[CIFS] Enable DFS support for Windows query path info
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / rx.c
blob02f436a86061a33c99c3c38dc4787b03d27c6c39
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
21 #include "ieee80211_i.h"
22 #include "led.h"
23 #include "mesh.h"
24 #include "wep.h"
25 #include "wpa.h"
26 #include "tkip.h"
27 #include "wme.h"
29 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30 struct tid_ampdu_rx *tid_agg_rx,
31 struct sk_buff *skb, u16 mpdu_seq_num,
32 int bar_req);
34 * monitor mode reception
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40 struct sk_buff *skb,
41 int rtap_len)
43 skb_pull(skb, rtap_len);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 skb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 skb = NULL;
56 return skb;
59 static inline int should_drop_frame(struct ieee80211_rx_status *status,
60 struct sk_buff *skb,
61 int present_fcs_len,
62 int radiotap_len)
64 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
66 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67 return 1;
68 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69 return 1;
70 if (((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
71 cpu_to_le16(IEEE80211_FTYPE_CTL)) &&
72 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
73 cpu_to_le16(IEEE80211_STYPE_PSPOLL)) &&
74 ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE)) !=
75 cpu_to_le16(IEEE80211_STYPE_BACK_REQ)))
76 return 1;
77 return 0;
81 * This function copies a received frame to all monitor interfaces and
82 * returns a cleaned-up SKB that no longer includes the FCS nor the
83 * radiotap header the driver might have added.
85 static struct sk_buff *
86 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
87 struct ieee80211_rx_status *status,
88 struct ieee80211_rate *rate)
90 struct ieee80211_sub_if_data *sdata;
91 int needed_headroom = 0;
92 struct ieee80211_radiotap_header *rthdr;
93 __le64 *rttsft = NULL;
94 struct ieee80211_rtap_fixed_data {
95 u8 flags;
96 u8 rate;
97 __le16 chan_freq;
98 __le16 chan_flags;
99 u8 antsignal;
100 u8 padding_for_rxflags;
101 __le16 rx_flags;
102 } __attribute__ ((packed)) *rtfixed;
103 struct sk_buff *skb, *skb2;
104 struct net_device *prev_dev = NULL;
105 int present_fcs_len = 0;
106 int rtap_len = 0;
109 * First, we may need to make a copy of the skb because
110 * (1) we need to modify it for radiotap (if not present), and
111 * (2) the other RX handlers will modify the skb we got.
113 * We don't need to, of course, if we aren't going to return
114 * the SKB because it has a bad FCS/PLCP checksum.
116 if (status->flag & RX_FLAG_RADIOTAP)
117 rtap_len = ieee80211_get_radiotap_len(origskb->data);
118 else
119 /* room for radiotap header, always present fields and TSFT */
120 needed_headroom = sizeof(*rthdr) + sizeof(*rtfixed) + 8;
122 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
123 present_fcs_len = FCS_LEN;
125 if (!local->monitors) {
126 if (should_drop_frame(status, origskb, present_fcs_len,
127 rtap_len)) {
128 dev_kfree_skb(origskb);
129 return NULL;
132 return remove_monitor_info(local, origskb, rtap_len);
135 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
136 /* only need to expand headroom if necessary */
137 skb = origskb;
138 origskb = NULL;
141 * This shouldn't trigger often because most devices have an
142 * RX header they pull before we get here, and that should
143 * be big enough for our radiotap information. We should
144 * probably export the length to drivers so that we can have
145 * them allocate enough headroom to start with.
147 if (skb_headroom(skb) < needed_headroom &&
148 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
149 dev_kfree_skb(skb);
150 return NULL;
152 } else {
154 * Need to make a copy and possibly remove radiotap header
155 * and FCS from the original.
157 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
159 origskb = remove_monitor_info(local, origskb, rtap_len);
161 if (!skb)
162 return origskb;
165 /* if necessary, prepend radiotap information */
166 if (!(status->flag & RX_FLAG_RADIOTAP)) {
167 rtfixed = (void *) skb_push(skb, sizeof(*rtfixed));
168 rtap_len = sizeof(*rthdr) + sizeof(*rtfixed);
169 if (status->flag & RX_FLAG_TSFT) {
170 rttsft = (void *) skb_push(skb, sizeof(*rttsft));
171 rtap_len += 8;
173 rthdr = (void *) skb_push(skb, sizeof(*rthdr));
174 memset(rthdr, 0, sizeof(*rthdr));
175 memset(rtfixed, 0, sizeof(*rtfixed));
176 rthdr->it_present =
177 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
178 (1 << IEEE80211_RADIOTAP_RATE) |
179 (1 << IEEE80211_RADIOTAP_CHANNEL) |
180 (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
181 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
182 rtfixed->flags = 0;
183 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
184 rtfixed->flags |= IEEE80211_RADIOTAP_F_FCS;
186 if (rttsft) {
187 *rttsft = cpu_to_le64(status->mactime);
188 rthdr->it_present |=
189 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
192 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
193 rtfixed->rx_flags = 0;
194 if (status->flag &
195 (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
196 rtfixed->rx_flags |=
197 cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
199 rtfixed->rate = rate->bitrate / 5;
201 rtfixed->chan_freq = cpu_to_le16(status->freq);
203 if (status->band == IEEE80211_BAND_5GHZ)
204 rtfixed->chan_flags =
205 cpu_to_le16(IEEE80211_CHAN_OFDM |
206 IEEE80211_CHAN_5GHZ);
207 else
208 rtfixed->chan_flags =
209 cpu_to_le16(IEEE80211_CHAN_DYN |
210 IEEE80211_CHAN_2GHZ);
212 rtfixed->antsignal = status->ssi;
213 rthdr->it_len = cpu_to_le16(rtap_len);
216 skb_reset_mac_header(skb);
217 skb->ip_summed = CHECKSUM_UNNECESSARY;
218 skb->pkt_type = PACKET_OTHERHOST;
219 skb->protocol = htons(ETH_P_802_2);
221 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
222 if (!netif_running(sdata->dev))
223 continue;
225 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
226 continue;
228 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
229 continue;
231 if (prev_dev) {
232 skb2 = skb_clone(skb, GFP_ATOMIC);
233 if (skb2) {
234 skb2->dev = prev_dev;
235 netif_rx(skb2);
239 prev_dev = sdata->dev;
240 sdata->dev->stats.rx_packets++;
241 sdata->dev->stats.rx_bytes += skb->len;
244 if (prev_dev) {
245 skb->dev = prev_dev;
246 netif_rx(skb);
247 } else
248 dev_kfree_skb(skb);
250 return origskb;
254 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
256 u8 *data = rx->skb->data;
257 int tid;
259 /* does the frame have a qos control field? */
260 if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
261 u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
262 /* frame has qos control */
263 tid = qc[0] & QOS_CONTROL_TID_MASK;
264 if (qc[0] & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
265 rx->flags |= IEEE80211_RX_AMSDU;
266 else
267 rx->flags &= ~IEEE80211_RX_AMSDU;
268 } else {
269 if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
270 /* Separate TID for management frames */
271 tid = NUM_RX_DATA_QUEUES - 1;
272 } else {
273 /* no qos control present */
274 tid = 0; /* 802.1d - Best Effort */
278 I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
279 /* only a debug counter, sta might not be assigned properly yet */
280 if (rx->sta)
281 I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
283 rx->queue = tid;
284 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
285 * For now, set skb->priority to 0 for other cases. */
286 rx->skb->priority = (tid > 7) ? 0 : tid;
289 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
291 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
292 int hdrlen;
294 if (!WLAN_FC_DATA_PRESENT(rx->fc))
295 return;
298 * Drivers are required to align the payload data in a way that
299 * guarantees that the contained IP header is aligned to a four-
300 * byte boundary. In the case of regular frames, this simply means
301 * aligning the payload to a four-byte boundary (because either
302 * the IP header is directly contained, or IV/RFC1042 headers that
303 * have a length divisible by four are in front of it.
305 * With A-MSDU frames, however, the payload data address must
306 * yield two modulo four because there are 14-byte 802.3 headers
307 * within the A-MSDU frames that push the IP header further back
308 * to a multiple of four again. Thankfully, the specs were sane
309 * enough this time around to require padding each A-MSDU subframe
310 * to a length that is a multiple of four.
312 * Padding like atheros hardware adds which is inbetween the 802.11
313 * header and the payload is not supported, the driver is required
314 * to move the 802.11 header further back in that case.
316 hdrlen = ieee80211_get_hdrlen(rx->fc);
317 if (rx->flags & IEEE80211_RX_AMSDU)
318 hdrlen += ETH_HLEN;
319 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
320 #endif
324 static u32 ieee80211_rx_load_stats(struct ieee80211_local *local,
325 struct sk_buff *skb,
326 struct ieee80211_rx_status *status,
327 struct ieee80211_rate *rate)
329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
330 u32 load = 0, hdrtime;
332 /* Estimate total channel use caused by this frame */
334 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
335 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
337 if (status->band == IEEE80211_BAND_5GHZ ||
338 (status->band == IEEE80211_BAND_5GHZ &&
339 rate->flags & IEEE80211_RATE_ERP_G))
340 hdrtime = CHAN_UTIL_HDR_SHORT;
341 else
342 hdrtime = CHAN_UTIL_HDR_LONG;
344 load = hdrtime;
345 if (!is_multicast_ether_addr(hdr->addr1))
346 load += hdrtime;
348 /* TODO: optimise again */
349 load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate;
351 /* Divide channel_use by 8 to avoid wrapping around the counter */
352 load >>= CHAN_UTIL_SHIFT;
354 return load;
357 /* rx handlers */
359 static ieee80211_rx_result
360 ieee80211_rx_h_if_stats(struct ieee80211_rx_data *rx)
362 if (rx->sta)
363 rx->sta->channel_use_raw += rx->load;
364 rx->sdata->channel_use_raw += rx->load;
365 return RX_CONTINUE;
368 static ieee80211_rx_result
369 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
371 struct ieee80211_local *local = rx->local;
372 struct sk_buff *skb = rx->skb;
374 if (unlikely(local->sta_hw_scanning))
375 return ieee80211_sta_rx_scan(rx->dev, skb, rx->status);
377 if (unlikely(local->sta_sw_scanning)) {
378 /* drop all the other packets during a software scan anyway */
379 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->status)
380 != RX_QUEUED)
381 dev_kfree_skb(skb);
382 return RX_QUEUED;
385 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
386 /* scanning finished during invoking of handlers */
387 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
388 return RX_DROP_UNUSABLE;
391 return RX_CONTINUE;
394 static ieee80211_rx_result
395 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
397 int hdrlen = ieee80211_get_hdrlen(rx->fc);
398 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
400 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
402 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) {
403 if (!((rx->fc & IEEE80211_FCTL_FROMDS) &&
404 (rx->fc & IEEE80211_FCTL_TODS)))
405 return RX_DROP_MONITOR;
406 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
407 return RX_DROP_MONITOR;
410 /* If there is not an established peer link and this is not a peer link
411 * establisment frame, beacon or probe, drop the frame.
414 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
415 struct ieee80211_mgmt *mgmt;
417 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT)
418 return RX_DROP_MONITOR;
420 switch (rx->fc & IEEE80211_FCTL_STYPE) {
421 case IEEE80211_STYPE_ACTION:
422 mgmt = (struct ieee80211_mgmt *)hdr;
423 if (mgmt->u.action.category != PLINK_CATEGORY)
424 return RX_DROP_MONITOR;
425 /* fall through on else */
426 case IEEE80211_STYPE_PROBE_REQ:
427 case IEEE80211_STYPE_PROBE_RESP:
428 case IEEE80211_STYPE_BEACON:
429 return RX_CONTINUE;
430 break;
431 default:
432 return RX_DROP_MONITOR;
435 } else if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
436 is_multicast_ether_addr(hdr->addr1) &&
437 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
438 return RX_DROP_MONITOR;
439 #undef msh_h_get
441 return RX_CONTINUE;
445 static ieee80211_rx_result
446 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
448 struct ieee80211_hdr *hdr;
450 hdr = (struct ieee80211_hdr *) rx->skb->data;
452 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
453 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
454 if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
455 rx->sta->last_seq_ctrl[rx->queue] ==
456 hdr->seq_ctrl)) {
457 if (rx->flags & IEEE80211_RX_RA_MATCH) {
458 rx->local->dot11FrameDuplicateCount++;
459 rx->sta->num_duplicates++;
461 return RX_DROP_MONITOR;
462 } else
463 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
466 if (unlikely(rx->skb->len < 16)) {
467 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
468 return RX_DROP_MONITOR;
471 /* Drop disallowed frame classes based on STA auth/assoc state;
472 * IEEE 802.11, Chap 5.5.
474 * 80211.o does filtering only based on association state, i.e., it
475 * drops Class 3 frames from not associated stations. hostapd sends
476 * deauth/disassoc frames when needed. In addition, hostapd is
477 * responsible for filtering on both auth and assoc states.
480 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
481 return ieee80211_rx_mesh_check(rx);
483 if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
484 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
485 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
486 rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
487 (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
488 if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
489 !(rx->fc & IEEE80211_FCTL_TODS) &&
490 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
491 || !(rx->flags & IEEE80211_RX_RA_MATCH)) {
492 /* Drop IBSS frames and frames for other hosts
493 * silently. */
494 return RX_DROP_MONITOR;
497 return RX_DROP_MONITOR;
500 return RX_CONTINUE;
504 static ieee80211_rx_result
505 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
507 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
508 int keyidx;
509 int hdrlen;
510 ieee80211_rx_result result = RX_DROP_UNUSABLE;
511 struct ieee80211_key *stakey = NULL;
514 * Key selection 101
516 * There are three types of keys:
517 * - GTK (group keys)
518 * - PTK (pairwise keys)
519 * - STK (station-to-station pairwise keys)
521 * When selecting a key, we have to distinguish between multicast
522 * (including broadcast) and unicast frames, the latter can only
523 * use PTKs and STKs while the former always use GTKs. Unless, of
524 * course, actual WEP keys ("pre-RSNA") are used, then unicast
525 * frames can also use key indizes like GTKs. Hence, if we don't
526 * have a PTK/STK we check the key index for a WEP key.
528 * Note that in a regular BSS, multicast frames are sent by the
529 * AP only, associated stations unicast the frame to the AP first
530 * which then multicasts it on their behalf.
532 * There is also a slight problem in IBSS mode: GTKs are negotiated
533 * with each station, that is something we don't currently handle.
534 * The spec seems to expect that one negotiates the same key with
535 * every station but there's no such requirement; VLANs could be
536 * possible.
539 if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
540 return RX_CONTINUE;
543 * No point in finding a key and decrypting if the frame is neither
544 * addressed to us nor a multicast frame.
546 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
547 return RX_CONTINUE;
549 if (rx->sta)
550 stakey = rcu_dereference(rx->sta->key);
552 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
553 rx->key = stakey;
554 } else {
556 * The device doesn't give us the IV so we won't be
557 * able to look up the key. That's ok though, we
558 * don't need to decrypt the frame, we just won't
559 * be able to keep statistics accurate.
560 * Except for key threshold notifications, should
561 * we somehow allow the driver to tell us which key
562 * the hardware used if this flag is set?
564 if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
565 (rx->status->flag & RX_FLAG_IV_STRIPPED))
566 return RX_CONTINUE;
568 hdrlen = ieee80211_get_hdrlen(rx->fc);
570 if (rx->skb->len < 8 + hdrlen)
571 return RX_DROP_UNUSABLE; /* TODO: count this? */
574 * no need to call ieee80211_wep_get_keyidx,
575 * it verifies a bunch of things we've done already
577 keyidx = rx->skb->data[hdrlen + 3] >> 6;
579 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
582 * RSNA-protected unicast frames should always be sent with
583 * pairwise or station-to-station keys, but for WEP we allow
584 * using a key index as well.
586 if (rx->key && rx->key->conf.alg != ALG_WEP &&
587 !is_multicast_ether_addr(hdr->addr1))
588 rx->key = NULL;
591 if (rx->key) {
592 rx->key->tx_rx_count++;
593 /* TODO: add threshold stuff again */
594 } else {
595 #ifdef CONFIG_MAC80211_DEBUG
596 if (net_ratelimit())
597 printk(KERN_DEBUG "%s: RX protected frame,"
598 " but have no key\n", rx->dev->name);
599 #endif /* CONFIG_MAC80211_DEBUG */
600 return RX_DROP_MONITOR;
603 /* Check for weak IVs if possible */
604 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
605 ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
606 (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
607 !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
608 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
609 rx->sta->wep_weak_iv_count++;
611 switch (rx->key->conf.alg) {
612 case ALG_WEP:
613 result = ieee80211_crypto_wep_decrypt(rx);
614 break;
615 case ALG_TKIP:
616 result = ieee80211_crypto_tkip_decrypt(rx);
617 break;
618 case ALG_CCMP:
619 result = ieee80211_crypto_ccmp_decrypt(rx);
620 break;
623 /* either the frame has been decrypted or will be dropped */
624 rx->status->flag |= RX_FLAG_DECRYPTED;
626 return result;
629 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
631 struct ieee80211_sub_if_data *sdata;
632 DECLARE_MAC_BUF(mac);
634 sdata = sta->sdata;
636 if (sdata->bss)
637 atomic_inc(&sdata->bss->num_sta_ps);
638 sta->flags |= WLAN_STA_PS;
639 sta->flags &= ~WLAN_STA_PSPOLL;
640 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
641 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
642 dev->name, print_mac(mac, sta->addr), sta->aid);
643 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
646 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
648 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
649 struct sk_buff *skb;
650 int sent = 0;
651 struct ieee80211_sub_if_data *sdata;
652 struct ieee80211_tx_packet_data *pkt_data;
653 DECLARE_MAC_BUF(mac);
655 sdata = sta->sdata;
657 if (sdata->bss)
658 atomic_dec(&sdata->bss->num_sta_ps);
660 sta->flags &= ~(WLAN_STA_PS | WLAN_STA_PSPOLL);
662 if (!skb_queue_empty(&sta->ps_tx_buf))
663 sta_info_clear_tim_bit(sta);
665 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
666 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
667 dev->name, print_mac(mac, sta->addr), sta->aid);
668 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
670 /* Send all buffered frames to the station */
671 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
672 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
673 sent++;
674 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
675 dev_queue_xmit(skb);
677 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
678 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
679 local->total_ps_buffered--;
680 sent++;
681 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
682 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
683 "since STA not sleeping anymore\n", dev->name,
684 print_mac(mac, sta->addr), sta->aid);
685 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
686 pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
687 dev_queue_xmit(skb);
690 return sent;
693 static ieee80211_rx_result
694 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
696 struct sta_info *sta = rx->sta;
697 struct net_device *dev = rx->dev;
698 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
700 if (!sta)
701 return RX_CONTINUE;
703 /* Update last_rx only for IBSS packets which are for the current
704 * BSSID to avoid keeping the current IBSS network alive in cases where
705 * other STAs are using different BSSID. */
706 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
707 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
708 IEEE80211_IF_TYPE_IBSS);
709 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
710 sta->last_rx = jiffies;
711 } else
712 if (!is_multicast_ether_addr(hdr->addr1) ||
713 rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
714 /* Update last_rx only for unicast frames in order to prevent
715 * the Probe Request frames (the only broadcast frames from a
716 * STA in infrastructure mode) from keeping a connection alive.
717 * Mesh beacons will update last_rx when if they are found to
718 * match the current local configuration when processed.
720 sta->last_rx = jiffies;
723 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
724 return RX_CONTINUE;
726 sta->rx_fragments++;
727 sta->rx_bytes += rx->skb->len;
728 sta->last_rssi = rx->status->ssi;
729 sta->last_signal = rx->status->signal;
730 sta->last_noise = rx->status->noise;
732 if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
733 /* Change STA power saving mode only in the end of a frame
734 * exchange sequence */
735 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
736 rx->sent_ps_buffered += ap_sta_ps_end(dev, sta);
737 else if (!(sta->flags & WLAN_STA_PS) &&
738 (rx->fc & IEEE80211_FCTL_PM))
739 ap_sta_ps_start(dev, sta);
742 /* Drop data::nullfunc frames silently, since they are used only to
743 * control station power saving mode. */
744 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
745 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
746 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
747 /* Update counter and free packet here to avoid counting this
748 * as a dropped packed. */
749 sta->rx_packets++;
750 dev_kfree_skb(rx->skb);
751 return RX_QUEUED;
754 return RX_CONTINUE;
755 } /* ieee80211_rx_h_sta_process */
757 static inline struct ieee80211_fragment_entry *
758 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
759 unsigned int frag, unsigned int seq, int rx_queue,
760 struct sk_buff **skb)
762 struct ieee80211_fragment_entry *entry;
763 int idx;
765 idx = sdata->fragment_next;
766 entry = &sdata->fragments[sdata->fragment_next++];
767 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
768 sdata->fragment_next = 0;
770 if (!skb_queue_empty(&entry->skb_list)) {
771 #ifdef CONFIG_MAC80211_DEBUG
772 struct ieee80211_hdr *hdr =
773 (struct ieee80211_hdr *) entry->skb_list.next->data;
774 DECLARE_MAC_BUF(mac);
775 DECLARE_MAC_BUF(mac2);
776 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
777 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
778 "addr1=%s addr2=%s\n",
779 sdata->dev->name, idx,
780 jiffies - entry->first_frag_time, entry->seq,
781 entry->last_frag, print_mac(mac, hdr->addr1),
782 print_mac(mac2, hdr->addr2));
783 #endif /* CONFIG_MAC80211_DEBUG */
784 __skb_queue_purge(&entry->skb_list);
787 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
788 *skb = NULL;
789 entry->first_frag_time = jiffies;
790 entry->seq = seq;
791 entry->rx_queue = rx_queue;
792 entry->last_frag = frag;
793 entry->ccmp = 0;
794 entry->extra_len = 0;
796 return entry;
799 static inline struct ieee80211_fragment_entry *
800 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
801 u16 fc, unsigned int frag, unsigned int seq,
802 int rx_queue, struct ieee80211_hdr *hdr)
804 struct ieee80211_fragment_entry *entry;
805 int i, idx;
807 idx = sdata->fragment_next;
808 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
809 struct ieee80211_hdr *f_hdr;
810 u16 f_fc;
812 idx--;
813 if (idx < 0)
814 idx = IEEE80211_FRAGMENT_MAX - 1;
816 entry = &sdata->fragments[idx];
817 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
818 entry->rx_queue != rx_queue ||
819 entry->last_frag + 1 != frag)
820 continue;
822 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
823 f_fc = le16_to_cpu(f_hdr->frame_control);
825 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
826 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
827 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
828 continue;
830 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
831 __skb_queue_purge(&entry->skb_list);
832 continue;
834 return entry;
837 return NULL;
840 static ieee80211_rx_result
841 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
843 struct ieee80211_hdr *hdr;
844 u16 sc;
845 unsigned int frag, seq;
846 struct ieee80211_fragment_entry *entry;
847 struct sk_buff *skb;
848 DECLARE_MAC_BUF(mac);
850 hdr = (struct ieee80211_hdr *) rx->skb->data;
851 sc = le16_to_cpu(hdr->seq_ctrl);
852 frag = sc & IEEE80211_SCTL_FRAG;
854 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
855 (rx->skb)->len < 24 ||
856 is_multicast_ether_addr(hdr->addr1))) {
857 /* not fragmented */
858 goto out;
860 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
862 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
864 if (frag == 0) {
865 /* This is the first fragment of a new frame. */
866 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
867 rx->queue, &(rx->skb));
868 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
869 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
870 /* Store CCMP PN so that we can verify that the next
871 * fragment has a sequential PN value. */
872 entry->ccmp = 1;
873 memcpy(entry->last_pn,
874 rx->key->u.ccmp.rx_pn[rx->queue],
875 CCMP_PN_LEN);
877 return RX_QUEUED;
880 /* This is a fragment for a frame that should already be pending in
881 * fragment cache. Add this fragment to the end of the pending entry.
883 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
884 rx->queue, hdr);
885 if (!entry) {
886 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
887 return RX_DROP_MONITOR;
890 /* Verify that MPDUs within one MSDU have sequential PN values.
891 * (IEEE 802.11i, 8.3.3.4.5) */
892 if (entry->ccmp) {
893 int i;
894 u8 pn[CCMP_PN_LEN], *rpn;
895 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
896 return RX_DROP_UNUSABLE;
897 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
898 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
899 pn[i]++;
900 if (pn[i])
901 break;
903 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
904 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
905 if (net_ratelimit())
906 printk(KERN_DEBUG "%s: defrag: CCMP PN not "
907 "sequential A2=%s"
908 " PN=%02x%02x%02x%02x%02x%02x "
909 "(expected %02x%02x%02x%02x%02x%02x)\n",
910 rx->dev->name, print_mac(mac, hdr->addr2),
911 rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
912 rpn[5], pn[0], pn[1], pn[2], pn[3],
913 pn[4], pn[5]);
914 return RX_DROP_UNUSABLE;
916 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
919 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
920 __skb_queue_tail(&entry->skb_list, rx->skb);
921 entry->last_frag = frag;
922 entry->extra_len += rx->skb->len;
923 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
924 rx->skb = NULL;
925 return RX_QUEUED;
928 rx->skb = __skb_dequeue(&entry->skb_list);
929 if (skb_tailroom(rx->skb) < entry->extra_len) {
930 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
931 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
932 GFP_ATOMIC))) {
933 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
934 __skb_queue_purge(&entry->skb_list);
935 return RX_DROP_UNUSABLE;
938 while ((skb = __skb_dequeue(&entry->skb_list))) {
939 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
940 dev_kfree_skb(skb);
943 /* Complete frame has been reassembled - process it now */
944 rx->flags |= IEEE80211_RX_FRAGMENTED;
946 out:
947 if (rx->sta)
948 rx->sta->rx_packets++;
949 if (is_multicast_ether_addr(hdr->addr1))
950 rx->local->dot11MulticastReceivedFrameCount++;
951 else
952 ieee80211_led_rx(rx->local);
953 return RX_CONTINUE;
956 static ieee80211_rx_result
957 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
959 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
960 struct sk_buff *skb;
961 int no_pending_pkts;
962 DECLARE_MAC_BUF(mac);
964 if (likely(!rx->sta ||
965 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
966 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
967 !(rx->flags & IEEE80211_RX_RA_MATCH)))
968 return RX_CONTINUE;
970 if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
971 (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
972 return RX_DROP_UNUSABLE;
974 skb = skb_dequeue(&rx->sta->tx_filtered);
975 if (!skb) {
976 skb = skb_dequeue(&rx->sta->ps_tx_buf);
977 if (skb)
978 rx->local->total_ps_buffered--;
980 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
981 skb_queue_empty(&rx->sta->ps_tx_buf);
983 if (skb) {
984 struct ieee80211_hdr *hdr =
985 (struct ieee80211_hdr *) skb->data;
988 * Tell TX path to send one frame even though the STA may
989 * still remain is PS mode after this frame exchange.
991 rx->sta->flags |= WLAN_STA_PSPOLL;
993 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
994 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
995 print_mac(mac, rx->sta->addr), rx->sta->aid,
996 skb_queue_len(&rx->sta->ps_tx_buf));
997 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
999 /* Use MoreData flag to indicate whether there are more
1000 * buffered frames for this STA */
1001 if (no_pending_pkts)
1002 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1003 else
1004 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1006 dev_queue_xmit(skb);
1008 if (no_pending_pkts)
1009 sta_info_clear_tim_bit(rx->sta);
1010 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1011 } else if (!rx->sent_ps_buffered) {
1013 * FIXME: This can be the result of a race condition between
1014 * us expiring a frame and the station polling for it.
1015 * Should we send it a null-func frame indicating we
1016 * have nothing buffered for it?
1018 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1019 "though there is no buffered frames for it\n",
1020 rx->dev->name, print_mac(mac, rx->sta->addr));
1021 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1024 /* Free PS Poll skb here instead of returning RX_DROP that would
1025 * count as an dropped frame. */
1026 dev_kfree_skb(rx->skb);
1028 return RX_QUEUED;
1031 static ieee80211_rx_result
1032 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1034 u16 fc = rx->fc;
1035 u8 *data = rx->skb->data;
1036 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
1038 if (!WLAN_FC_IS_QOS_DATA(fc))
1039 return RX_CONTINUE;
1041 /* remove the qos control field, update frame type and meta-data */
1042 memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
1043 hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
1044 /* change frame type to non QOS */
1045 rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
1046 hdr->frame_control = cpu_to_le16(fc);
1048 return RX_CONTINUE;
1051 static int
1052 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1054 if (unlikely(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED))) {
1055 #ifdef CONFIG_MAC80211_DEBUG
1056 if (net_ratelimit())
1057 printk(KERN_DEBUG "%s: dropped frame "
1058 "(unauthorized port)\n", rx->dev->name);
1059 #endif /* CONFIG_MAC80211_DEBUG */
1060 return -EACCES;
1063 return 0;
1066 static int
1067 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx)
1070 * Pass through unencrypted frames if the hardware has
1071 * decrypted them already.
1073 if (rx->status->flag & RX_FLAG_DECRYPTED)
1074 return 0;
1076 /* Drop unencrypted frames if key is set. */
1077 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1078 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1079 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1080 (rx->key || rx->sdata->drop_unencrypted)))
1081 return -EACCES;
1083 return 0;
1086 static int
1087 ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1089 struct net_device *dev = rx->dev;
1090 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1091 u16 fc, hdrlen, ethertype;
1092 u8 *payload;
1093 u8 dst[ETH_ALEN];
1094 u8 src[ETH_ALEN];
1095 struct sk_buff *skb = rx->skb;
1096 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1097 DECLARE_MAC_BUF(mac);
1098 DECLARE_MAC_BUF(mac2);
1099 DECLARE_MAC_BUF(mac3);
1100 DECLARE_MAC_BUF(mac4);
1102 fc = rx->fc;
1104 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1105 return -1;
1107 hdrlen = ieee80211_get_hdrlen(fc);
1109 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1110 int meshhdrlen = ieee80211_get_mesh_hdrlen(
1111 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1112 /* Copy on cb:
1113 * - mesh header: to be used for mesh forwarding
1114 * decision. It will also be used as mesh header template at
1115 * tx.c:ieee80211_subif_start_xmit() if interface
1116 * type is mesh and skb->pkt_type == PACKET_OTHERHOST
1117 * - ta: to be used if a RERR needs to be sent.
1119 memcpy(skb->cb, skb->data + hdrlen, meshhdrlen);
1120 memcpy(MESH_PREQ(skb), hdr->addr2, ETH_ALEN);
1121 hdrlen += meshhdrlen;
1124 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1125 * header
1126 * IEEE 802.11 address fields:
1127 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1128 * 0 0 DA SA BSSID n/a
1129 * 0 1 DA BSSID SA n/a
1130 * 1 0 BSSID SA DA n/a
1131 * 1 1 RA TA DA SA
1134 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1135 case IEEE80211_FCTL_TODS:
1136 /* BSSID SA DA */
1137 memcpy(dst, hdr->addr3, ETH_ALEN);
1138 memcpy(src, hdr->addr2, ETH_ALEN);
1140 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1141 sdata->vif.type != IEEE80211_IF_TYPE_VLAN)) {
1142 if (net_ratelimit())
1143 printk(KERN_DEBUG "%s: dropped ToDS frame "
1144 "(BSSID=%s SA=%s DA=%s)\n",
1145 dev->name,
1146 print_mac(mac, hdr->addr1),
1147 print_mac(mac2, hdr->addr2),
1148 print_mac(mac3, hdr->addr3));
1149 return -1;
1151 break;
1152 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1153 /* RA TA DA SA */
1154 memcpy(dst, hdr->addr3, ETH_ALEN);
1155 memcpy(src, hdr->addr4, ETH_ALEN);
1157 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
1158 sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT)) {
1159 if (net_ratelimit())
1160 printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
1161 "frame (RA=%s TA=%s DA=%s SA=%s)\n",
1162 rx->dev->name,
1163 print_mac(mac, hdr->addr1),
1164 print_mac(mac2, hdr->addr2),
1165 print_mac(mac3, hdr->addr3),
1166 print_mac(mac4, hdr->addr4));
1167 return -1;
1169 break;
1170 case IEEE80211_FCTL_FROMDS:
1171 /* DA BSSID SA */
1172 memcpy(dst, hdr->addr1, ETH_ALEN);
1173 memcpy(src, hdr->addr3, ETH_ALEN);
1175 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1176 (is_multicast_ether_addr(dst) &&
1177 !compare_ether_addr(src, dev->dev_addr)))
1178 return -1;
1179 break;
1180 case 0:
1181 /* DA SA BSSID */
1182 memcpy(dst, hdr->addr1, ETH_ALEN);
1183 memcpy(src, hdr->addr2, ETH_ALEN);
1185 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
1186 if (net_ratelimit()) {
1187 printk(KERN_DEBUG "%s: dropped IBSS frame "
1188 "(DA=%s SA=%s BSSID=%s)\n",
1189 dev->name,
1190 print_mac(mac, hdr->addr1),
1191 print_mac(mac2, hdr->addr2),
1192 print_mac(mac3, hdr->addr3));
1194 return -1;
1196 break;
1199 if (unlikely(skb->len - hdrlen < 8)) {
1200 if (net_ratelimit()) {
1201 printk(KERN_DEBUG "%s: RX too short data frame "
1202 "payload\n", dev->name);
1204 return -1;
1207 payload = skb->data + hdrlen;
1208 ethertype = (payload[6] << 8) | payload[7];
1210 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1211 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1212 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1213 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1214 * replace EtherType */
1215 skb_pull(skb, hdrlen + 6);
1216 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1217 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1218 } else {
1219 struct ethhdr *ehdr;
1220 __be16 len;
1222 skb_pull(skb, hdrlen);
1223 len = htons(skb->len);
1224 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1225 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1226 memcpy(ehdr->h_source, src, ETH_ALEN);
1227 ehdr->h_proto = len;
1229 return 0;
1233 * requires that rx->skb is a frame with ethernet header
1235 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx)
1237 static const u8 pae_group_addr[ETH_ALEN]
1238 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1239 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1242 * Allow EAPOL frames to us/the PAE group address regardless
1243 * of whether the frame was encrypted or not.
1245 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1246 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1247 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1248 return true;
1250 if (ieee80211_802_1x_port_control(rx) ||
1251 ieee80211_drop_unencrypted(rx))
1252 return false;
1254 return true;
1258 * requires that rx->skb is a frame with ethernet header
1260 static void
1261 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1263 struct net_device *dev = rx->dev;
1264 struct ieee80211_local *local = rx->local;
1265 struct sk_buff *skb, *xmit_skb;
1266 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1267 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1268 struct sta_info *dsta;
1270 skb = rx->skb;
1271 xmit_skb = NULL;
1273 if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1274 sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1275 (rx->flags & IEEE80211_RX_RA_MATCH)) {
1276 if (is_multicast_ether_addr(ehdr->h_dest)) {
1278 * send multicast frames both to higher layers in
1279 * local net stack and back to the wireless medium
1281 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1282 if (!xmit_skb && net_ratelimit())
1283 printk(KERN_DEBUG "%s: failed to clone "
1284 "multicast frame\n", dev->name);
1285 } else {
1286 dsta = sta_info_get(local, skb->data);
1287 if (dsta && dsta->sdata->dev == dev) {
1289 * The destination station is associated to
1290 * this AP (in this VLAN), so send the frame
1291 * directly to it and do not pass it to local
1292 * net stack.
1294 xmit_skb = skb;
1295 skb = NULL;
1300 /* Mesh forwarding */
1301 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1302 u8 *mesh_ttl = &((struct ieee80211s_hdr *)skb->cb)->ttl;
1303 (*mesh_ttl)--;
1305 if (is_multicast_ether_addr(skb->data)) {
1306 if (*mesh_ttl > 0) {
1307 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1308 if (!xmit_skb && net_ratelimit())
1309 printk(KERN_DEBUG "%s: failed to clone "
1310 "multicast frame\n", dev->name);
1311 else
1312 xmit_skb->pkt_type = PACKET_OTHERHOST;
1313 } else
1314 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1315 dropped_frames_ttl);
1316 } else if (skb->pkt_type != PACKET_OTHERHOST &&
1317 compare_ether_addr(dev->dev_addr, skb->data) != 0) {
1318 if (*mesh_ttl == 0) {
1319 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1320 dropped_frames_ttl);
1321 dev_kfree_skb(skb);
1322 skb = NULL;
1323 } else {
1324 xmit_skb = skb;
1325 xmit_skb->pkt_type = PACKET_OTHERHOST;
1326 if (!(dev->flags & IFF_PROMISC))
1327 skb = NULL;
1332 if (skb) {
1333 /* deliver to local stack */
1334 skb->protocol = eth_type_trans(skb, dev);
1335 memset(skb->cb, 0, sizeof(skb->cb));
1336 netif_rx(skb);
1339 if (xmit_skb) {
1340 /* send to wireless media */
1341 xmit_skb->protocol = htons(ETH_P_802_3);
1342 skb_reset_network_header(xmit_skb);
1343 skb_reset_mac_header(xmit_skb);
1344 dev_queue_xmit(xmit_skb);
1348 static ieee80211_rx_result
1349 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1351 struct net_device *dev = rx->dev;
1352 struct ieee80211_local *local = rx->local;
1353 u16 fc, ethertype;
1354 u8 *payload;
1355 struct sk_buff *skb = rx->skb, *frame = NULL;
1356 const struct ethhdr *eth;
1357 int remaining, err;
1358 u8 dst[ETH_ALEN];
1359 u8 src[ETH_ALEN];
1360 DECLARE_MAC_BUF(mac);
1362 fc = rx->fc;
1363 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1364 return RX_CONTINUE;
1366 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1367 return RX_DROP_MONITOR;
1369 if (!(rx->flags & IEEE80211_RX_AMSDU))
1370 return RX_CONTINUE;
1372 err = ieee80211_data_to_8023(rx);
1373 if (unlikely(err))
1374 return RX_DROP_UNUSABLE;
1376 skb->dev = dev;
1378 dev->stats.rx_packets++;
1379 dev->stats.rx_bytes += skb->len;
1381 /* skip the wrapping header */
1382 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1383 if (!eth)
1384 return RX_DROP_UNUSABLE;
1386 while (skb != frame) {
1387 u8 padding;
1388 __be16 len = eth->h_proto;
1389 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1391 remaining = skb->len;
1392 memcpy(dst, eth->h_dest, ETH_ALEN);
1393 memcpy(src, eth->h_source, ETH_ALEN);
1395 padding = ((4 - subframe_len) & 0x3);
1396 /* the last MSDU has no padding */
1397 if (subframe_len > remaining) {
1398 printk(KERN_DEBUG "%s: wrong buffer size", dev->name);
1399 return RX_DROP_UNUSABLE;
1402 skb_pull(skb, sizeof(struct ethhdr));
1403 /* if last subframe reuse skb */
1404 if (remaining <= subframe_len + padding)
1405 frame = skb;
1406 else {
1407 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1408 subframe_len);
1410 if (frame == NULL)
1411 return RX_DROP_UNUSABLE;
1413 skb_reserve(frame, local->hw.extra_tx_headroom +
1414 sizeof(struct ethhdr));
1415 memcpy(skb_put(frame, ntohs(len)), skb->data,
1416 ntohs(len));
1418 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1419 padding);
1420 if (!eth) {
1421 printk(KERN_DEBUG "%s: wrong buffer size ",
1422 dev->name);
1423 dev_kfree_skb(frame);
1424 return RX_DROP_UNUSABLE;
1428 skb_reset_network_header(frame);
1429 frame->dev = dev;
1430 frame->priority = skb->priority;
1431 rx->skb = frame;
1433 payload = frame->data;
1434 ethertype = (payload[6] << 8) | payload[7];
1436 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1437 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1438 compare_ether_addr(payload,
1439 bridge_tunnel_header) == 0)) {
1440 /* remove RFC1042 or Bridge-Tunnel
1441 * encapsulation and replace EtherType */
1442 skb_pull(frame, 6);
1443 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1444 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1445 } else {
1446 memcpy(skb_push(frame, sizeof(__be16)),
1447 &len, sizeof(__be16));
1448 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1449 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1452 if (!ieee80211_frame_allowed(rx)) {
1453 if (skb == frame) /* last frame */
1454 return RX_DROP_UNUSABLE;
1455 dev_kfree_skb(frame);
1456 continue;
1459 ieee80211_deliver_skb(rx);
1462 return RX_QUEUED;
1465 static ieee80211_rx_result
1466 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1468 struct net_device *dev = rx->dev;
1469 u16 fc;
1470 int err;
1472 fc = rx->fc;
1473 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1474 return RX_CONTINUE;
1476 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1477 return RX_DROP_MONITOR;
1479 err = ieee80211_data_to_8023(rx);
1480 if (unlikely(err))
1481 return RX_DROP_UNUSABLE;
1483 if (!ieee80211_frame_allowed(rx))
1484 return RX_DROP_MONITOR;
1486 rx->skb->dev = dev;
1488 dev->stats.rx_packets++;
1489 dev->stats.rx_bytes += rx->skb->len;
1491 ieee80211_deliver_skb(rx);
1493 return RX_QUEUED;
1496 static ieee80211_rx_result
1497 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1499 struct ieee80211_local *local = rx->local;
1500 struct ieee80211_hw *hw = &local->hw;
1501 struct sk_buff *skb = rx->skb;
1502 struct ieee80211_bar *bar = (struct ieee80211_bar *) skb->data;
1503 struct tid_ampdu_rx *tid_agg_rx;
1504 u16 start_seq_num;
1505 u16 tid;
1507 if (likely((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL))
1508 return RX_CONTINUE;
1510 if ((rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BACK_REQ) {
1511 if (!rx->sta)
1512 return RX_CONTINUE;
1513 tid = le16_to_cpu(bar->control) >> 12;
1514 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1515 != HT_AGG_STATE_OPERATIONAL)
1516 return RX_CONTINUE;
1517 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1519 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1521 /* reset session timer */
1522 if (tid_agg_rx->timeout) {
1523 unsigned long expires =
1524 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1525 mod_timer(&tid_agg_rx->session_timer, expires);
1528 /* manage reordering buffer according to requested */
1529 /* sequence number */
1530 rcu_read_lock();
1531 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1532 start_seq_num, 1);
1533 rcu_read_unlock();
1534 return RX_DROP_UNUSABLE;
1537 return RX_CONTINUE;
1540 static ieee80211_rx_result
1541 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1543 struct ieee80211_sub_if_data *sdata;
1545 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1546 return RX_DROP_MONITOR;
1548 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1549 if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1550 sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
1551 sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
1552 !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1553 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->status);
1554 else
1555 return RX_DROP_MONITOR;
1557 return RX_QUEUED;
1560 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1561 struct ieee80211_hdr *hdr,
1562 struct ieee80211_rx_data *rx)
1564 int keyidx, hdrlen;
1565 DECLARE_MAC_BUF(mac);
1566 DECLARE_MAC_BUF(mac2);
1568 hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
1569 if (rx->skb->len >= hdrlen + 4)
1570 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1571 else
1572 keyidx = -1;
1574 if (net_ratelimit())
1575 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
1576 "failure from %s to %s keyidx=%d\n",
1577 dev->name, print_mac(mac, hdr->addr2),
1578 print_mac(mac2, hdr->addr1), keyidx);
1580 if (!rx->sta) {
1582 * Some hardware seem to generate incorrect Michael MIC
1583 * reports; ignore them to avoid triggering countermeasures.
1585 if (net_ratelimit())
1586 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1587 "error for unknown address %s\n",
1588 dev->name, print_mac(mac, hdr->addr2));
1589 goto ignore;
1592 if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
1593 if (net_ratelimit())
1594 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1595 "error for a frame with no PROTECTED flag (src "
1596 "%s)\n", dev->name, print_mac(mac, hdr->addr2));
1597 goto ignore;
1600 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1602 * APs with pairwise keys should never receive Michael MIC
1603 * errors for non-zero keyidx because these are reserved for
1604 * group keys and only the AP is sending real multicast
1605 * frames in the BSS.
1607 if (net_ratelimit())
1608 printk(KERN_DEBUG "%s: ignored Michael MIC error for "
1609 "a frame with non-zero keyidx (%d)"
1610 " (src %s)\n", dev->name, keyidx,
1611 print_mac(mac, hdr->addr2));
1612 goto ignore;
1615 if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
1616 ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
1617 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
1618 if (net_ratelimit())
1619 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
1620 "error for a frame that cannot be encrypted "
1621 "(fc=0x%04x) (src %s)\n",
1622 dev->name, rx->fc, print_mac(mac, hdr->addr2));
1623 goto ignore;
1626 mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1627 ignore:
1628 dev_kfree_skb(rx->skb);
1629 rx->skb = NULL;
1632 /* TODO: use IEEE80211_RX_FRAGMENTED */
1633 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
1635 struct ieee80211_sub_if_data *sdata;
1636 struct ieee80211_local *local = rx->local;
1637 struct ieee80211_rtap_hdr {
1638 struct ieee80211_radiotap_header hdr;
1639 u8 flags;
1640 u8 rate;
1641 __le16 chan_freq;
1642 __le16 chan_flags;
1643 } __attribute__ ((packed)) *rthdr;
1644 struct sk_buff *skb = rx->skb, *skb2;
1645 struct net_device *prev_dev = NULL;
1646 struct ieee80211_rx_status *status = rx->status;
1648 if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
1649 goto out_free_skb;
1651 if (skb_headroom(skb) < sizeof(*rthdr) &&
1652 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1653 goto out_free_skb;
1655 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1656 memset(rthdr, 0, sizeof(*rthdr));
1657 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1658 rthdr->hdr.it_present =
1659 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1660 (1 << IEEE80211_RADIOTAP_RATE) |
1661 (1 << IEEE80211_RADIOTAP_CHANNEL));
1663 rthdr->rate = rx->rate->bitrate / 5;
1664 rthdr->chan_freq = cpu_to_le16(status->freq);
1666 if (status->band == IEEE80211_BAND_5GHZ)
1667 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1668 IEEE80211_CHAN_5GHZ);
1669 else
1670 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1671 IEEE80211_CHAN_2GHZ);
1673 skb_set_mac_header(skb, 0);
1674 skb->ip_summed = CHECKSUM_UNNECESSARY;
1675 skb->pkt_type = PACKET_OTHERHOST;
1676 skb->protocol = htons(ETH_P_802_2);
1678 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1679 if (!netif_running(sdata->dev))
1680 continue;
1682 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1683 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1684 continue;
1686 if (prev_dev) {
1687 skb2 = skb_clone(skb, GFP_ATOMIC);
1688 if (skb2) {
1689 skb2->dev = prev_dev;
1690 netif_rx(skb2);
1694 prev_dev = sdata->dev;
1695 sdata->dev->stats.rx_packets++;
1696 sdata->dev->stats.rx_bytes += skb->len;
1699 if (prev_dev) {
1700 skb->dev = prev_dev;
1701 netif_rx(skb);
1702 skb = NULL;
1703 } else
1704 goto out_free_skb;
1706 rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
1707 return;
1709 out_free_skb:
1710 dev_kfree_skb(skb);
1713 typedef ieee80211_rx_result (*ieee80211_rx_handler)(struct ieee80211_rx_data *);
1714 static ieee80211_rx_handler ieee80211_rx_handlers[] =
1716 ieee80211_rx_h_if_stats,
1717 ieee80211_rx_h_passive_scan,
1718 ieee80211_rx_h_check,
1719 ieee80211_rx_h_decrypt,
1720 ieee80211_rx_h_sta_process,
1721 ieee80211_rx_h_defragment,
1722 ieee80211_rx_h_ps_poll,
1723 ieee80211_rx_h_michael_mic_verify,
1724 /* this must be after decryption - so header is counted in MPDU mic
1725 * must be before pae and data, so QOS_DATA format frames
1726 * are not passed to user space by these functions
1728 ieee80211_rx_h_remove_qos_control,
1729 ieee80211_rx_h_amsdu,
1730 ieee80211_rx_h_data,
1731 ieee80211_rx_h_ctrl,
1732 ieee80211_rx_h_mgmt,
1733 NULL
1736 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1737 struct ieee80211_rx_data *rx,
1738 struct sk_buff *skb)
1740 ieee80211_rx_handler *handler;
1741 ieee80211_rx_result res = RX_DROP_MONITOR;
1743 rx->skb = skb;
1744 rx->sdata = sdata;
1745 rx->dev = sdata->dev;
1747 for (handler = ieee80211_rx_handlers; *handler != NULL; handler++) {
1748 res = (*handler)(rx);
1750 switch (res) {
1751 case RX_CONTINUE:
1752 continue;
1753 case RX_DROP_UNUSABLE:
1754 case RX_DROP_MONITOR:
1755 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1756 if (rx->sta)
1757 rx->sta->rx_dropped++;
1758 break;
1759 case RX_QUEUED:
1760 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1761 break;
1763 break;
1766 switch (res) {
1767 case RX_CONTINUE:
1768 case RX_DROP_MONITOR:
1769 ieee80211_rx_cooked_monitor(rx);
1770 break;
1771 case RX_DROP_UNUSABLE:
1772 dev_kfree_skb(rx->skb);
1773 break;
1777 /* main receive path */
1779 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1780 u8 *bssid, struct ieee80211_rx_data *rx,
1781 struct ieee80211_hdr *hdr)
1783 int multicast = is_multicast_ether_addr(hdr->addr1);
1785 switch (sdata->vif.type) {
1786 case IEEE80211_IF_TYPE_STA:
1787 if (!bssid)
1788 return 0;
1789 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1790 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1791 return 0;
1792 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1793 } else if (!multicast &&
1794 compare_ether_addr(sdata->dev->dev_addr,
1795 hdr->addr1) != 0) {
1796 if (!(sdata->dev->flags & IFF_PROMISC))
1797 return 0;
1798 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1800 break;
1801 case IEEE80211_IF_TYPE_IBSS:
1802 if (!bssid)
1803 return 0;
1804 if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
1805 (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON)
1806 return 1;
1807 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1808 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1809 return 0;
1810 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1811 } else if (!multicast &&
1812 compare_ether_addr(sdata->dev->dev_addr,
1813 hdr->addr1) != 0) {
1814 if (!(sdata->dev->flags & IFF_PROMISC))
1815 return 0;
1816 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1817 } else if (!rx->sta)
1818 rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1819 bssid, hdr->addr2);
1820 break;
1821 case IEEE80211_IF_TYPE_MESH_POINT:
1822 if (!multicast &&
1823 compare_ether_addr(sdata->dev->dev_addr,
1824 hdr->addr1) != 0) {
1825 if (!(sdata->dev->flags & IFF_PROMISC))
1826 return 0;
1828 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1830 break;
1831 case IEEE80211_IF_TYPE_VLAN:
1832 case IEEE80211_IF_TYPE_AP:
1833 if (!bssid) {
1834 if (compare_ether_addr(sdata->dev->dev_addr,
1835 hdr->addr1))
1836 return 0;
1837 } else if (!ieee80211_bssid_match(bssid,
1838 sdata->dev->dev_addr)) {
1839 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1840 return 0;
1841 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1843 if (sdata->dev == sdata->local->mdev &&
1844 !(rx->flags & IEEE80211_RX_IN_SCAN))
1845 /* do not receive anything via
1846 * master device when not scanning */
1847 return 0;
1848 break;
1849 case IEEE80211_IF_TYPE_WDS:
1850 if (bssid ||
1851 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
1852 return 0;
1853 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1854 return 0;
1855 break;
1856 case IEEE80211_IF_TYPE_MNTR:
1857 /* take everything */
1858 break;
1859 case IEEE80211_IF_TYPE_INVALID:
1860 /* should never get here */
1861 WARN_ON(1);
1862 break;
1865 return 1;
1869 * This is the actual Rx frames handler. as it blongs to Rx path it must
1870 * be called with rcu_read_lock protection.
1872 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1873 struct sk_buff *skb,
1874 struct ieee80211_rx_status *status,
1875 u32 load,
1876 struct ieee80211_rate *rate)
1878 struct ieee80211_local *local = hw_to_local(hw);
1879 struct ieee80211_sub_if_data *sdata;
1880 struct ieee80211_hdr *hdr;
1881 struct ieee80211_rx_data rx;
1882 u16 type;
1883 int prepares;
1884 struct ieee80211_sub_if_data *prev = NULL;
1885 struct sk_buff *skb_new;
1886 u8 *bssid;
1888 hdr = (struct ieee80211_hdr *) skb->data;
1889 memset(&rx, 0, sizeof(rx));
1890 rx.skb = skb;
1891 rx.local = local;
1893 rx.status = status;
1894 rx.load = load;
1895 rx.rate = rate;
1896 rx.fc = le16_to_cpu(hdr->frame_control);
1897 type = rx.fc & IEEE80211_FCTL_FTYPE;
1899 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1900 local->dot11ReceivedFragmentCount++;
1902 rx.sta = sta_info_get(local, hdr->addr2);
1903 if (rx.sta) {
1904 rx.sdata = rx.sta->sdata;
1905 rx.dev = rx.sta->sdata->dev;
1908 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1909 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1910 return;
1913 if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1914 rx.flags |= IEEE80211_RX_IN_SCAN;
1916 ieee80211_parse_qos(&rx);
1917 ieee80211_verify_ip_alignment(&rx);
1919 skb = rx.skb;
1921 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1922 if (!netif_running(sdata->dev))
1923 continue;
1925 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1926 continue;
1928 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1929 rx.flags |= IEEE80211_RX_RA_MATCH;
1930 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1932 if (!prepares)
1933 continue;
1936 * frame is destined for this interface, but if it's not
1937 * also for the previous one we handle that after the
1938 * loop to avoid copying the SKB once too much
1941 if (!prev) {
1942 prev = sdata;
1943 continue;
1947 * frame was destined for the previous interface
1948 * so invoke RX handlers for it
1951 skb_new = skb_copy(skb, GFP_ATOMIC);
1952 if (!skb_new) {
1953 if (net_ratelimit())
1954 printk(KERN_DEBUG "%s: failed to copy "
1955 "multicast frame for %s",
1956 wiphy_name(local->hw.wiphy),
1957 prev->dev->name);
1958 continue;
1960 rx.fc = le16_to_cpu(hdr->frame_control);
1961 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1962 prev = sdata;
1964 if (prev) {
1965 rx.fc = le16_to_cpu(hdr->frame_control);
1966 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1967 } else
1968 dev_kfree_skb(skb);
1971 #define SEQ_MODULO 0x1000
1972 #define SEQ_MASK 0xfff
1974 static inline int seq_less(u16 sq1, u16 sq2)
1976 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1979 static inline u16 seq_inc(u16 sq)
1981 return ((sq + 1) & SEQ_MASK);
1984 static inline u16 seq_sub(u16 sq1, u16 sq2)
1986 return ((sq1 - sq2) & SEQ_MASK);
1991 * As it function blongs to Rx path it must be called with
1992 * the proper rcu_read_lock protection for its flow.
1994 u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1995 struct tid_ampdu_rx *tid_agg_rx,
1996 struct sk_buff *skb, u16 mpdu_seq_num,
1997 int bar_req)
1999 struct ieee80211_local *local = hw_to_local(hw);
2000 struct ieee80211_rx_status status;
2001 u16 head_seq_num, buf_size;
2002 int index;
2003 u32 pkt_load;
2004 struct ieee80211_supported_band *sband;
2005 struct ieee80211_rate *rate;
2007 buf_size = tid_agg_rx->buf_size;
2008 head_seq_num = tid_agg_rx->head_seq_num;
2010 /* frame with out of date sequence number */
2011 if (seq_less(mpdu_seq_num, head_seq_num)) {
2012 dev_kfree_skb(skb);
2013 return 1;
2016 /* if frame sequence number exceeds our buffering window size or
2017 * block Ack Request arrived - release stored frames */
2018 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
2019 /* new head to the ordering buffer */
2020 if (bar_req)
2021 head_seq_num = mpdu_seq_num;
2022 else
2023 head_seq_num =
2024 seq_inc(seq_sub(mpdu_seq_num, buf_size));
2025 /* release stored frames up to new head to stack */
2026 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
2027 index = seq_sub(tid_agg_rx->head_seq_num,
2028 tid_agg_rx->ssn)
2029 % tid_agg_rx->buf_size;
2031 if (tid_agg_rx->reorder_buf[index]) {
2032 /* release the reordered frames to stack */
2033 memcpy(&status,
2034 tid_agg_rx->reorder_buf[index]->cb,
2035 sizeof(status));
2036 sband = local->hw.wiphy->bands[status.band];
2037 rate = &sband->bitrates[status.rate_idx];
2038 pkt_load = ieee80211_rx_load_stats(local,
2039 tid_agg_rx->reorder_buf[index],
2040 &status, rate);
2041 __ieee80211_rx_handle_packet(hw,
2042 tid_agg_rx->reorder_buf[index],
2043 &status, pkt_load, rate);
2044 tid_agg_rx->stored_mpdu_num--;
2045 tid_agg_rx->reorder_buf[index] = NULL;
2047 tid_agg_rx->head_seq_num =
2048 seq_inc(tid_agg_rx->head_seq_num);
2050 if (bar_req)
2051 return 1;
2054 /* now the new frame is always in the range of the reordering */
2055 /* buffer window */
2056 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
2057 % tid_agg_rx->buf_size;
2058 /* check if we already stored this frame */
2059 if (tid_agg_rx->reorder_buf[index]) {
2060 dev_kfree_skb(skb);
2061 return 1;
2064 /* if arrived mpdu is in the right order and nothing else stored */
2065 /* release it immediately */
2066 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
2067 tid_agg_rx->stored_mpdu_num == 0) {
2068 tid_agg_rx->head_seq_num =
2069 seq_inc(tid_agg_rx->head_seq_num);
2070 return 0;
2073 /* put the frame in the reordering buffer */
2074 tid_agg_rx->reorder_buf[index] = skb;
2075 tid_agg_rx->stored_mpdu_num++;
2076 /* release the buffer until next missing frame */
2077 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
2078 % tid_agg_rx->buf_size;
2079 while (tid_agg_rx->reorder_buf[index]) {
2080 /* release the reordered frame back to stack */
2081 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2082 sizeof(status));
2083 sband = local->hw.wiphy->bands[status.band];
2084 rate = &sband->bitrates[status.rate_idx];
2085 pkt_load = ieee80211_rx_load_stats(local,
2086 tid_agg_rx->reorder_buf[index],
2087 &status, rate);
2088 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2089 &status, pkt_load, rate);
2090 tid_agg_rx->stored_mpdu_num--;
2091 tid_agg_rx->reorder_buf[index] = NULL;
2092 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2093 index = seq_sub(tid_agg_rx->head_seq_num,
2094 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2096 return 1;
2099 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2100 struct sk_buff *skb)
2102 struct ieee80211_hw *hw = &local->hw;
2103 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2104 struct sta_info *sta;
2105 struct tid_ampdu_rx *tid_agg_rx;
2106 u16 fc, sc;
2107 u16 mpdu_seq_num;
2108 u8 ret = 0, *qc;
2109 int tid;
2111 sta = sta_info_get(local, hdr->addr2);
2112 if (!sta)
2113 return ret;
2115 fc = le16_to_cpu(hdr->frame_control);
2117 /* filter the QoS data rx stream according to
2118 * STA/TID and check if this STA/TID is on aggregation */
2119 if (!WLAN_FC_IS_QOS_DATA(fc))
2120 goto end_reorder;
2122 qc = skb->data + ieee80211_get_hdrlen(fc) - QOS_CONTROL_LEN;
2123 tid = qc[0] & QOS_CONTROL_TID_MASK;
2125 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
2126 goto end_reorder;
2128 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
2130 /* null data frames are excluded */
2131 if (unlikely(fc & IEEE80211_STYPE_NULLFUNC))
2132 goto end_reorder;
2134 /* new un-ordered ampdu frame - process it */
2136 /* reset session timer */
2137 if (tid_agg_rx->timeout) {
2138 unsigned long expires =
2139 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2140 mod_timer(&tid_agg_rx->session_timer, expires);
2143 /* if this mpdu is fragmented - terminate rx aggregation session */
2144 sc = le16_to_cpu(hdr->seq_ctrl);
2145 if (sc & IEEE80211_SCTL_FRAG) {
2146 ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
2147 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2148 ret = 1;
2149 goto end_reorder;
2152 /* according to mpdu sequence number deal with reordering buffer */
2153 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2154 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2155 mpdu_seq_num, 0);
2156 end_reorder:
2157 return ret;
2161 * This is the receive path handler. It is called by a low level driver when an
2162 * 802.11 MPDU is received from the hardware.
2164 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2165 struct ieee80211_rx_status *status)
2167 struct ieee80211_local *local = hw_to_local(hw);
2168 u32 pkt_load;
2169 struct ieee80211_rate *rate = NULL;
2170 struct ieee80211_supported_band *sband;
2172 if (status->band < 0 ||
2173 status->band >= IEEE80211_NUM_BANDS) {
2174 WARN_ON(1);
2175 return;
2178 sband = local->hw.wiphy->bands[status->band];
2180 if (!sband ||
2181 status->rate_idx < 0 ||
2182 status->rate_idx >= sband->n_bitrates) {
2183 WARN_ON(1);
2184 return;
2187 rate = &sband->bitrates[status->rate_idx];
2190 * key references and virtual interfaces are protected using RCU
2191 * and this requires that we are in a read-side RCU section during
2192 * receive processing
2194 rcu_read_lock();
2197 * Frames with failed FCS/PLCP checksum are not returned,
2198 * all other frames are returned without radiotap header
2199 * if it was previously present.
2200 * Also, frames with less than 16 bytes are dropped.
2202 skb = ieee80211_rx_monitor(local, skb, status, rate);
2203 if (!skb) {
2204 rcu_read_unlock();
2205 return;
2208 pkt_load = ieee80211_rx_load_stats(local, skb, status, rate);
2209 local->channel_use_raw += pkt_load;
2211 if (!ieee80211_rx_reorder_ampdu(local, skb))
2212 __ieee80211_rx_handle_packet(hw, skb, status, pkt_load, rate);
2214 rcu_read_unlock();
2216 EXPORT_SYMBOL(__ieee80211_rx);
2218 /* This is a version of the rx handler that can be called from hard irq
2219 * context. Post the skb on the queue and schedule the tasklet */
2220 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2221 struct ieee80211_rx_status *status)
2223 struct ieee80211_local *local = hw_to_local(hw);
2225 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2227 skb->dev = local->mdev;
2228 /* copy status into skb->cb for use by tasklet */
2229 memcpy(skb->cb, status, sizeof(*status));
2230 skb->pkt_type = IEEE80211_RX_MSG;
2231 skb_queue_tail(&local->skb_queue, skb);
2232 tasklet_schedule(&local->tasklet);
2234 EXPORT_SYMBOL(ieee80211_rx_irqsafe);