thp: memcg huge memory
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blobf78f50ba6cb2ec943f88ba60b59373c037e8f9c7
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
77 #include <trace/events/sched.h>
80 * Protected counters by write_lock_irq(&tasklist_lock)
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
85 int max_threads; /* tunable limit on nr_threads */
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
94 return lockdep_is_held(&tasklist_lock);
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
99 int nr_processes(void)
101 int cpu;
102 int total = 0;
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
107 return total;
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
112 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
113 static struct kmem_cache *task_struct_cachep;
114 #endif
116 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
117 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
119 #ifdef CONFIG_DEBUG_STACK_USAGE
120 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
121 #else
122 gfp_t mask = GFP_KERNEL;
123 #endif
124 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
127 static inline void free_thread_info(struct thread_info *ti)
129 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
131 #endif
133 /* SLAB cache for signal_struct structures (tsk->signal) */
134 static struct kmem_cache *signal_cachep;
136 /* SLAB cache for sighand_struct structures (tsk->sighand) */
137 struct kmem_cache *sighand_cachep;
139 /* SLAB cache for files_struct structures (tsk->files) */
140 struct kmem_cache *files_cachep;
142 /* SLAB cache for fs_struct structures (tsk->fs) */
143 struct kmem_cache *fs_cachep;
145 /* SLAB cache for vm_area_struct structures */
146 struct kmem_cache *vm_area_cachep;
148 /* SLAB cache for mm_struct structures (tsk->mm) */
149 static struct kmem_cache *mm_cachep;
151 static void account_kernel_stack(struct thread_info *ti, int account)
153 struct zone *zone = page_zone(virt_to_page(ti));
155 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
158 void free_task(struct task_struct *tsk)
160 prop_local_destroy_single(&tsk->dirties);
161 account_kernel_stack(tsk->stack, -1);
162 free_thread_info(tsk->stack);
163 rt_mutex_debug_task_free(tsk);
164 ftrace_graph_exit_task(tsk);
165 free_task_struct(tsk);
167 EXPORT_SYMBOL(free_task);
169 static inline void free_signal_struct(struct signal_struct *sig)
171 taskstats_tgid_free(sig);
172 sched_autogroup_exit(sig);
173 kmem_cache_free(signal_cachep, sig);
176 static inline void put_signal_struct(struct signal_struct *sig)
178 if (atomic_dec_and_test(&sig->sigcnt))
179 free_signal_struct(sig);
182 void __put_task_struct(struct task_struct *tsk)
184 WARN_ON(!tsk->exit_state);
185 WARN_ON(atomic_read(&tsk->usage));
186 WARN_ON(tsk == current);
188 exit_creds(tsk);
189 delayacct_tsk_free(tsk);
190 put_signal_struct(tsk->signal);
192 if (!profile_handoff_task(tsk))
193 free_task(tsk);
197 * macro override instead of weak attribute alias, to workaround
198 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
200 #ifndef arch_task_cache_init
201 #define arch_task_cache_init()
202 #endif
204 void __init fork_init(unsigned long mempages)
206 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
207 #ifndef ARCH_MIN_TASKALIGN
208 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
209 #endif
210 /* create a slab on which task_structs can be allocated */
211 task_struct_cachep =
212 kmem_cache_create("task_struct", sizeof(struct task_struct),
213 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
214 #endif
216 /* do the arch specific task caches init */
217 arch_task_cache_init();
220 * The default maximum number of threads is set to a safe
221 * value: the thread structures can take up at most half
222 * of memory.
224 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
227 * we need to allow at least 20 threads to boot a system
229 if(max_threads < 20)
230 max_threads = 20;
232 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
233 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
234 init_task.signal->rlim[RLIMIT_SIGPENDING] =
235 init_task.signal->rlim[RLIMIT_NPROC];
238 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
239 struct task_struct *src)
241 *dst = *src;
242 return 0;
245 static struct task_struct *dup_task_struct(struct task_struct *orig)
247 struct task_struct *tsk;
248 struct thread_info *ti;
249 unsigned long *stackend;
251 int err;
253 prepare_to_copy(orig);
255 tsk = alloc_task_struct();
256 if (!tsk)
257 return NULL;
259 ti = alloc_thread_info(tsk);
260 if (!ti) {
261 free_task_struct(tsk);
262 return NULL;
265 err = arch_dup_task_struct(tsk, orig);
266 if (err)
267 goto out;
269 tsk->stack = ti;
271 err = prop_local_init_single(&tsk->dirties);
272 if (err)
273 goto out;
275 setup_thread_stack(tsk, orig);
276 clear_user_return_notifier(tsk);
277 clear_tsk_need_resched(tsk);
278 stackend = end_of_stack(tsk);
279 *stackend = STACK_END_MAGIC; /* for overflow detection */
281 #ifdef CONFIG_CC_STACKPROTECTOR
282 tsk->stack_canary = get_random_int();
283 #endif
285 /* One for us, one for whoever does the "release_task()" (usually parent) */
286 atomic_set(&tsk->usage,2);
287 atomic_set(&tsk->fs_excl, 0);
288 #ifdef CONFIG_BLK_DEV_IO_TRACE
289 tsk->btrace_seq = 0;
290 #endif
291 tsk->splice_pipe = NULL;
293 account_kernel_stack(ti, 1);
295 return tsk;
297 out:
298 free_thread_info(ti);
299 free_task_struct(tsk);
300 return NULL;
303 #ifdef CONFIG_MMU
304 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
306 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
307 struct rb_node **rb_link, *rb_parent;
308 int retval;
309 unsigned long charge;
310 struct mempolicy *pol;
312 down_write(&oldmm->mmap_sem);
313 flush_cache_dup_mm(oldmm);
315 * Not linked in yet - no deadlock potential:
317 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
319 mm->locked_vm = 0;
320 mm->mmap = NULL;
321 mm->mmap_cache = NULL;
322 mm->free_area_cache = oldmm->mmap_base;
323 mm->cached_hole_size = ~0UL;
324 mm->map_count = 0;
325 cpumask_clear(mm_cpumask(mm));
326 mm->mm_rb = RB_ROOT;
327 rb_link = &mm->mm_rb.rb_node;
328 rb_parent = NULL;
329 pprev = &mm->mmap;
330 retval = ksm_fork(mm, oldmm);
331 if (retval)
332 goto out;
334 prev = NULL;
335 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
336 struct file *file;
338 if (mpnt->vm_flags & VM_DONTCOPY) {
339 long pages = vma_pages(mpnt);
340 mm->total_vm -= pages;
341 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
342 -pages);
343 continue;
345 charge = 0;
346 if (mpnt->vm_flags & VM_ACCOUNT) {
347 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
348 if (security_vm_enough_memory(len))
349 goto fail_nomem;
350 charge = len;
352 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
353 if (!tmp)
354 goto fail_nomem;
355 *tmp = *mpnt;
356 INIT_LIST_HEAD(&tmp->anon_vma_chain);
357 pol = mpol_dup(vma_policy(mpnt));
358 retval = PTR_ERR(pol);
359 if (IS_ERR(pol))
360 goto fail_nomem_policy;
361 vma_set_policy(tmp, pol);
362 tmp->vm_mm = mm;
363 if (anon_vma_fork(tmp, mpnt))
364 goto fail_nomem_anon_vma_fork;
365 tmp->vm_flags &= ~VM_LOCKED;
366 tmp->vm_next = tmp->vm_prev = NULL;
367 file = tmp->vm_file;
368 if (file) {
369 struct inode *inode = file->f_path.dentry->d_inode;
370 struct address_space *mapping = file->f_mapping;
372 get_file(file);
373 if (tmp->vm_flags & VM_DENYWRITE)
374 atomic_dec(&inode->i_writecount);
375 spin_lock(&mapping->i_mmap_lock);
376 if (tmp->vm_flags & VM_SHARED)
377 mapping->i_mmap_writable++;
378 tmp->vm_truncate_count = mpnt->vm_truncate_count;
379 flush_dcache_mmap_lock(mapping);
380 /* insert tmp into the share list, just after mpnt */
381 vma_prio_tree_add(tmp, mpnt);
382 flush_dcache_mmap_unlock(mapping);
383 spin_unlock(&mapping->i_mmap_lock);
387 * Clear hugetlb-related page reserves for children. This only
388 * affects MAP_PRIVATE mappings. Faults generated by the child
389 * are not guaranteed to succeed, even if read-only
391 if (is_vm_hugetlb_page(tmp))
392 reset_vma_resv_huge_pages(tmp);
395 * Link in the new vma and copy the page table entries.
397 *pprev = tmp;
398 pprev = &tmp->vm_next;
399 tmp->vm_prev = prev;
400 prev = tmp;
402 __vma_link_rb(mm, tmp, rb_link, rb_parent);
403 rb_link = &tmp->vm_rb.rb_right;
404 rb_parent = &tmp->vm_rb;
406 mm->map_count++;
407 retval = copy_page_range(mm, oldmm, mpnt);
409 if (tmp->vm_ops && tmp->vm_ops->open)
410 tmp->vm_ops->open(tmp);
412 if (retval)
413 goto out;
415 /* a new mm has just been created */
416 arch_dup_mmap(oldmm, mm);
417 retval = 0;
418 out:
419 up_write(&mm->mmap_sem);
420 flush_tlb_mm(oldmm);
421 up_write(&oldmm->mmap_sem);
422 return retval;
423 fail_nomem_anon_vma_fork:
424 mpol_put(pol);
425 fail_nomem_policy:
426 kmem_cache_free(vm_area_cachep, tmp);
427 fail_nomem:
428 retval = -ENOMEM;
429 vm_unacct_memory(charge);
430 goto out;
433 static inline int mm_alloc_pgd(struct mm_struct * mm)
435 mm->pgd = pgd_alloc(mm);
436 if (unlikely(!mm->pgd))
437 return -ENOMEM;
438 return 0;
441 static inline void mm_free_pgd(struct mm_struct * mm)
443 pgd_free(mm, mm->pgd);
445 #else
446 #define dup_mmap(mm, oldmm) (0)
447 #define mm_alloc_pgd(mm) (0)
448 #define mm_free_pgd(mm)
449 #endif /* CONFIG_MMU */
451 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
453 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
454 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
456 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
458 static int __init coredump_filter_setup(char *s)
460 default_dump_filter =
461 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
462 MMF_DUMP_FILTER_MASK;
463 return 1;
466 __setup("coredump_filter=", coredump_filter_setup);
468 #include <linux/init_task.h>
470 static void mm_init_aio(struct mm_struct *mm)
472 #ifdef CONFIG_AIO
473 spin_lock_init(&mm->ioctx_lock);
474 INIT_HLIST_HEAD(&mm->ioctx_list);
475 #endif
478 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
480 atomic_set(&mm->mm_users, 1);
481 atomic_set(&mm->mm_count, 1);
482 init_rwsem(&mm->mmap_sem);
483 INIT_LIST_HEAD(&mm->mmlist);
484 mm->flags = (current->mm) ?
485 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
486 mm->core_state = NULL;
487 mm->nr_ptes = 0;
488 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
489 spin_lock_init(&mm->page_table_lock);
490 mm->free_area_cache = TASK_UNMAPPED_BASE;
491 mm->cached_hole_size = ~0UL;
492 mm_init_aio(mm);
493 mm_init_owner(mm, p);
494 atomic_set(&mm->oom_disable_count, 0);
496 if (likely(!mm_alloc_pgd(mm))) {
497 mm->def_flags = 0;
498 mmu_notifier_mm_init(mm);
499 return mm;
502 free_mm(mm);
503 return NULL;
507 * Allocate and initialize an mm_struct.
509 struct mm_struct * mm_alloc(void)
511 struct mm_struct * mm;
513 mm = allocate_mm();
514 if (mm) {
515 memset(mm, 0, sizeof(*mm));
516 mm = mm_init(mm, current);
518 return mm;
522 * Called when the last reference to the mm
523 * is dropped: either by a lazy thread or by
524 * mmput. Free the page directory and the mm.
526 void __mmdrop(struct mm_struct *mm)
528 BUG_ON(mm == &init_mm);
529 mm_free_pgd(mm);
530 destroy_context(mm);
531 mmu_notifier_mm_destroy(mm);
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 VM_BUG_ON(mm->pmd_huge_pte);
534 #endif
535 free_mm(mm);
537 EXPORT_SYMBOL_GPL(__mmdrop);
540 * Decrement the use count and release all resources for an mm.
542 void mmput(struct mm_struct *mm)
544 might_sleep();
546 if (atomic_dec_and_test(&mm->mm_users)) {
547 exit_aio(mm);
548 ksm_exit(mm);
549 exit_mmap(mm);
550 set_mm_exe_file(mm, NULL);
551 if (!list_empty(&mm->mmlist)) {
552 spin_lock(&mmlist_lock);
553 list_del(&mm->mmlist);
554 spin_unlock(&mmlist_lock);
556 put_swap_token(mm);
557 if (mm->binfmt)
558 module_put(mm->binfmt->module);
559 mmdrop(mm);
562 EXPORT_SYMBOL_GPL(mmput);
565 * get_task_mm - acquire a reference to the task's mm
567 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
568 * this kernel workthread has transiently adopted a user mm with use_mm,
569 * to do its AIO) is not set and if so returns a reference to it, after
570 * bumping up the use count. User must release the mm via mmput()
571 * after use. Typically used by /proc and ptrace.
573 struct mm_struct *get_task_mm(struct task_struct *task)
575 struct mm_struct *mm;
577 task_lock(task);
578 mm = task->mm;
579 if (mm) {
580 if (task->flags & PF_KTHREAD)
581 mm = NULL;
582 else
583 atomic_inc(&mm->mm_users);
585 task_unlock(task);
586 return mm;
588 EXPORT_SYMBOL_GPL(get_task_mm);
590 /* Please note the differences between mmput and mm_release.
591 * mmput is called whenever we stop holding onto a mm_struct,
592 * error success whatever.
594 * mm_release is called after a mm_struct has been removed
595 * from the current process.
597 * This difference is important for error handling, when we
598 * only half set up a mm_struct for a new process and need to restore
599 * the old one. Because we mmput the new mm_struct before
600 * restoring the old one. . .
601 * Eric Biederman 10 January 1998
603 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
605 struct completion *vfork_done = tsk->vfork_done;
607 /* Get rid of any futexes when releasing the mm */
608 #ifdef CONFIG_FUTEX
609 if (unlikely(tsk->robust_list)) {
610 exit_robust_list(tsk);
611 tsk->robust_list = NULL;
613 #ifdef CONFIG_COMPAT
614 if (unlikely(tsk->compat_robust_list)) {
615 compat_exit_robust_list(tsk);
616 tsk->compat_robust_list = NULL;
618 #endif
619 if (unlikely(!list_empty(&tsk->pi_state_list)))
620 exit_pi_state_list(tsk);
621 #endif
623 /* Get rid of any cached register state */
624 deactivate_mm(tsk, mm);
626 /* notify parent sleeping on vfork() */
627 if (vfork_done) {
628 tsk->vfork_done = NULL;
629 complete(vfork_done);
633 * If we're exiting normally, clear a user-space tid field if
634 * requested. We leave this alone when dying by signal, to leave
635 * the value intact in a core dump, and to save the unnecessary
636 * trouble otherwise. Userland only wants this done for a sys_exit.
638 if (tsk->clear_child_tid) {
639 if (!(tsk->flags & PF_SIGNALED) &&
640 atomic_read(&mm->mm_users) > 1) {
642 * We don't check the error code - if userspace has
643 * not set up a proper pointer then tough luck.
645 put_user(0, tsk->clear_child_tid);
646 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
647 1, NULL, NULL, 0);
649 tsk->clear_child_tid = NULL;
654 * Allocate a new mm structure and copy contents from the
655 * mm structure of the passed in task structure.
657 struct mm_struct *dup_mm(struct task_struct *tsk)
659 struct mm_struct *mm, *oldmm = current->mm;
660 int err;
662 if (!oldmm)
663 return NULL;
665 mm = allocate_mm();
666 if (!mm)
667 goto fail_nomem;
669 memcpy(mm, oldmm, sizeof(*mm));
671 /* Initializing for Swap token stuff */
672 mm->token_priority = 0;
673 mm->last_interval = 0;
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 mm->pmd_huge_pte = NULL;
677 #endif
679 if (!mm_init(mm, tsk))
680 goto fail_nomem;
682 if (init_new_context(tsk, mm))
683 goto fail_nocontext;
685 dup_mm_exe_file(oldmm, mm);
687 err = dup_mmap(mm, oldmm);
688 if (err)
689 goto free_pt;
691 mm->hiwater_rss = get_mm_rss(mm);
692 mm->hiwater_vm = mm->total_vm;
694 if (mm->binfmt && !try_module_get(mm->binfmt->module))
695 goto free_pt;
697 return mm;
699 free_pt:
700 /* don't put binfmt in mmput, we haven't got module yet */
701 mm->binfmt = NULL;
702 mmput(mm);
704 fail_nomem:
705 return NULL;
707 fail_nocontext:
709 * If init_new_context() failed, we cannot use mmput() to free the mm
710 * because it calls destroy_context()
712 mm_free_pgd(mm);
713 free_mm(mm);
714 return NULL;
717 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
719 struct mm_struct * mm, *oldmm;
720 int retval;
722 tsk->min_flt = tsk->maj_flt = 0;
723 tsk->nvcsw = tsk->nivcsw = 0;
724 #ifdef CONFIG_DETECT_HUNG_TASK
725 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
726 #endif
728 tsk->mm = NULL;
729 tsk->active_mm = NULL;
732 * Are we cloning a kernel thread?
734 * We need to steal a active VM for that..
736 oldmm = current->mm;
737 if (!oldmm)
738 return 0;
740 if (clone_flags & CLONE_VM) {
741 atomic_inc(&oldmm->mm_users);
742 mm = oldmm;
743 goto good_mm;
746 retval = -ENOMEM;
747 mm = dup_mm(tsk);
748 if (!mm)
749 goto fail_nomem;
751 good_mm:
752 /* Initializing for Swap token stuff */
753 mm->token_priority = 0;
754 mm->last_interval = 0;
755 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
756 atomic_inc(&mm->oom_disable_count);
758 tsk->mm = mm;
759 tsk->active_mm = mm;
760 return 0;
762 fail_nomem:
763 return retval;
766 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
768 struct fs_struct *fs = current->fs;
769 if (clone_flags & CLONE_FS) {
770 /* tsk->fs is already what we want */
771 spin_lock(&fs->lock);
772 if (fs->in_exec) {
773 spin_unlock(&fs->lock);
774 return -EAGAIN;
776 fs->users++;
777 spin_unlock(&fs->lock);
778 return 0;
780 tsk->fs = copy_fs_struct(fs);
781 if (!tsk->fs)
782 return -ENOMEM;
783 return 0;
786 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
788 struct files_struct *oldf, *newf;
789 int error = 0;
792 * A background process may not have any files ...
794 oldf = current->files;
795 if (!oldf)
796 goto out;
798 if (clone_flags & CLONE_FILES) {
799 atomic_inc(&oldf->count);
800 goto out;
803 newf = dup_fd(oldf, &error);
804 if (!newf)
805 goto out;
807 tsk->files = newf;
808 error = 0;
809 out:
810 return error;
813 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
815 #ifdef CONFIG_BLOCK
816 struct io_context *ioc = current->io_context;
818 if (!ioc)
819 return 0;
821 * Share io context with parent, if CLONE_IO is set
823 if (clone_flags & CLONE_IO) {
824 tsk->io_context = ioc_task_link(ioc);
825 if (unlikely(!tsk->io_context))
826 return -ENOMEM;
827 } else if (ioprio_valid(ioc->ioprio)) {
828 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
829 if (unlikely(!tsk->io_context))
830 return -ENOMEM;
832 tsk->io_context->ioprio = ioc->ioprio;
834 #endif
835 return 0;
838 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
840 struct sighand_struct *sig;
842 if (clone_flags & CLONE_SIGHAND) {
843 atomic_inc(&current->sighand->count);
844 return 0;
846 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
847 rcu_assign_pointer(tsk->sighand, sig);
848 if (!sig)
849 return -ENOMEM;
850 atomic_set(&sig->count, 1);
851 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
852 return 0;
855 void __cleanup_sighand(struct sighand_struct *sighand)
857 if (atomic_dec_and_test(&sighand->count))
858 kmem_cache_free(sighand_cachep, sighand);
863 * Initialize POSIX timer handling for a thread group.
865 static void posix_cpu_timers_init_group(struct signal_struct *sig)
867 unsigned long cpu_limit;
869 /* Thread group counters. */
870 thread_group_cputime_init(sig);
872 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
873 if (cpu_limit != RLIM_INFINITY) {
874 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
875 sig->cputimer.running = 1;
878 /* The timer lists. */
879 INIT_LIST_HEAD(&sig->cpu_timers[0]);
880 INIT_LIST_HEAD(&sig->cpu_timers[1]);
881 INIT_LIST_HEAD(&sig->cpu_timers[2]);
884 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
886 struct signal_struct *sig;
888 if (clone_flags & CLONE_THREAD)
889 return 0;
891 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
892 tsk->signal = sig;
893 if (!sig)
894 return -ENOMEM;
896 sig->nr_threads = 1;
897 atomic_set(&sig->live, 1);
898 atomic_set(&sig->sigcnt, 1);
899 init_waitqueue_head(&sig->wait_chldexit);
900 if (clone_flags & CLONE_NEWPID)
901 sig->flags |= SIGNAL_UNKILLABLE;
902 sig->curr_target = tsk;
903 init_sigpending(&sig->shared_pending);
904 INIT_LIST_HEAD(&sig->posix_timers);
906 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
907 sig->real_timer.function = it_real_fn;
909 task_lock(current->group_leader);
910 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
911 task_unlock(current->group_leader);
913 posix_cpu_timers_init_group(sig);
915 tty_audit_fork(sig);
916 sched_autogroup_fork(sig);
918 sig->oom_adj = current->signal->oom_adj;
919 sig->oom_score_adj = current->signal->oom_score_adj;
920 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
922 mutex_init(&sig->cred_guard_mutex);
924 return 0;
927 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
929 unsigned long new_flags = p->flags;
931 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
932 new_flags |= PF_FORKNOEXEC;
933 new_flags |= PF_STARTING;
934 p->flags = new_flags;
935 clear_freeze_flag(p);
938 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
940 current->clear_child_tid = tidptr;
942 return task_pid_vnr(current);
945 static void rt_mutex_init_task(struct task_struct *p)
947 raw_spin_lock_init(&p->pi_lock);
948 #ifdef CONFIG_RT_MUTEXES
949 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
950 p->pi_blocked_on = NULL;
951 #endif
954 #ifdef CONFIG_MM_OWNER
955 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
957 mm->owner = p;
959 #endif /* CONFIG_MM_OWNER */
962 * Initialize POSIX timer handling for a single task.
964 static void posix_cpu_timers_init(struct task_struct *tsk)
966 tsk->cputime_expires.prof_exp = cputime_zero;
967 tsk->cputime_expires.virt_exp = cputime_zero;
968 tsk->cputime_expires.sched_exp = 0;
969 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
970 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
971 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
975 * This creates a new process as a copy of the old one,
976 * but does not actually start it yet.
978 * It copies the registers, and all the appropriate
979 * parts of the process environment (as per the clone
980 * flags). The actual kick-off is left to the caller.
982 static struct task_struct *copy_process(unsigned long clone_flags,
983 unsigned long stack_start,
984 struct pt_regs *regs,
985 unsigned long stack_size,
986 int __user *child_tidptr,
987 struct pid *pid,
988 int trace)
990 int retval;
991 struct task_struct *p;
992 int cgroup_callbacks_done = 0;
994 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
995 return ERR_PTR(-EINVAL);
998 * Thread groups must share signals as well, and detached threads
999 * can only be started up within the thread group.
1001 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1002 return ERR_PTR(-EINVAL);
1005 * Shared signal handlers imply shared VM. By way of the above,
1006 * thread groups also imply shared VM. Blocking this case allows
1007 * for various simplifications in other code.
1009 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1010 return ERR_PTR(-EINVAL);
1013 * Siblings of global init remain as zombies on exit since they are
1014 * not reaped by their parent (swapper). To solve this and to avoid
1015 * multi-rooted process trees, prevent global and container-inits
1016 * from creating siblings.
1018 if ((clone_flags & CLONE_PARENT) &&
1019 current->signal->flags & SIGNAL_UNKILLABLE)
1020 return ERR_PTR(-EINVAL);
1022 retval = security_task_create(clone_flags);
1023 if (retval)
1024 goto fork_out;
1026 retval = -ENOMEM;
1027 p = dup_task_struct(current);
1028 if (!p)
1029 goto fork_out;
1031 ftrace_graph_init_task(p);
1033 rt_mutex_init_task(p);
1035 #ifdef CONFIG_PROVE_LOCKING
1036 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1037 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1038 #endif
1039 retval = -EAGAIN;
1040 if (atomic_read(&p->real_cred->user->processes) >=
1041 task_rlimit(p, RLIMIT_NPROC)) {
1042 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1043 p->real_cred->user != INIT_USER)
1044 goto bad_fork_free;
1047 retval = copy_creds(p, clone_flags);
1048 if (retval < 0)
1049 goto bad_fork_free;
1052 * If multiple threads are within copy_process(), then this check
1053 * triggers too late. This doesn't hurt, the check is only there
1054 * to stop root fork bombs.
1056 retval = -EAGAIN;
1057 if (nr_threads >= max_threads)
1058 goto bad_fork_cleanup_count;
1060 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1061 goto bad_fork_cleanup_count;
1063 p->did_exec = 0;
1064 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1065 copy_flags(clone_flags, p);
1066 INIT_LIST_HEAD(&p->children);
1067 INIT_LIST_HEAD(&p->sibling);
1068 rcu_copy_process(p);
1069 p->vfork_done = NULL;
1070 spin_lock_init(&p->alloc_lock);
1072 init_sigpending(&p->pending);
1074 p->utime = cputime_zero;
1075 p->stime = cputime_zero;
1076 p->gtime = cputime_zero;
1077 p->utimescaled = cputime_zero;
1078 p->stimescaled = cputime_zero;
1079 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1080 p->prev_utime = cputime_zero;
1081 p->prev_stime = cputime_zero;
1082 #endif
1083 #if defined(SPLIT_RSS_COUNTING)
1084 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1085 #endif
1087 p->default_timer_slack_ns = current->timer_slack_ns;
1089 task_io_accounting_init(&p->ioac);
1090 acct_clear_integrals(p);
1092 posix_cpu_timers_init(p);
1094 p->lock_depth = -1; /* -1 = no lock */
1095 do_posix_clock_monotonic_gettime(&p->start_time);
1096 p->real_start_time = p->start_time;
1097 monotonic_to_bootbased(&p->real_start_time);
1098 p->io_context = NULL;
1099 p->audit_context = NULL;
1100 cgroup_fork(p);
1101 #ifdef CONFIG_NUMA
1102 p->mempolicy = mpol_dup(p->mempolicy);
1103 if (IS_ERR(p->mempolicy)) {
1104 retval = PTR_ERR(p->mempolicy);
1105 p->mempolicy = NULL;
1106 goto bad_fork_cleanup_cgroup;
1108 mpol_fix_fork_child_flag(p);
1109 #endif
1110 #ifdef CONFIG_TRACE_IRQFLAGS
1111 p->irq_events = 0;
1112 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1113 p->hardirqs_enabled = 1;
1114 #else
1115 p->hardirqs_enabled = 0;
1116 #endif
1117 p->hardirq_enable_ip = 0;
1118 p->hardirq_enable_event = 0;
1119 p->hardirq_disable_ip = _THIS_IP_;
1120 p->hardirq_disable_event = 0;
1121 p->softirqs_enabled = 1;
1122 p->softirq_enable_ip = _THIS_IP_;
1123 p->softirq_enable_event = 0;
1124 p->softirq_disable_ip = 0;
1125 p->softirq_disable_event = 0;
1126 p->hardirq_context = 0;
1127 p->softirq_context = 0;
1128 #endif
1129 #ifdef CONFIG_LOCKDEP
1130 p->lockdep_depth = 0; /* no locks held yet */
1131 p->curr_chain_key = 0;
1132 p->lockdep_recursion = 0;
1133 #endif
1135 #ifdef CONFIG_DEBUG_MUTEXES
1136 p->blocked_on = NULL; /* not blocked yet */
1137 #endif
1138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1139 p->memcg_batch.do_batch = 0;
1140 p->memcg_batch.memcg = NULL;
1141 #endif
1143 /* Perform scheduler related setup. Assign this task to a CPU. */
1144 sched_fork(p, clone_flags);
1146 retval = perf_event_init_task(p);
1147 if (retval)
1148 goto bad_fork_cleanup_policy;
1150 if ((retval = audit_alloc(p)))
1151 goto bad_fork_cleanup_policy;
1152 /* copy all the process information */
1153 if ((retval = copy_semundo(clone_flags, p)))
1154 goto bad_fork_cleanup_audit;
1155 if ((retval = copy_files(clone_flags, p)))
1156 goto bad_fork_cleanup_semundo;
1157 if ((retval = copy_fs(clone_flags, p)))
1158 goto bad_fork_cleanup_files;
1159 if ((retval = copy_sighand(clone_flags, p)))
1160 goto bad_fork_cleanup_fs;
1161 if ((retval = copy_signal(clone_flags, p)))
1162 goto bad_fork_cleanup_sighand;
1163 if ((retval = copy_mm(clone_flags, p)))
1164 goto bad_fork_cleanup_signal;
1165 if ((retval = copy_namespaces(clone_flags, p)))
1166 goto bad_fork_cleanup_mm;
1167 if ((retval = copy_io(clone_flags, p)))
1168 goto bad_fork_cleanup_namespaces;
1169 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1170 if (retval)
1171 goto bad_fork_cleanup_io;
1173 if (pid != &init_struct_pid) {
1174 retval = -ENOMEM;
1175 pid = alloc_pid(p->nsproxy->pid_ns);
1176 if (!pid)
1177 goto bad_fork_cleanup_io;
1179 if (clone_flags & CLONE_NEWPID) {
1180 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1181 if (retval < 0)
1182 goto bad_fork_free_pid;
1186 p->pid = pid_nr(pid);
1187 p->tgid = p->pid;
1188 if (clone_flags & CLONE_THREAD)
1189 p->tgid = current->tgid;
1191 if (current->nsproxy != p->nsproxy) {
1192 retval = ns_cgroup_clone(p, pid);
1193 if (retval)
1194 goto bad_fork_free_pid;
1197 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1199 * Clear TID on mm_release()?
1201 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1202 #ifdef CONFIG_FUTEX
1203 p->robust_list = NULL;
1204 #ifdef CONFIG_COMPAT
1205 p->compat_robust_list = NULL;
1206 #endif
1207 INIT_LIST_HEAD(&p->pi_state_list);
1208 p->pi_state_cache = NULL;
1209 #endif
1211 * sigaltstack should be cleared when sharing the same VM
1213 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1214 p->sas_ss_sp = p->sas_ss_size = 0;
1217 * Syscall tracing and stepping should be turned off in the
1218 * child regardless of CLONE_PTRACE.
1220 user_disable_single_step(p);
1221 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1222 #ifdef TIF_SYSCALL_EMU
1223 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1224 #endif
1225 clear_all_latency_tracing(p);
1227 /* ok, now we should be set up.. */
1228 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1229 p->pdeath_signal = 0;
1230 p->exit_state = 0;
1233 * Ok, make it visible to the rest of the system.
1234 * We dont wake it up yet.
1236 p->group_leader = p;
1237 INIT_LIST_HEAD(&p->thread_group);
1239 /* Now that the task is set up, run cgroup callbacks if
1240 * necessary. We need to run them before the task is visible
1241 * on the tasklist. */
1242 cgroup_fork_callbacks(p);
1243 cgroup_callbacks_done = 1;
1245 /* Need tasklist lock for parent etc handling! */
1246 write_lock_irq(&tasklist_lock);
1248 /* CLONE_PARENT re-uses the old parent */
1249 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1250 p->real_parent = current->real_parent;
1251 p->parent_exec_id = current->parent_exec_id;
1252 } else {
1253 p->real_parent = current;
1254 p->parent_exec_id = current->self_exec_id;
1257 spin_lock(&current->sighand->siglock);
1260 * Process group and session signals need to be delivered to just the
1261 * parent before the fork or both the parent and the child after the
1262 * fork. Restart if a signal comes in before we add the new process to
1263 * it's process group.
1264 * A fatal signal pending means that current will exit, so the new
1265 * thread can't slip out of an OOM kill (or normal SIGKILL).
1267 recalc_sigpending();
1268 if (signal_pending(current)) {
1269 spin_unlock(&current->sighand->siglock);
1270 write_unlock_irq(&tasklist_lock);
1271 retval = -ERESTARTNOINTR;
1272 goto bad_fork_free_pid;
1275 if (clone_flags & CLONE_THREAD) {
1276 current->signal->nr_threads++;
1277 atomic_inc(&current->signal->live);
1278 atomic_inc(&current->signal->sigcnt);
1279 p->group_leader = current->group_leader;
1280 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1283 if (likely(p->pid)) {
1284 tracehook_finish_clone(p, clone_flags, trace);
1286 if (thread_group_leader(p)) {
1287 if (clone_flags & CLONE_NEWPID)
1288 p->nsproxy->pid_ns->child_reaper = p;
1290 p->signal->leader_pid = pid;
1291 p->signal->tty = tty_kref_get(current->signal->tty);
1292 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1293 attach_pid(p, PIDTYPE_SID, task_session(current));
1294 list_add_tail(&p->sibling, &p->real_parent->children);
1295 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1296 __this_cpu_inc(process_counts);
1298 attach_pid(p, PIDTYPE_PID, pid);
1299 nr_threads++;
1302 total_forks++;
1303 spin_unlock(&current->sighand->siglock);
1304 write_unlock_irq(&tasklist_lock);
1305 proc_fork_connector(p);
1306 cgroup_post_fork(p);
1307 perf_event_fork(p);
1308 return p;
1310 bad_fork_free_pid:
1311 if (pid != &init_struct_pid)
1312 free_pid(pid);
1313 bad_fork_cleanup_io:
1314 if (p->io_context)
1315 exit_io_context(p);
1316 bad_fork_cleanup_namespaces:
1317 exit_task_namespaces(p);
1318 bad_fork_cleanup_mm:
1319 if (p->mm) {
1320 task_lock(p);
1321 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1322 atomic_dec(&p->mm->oom_disable_count);
1323 task_unlock(p);
1324 mmput(p->mm);
1326 bad_fork_cleanup_signal:
1327 if (!(clone_flags & CLONE_THREAD))
1328 free_signal_struct(p->signal);
1329 bad_fork_cleanup_sighand:
1330 __cleanup_sighand(p->sighand);
1331 bad_fork_cleanup_fs:
1332 exit_fs(p); /* blocking */
1333 bad_fork_cleanup_files:
1334 exit_files(p); /* blocking */
1335 bad_fork_cleanup_semundo:
1336 exit_sem(p);
1337 bad_fork_cleanup_audit:
1338 audit_free(p);
1339 bad_fork_cleanup_policy:
1340 perf_event_free_task(p);
1341 #ifdef CONFIG_NUMA
1342 mpol_put(p->mempolicy);
1343 bad_fork_cleanup_cgroup:
1344 #endif
1345 cgroup_exit(p, cgroup_callbacks_done);
1346 delayacct_tsk_free(p);
1347 module_put(task_thread_info(p)->exec_domain->module);
1348 bad_fork_cleanup_count:
1349 atomic_dec(&p->cred->user->processes);
1350 exit_creds(p);
1351 bad_fork_free:
1352 free_task(p);
1353 fork_out:
1354 return ERR_PTR(retval);
1357 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1359 memset(regs, 0, sizeof(struct pt_regs));
1360 return regs;
1363 static inline void init_idle_pids(struct pid_link *links)
1365 enum pid_type type;
1367 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1368 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1369 links[type].pid = &init_struct_pid;
1373 struct task_struct * __cpuinit fork_idle(int cpu)
1375 struct task_struct *task;
1376 struct pt_regs regs;
1378 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1379 &init_struct_pid, 0);
1380 if (!IS_ERR(task)) {
1381 init_idle_pids(task->pids);
1382 init_idle(task, cpu);
1385 return task;
1389 * Ok, this is the main fork-routine.
1391 * It copies the process, and if successful kick-starts
1392 * it and waits for it to finish using the VM if required.
1394 long do_fork(unsigned long clone_flags,
1395 unsigned long stack_start,
1396 struct pt_regs *regs,
1397 unsigned long stack_size,
1398 int __user *parent_tidptr,
1399 int __user *child_tidptr)
1401 struct task_struct *p;
1402 int trace = 0;
1403 long nr;
1406 * Do some preliminary argument and permissions checking before we
1407 * actually start allocating stuff
1409 if (clone_flags & CLONE_NEWUSER) {
1410 if (clone_flags & CLONE_THREAD)
1411 return -EINVAL;
1412 /* hopefully this check will go away when userns support is
1413 * complete
1415 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1416 !capable(CAP_SETGID))
1417 return -EPERM;
1421 * When called from kernel_thread, don't do user tracing stuff.
1423 if (likely(user_mode(regs)))
1424 trace = tracehook_prepare_clone(clone_flags);
1426 p = copy_process(clone_flags, stack_start, regs, stack_size,
1427 child_tidptr, NULL, trace);
1429 * Do this prior waking up the new thread - the thread pointer
1430 * might get invalid after that point, if the thread exits quickly.
1432 if (!IS_ERR(p)) {
1433 struct completion vfork;
1435 trace_sched_process_fork(current, p);
1437 nr = task_pid_vnr(p);
1439 if (clone_flags & CLONE_PARENT_SETTID)
1440 put_user(nr, parent_tidptr);
1442 if (clone_flags & CLONE_VFORK) {
1443 p->vfork_done = &vfork;
1444 init_completion(&vfork);
1447 audit_finish_fork(p);
1448 tracehook_report_clone(regs, clone_flags, nr, p);
1451 * We set PF_STARTING at creation in case tracing wants to
1452 * use this to distinguish a fully live task from one that
1453 * hasn't gotten to tracehook_report_clone() yet. Now we
1454 * clear it and set the child going.
1456 p->flags &= ~PF_STARTING;
1458 wake_up_new_task(p, clone_flags);
1460 tracehook_report_clone_complete(trace, regs,
1461 clone_flags, nr, p);
1463 if (clone_flags & CLONE_VFORK) {
1464 freezer_do_not_count();
1465 wait_for_completion(&vfork);
1466 freezer_count();
1467 tracehook_report_vfork_done(p, nr);
1469 } else {
1470 nr = PTR_ERR(p);
1472 return nr;
1475 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1476 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1477 #endif
1479 static void sighand_ctor(void *data)
1481 struct sighand_struct *sighand = data;
1483 spin_lock_init(&sighand->siglock);
1484 init_waitqueue_head(&sighand->signalfd_wqh);
1487 void __init proc_caches_init(void)
1489 sighand_cachep = kmem_cache_create("sighand_cache",
1490 sizeof(struct sighand_struct), 0,
1491 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1492 SLAB_NOTRACK, sighand_ctor);
1493 signal_cachep = kmem_cache_create("signal_cache",
1494 sizeof(struct signal_struct), 0,
1495 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1496 files_cachep = kmem_cache_create("files_cache",
1497 sizeof(struct files_struct), 0,
1498 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1499 fs_cachep = kmem_cache_create("fs_cache",
1500 sizeof(struct fs_struct), 0,
1501 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1502 mm_cachep = kmem_cache_create("mm_struct",
1503 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1504 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1506 mmap_init();
1510 * Check constraints on flags passed to the unshare system call and
1511 * force unsharing of additional process context as appropriate.
1513 static void check_unshare_flags(unsigned long *flags_ptr)
1516 * If unsharing a thread from a thread group, must also
1517 * unshare vm.
1519 if (*flags_ptr & CLONE_THREAD)
1520 *flags_ptr |= CLONE_VM;
1523 * If unsharing vm, must also unshare signal handlers.
1525 if (*flags_ptr & CLONE_VM)
1526 *flags_ptr |= CLONE_SIGHAND;
1529 * If unsharing namespace, must also unshare filesystem information.
1531 if (*flags_ptr & CLONE_NEWNS)
1532 *flags_ptr |= CLONE_FS;
1536 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1538 static int unshare_thread(unsigned long unshare_flags)
1540 if (unshare_flags & CLONE_THREAD)
1541 return -EINVAL;
1543 return 0;
1547 * Unshare the filesystem structure if it is being shared
1549 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1551 struct fs_struct *fs = current->fs;
1553 if (!(unshare_flags & CLONE_FS) || !fs)
1554 return 0;
1556 /* don't need lock here; in the worst case we'll do useless copy */
1557 if (fs->users == 1)
1558 return 0;
1560 *new_fsp = copy_fs_struct(fs);
1561 if (!*new_fsp)
1562 return -ENOMEM;
1564 return 0;
1568 * Unsharing of sighand is not supported yet
1570 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1572 struct sighand_struct *sigh = current->sighand;
1574 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1575 return -EINVAL;
1576 else
1577 return 0;
1581 * Unshare vm if it is being shared
1583 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1585 struct mm_struct *mm = current->mm;
1587 if ((unshare_flags & CLONE_VM) &&
1588 (mm && atomic_read(&mm->mm_users) > 1)) {
1589 return -EINVAL;
1592 return 0;
1596 * Unshare file descriptor table if it is being shared
1598 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1600 struct files_struct *fd = current->files;
1601 int error = 0;
1603 if ((unshare_flags & CLONE_FILES) &&
1604 (fd && atomic_read(&fd->count) > 1)) {
1605 *new_fdp = dup_fd(fd, &error);
1606 if (!*new_fdp)
1607 return error;
1610 return 0;
1614 * unshare allows a process to 'unshare' part of the process
1615 * context which was originally shared using clone. copy_*
1616 * functions used by do_fork() cannot be used here directly
1617 * because they modify an inactive task_struct that is being
1618 * constructed. Here we are modifying the current, active,
1619 * task_struct.
1621 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1623 int err = 0;
1624 struct fs_struct *fs, *new_fs = NULL;
1625 struct sighand_struct *new_sigh = NULL;
1626 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1627 struct files_struct *fd, *new_fd = NULL;
1628 struct nsproxy *new_nsproxy = NULL;
1629 int do_sysvsem = 0;
1631 check_unshare_flags(&unshare_flags);
1633 /* Return -EINVAL for all unsupported flags */
1634 err = -EINVAL;
1635 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1636 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1637 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1638 goto bad_unshare_out;
1641 * CLONE_NEWIPC must also detach from the undolist: after switching
1642 * to a new ipc namespace, the semaphore arrays from the old
1643 * namespace are unreachable.
1645 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1646 do_sysvsem = 1;
1647 if ((err = unshare_thread(unshare_flags)))
1648 goto bad_unshare_out;
1649 if ((err = unshare_fs(unshare_flags, &new_fs)))
1650 goto bad_unshare_cleanup_thread;
1651 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1652 goto bad_unshare_cleanup_fs;
1653 if ((err = unshare_vm(unshare_flags, &new_mm)))
1654 goto bad_unshare_cleanup_sigh;
1655 if ((err = unshare_fd(unshare_flags, &new_fd)))
1656 goto bad_unshare_cleanup_vm;
1657 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1658 new_fs)))
1659 goto bad_unshare_cleanup_fd;
1661 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1662 if (do_sysvsem) {
1664 * CLONE_SYSVSEM is equivalent to sys_exit().
1666 exit_sem(current);
1669 if (new_nsproxy) {
1670 switch_task_namespaces(current, new_nsproxy);
1671 new_nsproxy = NULL;
1674 task_lock(current);
1676 if (new_fs) {
1677 fs = current->fs;
1678 spin_lock(&fs->lock);
1679 current->fs = new_fs;
1680 if (--fs->users)
1681 new_fs = NULL;
1682 else
1683 new_fs = fs;
1684 spin_unlock(&fs->lock);
1687 if (new_mm) {
1688 mm = current->mm;
1689 active_mm = current->active_mm;
1690 current->mm = new_mm;
1691 current->active_mm = new_mm;
1692 if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1693 atomic_dec(&mm->oom_disable_count);
1694 atomic_inc(&new_mm->oom_disable_count);
1696 activate_mm(active_mm, new_mm);
1697 new_mm = mm;
1700 if (new_fd) {
1701 fd = current->files;
1702 current->files = new_fd;
1703 new_fd = fd;
1706 task_unlock(current);
1709 if (new_nsproxy)
1710 put_nsproxy(new_nsproxy);
1712 bad_unshare_cleanup_fd:
1713 if (new_fd)
1714 put_files_struct(new_fd);
1716 bad_unshare_cleanup_vm:
1717 if (new_mm)
1718 mmput(new_mm);
1720 bad_unshare_cleanup_sigh:
1721 if (new_sigh)
1722 if (atomic_dec_and_test(&new_sigh->count))
1723 kmem_cache_free(sighand_cachep, new_sigh);
1725 bad_unshare_cleanup_fs:
1726 if (new_fs)
1727 free_fs_struct(new_fs);
1729 bad_unshare_cleanup_thread:
1730 bad_unshare_out:
1731 return err;
1735 * Helper to unshare the files of the current task.
1736 * We don't want to expose copy_files internals to
1737 * the exec layer of the kernel.
1740 int unshare_files(struct files_struct **displaced)
1742 struct task_struct *task = current;
1743 struct files_struct *copy = NULL;
1744 int error;
1746 error = unshare_fd(CLONE_FILES, &copy);
1747 if (error || !copy) {
1748 *displaced = NULL;
1749 return error;
1751 *displaced = task->files;
1752 task_lock(task);
1753 task->files = copy;
1754 task_unlock(task);
1755 return 0;