4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kernel.h>
18 #include <linux/kexec.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
35 #include <linux/kprobes.h>
37 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
41 #ifndef SET_UNALIGN_CTL
42 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
44 #ifndef GET_UNALIGN_CTL
45 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
48 # define SET_FPEMU_CTL(a,b) (-EINVAL)
51 # define GET_FPEMU_CTL(a,b) (-EINVAL)
54 # define SET_FPEXC_CTL(a,b) (-EINVAL)
57 # define GET_FPEXC_CTL(a,b) (-EINVAL)
60 # define GET_ENDIAN(a,b) (-EINVAL)
63 # define SET_ENDIAN(a,b) (-EINVAL)
67 * this is where the system-wide overflow UID and GID are defined, for
68 * architectures that now have 32-bit UID/GID but didn't in the past
71 int overflowuid
= DEFAULT_OVERFLOWUID
;
72 int overflowgid
= DEFAULT_OVERFLOWGID
;
75 EXPORT_SYMBOL(overflowuid
);
76 EXPORT_SYMBOL(overflowgid
);
80 * the same as above, but for filesystems which can only store a 16-bit
81 * UID and GID. as such, this is needed on all architectures
84 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
85 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
87 EXPORT_SYMBOL(fs_overflowuid
);
88 EXPORT_SYMBOL(fs_overflowgid
);
91 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
96 EXPORT_SYMBOL(cad_pid
);
99 * Notifier list for kernel code which wants to be called
100 * at shutdown. This is used to stop any idling DMA operations
104 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list
);
107 * Notifier chain core routines. The exported routines below
108 * are layered on top of these, with appropriate locking added.
111 static int notifier_chain_register(struct notifier_block
**nl
,
112 struct notifier_block
*n
)
114 while ((*nl
) != NULL
) {
115 if (n
->priority
> (*nl
)->priority
)
120 rcu_assign_pointer(*nl
, n
);
124 static int notifier_chain_unregister(struct notifier_block
**nl
,
125 struct notifier_block
*n
)
127 while ((*nl
) != NULL
) {
129 rcu_assign_pointer(*nl
, n
->next
);
138 * notifier_call_chain - Informs the registered notifiers about an event.
139 * @nl: Pointer to head of the blocking notifier chain
140 * @val: Value passed unmodified to notifier function
141 * @v: Pointer passed unmodified to notifier function
142 * @nr_to_call: Number of notifier functions to be called. Don't care
143 * value of this parameter is -1.
144 * @nr_calls: Records the number of notifications sent. Don't care
145 * value of this field is NULL.
146 * @returns: notifier_call_chain returns the value returned by the
147 * last notifier function called.
150 static int __kprobes
notifier_call_chain(struct notifier_block
**nl
,
151 unsigned long val
, void *v
,
152 int nr_to_call
, int *nr_calls
)
154 int ret
= NOTIFY_DONE
;
155 struct notifier_block
*nb
, *next_nb
;
157 nb
= rcu_dereference(*nl
);
159 while (nb
&& nr_to_call
) {
160 next_nb
= rcu_dereference(nb
->next
);
161 ret
= nb
->notifier_call(nb
, val
, v
);
166 if ((ret
& NOTIFY_STOP_MASK
) == NOTIFY_STOP_MASK
)
175 * Atomic notifier chain routines. Registration and unregistration
176 * use a spinlock, and call_chain is synchronized by RCU (no locks).
180 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
181 * @nh: Pointer to head of the atomic notifier chain
182 * @n: New entry in notifier chain
184 * Adds a notifier to an atomic notifier chain.
186 * Currently always returns zero.
189 int atomic_notifier_chain_register(struct atomic_notifier_head
*nh
,
190 struct notifier_block
*n
)
195 spin_lock_irqsave(&nh
->lock
, flags
);
196 ret
= notifier_chain_register(&nh
->head
, n
);
197 spin_unlock_irqrestore(&nh
->lock
, flags
);
201 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register
);
204 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
205 * @nh: Pointer to head of the atomic notifier chain
206 * @n: Entry to remove from notifier chain
208 * Removes a notifier from an atomic notifier chain.
210 * Returns zero on success or %-ENOENT on failure.
212 int atomic_notifier_chain_unregister(struct atomic_notifier_head
*nh
,
213 struct notifier_block
*n
)
218 spin_lock_irqsave(&nh
->lock
, flags
);
219 ret
= notifier_chain_unregister(&nh
->head
, n
);
220 spin_unlock_irqrestore(&nh
->lock
, flags
);
225 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister
);
228 * __atomic_notifier_call_chain - Call functions in an atomic notifier chain
229 * @nh: Pointer to head of the atomic notifier chain
230 * @val: Value passed unmodified to notifier function
231 * @v: Pointer passed unmodified to notifier function
232 * @nr_to_call: See the comment for notifier_call_chain.
233 * @nr_calls: See the comment for notifier_call_chain.
235 * Calls each function in a notifier chain in turn. The functions
236 * run in an atomic context, so they must not block.
237 * This routine uses RCU to synchronize with changes to the chain.
239 * If the return value of the notifier can be and'ed
240 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
241 * will return immediately, with the return value of
242 * the notifier function which halted execution.
243 * Otherwise the return value is the return value
244 * of the last notifier function called.
247 int __kprobes
__atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
248 unsigned long val
, void *v
,
249 int nr_to_call
, int *nr_calls
)
254 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
259 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain
);
261 int __kprobes
atomic_notifier_call_chain(struct atomic_notifier_head
*nh
,
262 unsigned long val
, void *v
)
264 return __atomic_notifier_call_chain(nh
, val
, v
, -1, NULL
);
267 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain
);
269 * Blocking notifier chain routines. All access to the chain is
270 * synchronized by an rwsem.
274 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
275 * @nh: Pointer to head of the blocking notifier chain
276 * @n: New entry in notifier chain
278 * Adds a notifier to a blocking notifier chain.
279 * Must be called in process context.
281 * Currently always returns zero.
284 int blocking_notifier_chain_register(struct blocking_notifier_head
*nh
,
285 struct notifier_block
*n
)
290 * This code gets used during boot-up, when task switching is
291 * not yet working and interrupts must remain disabled. At
292 * such times we must not call down_write().
294 if (unlikely(system_state
== SYSTEM_BOOTING
))
295 return notifier_chain_register(&nh
->head
, n
);
297 down_write(&nh
->rwsem
);
298 ret
= notifier_chain_register(&nh
->head
, n
);
299 up_write(&nh
->rwsem
);
303 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register
);
306 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
307 * @nh: Pointer to head of the blocking notifier chain
308 * @n: Entry to remove from notifier chain
310 * Removes a notifier from a blocking notifier chain.
311 * Must be called from process context.
313 * Returns zero on success or %-ENOENT on failure.
315 int blocking_notifier_chain_unregister(struct blocking_notifier_head
*nh
,
316 struct notifier_block
*n
)
321 * This code gets used during boot-up, when task switching is
322 * not yet working and interrupts must remain disabled. At
323 * such times we must not call down_write().
325 if (unlikely(system_state
== SYSTEM_BOOTING
))
326 return notifier_chain_unregister(&nh
->head
, n
);
328 down_write(&nh
->rwsem
);
329 ret
= notifier_chain_unregister(&nh
->head
, n
);
330 up_write(&nh
->rwsem
);
334 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister
);
337 * __blocking_notifier_call_chain - Call functions in a blocking notifier chain
338 * @nh: Pointer to head of the blocking notifier chain
339 * @val: Value passed unmodified to notifier function
340 * @v: Pointer passed unmodified to notifier function
341 * @nr_to_call: See comment for notifier_call_chain.
342 * @nr_calls: See comment for notifier_call_chain.
344 * Calls each function in a notifier chain in turn. The functions
345 * run in a process context, so they are allowed to block.
347 * If the return value of the notifier can be and'ed
348 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
349 * will return immediately, with the return value of
350 * the notifier function which halted execution.
351 * Otherwise the return value is the return value
352 * of the last notifier function called.
355 int __blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
356 unsigned long val
, void *v
,
357 int nr_to_call
, int *nr_calls
)
359 int ret
= NOTIFY_DONE
;
362 * We check the head outside the lock, but if this access is
363 * racy then it does not matter what the result of the test
364 * is, we re-check the list after having taken the lock anyway:
366 if (rcu_dereference(nh
->head
)) {
367 down_read(&nh
->rwsem
);
368 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
,
374 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain
);
376 int blocking_notifier_call_chain(struct blocking_notifier_head
*nh
,
377 unsigned long val
, void *v
)
379 return __blocking_notifier_call_chain(nh
, val
, v
, -1, NULL
);
381 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain
);
384 * Raw notifier chain routines. There is no protection;
385 * the caller must provide it. Use at your own risk!
389 * raw_notifier_chain_register - Add notifier to a raw notifier chain
390 * @nh: Pointer to head of the raw notifier chain
391 * @n: New entry in notifier chain
393 * Adds a notifier to a raw notifier chain.
394 * All locking must be provided by the caller.
396 * Currently always returns zero.
399 int raw_notifier_chain_register(struct raw_notifier_head
*nh
,
400 struct notifier_block
*n
)
402 return notifier_chain_register(&nh
->head
, n
);
405 EXPORT_SYMBOL_GPL(raw_notifier_chain_register
);
408 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
409 * @nh: Pointer to head of the raw notifier chain
410 * @n: Entry to remove from notifier chain
412 * Removes a notifier from a raw notifier chain.
413 * All locking must be provided by the caller.
415 * Returns zero on success or %-ENOENT on failure.
417 int raw_notifier_chain_unregister(struct raw_notifier_head
*nh
,
418 struct notifier_block
*n
)
420 return notifier_chain_unregister(&nh
->head
, n
);
423 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister
);
426 * __raw_notifier_call_chain - Call functions in a raw notifier chain
427 * @nh: Pointer to head of the raw notifier chain
428 * @val: Value passed unmodified to notifier function
429 * @v: Pointer passed unmodified to notifier function
430 * @nr_to_call: See comment for notifier_call_chain.
431 * @nr_calls: See comment for notifier_call_chain
433 * Calls each function in a notifier chain in turn. The functions
434 * run in an undefined context.
435 * All locking must be provided by the caller.
437 * If the return value of the notifier can be and'ed
438 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
439 * will return immediately, with the return value of
440 * the notifier function which halted execution.
441 * Otherwise the return value is the return value
442 * of the last notifier function called.
445 int __raw_notifier_call_chain(struct raw_notifier_head
*nh
,
446 unsigned long val
, void *v
,
447 int nr_to_call
, int *nr_calls
)
449 return notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
452 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain
);
454 int raw_notifier_call_chain(struct raw_notifier_head
*nh
,
455 unsigned long val
, void *v
)
457 return __raw_notifier_call_chain(nh
, val
, v
, -1, NULL
);
460 EXPORT_SYMBOL_GPL(raw_notifier_call_chain
);
463 * SRCU notifier chain routines. Registration and unregistration
464 * use a mutex, and call_chain is synchronized by SRCU (no locks).
468 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
469 * @nh: Pointer to head of the SRCU notifier chain
470 * @n: New entry in notifier chain
472 * Adds a notifier to an SRCU notifier chain.
473 * Must be called in process context.
475 * Currently always returns zero.
478 int srcu_notifier_chain_register(struct srcu_notifier_head
*nh
,
479 struct notifier_block
*n
)
484 * This code gets used during boot-up, when task switching is
485 * not yet working and interrupts must remain disabled. At
486 * such times we must not call mutex_lock().
488 if (unlikely(system_state
== SYSTEM_BOOTING
))
489 return notifier_chain_register(&nh
->head
, n
);
491 mutex_lock(&nh
->mutex
);
492 ret
= notifier_chain_register(&nh
->head
, n
);
493 mutex_unlock(&nh
->mutex
);
497 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register
);
500 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
501 * @nh: Pointer to head of the SRCU notifier chain
502 * @n: Entry to remove from notifier chain
504 * Removes a notifier from an SRCU notifier chain.
505 * Must be called from process context.
507 * Returns zero on success or %-ENOENT on failure.
509 int srcu_notifier_chain_unregister(struct srcu_notifier_head
*nh
,
510 struct notifier_block
*n
)
515 * This code gets used during boot-up, when task switching is
516 * not yet working and interrupts must remain disabled. At
517 * such times we must not call mutex_lock().
519 if (unlikely(system_state
== SYSTEM_BOOTING
))
520 return notifier_chain_unregister(&nh
->head
, n
);
522 mutex_lock(&nh
->mutex
);
523 ret
= notifier_chain_unregister(&nh
->head
, n
);
524 mutex_unlock(&nh
->mutex
);
525 synchronize_srcu(&nh
->srcu
);
529 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister
);
532 * __srcu_notifier_call_chain - Call functions in an SRCU notifier chain
533 * @nh: Pointer to head of the SRCU notifier chain
534 * @val: Value passed unmodified to notifier function
535 * @v: Pointer passed unmodified to notifier function
536 * @nr_to_call: See comment for notifier_call_chain.
537 * @nr_calls: See comment for notifier_call_chain
539 * Calls each function in a notifier chain in turn. The functions
540 * run in a process context, so they are allowed to block.
542 * If the return value of the notifier can be and'ed
543 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
544 * will return immediately, with the return value of
545 * the notifier function which halted execution.
546 * Otherwise the return value is the return value
547 * of the last notifier function called.
550 int __srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
551 unsigned long val
, void *v
,
552 int nr_to_call
, int *nr_calls
)
557 idx
= srcu_read_lock(&nh
->srcu
);
558 ret
= notifier_call_chain(&nh
->head
, val
, v
, nr_to_call
, nr_calls
);
559 srcu_read_unlock(&nh
->srcu
, idx
);
562 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain
);
564 int srcu_notifier_call_chain(struct srcu_notifier_head
*nh
,
565 unsigned long val
, void *v
)
567 return __srcu_notifier_call_chain(nh
, val
, v
, -1, NULL
);
569 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain
);
572 * srcu_init_notifier_head - Initialize an SRCU notifier head
573 * @nh: Pointer to head of the srcu notifier chain
575 * Unlike other sorts of notifier heads, SRCU notifier heads require
576 * dynamic initialization. Be sure to call this routine before
577 * calling any of the other SRCU notifier routines for this head.
579 * If an SRCU notifier head is deallocated, it must first be cleaned
580 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
581 * per-cpu data (used by the SRCU mechanism) will leak.
584 void srcu_init_notifier_head(struct srcu_notifier_head
*nh
)
586 mutex_init(&nh
->mutex
);
587 if (init_srcu_struct(&nh
->srcu
) < 0)
592 EXPORT_SYMBOL_GPL(srcu_init_notifier_head
);
595 * register_reboot_notifier - Register function to be called at reboot time
596 * @nb: Info about notifier function to be called
598 * Registers a function with the list of functions
599 * to be called at reboot time.
601 * Currently always returns zero, as blocking_notifier_chain_register()
602 * always returns zero.
605 int register_reboot_notifier(struct notifier_block
* nb
)
607 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
610 EXPORT_SYMBOL(register_reboot_notifier
);
613 * unregister_reboot_notifier - Unregister previously registered reboot notifier
614 * @nb: Hook to be unregistered
616 * Unregisters a previously registered reboot
619 * Returns zero on success, or %-ENOENT on failure.
622 int unregister_reboot_notifier(struct notifier_block
* nb
)
624 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
627 EXPORT_SYMBOL(unregister_reboot_notifier
);
629 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
633 if (p
->uid
!= current
->euid
&&
634 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
638 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
642 no_nice
= security_task_setnice(p
, niceval
);
649 set_user_nice(p
, niceval
);
654 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
656 struct task_struct
*g
, *p
;
657 struct user_struct
*user
;
661 if (which
> 2 || which
< 0)
664 /* normalize: avoid signed division (rounding problems) */
671 read_lock(&tasklist_lock
);
675 p
= find_task_by_pid(who
);
679 error
= set_one_prio(p
, niceval
, error
);
683 pgrp
= find_pid(who
);
685 pgrp
= task_pgrp(current
);
686 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
687 error
= set_one_prio(p
, niceval
, error
);
688 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
691 user
= current
->user
;
695 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
696 goto out_unlock
; /* No processes for this user */
700 error
= set_one_prio(p
, niceval
, error
);
701 while_each_thread(g
, p
);
702 if (who
!= current
->uid
)
703 free_uid(user
); /* For find_user() */
707 read_unlock(&tasklist_lock
);
713 * Ugh. To avoid negative return values, "getpriority()" will
714 * not return the normal nice-value, but a negated value that
715 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
716 * to stay compatible.
718 asmlinkage
long sys_getpriority(int which
, int who
)
720 struct task_struct
*g
, *p
;
721 struct user_struct
*user
;
722 long niceval
, retval
= -ESRCH
;
725 if (which
> 2 || which
< 0)
728 read_lock(&tasklist_lock
);
732 p
= find_task_by_pid(who
);
736 niceval
= 20 - task_nice(p
);
737 if (niceval
> retval
)
743 pgrp
= find_pid(who
);
745 pgrp
= task_pgrp(current
);
746 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
747 niceval
= 20 - task_nice(p
);
748 if (niceval
> retval
)
750 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
753 user
= current
->user
;
757 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
758 goto out_unlock
; /* No processes for this user */
762 niceval
= 20 - task_nice(p
);
763 if (niceval
> retval
)
766 while_each_thread(g
, p
);
767 if (who
!= current
->uid
)
768 free_uid(user
); /* for find_user() */
772 read_unlock(&tasklist_lock
);
778 * emergency_restart - reboot the system
780 * Without shutting down any hardware or taking any locks
781 * reboot the system. This is called when we know we are in
782 * trouble so this is our best effort to reboot. This is
783 * safe to call in interrupt context.
785 void emergency_restart(void)
787 machine_emergency_restart();
789 EXPORT_SYMBOL_GPL(emergency_restart
);
791 static void kernel_restart_prepare(char *cmd
)
793 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
794 system_state
= SYSTEM_RESTART
;
799 * kernel_restart - reboot the system
800 * @cmd: pointer to buffer containing command to execute for restart
803 * Shutdown everything and perform a clean reboot.
804 * This is not safe to call in interrupt context.
806 void kernel_restart(char *cmd
)
808 kernel_restart_prepare(cmd
);
810 printk(KERN_EMERG
"Restarting system.\n");
812 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
813 machine_restart(cmd
);
815 EXPORT_SYMBOL_GPL(kernel_restart
);
818 * kernel_kexec - reboot the system
820 * Move into place and start executing a preloaded standalone
821 * executable. If nothing was preloaded return an error.
823 static void kernel_kexec(void)
826 struct kimage
*image
;
827 image
= xchg(&kexec_image
, NULL
);
830 kernel_restart_prepare(NULL
);
831 printk(KERN_EMERG
"Starting new kernel\n");
833 machine_kexec(image
);
837 void kernel_shutdown_prepare(enum system_states state
)
839 blocking_notifier_call_chain(&reboot_notifier_list
,
840 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
841 system_state
= state
;
845 * kernel_halt - halt the system
847 * Shutdown everything and perform a clean system halt.
849 void kernel_halt(void)
851 kernel_shutdown_prepare(SYSTEM_HALT
);
852 printk(KERN_EMERG
"System halted.\n");
856 EXPORT_SYMBOL_GPL(kernel_halt
);
859 * kernel_power_off - power_off the system
861 * Shutdown everything and perform a clean system power_off.
863 void kernel_power_off(void)
865 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
866 printk(KERN_EMERG
"Power down.\n");
869 EXPORT_SYMBOL_GPL(kernel_power_off
);
871 * Reboot system call: for obvious reasons only root may call it,
872 * and even root needs to set up some magic numbers in the registers
873 * so that some mistake won't make this reboot the whole machine.
874 * You can also set the meaning of the ctrl-alt-del-key here.
876 * reboot doesn't sync: do that yourself before calling this.
878 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
882 /* We only trust the superuser with rebooting the system. */
883 if (!capable(CAP_SYS_BOOT
))
886 /* For safety, we require "magic" arguments. */
887 if (magic1
!= LINUX_REBOOT_MAGIC1
||
888 (magic2
!= LINUX_REBOOT_MAGIC2
&&
889 magic2
!= LINUX_REBOOT_MAGIC2A
&&
890 magic2
!= LINUX_REBOOT_MAGIC2B
&&
891 magic2
!= LINUX_REBOOT_MAGIC2C
))
894 /* Instead of trying to make the power_off code look like
895 * halt when pm_power_off is not set do it the easy way.
897 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
898 cmd
= LINUX_REBOOT_CMD_HALT
;
902 case LINUX_REBOOT_CMD_RESTART
:
903 kernel_restart(NULL
);
906 case LINUX_REBOOT_CMD_CAD_ON
:
910 case LINUX_REBOOT_CMD_CAD_OFF
:
914 case LINUX_REBOOT_CMD_HALT
:
920 case LINUX_REBOOT_CMD_POWER_OFF
:
926 case LINUX_REBOOT_CMD_RESTART2
:
927 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
931 buffer
[sizeof(buffer
) - 1] = '\0';
933 kernel_restart(buffer
);
936 case LINUX_REBOOT_CMD_KEXEC
:
941 #ifdef CONFIG_SOFTWARE_SUSPEND
942 case LINUX_REBOOT_CMD_SW_SUSPEND
:
944 int ret
= hibernate();
958 static void deferred_cad(struct work_struct
*dummy
)
960 kernel_restart(NULL
);
964 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
965 * As it's called within an interrupt, it may NOT sync: the only choice
966 * is whether to reboot at once, or just ignore the ctrl-alt-del.
968 void ctrl_alt_del(void)
970 static DECLARE_WORK(cad_work
, deferred_cad
);
973 schedule_work(&cad_work
);
975 kill_cad_pid(SIGINT
, 1);
979 * Unprivileged users may change the real gid to the effective gid
980 * or vice versa. (BSD-style)
982 * If you set the real gid at all, or set the effective gid to a value not
983 * equal to the real gid, then the saved gid is set to the new effective gid.
985 * This makes it possible for a setgid program to completely drop its
986 * privileges, which is often a useful assertion to make when you are doing
987 * a security audit over a program.
989 * The general idea is that a program which uses just setregid() will be
990 * 100% compatible with BSD. A program which uses just setgid() will be
991 * 100% compatible with POSIX with saved IDs.
993 * SMP: There are not races, the GIDs are checked only by filesystem
994 * operations (as far as semantic preservation is concerned).
996 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
998 int old_rgid
= current
->gid
;
999 int old_egid
= current
->egid
;
1000 int new_rgid
= old_rgid
;
1001 int new_egid
= old_egid
;
1004 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
1008 if (rgid
!= (gid_t
) -1) {
1009 if ((old_rgid
== rgid
) ||
1010 (current
->egid
==rgid
) ||
1011 capable(CAP_SETGID
))
1016 if (egid
!= (gid_t
) -1) {
1017 if ((old_rgid
== egid
) ||
1018 (current
->egid
== egid
) ||
1019 (current
->sgid
== egid
) ||
1020 capable(CAP_SETGID
))
1025 if (new_egid
!= old_egid
) {
1026 current
->mm
->dumpable
= suid_dumpable
;
1029 if (rgid
!= (gid_t
) -1 ||
1030 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
1031 current
->sgid
= new_egid
;
1032 current
->fsgid
= new_egid
;
1033 current
->egid
= new_egid
;
1034 current
->gid
= new_rgid
;
1035 key_fsgid_changed(current
);
1036 proc_id_connector(current
, PROC_EVENT_GID
);
1041 * setgid() is implemented like SysV w/ SAVED_IDS
1043 * SMP: Same implicit races as above.
1045 asmlinkage
long sys_setgid(gid_t gid
)
1047 int old_egid
= current
->egid
;
1050 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
1054 if (capable(CAP_SETGID
)) {
1055 if (old_egid
!= gid
) {
1056 current
->mm
->dumpable
= suid_dumpable
;
1059 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
1060 } else if ((gid
== current
->gid
) || (gid
== current
->sgid
)) {
1061 if (old_egid
!= gid
) {
1062 current
->mm
->dumpable
= suid_dumpable
;
1065 current
->egid
= current
->fsgid
= gid
;
1070 key_fsgid_changed(current
);
1071 proc_id_connector(current
, PROC_EVENT_GID
);
1075 static int set_user(uid_t new_ruid
, int dumpclear
)
1077 struct user_struct
*new_user
;
1079 new_user
= alloc_uid(new_ruid
);
1083 if (atomic_read(&new_user
->processes
) >=
1084 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
1085 new_user
!= &root_user
) {
1090 switch_uid(new_user
);
1093 current
->mm
->dumpable
= suid_dumpable
;
1096 current
->uid
= new_ruid
;
1101 * Unprivileged users may change the real uid to the effective uid
1102 * or vice versa. (BSD-style)
1104 * If you set the real uid at all, or set the effective uid to a value not
1105 * equal to the real uid, then the saved uid is set to the new effective uid.
1107 * This makes it possible for a setuid program to completely drop its
1108 * privileges, which is often a useful assertion to make when you are doing
1109 * a security audit over a program.
1111 * The general idea is that a program which uses just setreuid() will be
1112 * 100% compatible with BSD. A program which uses just setuid() will be
1113 * 100% compatible with POSIX with saved IDs.
1115 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
1117 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
1120 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
1124 new_ruid
= old_ruid
= current
->uid
;
1125 new_euid
= old_euid
= current
->euid
;
1126 old_suid
= current
->suid
;
1128 if (ruid
!= (uid_t
) -1) {
1130 if ((old_ruid
!= ruid
) &&
1131 (current
->euid
!= ruid
) &&
1132 !capable(CAP_SETUID
))
1136 if (euid
!= (uid_t
) -1) {
1138 if ((old_ruid
!= euid
) &&
1139 (current
->euid
!= euid
) &&
1140 (current
->suid
!= euid
) &&
1141 !capable(CAP_SETUID
))
1145 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
1148 if (new_euid
!= old_euid
) {
1149 current
->mm
->dumpable
= suid_dumpable
;
1152 current
->fsuid
= current
->euid
= new_euid
;
1153 if (ruid
!= (uid_t
) -1 ||
1154 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
1155 current
->suid
= current
->euid
;
1156 current
->fsuid
= current
->euid
;
1158 key_fsuid_changed(current
);
1159 proc_id_connector(current
, PROC_EVENT_UID
);
1161 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
1167 * setuid() is implemented like SysV with SAVED_IDS
1169 * Note that SAVED_ID's is deficient in that a setuid root program
1170 * like sendmail, for example, cannot set its uid to be a normal
1171 * user and then switch back, because if you're root, setuid() sets
1172 * the saved uid too. If you don't like this, blame the bright people
1173 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1174 * will allow a root program to temporarily drop privileges and be able to
1175 * regain them by swapping the real and effective uid.
1177 asmlinkage
long sys_setuid(uid_t uid
)
1179 int old_euid
= current
->euid
;
1180 int old_ruid
, old_suid
, new_suid
;
1183 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
1187 old_ruid
= current
->uid
;
1188 old_suid
= current
->suid
;
1189 new_suid
= old_suid
;
1191 if (capable(CAP_SETUID
)) {
1192 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
1195 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
1198 if (old_euid
!= uid
) {
1199 current
->mm
->dumpable
= suid_dumpable
;
1202 current
->fsuid
= current
->euid
= uid
;
1203 current
->suid
= new_suid
;
1205 key_fsuid_changed(current
);
1206 proc_id_connector(current
, PROC_EVENT_UID
);
1208 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
1213 * This function implements a generic ability to update ruid, euid,
1214 * and suid. This allows you to implement the 4.4 compatible seteuid().
1216 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
1218 int old_ruid
= current
->uid
;
1219 int old_euid
= current
->euid
;
1220 int old_suid
= current
->suid
;
1223 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
1227 if (!capable(CAP_SETUID
)) {
1228 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
1229 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
1231 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
1232 (euid
!= current
->euid
) && (euid
!= current
->suid
))
1234 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
1235 (suid
!= current
->euid
) && (suid
!= current
->suid
))
1238 if (ruid
!= (uid_t
) -1) {
1239 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
1242 if (euid
!= (uid_t
) -1) {
1243 if (euid
!= current
->euid
) {
1244 current
->mm
->dumpable
= suid_dumpable
;
1247 current
->euid
= euid
;
1249 current
->fsuid
= current
->euid
;
1250 if (suid
!= (uid_t
) -1)
1251 current
->suid
= suid
;
1253 key_fsuid_changed(current
);
1254 proc_id_connector(current
, PROC_EVENT_UID
);
1256 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
1259 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
1263 if (!(retval
= put_user(current
->uid
, ruid
)) &&
1264 !(retval
= put_user(current
->euid
, euid
)))
1265 retval
= put_user(current
->suid
, suid
);
1271 * Same as above, but for rgid, egid, sgid.
1273 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
1277 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
1281 if (!capable(CAP_SETGID
)) {
1282 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
1283 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
1285 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
1286 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
1288 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
1289 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
1292 if (egid
!= (gid_t
) -1) {
1293 if (egid
!= current
->egid
) {
1294 current
->mm
->dumpable
= suid_dumpable
;
1297 current
->egid
= egid
;
1299 current
->fsgid
= current
->egid
;
1300 if (rgid
!= (gid_t
) -1)
1301 current
->gid
= rgid
;
1302 if (sgid
!= (gid_t
) -1)
1303 current
->sgid
= sgid
;
1305 key_fsgid_changed(current
);
1306 proc_id_connector(current
, PROC_EVENT_GID
);
1310 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
1314 if (!(retval
= put_user(current
->gid
, rgid
)) &&
1315 !(retval
= put_user(current
->egid
, egid
)))
1316 retval
= put_user(current
->sgid
, sgid
);
1323 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1324 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1325 * whatever uid it wants to). It normally shadows "euid", except when
1326 * explicitly set by setfsuid() or for access..
1328 asmlinkage
long sys_setfsuid(uid_t uid
)
1332 old_fsuid
= current
->fsuid
;
1333 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
1336 if (uid
== current
->uid
|| uid
== current
->euid
||
1337 uid
== current
->suid
|| uid
== current
->fsuid
||
1338 capable(CAP_SETUID
)) {
1339 if (uid
!= old_fsuid
) {
1340 current
->mm
->dumpable
= suid_dumpable
;
1343 current
->fsuid
= uid
;
1346 key_fsuid_changed(current
);
1347 proc_id_connector(current
, PROC_EVENT_UID
);
1349 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
1355 * Samma på svenska..
1357 asmlinkage
long sys_setfsgid(gid_t gid
)
1361 old_fsgid
= current
->fsgid
;
1362 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
1365 if (gid
== current
->gid
|| gid
== current
->egid
||
1366 gid
== current
->sgid
|| gid
== current
->fsgid
||
1367 capable(CAP_SETGID
)) {
1368 if (gid
!= old_fsgid
) {
1369 current
->mm
->dumpable
= suid_dumpable
;
1372 current
->fsgid
= gid
;
1373 key_fsgid_changed(current
);
1374 proc_id_connector(current
, PROC_EVENT_GID
);
1379 asmlinkage
long sys_times(struct tms __user
* tbuf
)
1382 * In the SMP world we might just be unlucky and have one of
1383 * the times increment as we use it. Since the value is an
1384 * atomically safe type this is just fine. Conceptually its
1385 * as if the syscall took an instant longer to occur.
1389 struct task_struct
*tsk
= current
;
1390 struct task_struct
*t
;
1391 cputime_t utime
, stime
, cutime
, cstime
;
1393 spin_lock_irq(&tsk
->sighand
->siglock
);
1394 utime
= tsk
->signal
->utime
;
1395 stime
= tsk
->signal
->stime
;
1398 utime
= cputime_add(utime
, t
->utime
);
1399 stime
= cputime_add(stime
, t
->stime
);
1403 cutime
= tsk
->signal
->cutime
;
1404 cstime
= tsk
->signal
->cstime
;
1405 spin_unlock_irq(&tsk
->sighand
->siglock
);
1407 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1408 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1409 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1410 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1411 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1414 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1418 * This needs some heavy checking ...
1419 * I just haven't the stomach for it. I also don't fully
1420 * understand sessions/pgrp etc. Let somebody who does explain it.
1422 * OK, I think I have the protection semantics right.... this is really
1423 * only important on a multi-user system anyway, to make sure one user
1424 * can't send a signal to a process owned by another. -TYT, 12/12/91
1426 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1430 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1432 struct task_struct
*p
;
1433 struct task_struct
*group_leader
= current
->group_leader
;
1437 pid
= group_leader
->pid
;
1443 /* From this point forward we keep holding onto the tasklist lock
1444 * so that our parent does not change from under us. -DaveM
1446 write_lock_irq(&tasklist_lock
);
1449 p
= find_task_by_pid(pid
);
1454 if (!thread_group_leader(p
))
1457 if (p
->real_parent
== group_leader
) {
1459 if (task_session(p
) != task_session(group_leader
))
1466 if (p
!= group_leader
)
1471 if (p
->signal
->leader
)
1475 struct task_struct
*g
=
1476 find_task_by_pid_type(PIDTYPE_PGID
, pgid
);
1478 if (!g
|| task_session(g
) != task_session(group_leader
))
1482 err
= security_task_setpgid(p
, pgid
);
1486 if (process_group(p
) != pgid
) {
1487 detach_pid(p
, PIDTYPE_PGID
);
1488 p
->signal
->pgrp
= pgid
;
1489 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1494 /* All paths lead to here, thus we are safe. -DaveM */
1495 write_unlock_irq(&tasklist_lock
);
1499 asmlinkage
long sys_getpgid(pid_t pid
)
1502 return process_group(current
);
1505 struct task_struct
*p
;
1507 read_lock(&tasklist_lock
);
1508 p
= find_task_by_pid(pid
);
1512 retval
= security_task_getpgid(p
);
1514 retval
= process_group(p
);
1516 read_unlock(&tasklist_lock
);
1521 #ifdef __ARCH_WANT_SYS_GETPGRP
1523 asmlinkage
long sys_getpgrp(void)
1525 /* SMP - assuming writes are word atomic this is fine */
1526 return process_group(current
);
1531 asmlinkage
long sys_getsid(pid_t pid
)
1534 return process_session(current
);
1537 struct task_struct
*p
;
1539 read_lock(&tasklist_lock
);
1540 p
= find_task_by_pid(pid
);
1544 retval
= security_task_getsid(p
);
1546 retval
= process_session(p
);
1548 read_unlock(&tasklist_lock
);
1553 asmlinkage
long sys_setsid(void)
1555 struct task_struct
*group_leader
= current
->group_leader
;
1559 write_lock_irq(&tasklist_lock
);
1561 /* Fail if I am already a session leader */
1562 if (group_leader
->signal
->leader
)
1565 session
= group_leader
->pid
;
1566 /* Fail if a process group id already exists that equals the
1567 * proposed session id.
1569 * Don't check if session id == 1 because kernel threads use this
1570 * session id and so the check will always fail and make it so
1571 * init cannot successfully call setsid.
1573 if (session
> 1 && find_task_by_pid_type(PIDTYPE_PGID
, session
))
1576 group_leader
->signal
->leader
= 1;
1577 __set_special_pids(session
, session
);
1579 spin_lock(&group_leader
->sighand
->siglock
);
1580 group_leader
->signal
->tty
= NULL
;
1581 spin_unlock(&group_leader
->sighand
->siglock
);
1583 err
= process_group(group_leader
);
1585 write_unlock_irq(&tasklist_lock
);
1590 * Supplementary group IDs
1593 /* init to 2 - one for init_task, one to ensure it is never freed */
1594 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1596 struct group_info
*groups_alloc(int gidsetsize
)
1598 struct group_info
*group_info
;
1602 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1603 /* Make sure we always allocate at least one indirect block pointer */
1604 nblocks
= nblocks
? : 1;
1605 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1608 group_info
->ngroups
= gidsetsize
;
1609 group_info
->nblocks
= nblocks
;
1610 atomic_set(&group_info
->usage
, 1);
1612 if (gidsetsize
<= NGROUPS_SMALL
)
1613 group_info
->blocks
[0] = group_info
->small_block
;
1615 for (i
= 0; i
< nblocks
; i
++) {
1617 b
= (void *)__get_free_page(GFP_USER
);
1619 goto out_undo_partial_alloc
;
1620 group_info
->blocks
[i
] = b
;
1625 out_undo_partial_alloc
:
1627 free_page((unsigned long)group_info
->blocks
[i
]);
1633 EXPORT_SYMBOL(groups_alloc
);
1635 void groups_free(struct group_info
*group_info
)
1637 if (group_info
->blocks
[0] != group_info
->small_block
) {
1639 for (i
= 0; i
< group_info
->nblocks
; i
++)
1640 free_page((unsigned long)group_info
->blocks
[i
]);
1645 EXPORT_SYMBOL(groups_free
);
1647 /* export the group_info to a user-space array */
1648 static int groups_to_user(gid_t __user
*grouplist
,
1649 struct group_info
*group_info
)
1652 int count
= group_info
->ngroups
;
1654 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1655 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1656 int off
= i
* NGROUPS_PER_BLOCK
;
1657 int len
= cp_count
* sizeof(*grouplist
);
1659 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1667 /* fill a group_info from a user-space array - it must be allocated already */
1668 static int groups_from_user(struct group_info
*group_info
,
1669 gid_t __user
*grouplist
)
1672 int count
= group_info
->ngroups
;
1674 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1675 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1676 int off
= i
* NGROUPS_PER_BLOCK
;
1677 int len
= cp_count
* sizeof(*grouplist
);
1679 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1687 /* a simple Shell sort */
1688 static void groups_sort(struct group_info
*group_info
)
1690 int base
, max
, stride
;
1691 int gidsetsize
= group_info
->ngroups
;
1693 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1698 max
= gidsetsize
- stride
;
1699 for (base
= 0; base
< max
; base
++) {
1701 int right
= left
+ stride
;
1702 gid_t tmp
= GROUP_AT(group_info
, right
);
1704 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1705 GROUP_AT(group_info
, right
) =
1706 GROUP_AT(group_info
, left
);
1710 GROUP_AT(group_info
, right
) = tmp
;
1716 /* a simple bsearch */
1717 int groups_search(struct group_info
*group_info
, gid_t grp
)
1719 unsigned int left
, right
;
1725 right
= group_info
->ngroups
;
1726 while (left
< right
) {
1727 unsigned int mid
= (left
+right
)/2;
1728 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1739 /* validate and set current->group_info */
1740 int set_current_groups(struct group_info
*group_info
)
1743 struct group_info
*old_info
;
1745 retval
= security_task_setgroups(group_info
);
1749 groups_sort(group_info
);
1750 get_group_info(group_info
);
1753 old_info
= current
->group_info
;
1754 current
->group_info
= group_info
;
1755 task_unlock(current
);
1757 put_group_info(old_info
);
1762 EXPORT_SYMBOL(set_current_groups
);
1764 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1769 * SMP: Nobody else can change our grouplist. Thus we are
1776 /* no need to grab task_lock here; it cannot change */
1777 i
= current
->group_info
->ngroups
;
1779 if (i
> gidsetsize
) {
1783 if (groups_to_user(grouplist
, current
->group_info
)) {
1793 * SMP: Our groups are copy-on-write. We can set them safely
1794 * without another task interfering.
1797 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1799 struct group_info
*group_info
;
1802 if (!capable(CAP_SETGID
))
1804 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1807 group_info
= groups_alloc(gidsetsize
);
1810 retval
= groups_from_user(group_info
, grouplist
);
1812 put_group_info(group_info
);
1816 retval
= set_current_groups(group_info
);
1817 put_group_info(group_info
);
1823 * Check whether we're fsgid/egid or in the supplemental group..
1825 int in_group_p(gid_t grp
)
1828 if (grp
!= current
->fsgid
)
1829 retval
= groups_search(current
->group_info
, grp
);
1833 EXPORT_SYMBOL(in_group_p
);
1835 int in_egroup_p(gid_t grp
)
1838 if (grp
!= current
->egid
)
1839 retval
= groups_search(current
->group_info
, grp
);
1843 EXPORT_SYMBOL(in_egroup_p
);
1845 DECLARE_RWSEM(uts_sem
);
1847 EXPORT_SYMBOL(uts_sem
);
1849 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1853 down_read(&uts_sem
);
1854 if (copy_to_user(name
, utsname(), sizeof *name
))
1860 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1863 char tmp
[__NEW_UTS_LEN
];
1865 if (!capable(CAP_SYS_ADMIN
))
1867 if (len
< 0 || len
> __NEW_UTS_LEN
)
1869 down_write(&uts_sem
);
1871 if (!copy_from_user(tmp
, name
, len
)) {
1872 memcpy(utsname()->nodename
, tmp
, len
);
1873 utsname()->nodename
[len
] = 0;
1880 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1882 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1888 down_read(&uts_sem
);
1889 i
= 1 + strlen(utsname()->nodename
);
1893 if (copy_to_user(name
, utsname()->nodename
, i
))
1902 * Only setdomainname; getdomainname can be implemented by calling
1905 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1908 char tmp
[__NEW_UTS_LEN
];
1910 if (!capable(CAP_SYS_ADMIN
))
1912 if (len
< 0 || len
> __NEW_UTS_LEN
)
1915 down_write(&uts_sem
);
1917 if (!copy_from_user(tmp
, name
, len
)) {
1918 memcpy(utsname()->domainname
, tmp
, len
);
1919 utsname()->domainname
[len
] = 0;
1926 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1928 if (resource
>= RLIM_NLIMITS
)
1931 struct rlimit value
;
1932 task_lock(current
->group_leader
);
1933 value
= current
->signal
->rlim
[resource
];
1934 task_unlock(current
->group_leader
);
1935 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1939 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1942 * Back compatibility for getrlimit. Needed for some apps.
1945 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1948 if (resource
>= RLIM_NLIMITS
)
1951 task_lock(current
->group_leader
);
1952 x
= current
->signal
->rlim
[resource
];
1953 task_unlock(current
->group_leader
);
1954 if (x
.rlim_cur
> 0x7FFFFFFF)
1955 x
.rlim_cur
= 0x7FFFFFFF;
1956 if (x
.rlim_max
> 0x7FFFFFFF)
1957 x
.rlim_max
= 0x7FFFFFFF;
1958 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1963 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1965 struct rlimit new_rlim
, *old_rlim
;
1966 unsigned long it_prof_secs
;
1969 if (resource
>= RLIM_NLIMITS
)
1971 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1973 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1975 old_rlim
= current
->signal
->rlim
+ resource
;
1976 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1977 !capable(CAP_SYS_RESOURCE
))
1979 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1982 retval
= security_task_setrlimit(resource
, &new_rlim
);
1986 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1988 * The caller is asking for an immediate RLIMIT_CPU
1989 * expiry. But we use the zero value to mean "it was
1990 * never set". So let's cheat and make it one second
1993 new_rlim
.rlim_cur
= 1;
1996 task_lock(current
->group_leader
);
1997 *old_rlim
= new_rlim
;
1998 task_unlock(current
->group_leader
);
2000 if (resource
!= RLIMIT_CPU
)
2004 * RLIMIT_CPU handling. Note that the kernel fails to return an error
2005 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
2006 * very long-standing error, and fixing it now risks breakage of
2007 * applications, so we live with it
2009 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
2012 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
2013 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
2014 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
2017 cputime
= secs_to_cputime(rlim_cur
);
2018 read_lock(&tasklist_lock
);
2019 spin_lock_irq(¤t
->sighand
->siglock
);
2020 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
2021 spin_unlock_irq(¤t
->sighand
->siglock
);
2022 read_unlock(&tasklist_lock
);
2029 * It would make sense to put struct rusage in the task_struct,
2030 * except that would make the task_struct be *really big*. After
2031 * task_struct gets moved into malloc'ed memory, it would
2032 * make sense to do this. It will make moving the rest of the information
2033 * a lot simpler! (Which we're not doing right now because we're not
2034 * measuring them yet).
2036 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2037 * races with threads incrementing their own counters. But since word
2038 * reads are atomic, we either get new values or old values and we don't
2039 * care which for the sums. We always take the siglock to protect reading
2040 * the c* fields from p->signal from races with exit.c updating those
2041 * fields when reaping, so a sample either gets all the additions of a
2042 * given child after it's reaped, or none so this sample is before reaping.
2045 * We need to take the siglock for CHILDEREN, SELF and BOTH
2046 * for the cases current multithreaded, non-current single threaded
2047 * non-current multithreaded. Thread traversal is now safe with
2049 * Strictly speaking, we donot need to take the siglock if we are current and
2050 * single threaded, as no one else can take our signal_struct away, no one
2051 * else can reap the children to update signal->c* counters, and no one else
2052 * can race with the signal-> fields. If we do not take any lock, the
2053 * signal-> fields could be read out of order while another thread was just
2054 * exiting. So we should place a read memory barrier when we avoid the lock.
2055 * On the writer side, write memory barrier is implied in __exit_signal
2056 * as __exit_signal releases the siglock spinlock after updating the signal->
2057 * fields. But we don't do this yet to keep things simple.
2061 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
2063 struct task_struct
*t
;
2064 unsigned long flags
;
2065 cputime_t utime
, stime
;
2067 memset((char *) r
, 0, sizeof *r
);
2068 utime
= stime
= cputime_zero
;
2071 if (!lock_task_sighand(p
, &flags
)) {
2078 case RUSAGE_CHILDREN
:
2079 utime
= p
->signal
->cutime
;
2080 stime
= p
->signal
->cstime
;
2081 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
2082 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
2083 r
->ru_minflt
= p
->signal
->cmin_flt
;
2084 r
->ru_majflt
= p
->signal
->cmaj_flt
;
2086 if (who
== RUSAGE_CHILDREN
)
2090 utime
= cputime_add(utime
, p
->signal
->utime
);
2091 stime
= cputime_add(stime
, p
->signal
->stime
);
2092 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
2093 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
2094 r
->ru_minflt
+= p
->signal
->min_flt
;
2095 r
->ru_majflt
+= p
->signal
->maj_flt
;
2098 utime
= cputime_add(utime
, t
->utime
);
2099 stime
= cputime_add(stime
, t
->stime
);
2100 r
->ru_nvcsw
+= t
->nvcsw
;
2101 r
->ru_nivcsw
+= t
->nivcsw
;
2102 r
->ru_minflt
+= t
->min_flt
;
2103 r
->ru_majflt
+= t
->maj_flt
;
2112 unlock_task_sighand(p
, &flags
);
2115 cputime_to_timeval(utime
, &r
->ru_utime
);
2116 cputime_to_timeval(stime
, &r
->ru_stime
);
2119 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
2122 k_getrusage(p
, who
, &r
);
2123 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
2126 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
2128 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
2130 return getrusage(current
, who
, ru
);
2133 asmlinkage
long sys_umask(int mask
)
2135 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
2139 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
2140 unsigned long arg4
, unsigned long arg5
)
2144 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2149 case PR_SET_PDEATHSIG
:
2150 if (!valid_signal(arg2
)) {
2154 current
->pdeath_signal
= arg2
;
2156 case PR_GET_PDEATHSIG
:
2157 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
2159 case PR_GET_DUMPABLE
:
2160 error
= current
->mm
->dumpable
;
2162 case PR_SET_DUMPABLE
:
2163 if (arg2
< 0 || arg2
> 1) {
2167 current
->mm
->dumpable
= arg2
;
2170 case PR_SET_UNALIGN
:
2171 error
= SET_UNALIGN_CTL(current
, arg2
);
2173 case PR_GET_UNALIGN
:
2174 error
= GET_UNALIGN_CTL(current
, arg2
);
2177 error
= SET_FPEMU_CTL(current
, arg2
);
2180 error
= GET_FPEMU_CTL(current
, arg2
);
2183 error
= SET_FPEXC_CTL(current
, arg2
);
2186 error
= GET_FPEXC_CTL(current
, arg2
);
2189 error
= PR_TIMING_STATISTICAL
;
2192 if (arg2
== PR_TIMING_STATISTICAL
)
2198 case PR_GET_KEEPCAPS
:
2199 if (current
->keep_capabilities
)
2202 case PR_SET_KEEPCAPS
:
2203 if (arg2
!= 0 && arg2
!= 1) {
2207 current
->keep_capabilities
= arg2
;
2210 struct task_struct
*me
= current
;
2211 unsigned char ncomm
[sizeof(me
->comm
)];
2213 ncomm
[sizeof(me
->comm
)-1] = 0;
2214 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
2215 sizeof(me
->comm
)-1) < 0)
2217 set_task_comm(me
, ncomm
);
2221 struct task_struct
*me
= current
;
2222 unsigned char tcomm
[sizeof(me
->comm
)];
2224 get_task_comm(tcomm
, me
);
2225 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))
2230 error
= GET_ENDIAN(current
, arg2
);
2233 error
= SET_ENDIAN(current
, arg2
);
2243 asmlinkage
long sys_getcpu(unsigned __user
*cpup
, unsigned __user
*nodep
,
2244 struct getcpu_cache __user
*cache
)
2247 int cpu
= raw_smp_processor_id();
2249 err
|= put_user(cpu
, cpup
);
2251 err
|= put_user(cpu_to_node(cpu
), nodep
);
2254 * The cache is not needed for this implementation,
2255 * but make sure user programs pass something
2256 * valid. vsyscall implementations can instead make
2257 * good use of the cache. Only use t0 and t1 because
2258 * these are available in both 32bit and 64bit ABI (no
2259 * need for a compat_getcpu). 32bit has enough
2262 unsigned long t0
, t1
;
2263 get_user(t0
, &cache
->blob
[0]);
2264 get_user(t1
, &cache
->blob
[1]);
2267 put_user(t0
, &cache
->blob
[0]);
2268 put_user(t1
, &cache
->blob
[1]);
2270 return err
? -EFAULT
: 0;