per cpu variable into the per cpu area.
3554 zone->pageset = &boot_pageset;
3556 if (zone->present_pages)
3557 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3558 zone->name, zone->present_pages,
3559 zone_batchsize(zone));
3562 __meminit int init_currently_empty_zone(struct zone *zone,
3563 unsigned long zone_start_pfn,
3564 unsigned long size,
3565 enum memmap_context context)
3567 struct pglist_data *pgdat = zone->zone_pgdat;
3568 int ret;
3569 ret = zone_wait_table_init(zone, size);
3570 if (ret)
3571 return ret;
3572 pgdat->nr_zones = zone_idx(zone) + 1;
3574 zone->zone_start_pfn = zone_start_pfn;
3576 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3577 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3578 pgdat->node_id,
3579 (unsigned long)zone_idx(zone),
3580 zone_start_pfn, (zone_start_pfn + size));
3582 zone_init_free_lists(zone);
3584 return 0;
3587 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3589 * Basic iterator support. Return the first range of PFNs for a node
3590 * Note: nid == MAX_NUMNODES returns first region regardless of node
3592 static int __meminit first_active_region_index_in_nid(int nid)
3594 int i;
3596 for (i = 0; i < nr_nodemap_entries; i++)
3597 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3598 return i;
3600 return -1;
3604 * Basic iterator support. Return the next active range of PFNs for a node
3605 * Note: nid == MAX_NUMNODES returns next region regardless of node
3607 static int __meminit next_active_region_index_in_nid(int index, int nid)
3609 for (index = index + 1; index < nr_nodemap_entries; index++)
3610 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3611 return index;
3613 return -1;
3616 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3618 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3619 * Architectures may implement their own version but if add_active_range()
3620 * was used and there are no special requirements, this is a convenient
3621 * alternative
3623 int __meminit __early_pfn_to_nid(unsigned long pfn)
3625 int i;
3627 for (i = 0; i < nr_nodemap_entries; i++) {
3628 unsigned long start_pfn = early_node_map[i].start_pfn;
3629 unsigned long end_pfn = early_node_map[i].end_pfn;
3631 if (start_pfn <= pfn && pfn < end_pfn)
3632 return early_node_map[i].nid;
3634 /* This is a memory hole */
3635 return -1;
3637 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3639 int __meminit early_pfn_to_nid(unsigned long pfn)
3641 int nid;
3643 nid = __early_pfn_to_nid(pfn);
3644 if (nid >= 0)
3645 return nid;
3646 /* just returns 0 */
3647 return 0;
3650 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3651 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3653 int nid;
3655 nid = __early_pfn_to_nid(pfn);
3656 if (nid >= 0 && nid != node)
3657 return false;
3658 return true;
3660 #endif
3662 /* Basic iterator support to walk early_node_map[] */
3663 #define for_each_active_range_index_in_nid(i, nid) \
3664 for (i = first_active_region_index_in_nid(nid); i != -1; \
3665 i = next_active_region_index_in_nid(i, nid))
3668 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3669 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3670 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3672 * If an architecture guarantees that all ranges registered with
3673 * add_active_ranges() contain no holes and may be freed, this
3674 * this function may be used instead of calling free_bootmem() manually.
3676 void __init free_bootmem_with_active_regions(int nid,
3677 unsigned long max_low_pfn)
3679 int i;
3681 for_each_active_range_index_in_nid(i, nid) {
3682 unsigned long size_pages = 0;
3683 unsigned long end_pfn = early_node_map[i].end_pfn;
3685 if (early_node_map[i].start_pfn >= max_low_pfn)
3686 continue;
3688 if (end_pfn > max_low_pfn)
3689 end_pfn = max_low_pfn;
3691 size_pages = end_pfn - early_node_map[i].start_pfn;
3692 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3693 PFN_PHYS(early_node_map[i].start_pfn),
3694 size_pages << PAGE_SHIFT);
3698 #ifdef CONFIG_HAVE_MEMBLOCK
3699 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3700 u64 goal, u64 limit)
3702 int i;
3704 /* Need to go over early_node_map to find out good range for node */
3705 for_each_active_range_index_in_nid(i, nid) {
3706 u64 addr;
3707 u64 ei_start, ei_last;
3708 u64 final_start, final_end;
3710 ei_last = early_node_map[i].end_pfn;
3711 ei_last <<= PAGE_SHIFT;
3712 ei_start = early_node_map[i].start_pfn;
3713 ei_start <<= PAGE_SHIFT;
3715 final_start = max(ei_start, goal);
3716 final_end = min(ei_last, limit);
3718 if (final_start >= final_end)
3719 continue;
3721 addr = memblock_find_in_range(final_start, final_end, size, align);
3723 if (addr == MEMBLOCK_ERROR)
3724 continue;
3726 return addr;
3729 return MEMBLOCK_ERROR;
3731 #endif
3733 int __init add_from_early_node_map(struct range *range, int az,
3734 int nr_range, int nid)
3736 int i;
3737 u64 start, end;
3739 /* need to go over early_node_map to find out good range for node */
3740 for_each_active_range_index_in_nid(i, nid) {
3741 start = early_node_map[i].start_pfn;
3742 end = early_node_map[i].end_pfn;
3743 nr_range = add_range(range, az, nr_range, start, end);
3745 return nr_range;
3748 #ifdef CONFIG_NO_BOOTMEM
3749 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3750 u64 goal, u64 limit)
3752 void *ptr;
3753 u64 addr;
3755 if (limit > memblock.current_limit)
3756 limit = memblock.current_limit;
3758 addr = find_memory_core_early(nid, size, align, goal, limit);
3760 if (addr == MEMBLOCK_ERROR)
3761 return NULL;
3763 ptr = phys_to_virt(addr);
3764 memset(ptr, 0, size);
3765 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3767 * The min_count is set to 0 so that bootmem allocated blocks
3768 * are never reported as leaks.
3770 kmemleak_alloc(ptr, size, 0, 0);
3771 return ptr;
3773 #endif
3776 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3778 int i;
3779 int ret;
3781 for_each_active_range_index_in_nid(i, nid) {
3782 ret = work_fn(early_node_map[i].start_pfn,
3783 early_node_map[i].end_pfn, data);
3784 if (ret)
3785 break;
3789 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3790 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3792 * If an architecture guarantees that all ranges registered with
3793 * add_active_ranges() contain no holes and may be freed, this
3794 * function may be used instead of calling memory_present() manually.
3796 void __init sparse_memory_present_with_active_regions(int nid)
3798 int i;
3800 for_each_active_range_index_in_nid(i, nid)
3801 memory_present(early_node_map[i].nid,
3802 early_node_map[i].start_pfn,
3803 early_node_map[i].end_pfn);
3807 * get_pfn_range_for_nid - Return the start and end page frames for a node
3808 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3809 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3810 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3812 * It returns the start and end page frame of a node based on information
3813 * provided by an arch calling add_active_range(). If called for a node
3814 * with no available memory, a warning is printed and the start and end
3815 * PFNs will be 0.
3817 void __meminit get_pfn_range_for_nid(unsigned int nid,
3818 unsigned long *start_pfn, unsigned long *end_pfn)
3820 int i;
3821 *start_pfn = -1UL;
3822 *end_pfn = 0;
3824 for_each_active_range_index_in_nid(i, nid) {
3825 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3826 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3829 if (*start_pfn == -1UL)
3830 *start_pfn = 0;
3834 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3835 * assumption is made that zones within a node are ordered in monotonic
3836 * increasing memory addresses so that the "highest" populated zone is used
3838 static void __init find_usable_zone_for_movable(void)
3840 int zone_index;
3841 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3842 if (zone_index == ZONE_MOVABLE)
3843 continue;
3845 if (arch_zone_highest_possible_pfn[zone_index] >
3846 arch_zone_lowest_possible_pfn[zone_index])
3847 break;
3850 VM_BUG_ON(zone_index == -1);
3851 movable_zone = zone_index;
3855 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3856 * because it is sized independant of architecture. Unlike the other zones,
3857 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3858 * in each node depending on the size of each node and how evenly kernelcore
3859 * is distributed. This helper function adjusts the zone ranges
3860 * provided by the architecture for a given node by using the end of the
3861 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3862 * zones within a node are in order of monotonic increases memory addresses
3864 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3865 unsigned long zone_type,
3866 unsigned long node_start_pfn,
3867 unsigned long node_end_pfn,
3868 unsigned long *zone_start_pfn,
3869 unsigned long *zone_end_pfn)
3871 /* Only adjust if ZONE_MOVABLE is on this node */
3872 if (zone_movable_pfn[nid]) {
3873 /* Size ZONE_MOVABLE */
3874 if (zone_type == ZONE_MOVABLE) {
3875 *zone_start_pfn = zone_movable_pfn[nid];
3876 *zone_end_pfn = min(node_end_pfn,
3877 arch_zone_highest_possible_pfn[movable_zone]);
3879 /* Adjust for ZONE_MOVABLE starting within this range */
3880 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3881 *zone_end_pfn > zone_movable_pfn[nid]) {
3882 *zone_end_pfn = zone_movable_pfn[nid];
3884 /* Check if this whole range is within ZONE_MOVABLE */
3885 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3886 *zone_start_pfn = *zone_end_pfn;
3891 * Return the number of pages a zone spans in a node, including holes
3892 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3894 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3895 unsigned long zone_type,
3896 unsigned long *ignored)
3898 unsigned long node_start_pfn, node_end_pfn;
3899 unsigned long zone_start_pfn, zone_end_pfn;
3901 /* Get the start and end of the node and zone */
3902 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3903 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3904 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3905 adjust_zone_range_for_zone_movable(nid, zone_type,
3906 node_start_pfn, node_end_pfn,
3907 &zone_start_pfn, &zone_end_pfn);
3909 /* Check that this node has pages within the zone's required range */
3910 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3911 return 0;
3913 /* Move the zone boundaries inside the node if necessary */
3914 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3915 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3917 /* Return the spanned pages */
3918 return zone_end_pfn - zone_start_pfn;
3922 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3923 * then all holes in the requested range will be accounted for.
3925 unsigned long __meminit __absent_pages_in_range(int nid,
3926 unsigned long range_start_pfn,
3927 unsigned long range_end_pfn)
3929 int i = 0;
3930 unsigned long prev_end_pfn = 0, hole_pages = 0;
3931 unsigned long start_pfn;
3933 /* Find the end_pfn of the first active range of pfns in the node */
3934 i = first_active_region_index_in_nid(nid);
3935 if (i == -1)
3936 return 0;
3938 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3940 /* Account for ranges before physical memory on this node */
3941 if (early_node_map[i].start_pfn > range_start_pfn)
3942 hole_pages = prev_end_pfn - range_start_pfn;
3944 /* Find all holes for the zone within the node */
3945 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3947 /* No need to continue if prev_end_pfn is outside the zone */
3948 if (prev_end_pfn >= range_end_pfn)
3949 break;
3951 /* Make sure the end of the zone is not within the hole */
3952 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3953 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3955 /* Update the hole size cound and move on */
3956 if (start_pfn > range_start_pfn) {
3957 BUG_ON(prev_end_pfn > start_pfn);
3958 hole_pages += start_pfn - prev_end_pfn;
3960 prev_end_pfn = early_node_map[i].end_pfn;
3963 /* Account for ranges past physical memory on this node */
3964 if (range_end_pfn > prev_end_pfn)
3965 hole_pages += range_end_pfn -
3966 max(range_start_pfn, prev_end_pfn);
3968 return hole_pages;
3972 * absent_pages_in_range - Return number of page frames in holes within a range
3973 * @start_pfn: The start PFN to start searching for holes
3974 * @end_pfn: The end PFN to stop searching for holes
3976 * It returns the number of pages frames in memory holes within a range.
3978 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3979 unsigned long end_pfn)
3981 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3984 /* Return the number of page frames in holes in a zone on a node */
3985 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3986 unsigned long zone_type,
3987 unsigned long *ignored)
3989 unsigned long node_start_pfn, node_end_pfn;
3990 unsigned long zone_start_pfn, zone_end_pfn;
3992 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3993 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3994 node_start_pfn);
3995 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3996 node_end_pfn);
3998 adjust_zone_range_for_zone_movable(nid, zone_type,
3999 node_start_pfn, node_end_pfn,
4000 &zone_start_pfn, &zone_end_pfn);
4001 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4004 #else
4005 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4006 unsigned long zone_type,
4007 unsigned long *zones_size)
4009 return zones_size[zone_type];
4012 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4013 unsigned long zone_type,
4014 unsigned long *zholes_size)
4016 if (!zholes_size)
4017 return 0;
4019 return zholes_size[zone_type];
4022 #endif
4024 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4025 unsigned long *zones_size, unsigned long *zholes_size)
4027 unsigned long realtotalpages, totalpages = 0;
4028 enum zone_type i;
4030 for (i = 0; i < MAX_NR_ZONES; i++)
4031 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4032 zones_size);
4033 pgdat->node_spanned_pages = totalpages;
4035 realtotalpages = totalpages;
4036 for (i = 0; i < MAX_NR_ZONES; i++)
4037 realtotalpages -=
4038 zone_absent_pages_in_node(pgdat->node_id, i,
4039 zholes_size);
4040 pgdat->node_present_pages = realtotalpages;
4041 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4042 realtotalpages);
4045 #ifndef CONFIG_SPARSEMEM
4047 * Calculate the size of the zone->blockflags rounded to an unsigned long
4048 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4049 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4050 * round what is now in bits to nearest long in bits, then return it in
4051 * bytes.
4053 static unsigned long __init usemap_size(unsigned long zonesize)
4055 unsigned long usemapsize;
4057 usemapsize = roundup(zonesize, pageblock_nr_pages);
4058 usemapsize = usemapsize >> pageblock_order;
4059 usemapsize *= NR_PAGEBLOCK_BITS;
4060 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4062 return usemapsize / 8;
4065 static void __init setup_usemap(struct pglist_data *pgdat,
4066 struct zone *zone, unsigned long zonesize)
4068 unsigned long usemapsize = usemap_size(zonesize);
4069 zone->pageblock_flags = NULL;
4070 if (usemapsize)
4071 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4073 #else
4074 static inline void setup_usemap(struct pglist_data *pgdat,
4075 struct zone *zone, unsigned long zonesize) {}
4076 #endif /* CONFIG_SPARSEMEM */
4078 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4080 /* Return a sensible default order for the pageblock size. */
4081 static inline int pageblock_default_order(void)
4083 if (HPAGE_SHIFT > PAGE_SHIFT)
4084 return HUGETLB_PAGE_ORDER;
4086 return MAX_ORDER-1;
4089 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4090 static inline void __init set_pageblock_order(unsigned int order)
4092 /* Check that pageblock_nr_pages has not already been setup */
4093 if (pageblock_order)
4094 return;
4097 * Assume the largest contiguous order of interest is a huge page.
4098 * This value may be variable depending on boot parameters on IA64
4100 pageblock_order = order;
4102 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4105 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4106 * and pageblock_default_order() are unused as pageblock_order is set
4107 * at compile-time. See include/linux/pageblock-flags.h for the values of
4108 * pageblock_order based on the kernel config
4110 static inline int pageblock_default_order(unsigned int order)
4112 return MAX_ORDER-1;
4114 #define set_pageblock_order(x) do {} while (0)
4116 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4119 * Set up the zone data structures:
4120 * - mark all pages reserved
4121 * - mark all memory queues empty
4122 * - clear the memory bitmaps
4124 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4125 unsigned long *zones_size, unsigned long *zholes_size)
4127 enum zone_type j;
4128 int nid = pgdat->node_id;
4129 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4130 int ret;
4132 pgdat_resize_init(pgdat);
4133 pgdat->nr_zones = 0;
4134 init_waitqueue_head(&pgdat->kswapd_wait);
4135 pgdat->kswapd_max_order = 0;
4136 pgdat_page_cgroup_init(pgdat);
4138 for (j = 0; j < MAX_NR_ZONES; j++) {
4139 struct zone *zone = pgdat->node_zones + j;
4140 unsigned long size, realsize, memmap_pages;
4141 enum lru_list l;
4143 size = zone_spanned_pages_in_node(nid, j, zones_size);
4144 realsize = size - zone_absent_pages_in_node(nid, j,
4145 zholes_size);
4148 * Adjust realsize so that it accounts for how much memory
4149 * is used by this zone for memmap. This affects the watermark
4150 * and per-cpu initialisations
4152 memmap_pages =
4153 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4154 if (realsize >= memmap_pages) {
4155 realsize -= memmap_pages;
4156 if (memmap_pages)
4157 printk(KERN_DEBUG
4158 " %s zone: %lu pages used for memmap\n",
4159 zone_names[j], memmap_pages);
4160 } else
4161 printk(KERN_WARNING
4162 " %s zone: %lu pages exceeds realsize %lu\n",
4163 zone_names[j], memmap_pages, realsize);
4165 /* Account for reserved pages */
4166 if (j == 0 && realsize > dma_reserve) {
4167 realsize -= dma_reserve;
4168 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4169 zone_names[0], dma_reserve);
4172 if (!is_highmem_idx(j))
4173 nr_kernel_pages += realsize;
4174 nr_all_pages += realsize;
4176 zone->spanned_pages = size;
4177 zone->present_pages = realsize;
4178 #ifdef CONFIG_NUMA
4179 zone->node = nid;
4180 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4181 / 100;
4182 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4183 #endif
4184 zone->name = zone_names[j];
4185 spin_lock_init(&zone->lock);
4186 spin_lock_init(&zone->lru_lock);
4187 zone_seqlock_init(zone);
4188 zone->zone_pgdat = pgdat;
4190 zone_pcp_init(zone);
4191 for_each_lru(l) {
4192 INIT_LIST_HEAD(&zone->lru[l].list);
4193 zone->reclaim_stat.nr_saved_scan[l] = 0;
4195 zone->reclaim_stat.recent_rotated[0] = 0;
4196 zone->reclaim_stat.recent_rotated[1] = 0;
4197 zone->reclaim_stat.recent_scanned[0] = 0;
4198 zone->reclaim_stat.recent_scanned[1] = 0;
4199 zap_zone_vm_stats(zone);
4200 zone->flags = 0;
4201 if (!size)
4202 continue;
4204 set_pageblock_order(pageblock_default_order());
4205 setup_usemap(pgdat, zone, size);
4206 ret = init_currently_empty_zone(zone, zone_start_pfn,
4207 size, MEMMAP_EARLY);
4208 BUG_ON(ret);
4209 memmap_init(size, nid, j, zone_start_pfn);
4210 zone_start_pfn += size;
4214 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4216 /* Skip empty nodes */
4217 if (!pgdat->node_spanned_pages)
4218 return;
4220 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4221 /* ia64 gets its own node_mem_map, before this, without bootmem */
4222 if (!pgdat->node_mem_map) {
4223 unsigned long size, start, end;
4224 struct page *map;
4227 * The zone's endpoints aren't required to be MAX_ORDER
4228 * aligned but the node_mem_map endpoints must be in order
4229 * for the buddy allocator to function correctly.
4231 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4232 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4233 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4234 size = (end - start) * sizeof(struct page);
4235 map = alloc_remap(pgdat->node_id, size);
4236 if (!map)
4237 map = alloc_bootmem_node(pgdat, size);
4238 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4240 #ifndef CONFIG_NEED_MULTIPLE_NODES
4242 * With no DISCONTIG, the global mem_map is just set as node 0's
4244 if (pgdat == NODE_DATA(0)) {
4245 mem_map = NODE_DATA(0)->node_mem_map;
4246 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4247 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4248 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4249 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4251 #endif
4252 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4255 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4256 unsigned long node_start_pfn, unsigned long *zholes_size)
4258 pg_data_t *pgdat = NODE_DATA(nid);
4260 pgdat->node_id = nid;
4261 pgdat->node_start_pfn = node_start_pfn;
4262 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4264 alloc_node_mem_map(pgdat);
4265 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4266 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4267 nid, (unsigned long)pgdat,
4268 (unsigned long)pgdat->node_mem_map);
4269 #endif
4271 free_area_init_core(pgdat, zones_size, zholes_size);
4274 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4276 #if MAX_NUMNODES > 1
4278 * Figure out the number of possible node ids.
4280 static void __init setup_nr_node_ids(void)
4282 unsigned int node;
4283 unsigned int highest = 0;
4285 for_each_node_mask(node, node_possible_map)
4286 highest = node;
4287 nr_node_ids = highest + 1;
4289 #else
4290 static inline void setup_nr_node_ids(void)
4293 #endif
4296 * add_active_range - Register a range of PFNs backed by physical memory
4297 * @nid: The node ID the range resides on
4298 * @start_pfn: The start PFN of the available physical memory
4299 * @end_pfn: The end PFN of the available physical memory
4301 * These ranges are stored in an early_node_map[] and later used by
4302 * free_area_init_nodes() to calculate zone sizes and holes. If the
4303 * range spans a memory hole, it is up to the architecture to ensure
4304 * the memory is not freed by the bootmem allocator. If possible
4305 * the range being registered will be merged with existing ranges.
4307 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4308 unsigned long end_pfn)
4310 int i;
4312 mminit_dprintk(MMINIT_TRACE, "memory_register",
4313 "Entering add_active_range(%d, %#lx, %#lx) "
4314 "%d entries of %d used\n",
4315 nid, start_pfn, end_pfn,
4316 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4318 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4320 /* Merge with existing active regions if possible */
4321 for (i = 0; i < nr_nodemap_entries; i++) {
4322 if (early_node_map[i].nid != nid)
4323 continue;
4325 /* Skip if an existing region covers this new one */
4326 if (start_pfn >= early_node_map[i].start_pfn &&
4327 end_pfn <= early_node_map[i].end_pfn)
4328 return;
4330 /* Merge forward if suitable */
4331 if (start_pfn <= early_node_map[i].end_pfn &&
4332 end_pfn > early_node_map[i].end_pfn) {
4333 early_node_map[i].end_pfn = end_pfn;
4334 return;
4337 /* Merge backward if suitable */
4338 if (start_pfn < early_node_map[i].start_pfn &&
4339 end_pfn >= early_node_map[i].start_pfn) {
4340 early_node_map[i].start_pfn = start_pfn;
4341 return;
4345 /* Check that early_node_map is large enough */
4346 if (i >= MAX_ACTIVE_REGIONS) {
4347 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4348 MAX_ACTIVE_REGIONS);
4349 return;
4352 early_node_map[i].nid = nid;
4353 early_node_map[i].start_pfn = start_pfn;
4354 early_node_map[i].end_pfn = end_pfn;
4355 nr_nodemap_entries = i + 1;
4359 * remove_active_range - Shrink an existing registered range of PFNs
4360 * @nid: The node id the range is on that should be shrunk
4361 * @start_pfn: The new PFN of the range
4362 * @end_pfn: The new PFN of the range
4364 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4365 * The map is kept near the end physical page range that has already been
4366 * registered. This function allows an arch to shrink an existing registered
4367 * range.
4369 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4370 unsigned long end_pfn)
4372 int i, j;
4373 int removed = 0;
4375 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4376 nid, start_pfn, end_pfn);
4378 /* Find the old active region end and shrink */
4379 for_each_active_range_index_in_nid(i, nid) {
4380 if (early_node_map[i].start_pfn >= start_pfn &&
4381 early_node_map[i].end_pfn <= end_pfn) {
4382 /* clear it */
4383 early_node_map[i].start_pfn = 0;
4384 early_node_map[i].end_pfn = 0;
4385 removed = 1;
4386 continue;
4388 if (early_node_map[i].start_pfn < start_pfn &&
4389 early_node_map[i].end_pfn > start_pfn) {
4390 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4391 early_node_map[i].end_pfn = start_pfn;
4392 if (temp_end_pfn > end_pfn)
4393 add_active_range(nid, end_pfn, temp_end_pfn);
4394 continue;
4396 if (early_node_map[i].start_pfn >= start_pfn &&
4397 early_node_map[i].end_pfn > end_pfn &&
4398 early_node_map[i].start_pfn < end_pfn) {
4399 early_node_map[i].start_pfn = end_pfn;
4400 continue;
4404 if (!removed)
4405 return;
4407 /* remove the blank ones */
4408 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4409 if (early_node_map[i].nid != nid)
4410 continue;
4411 if (early_node_map[i].end_pfn)
4412 continue;
4413 /* we found it, get rid of it */
4414 for (j = i; j < nr_nodemap_entries - 1; j++)
4415 memcpy(&early_node_map[j], &early_node_map[j+1],
4416 sizeof(early_node_map[j]));
4417 j = nr_nodemap_entries - 1;
4418 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4419 nr_nodemap_entries--;
4424 * remove_all_active_ranges - Remove all currently registered regions
4426 * During discovery, it may be found that a table like SRAT is invalid
4427 * and an alternative discovery method must be used. This function removes
4428 * all currently registered regions.
4430 void __init remove_all_active_ranges(void)
4432 memset(early_node_map, 0, sizeof(early_node_map));
4433 nr_nodemap_entries = 0;
4436 /* Compare two active node_active_regions */
4437 static int __init cmp_node_active_region(const void *a, const void *b)
4439 struct node_active_region *arange = (struct node_active_region *)a;
4440 struct node_active_region *brange = (struct node_active_region *)b;
4442 /* Done this way to avoid overflows */
4443 if (arange->start_pfn > brange->start_pfn)
4444 return 1;
4445 if (arange->start_pfn < brange->start_pfn)
4446 return -1;
4448 return 0;
4451 /* sort the node_map by start_pfn */
4452 void __init sort_node_map(void)
4454 sort(early_node_map, (size_t)nr_nodemap_entries,
4455 sizeof(struct node_active_region),
4456 cmp_node_active_region, NULL);
4459 /* Find the lowest pfn for a node */
4460 static unsigned long __init find_min_pfn_for_node(int nid)
4462 int i;
4463 unsigned long min_pfn = ULONG_MAX;
4465 /* Assuming a sorted map, the first range found has the starting pfn */
4466 for_each_active_range_index_in_nid(i, nid)
4467 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4469 if (min_pfn == ULONG_MAX) {
4470 printk(KERN_WARNING
4471 "Could not find start_pfn for node %d\n", nid);
4472 return 0;
4475 return min_pfn;
4479 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4481 * It returns the minimum PFN based on information provided via
4482 * add_active_range().
4484 unsigned long __init find_min_pfn_with_active_regions(void)
4486 return find_min_pfn_for_node(MAX_NUMNODES);
4490 * early_calculate_totalpages()
4491 * Sum pages in active regions for movable zone.
4492 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4494 static unsigned long __init early_calculate_totalpages(void)
4496 int i;
4497 unsigned long totalpages = 0;
4499 for (i = 0; i < nr_nodemap_entries; i++) {
4500 unsigned long pages = early_node_map[i].end_pfn -
4501 early_node_map[i].start_pfn;
4502 totalpages += pages;
4503 if (pages)
4504 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4506 return totalpages;
4510 * Find the PFN the Movable zone begins in each node. Kernel memory
4511 * is spread evenly between nodes as long as the nodes have enough
4512 * memory. When they don't, some nodes will have more kernelcore than
4513 * others
4515 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4517 int i, nid;
4518 unsigned long usable_startpfn;
4519 unsigned long kernelcore_node, kernelcore_remaining;
4520 /* save the state before borrow the nodemask */
4521 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4522 unsigned long totalpages = early_calculate_totalpages();
4523 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4526 * If movablecore was specified, calculate what size of
4527 * kernelcore that corresponds so that memory usable for
4528 * any allocation type is evenly spread. If both kernelcore
4529 * and movablecore are specified, then the value of kernelcore
4530 * will be used for required_kernelcore if it's greater than
4531 * what movablecore would have allowed.
4533 if (required_movablecore) {
4534 unsigned long corepages;
4537 * Round-up so that ZONE_MOVABLE is at least as large as what
4538 * was requested by the user
4540 required_movablecore =
4541 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4542 corepages = totalpages - required_movablecore;
4544 required_kernelcore = max(required_kernelcore, corepages);
4547 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4548 if (!required_kernelcore)
4549 goto out;
4551 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4552 find_usable_zone_for_movable();
4553 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4555 restart:
4556 /* Spread kernelcore memory as evenly as possible throughout nodes */
4557 kernelcore_node = required_kernelcore / usable_nodes;
4558 for_each_node_state(nid, N_HIGH_MEMORY) {
4560 * Recalculate kernelcore_node if the division per node
4561 * now exceeds what is necessary to satisfy the requested
4562 * amount of memory for the kernel
4564 if (required_kernelcore < kernelcore_node)
4565 kernelcore_node = required_kernelcore / usable_nodes;
4568 * As the map is walked, we track how much memory is usable
4569 * by the kernel using kernelcore_remaining. When it is
4570 * 0, the rest of the node is usable by ZONE_MOVABLE
4572 kernelcore_remaining = kernelcore_node;
4574 /* Go through each range of PFNs within this node */
4575 for_each_active_range_index_in_nid(i, nid) {
4576 unsigned long start_pfn, end_pfn;
4577 unsigned long size_pages;
4579 start_pfn = max(early_node_map[i].start_pfn,
4580 zone_movable_pfn[nid]);
4581 end_pfn = early_node_map[i].end_pfn;
4582 if (start_pfn >= end_pfn)
4583 continue;
4585 /* Account for what is only usable for kernelcore */
4586 if (start_pfn < usable_startpfn) {
4587 unsigned long kernel_pages;
4588 kernel_pages = min(end_pfn, usable_startpfn)
4589 - start_pfn;
4591 kernelcore_remaining -= min(kernel_pages,
4592 kernelcore_remaining);
4593 required_kernelcore -= min(kernel_pages,
4594 required_kernelcore);
4596 /* Continue if range is now fully accounted */
4597 if (end_pfn <= usable_startpfn) {
4600 * Push zone_movable_pfn to the end so
4601 * that if we have to rebalance
4602 * kernelcore across nodes, we will
4603 * not double account here
4605 zone_movable_pfn[nid] = end_pfn;
4606 continue;
4608 start_pfn = usable_startpfn;
4612 * The usable PFN range for ZONE_MOVABLE is from
4613 * start_pfn->end_pfn. Calculate size_pages as the
4614 * number of pages used as kernelcore
4616 size_pages = end_pfn - start_pfn;
4617 if (size_pages > kernelcore_remaining)
4618 size_pages = kernelcore_remaining;
4619 zone_movable_pfn[nid] = start_pfn + size_pages;
4622 * Some kernelcore has been met, update counts and
4623 * break if the kernelcore for this node has been
4624 * satisified
4626 required_kernelcore -= min(required_kernelcore,
4627 size_pages);
4628 kernelcore_remaining -= size_pages;
4629 if (!kernelcore_remaining)
4630 break;
4635 * If there is still required_kernelcore, we do another pass with one
4636 * less node in the count. This will push zone_movable_pfn[nid] further
4637 * along on the nodes that still have memory until kernelcore is
4638 * satisified
4640 usable_nodes--;
4641 if (usable_nodes && required_kernelcore > usable_nodes)
4642 goto restart;
4644 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4645 for (nid = 0; nid < MAX_NUMNODES; nid++)
4646 zone_movable_pfn[nid] =
4647 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4649 out:
4650 /* restore the node_state */
4651 node_states[N_HIGH_MEMORY] = saved_node_state;
4654 /* Any regular memory on that node ? */
4655 static void check_for_regular_memory(pg_data_t *pgdat)
4657 #ifdef CONFIG_HIGHMEM
4658 enum zone_type zone_type;
4660 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4661 struct zone *zone = &pgdat->node_zones[zone_type];
4662 if (zone->present_pages)
4663 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4665 #endif
4669 * free_area_init_nodes - Initialise all pg_data_t and zone data
4670 * @max_zone_pfn: an array of max PFNs for each zone
4672 * This will call free_area_init_node() for each active node in the system.
4673 * Using the page ranges provided by add_active_range(), the size of each
4674 * zone in each node and their holes is calculated. If the maximum PFN
4675 * between two adjacent zones match, it is assumed that the zone is empty.
4676 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4677 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4678 * starts where the previous one ended. For example, ZONE_DMA32 starts
4679 * at arch_max_dma_pfn.
4681 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4683 unsigned long nid;
4684 int i;
4686 /* Sort early_node_map as initialisation assumes it is sorted */
4687 sort_node_map();
4689 /* Record where the zone boundaries are */
4690 memset(arch_zone_lowest_possible_pfn, 0,
4691 sizeof(arch_zone_lowest_possible_pfn));
4692 memset(arch_zone_highest_possible_pfn, 0,
4693 sizeof(arch_zone_highest_possible_pfn));
4694 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4695 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4696 for (i = 1; i < MAX_NR_ZONES; i++) {
4697 if (i == ZONE_MOVABLE)
4698 continue;
4699 arch_zone_lowest_possible_pfn[i] =
4700 arch_zone_highest_possible_pfn[i-1];
4701 arch_zone_highest_possible_pfn[i] =
4702 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4704 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4705 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4707 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4708 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4709 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4711 /* Print out the zone ranges */
4712 printk("Zone PFN ranges:\n");
4713 for (i = 0; i < MAX_NR_ZONES; i++) {
4714 if (i == ZONE_MOVABLE)
4715 continue;
4716 printk(" %-8s ", zone_names[i]);
4717 if (arch_zone_lowest_possible_pfn[i] ==
4718 arch_zone_highest_possible_pfn[i])
4719 printk("empty\n");
4720 else
4721 printk("%0#10lx -> %0#10lx\n",
4722 arch_zone_lowest_possible_pfn[i],
4723 arch_zone_highest_possible_pfn[i]);
4726 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4727 printk("Movable zone start PFN for each node\n");
4728 for (i = 0; i < MAX_NUMNODES; i++) {
4729 if (zone_movable_pfn[i])
4730 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4733 /* Print out the early_node_map[] */
4734 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4735 for (i = 0; i < nr_nodemap_entries; i++)
4736 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4737 early_node_map[i].start_pfn,
4738 early_node_map[i].end_pfn);
4740 /* Initialise every node */
4741 mminit_verify_pageflags_layout();
4742 setup_nr_node_ids();
4743 for_each_online_node(nid) {
4744 pg_data_t *pgdat = NODE_DATA(nid);
4745 free_area_init_node(nid, NULL,
4746 find_min_pfn_for_node(nid), NULL);
4748 /* Any memory on that node */
4749 if (pgdat->node_present_pages)
4750 node_set_state(nid, N_HIGH_MEMORY);
4751 check_for_regular_memory(pgdat);
4755 static int __init cmdline_parse_core(char *p, unsigned long *core)
4757 unsigned long long coremem;
4758 if (!p)
4759 return -EINVAL;
4761 coremem = memparse(p, &p);
4762 *core = coremem >> PAGE_SHIFT;
4764 /* Paranoid check that UL is enough for the coremem value */
4765 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4767 return 0;
4771 * kernelcore=size sets the amount of memory for use for allocations that
4772 * cannot be reclaimed or migrated.
4774 static int __init cmdline_parse_kernelcore(char *p)
4776 return cmdline_parse_core(p, &required_kernelcore);
4780 * movablecore=size sets the amount of memory for use for allocations that
4781 * can be reclaimed or migrated.
4783 static int __init cmdline_parse_movablecore(char *p)
4785 return cmdline_parse_core(p, &required_movablecore);
4788 early_param("kernelcore", cmdline_parse_kernelcore);
4789 early_param("movablecore", cmdline_parse_movablecore);
4791 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4794 * set_dma_reserve - set the specified number of pages reserved in the first zone
4795 * @new_dma_reserve: The number of pages to mark reserved
4797 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4798 * In the DMA zone, a significant percentage may be consumed by kernel image
4799 * and other unfreeable allocations which can skew the watermarks badly. This
4800 * function may optionally be used to account for unfreeable pages in the
4801 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4802 * smaller per-cpu batchsize.
4804 void __init set_dma_reserve(unsigned long new_dma_reserve)
4806 dma_reserve = new_dma_reserve;
4809 #ifndef CONFIG_NEED_MULTIPLE_NODES
4810 struct pglist_data __refdata contig_page_data = {
4811 #ifndef CONFIG_NO_BOOTMEM
4812 .bdata = &bootmem_node_data[0]
4813 #endif
4815 EXPORT_SYMBOL(contig_page_data);
4816 #endif
4818 void __init free_area_init(unsigned long *zones_size)
4820 free_area_init_node(0, zones_size,
4821 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4824 static int page_alloc_cpu_notify(struct notifier_block *self,
4825 unsigned long action, void *hcpu)
4827 int cpu = (unsigned long)hcpu;
4829 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4830 drain_pages(cpu);
4833 * Spill the event counters of the dead processor
4834 * into the current processors event counters.
4835 * This artificially elevates the count of the current
4836 * processor.
4838 vm_events_fold_cpu(cpu);
4841 * Zero the differential counters of the dead processor
4842 * so that the vm statistics are consistent.
4844 * This is only okay since the processor is dead and cannot
4845 * race with what we are doing.
4847 refresh_cpu_vm_stats(cpu);
4849 return NOTIFY_OK;
4852 void __init page_alloc_init(void)
4854 hotcpu_notifier(page_alloc_cpu_notify, 0);
4858 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4859 * or min_free_kbytes changes.
4861 static void calculate_totalreserve_pages(void)
4863 struct pglist_data *pgdat;
4864 unsigned long reserve_pages = 0;
4865 enum zone_type i, j;
4867 for_each_online_pgdat(pgdat) {
4868 for (i = 0; i < MAX_NR_ZONES; i++) {
4869 struct zone *zone = pgdat->node_zones + i;
4870 unsigned long max = 0;
4872 /* Find valid and maximum lowmem_reserve in the zone */
4873 for (j = i; j < MAX_NR_ZONES; j++) {
4874 if (zone->lowmem_reserve[j] > max)
4875 max = zone->lowmem_reserve[j];
4878 /* we treat the high watermark as reserved pages. */
4879 max += high_wmark_pages(zone);
4881 if (max > zone->present_pages)
4882 max = zone->present_pages;
4883 reserve_pages += max;
4886 totalreserve_pages = reserve_pages;
4890 * setup_per_zone_lowmem_reserve - called whenever
4891 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4892 * has a correct pages reserved value, so an adequate number of
4893 * pages are left in the zone after a successful __alloc_pages().
4895 static void setup_per_zone_lowmem_reserve(void)
4897 struct pglist_data *pgdat;
4898 enum zone_type j, idx;
4900 for_each_online_pgdat(pgdat) {
4901 for (j = 0; j < MAX_NR_ZONES; j++) {
4902 struct zone *zone = pgdat->node_zones + j;
4903 unsigned long present_pages = zone->present_pages;
4905 zone->lowmem_reserve[j] = 0;
4907 idx = j;
4908 while (idx) {
4909 struct zone *lower_zone;
4911 idx--;
4913 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4914 sysctl_lowmem_reserve_ratio[idx] = 1;
4916 lower_zone = pgdat->node_zones + idx;
4917 lower_zone->lowmem_reserve[j] = present_pages /
4918 sysctl_lowmem_reserve_ratio[idx];
4919 present_pages += lower_zone->present_pages;
4924 /* update totalreserve_pages */
4925 calculate_totalreserve_pages();
4929 * setup_per_zone_wmarks - called when min_free_kbytes changes
4930 * or when memory is hot-{added|removed}
4932 * Ensures that the watermark[min,low,high] values for each zone are set
4933 * correctly with respect to min_free_kbytes.
4935 void setup_per_zone_wmarks(void)
4937 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4938 unsigned long lowmem_pages = 0;
4939 struct zone *zone;
4940 unsigned long flags;
4942 /* Calculate total number of !ZONE_HIGHMEM pages */
4943 for_each_zone(zone) {
4944 if (!is_highmem(zone))
4945 lowmem_pages += zone->present_pages;
4948 for_each_zone(zone) {
4949 u64 tmp;
4951 spin_lock_irqsave(&zone->lock, flags);
4952 tmp = (u64)pages_min * zone->present_pages;
4953 do_div(tmp, lowmem_pages);
4954 if (is_highmem(zone)) {
4956 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4957 * need highmem pages, so cap pages_min to a small
4958 * value here.
4960 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4961 * deltas controls asynch page reclaim, and so should
4962 * not be capped for highmem.
4964 int min_pages;
4966 min_pages = zone->present_pages / 1024;
4967 if (min_pages < SWAP_CLUSTER_MAX)
4968 min_pages = SWAP_CLUSTER_MAX;
4969 if (min_pages > 128)
4970 min_pages = 128;
4971 zone->watermark[WMARK_MIN] = min_pages;
4972 } else {
4974 * If it's a lowmem zone, reserve a number of pages
4975 * proportionate to the zone's size.
4977 zone->watermark[WMARK_MIN] = tmp;
4980 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4981 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4982 setup_zone_migrate_reserve(zone);
4983 spin_unlock_irqrestore(&zone->lock, flags);
4986 /* update totalreserve_pages */
4987 calculate_totalreserve_pages();
4991 * The inactive anon list should be small enough that the VM never has to
4992 * do too much work, but large enough that each inactive page has a chance
4993 * to be referenced again before it is swapped out.
4995 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4996 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4997 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4998 * the anonymous pages are kept on the inactive list.
5000 * total target max
5001 * memory ratio inactive anon
5002 * -------------------------------------
5003 * 10MB 1 5MB
5004 * 100MB 1 50MB
5005 * 1GB 3 250MB
5006 * 10GB 10 0.9GB
5007 * 100GB 31 3GB
5008 * 1TB 101 10GB
5009 * 10TB 320 32GB
5011 void calculate_zone_inactive_ratio(struct zone *zone)
5013 unsigned int gb, ratio;
5015 /* Zone size in gigabytes */
5016 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5017 if (gb)
5018 ratio = int_sqrt(10 * gb);
5019 else
5020 ratio = 1;
5022 zone->inactive_ratio = ratio;
5025 static void __init setup_per_zone_inactive_ratio(void)
5027 struct zone *zone;
5029 for_each_zone(zone)
5030 calculate_zone_inactive_ratio(zone);
5034 * Initialise min_free_kbytes.
5036 * For small machines we want it small (128k min). For large machines
5037 * we want it large (64MB max). But it is not linear, because network
5038 * bandwidth does not increase linearly with machine size. We use
5040 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5041 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5043 * which yields
5045 * 16MB: 512k
5046 * 32MB: 724k
5047 * 64MB: 1024k
5048 * 128MB: 1448k
5049 * 256MB: 2048k
5050 * 512MB: 2896k
5051 * 1024MB: 4096k
5052 * 2048MB: 5792k
5053 * 4096MB: 8192k
5054 * 8192MB: 11584k
5055 * 16384MB: 16384k
5057 static int __init init_per_zone_wmark_min(void)
5059 unsigned long lowmem_kbytes;
5061 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5063 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5064 if (min_free_kbytes < 128)
5065 min_free_kbytes = 128;
5066 if (min_free_kbytes > 65536)
5067 min_free_kbytes = 65536;
5068 setup_per_zone_wmarks();
5069 setup_per_zone_lowmem_reserve();
5070 setup_per_zone_inactive_ratio();
5071 return 0;
5073 module_init(init_per_zone_wmark_min)
5076 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5077 * that we can call two helper functions whenever min_free_kbytes
5078 * changes.
5080 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5081 void __user *buffer, size_t *length, loff_t *ppos)
5083 proc_dointvec(table, write, buffer, length, ppos);
5084 if (write)
5085 setup_per_zone_wmarks();
5086 return 0;
5089 #ifdef CONFIG_NUMA
5090 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5091 void __user *buffer, size_t *length, loff_t *ppos)
5093 struct zone *zone;
5094 int rc;
5096 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5097 if (rc)
5098 return rc;
5100 for_each_zone(zone)
5101 zone->min_unmapped_pages = (zone->present_pages *
5102 sysctl_min_unmapped_ratio) / 100;
5103 return 0;
5106 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5107 void __user *buffer, size_t *length, loff_t *ppos)
5109 struct zone *zone;
5110 int rc;
5112 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5113 if (rc)
5114 return rc;
5116 for_each_zone(zone)
5117 zone->min_slab_pages = (zone->present_pages *
5118 sysctl_min_slab_ratio) / 100;
5119 return 0;
5121 #endif
5124 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5125 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5126 * whenever sysctl_lowmem_reserve_ratio changes.
5128 * The reserve ratio obviously has absolutely no relation with the
5129 * minimum watermarks. The lowmem reserve ratio can only make sense
5130 * if in function of the boot time zone sizes.
5132 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5133 void __user *buffer, size_t *length, loff_t *ppos)
5135 proc_dointvec_minmax(table, write, buffer, length, ppos);
5136 setup_per_zone_lowmem_reserve();
5137 return 0;
5141 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5142 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5143 * can have before it gets flushed back to buddy allocator.
5146 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5147 void __user *buffer, size_t *length, loff_t *ppos)
5149 struct zone *zone;
5150 unsigned int cpu;
5151 int ret;
5153 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5154 if (!write || (ret == -EINVAL))
5155 return ret;
5156 for_each_populated_zone(zone) {
5157 for_each_possible_cpu(cpu) {
5158 unsigned long high;
5159 high = zone->present_pages / percpu_pagelist_fraction;
5160 setup_pagelist_highmark(
5161 per_cpu_ptr(zone->pageset, cpu), high);
5164 return 0;
5167 int hashdist = HASHDIST_DEFAULT;
5169 #ifdef CONFIG_NUMA
5170 static int __init set_hashdist(char *str)
5172 if (!str)
5173 return 0;
5174 hashdist = simple_strtoul(str, &str, 0);
5175 return 1;
5177 __setup("hashdist=", set_hashdist);
5178 #endif
5181 * allocate a large system hash table from bootmem
5182 * - it is assumed that the hash table must contain an exact power-of-2
5183 * quantity of entries
5184 * - limit is the number of hash buckets, not the total allocation size
5186 void *__init alloc_large_system_hash(const char *tablename,
5187 unsigned long bucketsize,
5188 unsigned long numentries,
5189 int scale,
5190 int flags,
5191 unsigned int *_hash_shift,
5192 unsigned int *_hash_mask,
5193 unsigned long limit)
5195 unsigned long long max = limit;
5196 unsigned long log2qty, size;
5197 void *table = NULL;
5199 /* allow the kernel cmdline to have a say */
5200 if (!numentries) {
5201 /* round applicable memory size up to nearest megabyte */
5202 numentries = nr_kernel_pages;
5203 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5204 numentries >>= 20 - PAGE_SHIFT;
5205 numentries <<= 20 - PAGE_SHIFT;
5207 /* limit to 1 bucket per 2^scale bytes of low memory */
5208 if (scale > PAGE_SHIFT)
5209 numentries >>= (scale - PAGE_SHIFT);
5210 else
5211 numentries <<= (PAGE_SHIFT - scale);
5213 /* Make sure we've got at least a 0-order allocation.. */
5214 if (unlikely(flags & HASH_SMALL)) {
5215 /* Makes no sense without HASH_EARLY */
5216 WARN_ON(!(flags & HASH_EARLY));
5217 if (!(numentries >> *_hash_shift)) {
5218 numentries = 1UL << *_hash_shift;
5219 BUG_ON(!numentries);
5221 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5222 numentries = PAGE_SIZE / bucketsize;
5224 numentries = roundup_pow_of_two(numentries);
5226 /* limit allocation size to 1/16 total memory by default */
5227 if (max == 0) {
5228 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5229 do_div(max, bucketsize);
5232 if (numentries > max)
5233 numentries = max;
5235 log2qty = ilog2(numentries);
5237 do {
5238 size = bucketsize << log2qty;
5239 if (flags & HASH_EARLY)
5240 table = alloc_bootmem_nopanic(size);
5241 else if (hashdist)
5242 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5243 else {
5245 * If bucketsize is not a power-of-two, we may free
5246 * some pages at the end of hash table which
5247 * alloc_pages_exact() automatically does
5249 if (get_order(size) < MAX_ORDER) {
5250 table = alloc_pages_exact(size, GFP_ATOMIC);
5251 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5254 } while (!table && size > PAGE_SIZE && --log2qty);
5256 if (!table)
5257 panic("Failed to allocate %s hash table\n", tablename);
5259 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5260 tablename,
5261 (1UL << log2qty),
5262 ilog2(size) - PAGE_SHIFT,
5263 size);
5265 if (_hash_shift)
5266 *_hash_shift = log2qty;
5267 if (_hash_mask)
5268 *_hash_mask = (1 << log2qty) - 1;
5270 return table;
5273 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5274 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5275 unsigned long pfn)
5277 #ifdef CONFIG_SPARSEMEM
5278 return __pfn_to_section(pfn)->pageblock_flags;
5279 #else
5280 return zone->pageblock_flags;
5281 #endif /* CONFIG_SPARSEMEM */
5284 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5286 #ifdef CONFIG_SPARSEMEM
5287 pfn &= (PAGES_PER_SECTION-1);
5288 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5289 #else
5290 pfn = pfn - zone->zone_start_pfn;
5291 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5292 #endif /* CONFIG_SPARSEMEM */
5296 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5297 * @page: The page within the block of interest
5298 * @start_bitidx: The first bit of interest to retrieve
5299 * @end_bitidx: The last bit of interest
5300 * returns pageblock_bits flags
5302 unsigned long get_pageblock_flags_group(struct page *page,
5303 int start_bitidx, int end_bitidx)
5305 struct zone *zone;
5306 unsigned long *bitmap;
5307 unsigned long pfn, bitidx;
5308 unsigned long flags = 0;
5309 unsigned long value = 1;
5311 zone = page_zone(page);
5312 pfn = page_to_pfn(page);
5313 bitmap = get_pageblock_bitmap(zone, pfn);
5314 bitidx = pfn_to_bitidx(zone, pfn);
5316 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5317 if (test_bit(bitidx + start_bitidx, bitmap))
5318 flags |= value;
5320 return flags;
5324 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5325 * @page: The page within the block of interest
5326 * @start_bitidx: The first bit of interest
5327 * @end_bitidx: The last bit of interest
5328 * @flags: The flags to set
5330 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5331 int start_bitidx, int end_bitidx)
5333 struct zone *zone;
5334 unsigned long *bitmap;
5335 unsigned long pfn, bitidx;
5336 unsigned long value = 1;
5338 zone = page_zone(page);
5339 pfn = page_to_pfn(page);
5340 bitmap = get_pageblock_bitmap(zone, pfn);
5341 bitidx = pfn_to_bitidx(zone, pfn);
5342 VM_BUG_ON(pfn < zone->zone_start_pfn);
5343 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5345 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5346 if (flags & value)
5347 __set_bit(bitidx + start_bitidx, bitmap);
5348 else
5349 __clear_bit(bitidx + start_bitidx, bitmap);
5353 * This is designed as sub function...plz see page_isolation.c also.
5354 * set/clear page block's type to be ISOLATE.
5355 * page allocater never alloc memory from ISOLATE block.
5358 static int
5359 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5361 unsigned long pfn, iter, found;
5363 * For avoiding noise data, lru_add_drain_all() should be called
5364 * If ZONE_MOVABLE, the zone never contains immobile pages
5366 if (zone_idx(zone) == ZONE_MOVABLE)
5367 return true;
5369 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5370 return true;
5372 pfn = page_to_pfn(page);
5373 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5374 unsigned long check = pfn + iter;
5376 if (!pfn_valid_within(check)) {
5377 iter++;
5378 continue;
5380 page = pfn_to_page(check);
5381 if (!page_count(page)) {
5382 if (PageBuddy(page))
5383 iter += (1 << page_order(page)) - 1;
5384 continue;
5386 if (!PageLRU(page))
5387 found++;
5389 * If there are RECLAIMABLE pages, we need to check it.
5390 * But now, memory offline itself doesn't call shrink_slab()
5391 * and it still to be fixed.
5394 * If the page is not RAM, page_count()should be 0.
5395 * we don't need more check. This is an _used_ not-movable page.
5397 * The problematic thing here is PG_reserved pages. PG_reserved
5398 * is set to both of a memory hole page and a _used_ kernel
5399 * page at boot.
5401 if (found > count)
5402 return false;
5404 return true;
5407 bool is_pageblock_removable_nolock(struct page *page)
5409 struct zone *zone = page_zone(page);
5410 return __count_immobile_pages(zone, page, 0);
5413 int set_migratetype_isolate(struct page *page)
5415 struct zone *zone;
5416 unsigned long flags, pfn;
5417 struct memory_isolate_notify arg;
5418 int notifier_ret;
5419 int ret = -EBUSY;
5420 int zone_idx;
5422 zone = page_zone(page);
5423 zone_idx = zone_idx(zone);
5425 spin_lock_irqsave(&zone->lock, flags);
5427 pfn = page_to_pfn(page);
5428 arg.start_pfn = pfn;
5429 arg.nr_pages = pageblock_nr_pages;
5430 arg.pages_found = 0;
5433 * It may be possible to isolate a pageblock even if the
5434 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5435 * notifier chain is used by balloon drivers to return the
5436 * number of pages in a range that are held by the balloon
5437 * driver to shrink memory. If all the pages are accounted for
5438 * by balloons, are free, or on the LRU, isolation can continue.
5439 * Later, for example, when memory hotplug notifier runs, these
5440 * pages reported as "can be isolated" should be isolated(freed)
5441 * by the balloon driver through the memory notifier chain.
5443 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5444 notifier_ret = notifier_to_errno(notifier_ret);
5445 if (notifier_ret)
5446 goto out;
5448 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5449 * We just check MOVABLE pages.
5451 if (__count_immobile_pages(zone, page, arg.pages_found))
5452 ret = 0;
5455 * immobile means "not-on-lru" paes. If immobile is larger than
5456 * removable-by-driver pages reported by notifier, we'll fail.
5459 out:
5460 if (!ret) {
5461 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5462 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5465 spin_unlock_irqrestore(&zone->lock, flags);
5466 if (!ret)
5467 drain_all_pages();
5468 return ret;
5471 void unset_migratetype_isolate(struct page *page)
5473 struct zone *zone;
5474 unsigned long flags;
5475 zone = page_zone(page);
5476 spin_lock_irqsave(&zone->lock, flags);
5477 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5478 goto out;
5479 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5480 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5481 out:
5482 spin_unlock_irqrestore(&zone->lock, flags);
5485 #ifdef CONFIG_MEMORY_HOTREMOVE
5487 * All pages in the range must be isolated before calling this.
5489 void
5490 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5492 struct page *page;
5493 struct zone *zone;
5494 int order, i;
5495 unsigned long pfn;
5496 unsigned long flags;
5497 /* find the first valid pfn */
5498 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5499 if (pfn_valid(pfn))
5500 break;
5501 if (pfn == end_pfn)
5502 return;
5503 zone = page_zone(pfn_to_page(pfn));
5504 spin_lock_irqsave(&zone->lock, flags);
5505 pfn = start_pfn;
5506 while (pfn < end_pfn) {
5507 if (!pfn_valid(pfn)) {
5508 pfn++;
5509 continue;
5511 page = pfn_to_page(pfn);
5512 BUG_ON(page_count(page));
5513 BUG_ON(!PageBuddy(page));
5514 order = page_order(page);
5515 #ifdef CONFIG_DEBUG_VM
5516 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5517 pfn, 1 << order, end_pfn);
5518 #endif
5519 list_del(&page->lru);
5520 rmv_page_order(page);
5521 zone->free_area[order].nr_free--;
5522 __mod_zone_page_state(zone, NR_FREE_PAGES,
5523 - (1UL << order));
5524 for (i = 0; i < (1 << order); i++)
5525 SetPageReserved((page+i));
5526 pfn += (1 << order);
5528 spin_unlock_irqrestore(&zone->lock, flags);
5530 #endif
5532 #ifdef CONFIG_MEMORY_FAILURE
5533 bool is_free_buddy_page(struct page *page)
5535 struct zone *zone = page_zone(page);
5536 unsigned long pfn = page_to_pfn(page);
5537 unsigned long flags;
5538 int order;
5540 spin_lock_irqsave(&zone->lock, flags);
5541 for (order = 0; order < MAX_ORDER; order++) {
5542 struct page *page_head = page - (pfn & ((1 << order) - 1));
5544 if (PageBuddy(page_head) && page_order(page_head) >= order)
5545 break;
5547 spin_unlock_irqrestore(&zone->lock, flags);
5549 return order < MAX_ORDER;
5551 #endif
5553 static struct trace_print_flags pageflag_names[] = {
5554 {1UL << PG_locked, "locked" },
5555 {1UL << PG_error, "error" },
5556 {1UL << PG_referenced, "referenced" },
5557 {1UL << PG_uptodate, "uptodate" },
5558 {1UL << PG_dirty, "dirty" },
5559 {1UL << PG_lru, "lru" },
5560 {1UL << PG_active, "active" },
5561 {1UL << PG_slab, "slab" },
5562 {1UL << PG_owner_priv_1, "owner_priv_1" },
5563 {1UL << PG_arch_1, "arch_1" },
5564 {1UL << PG_reserved, "reserved" },
5565 {1UL << PG_private, "private" },
5566 {1UL << PG_private_2, "private_2" },
5567 {1UL << PG_writeback, "writeback" },
5568 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5569 {1UL << PG_head, "head" },
5570 {1UL << PG_tail, "tail" },
5571 #else
5572 {1UL << PG_compound, "compound" },
5573 #endif
5574 {1UL << PG_swapcache, "swapcache" },
5575 {1UL << PG_mappedtodisk, "mappedtodisk" },
5576 {1UL << PG_reclaim, "reclaim" },
5577 {1UL << PG_buddy, "buddy" },
5578 {1UL << PG_swapbacked, "swapbacked" },
5579 {1UL << PG_unevictable, "unevictable" },
5580 #ifdef CONFIG_MMU
5581 {1UL << PG_mlocked, "mlocked" },
5582 #endif
5583 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5584 {1UL << PG_uncached, "uncached" },
5585 #endif
5586 #ifdef CONFIG_MEMORY_FAILURE
5587 {1UL << PG_hwpoison, "hwpoison" },
5588 #endif
5589 {-1UL, NULL },
5592 static void dump_page_flags(unsigned long flags)
5594 const char *delim = "";
5595 unsigned long mask;
5596 int i;
5598 printk(KERN_ALERT "page flags: %#lx(", flags);
5600 /* remove zone id */
5601 flags &= (1UL << NR_PAGEFLAGS) - 1;
5603 for (i = 0; pageflag_names[i].name && flags; i++) {
5605 mask = pageflag_names[i].mask;
5606 if ((flags & mask) != mask)
5607 continue;
5609 flags &= ~mask;
5610 printk("%s%s", delim, pageflag_names[i].name);
5611 delim = "|";
5614 /* check for left over flags */
5615 if (flags)
5616 printk("%s%#lx", delim, flags);
5618 printk(")\n");
5621 void dump_page(struct page *page)
5623 printk(KERN_ALERT
5624 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5625 page, atomic_read(&page->_count), page_mapcount(page),
5626 page->mapping, page->index);
5627 dump_page_flags(page->flags);