2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
47 static struct extent_io_ops btree_extent_io_ops
;
48 static void end_workqueue_fn(struct btrfs_work
*work
);
49 static void free_fs_root(struct btrfs_root
*root
);
50 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
52 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
55 struct btrfs_root
*root
);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
58 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
59 struct extent_io_tree
*dirty_pages
,
61 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
62 struct extent_io_tree
*pinned_extents
);
63 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
74 struct btrfs_fs_info
*info
;
77 struct list_head list
;
78 struct btrfs_work work
;
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio
{
89 struct list_head list
;
90 extent_submit_bio_hook_t
*submit_bio_start
;
91 extent_submit_bio_hook_t
*submit_bio_done
;
94 unsigned long bio_flags
;
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
100 struct btrfs_work work
;
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
131 static struct btrfs_lockdep_keyset
{
132 u64 id
; /* root objectid */
133 const char *name_stem
; /* lock name stem */
134 char names
[BTRFS_MAX_LEVEL
+ 1][20];
135 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
136 } btrfs_lockdep_keysets
[] = {
137 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
138 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
139 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
140 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
141 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
142 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
143 { .id
= BTRFS_ORPHAN_OBJECTID
, .name_stem
= "orphan" },
144 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
145 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
146 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
147 { .id
= 0, .name_stem
= "tree" },
150 void __init
btrfs_init_lockdep(void)
154 /* initialize lockdep class names */
155 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
156 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
158 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
159 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
160 "btrfs-%s-%02d", ks
->name_stem
, j
);
164 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
167 struct btrfs_lockdep_keyset
*ks
;
169 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
173 if (ks
->id
== objectid
)
176 lockdep_set_class_and_name(&eb
->lock
,
177 &ks
->keys
[level
], ks
->names
[level
]);
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
186 static struct extent_map
*btree_get_extent(struct inode
*inode
,
187 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
190 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
191 struct extent_map
*em
;
194 read_lock(&em_tree
->lock
);
195 em
= lookup_extent_mapping(em_tree
, start
, len
);
198 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
199 read_unlock(&em_tree
->lock
);
202 read_unlock(&em_tree
->lock
);
204 em
= alloc_extent_map();
206 em
= ERR_PTR(-ENOMEM
);
211 em
->block_len
= (u64
)-1;
213 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
215 write_lock(&em_tree
->lock
);
216 ret
= add_extent_mapping(em_tree
, em
);
217 if (ret
== -EEXIST
) {
218 u64 failed_start
= em
->start
;
219 u64 failed_len
= em
->len
;
222 em
= lookup_extent_mapping(em_tree
, start
, len
);
226 em
= lookup_extent_mapping(em_tree
, failed_start
,
234 write_unlock(&em_tree
->lock
);
242 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
244 return crc32c(seed
, data
, len
);
247 void btrfs_csum_final(u32 crc
, char *result
)
249 put_unaligned_le32(~crc
, result
);
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
256 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
259 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
262 unsigned long cur_len
;
263 unsigned long offset
= BTRFS_CSUM_SIZE
;
265 unsigned long map_start
;
266 unsigned long map_len
;
269 unsigned long inline_result
;
271 len
= buf
->len
- offset
;
273 err
= map_private_extent_buffer(buf
, offset
, 32,
274 &kaddr
, &map_start
, &map_len
);
277 cur_len
= min(len
, map_len
- (offset
- map_start
));
278 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
283 if (csum_size
> sizeof(inline_result
)) {
284 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
288 result
= (char *)&inline_result
;
291 btrfs_csum_final(crc
, result
);
294 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
297 memcpy(&found
, result
, csum_size
);
299 read_extent_buffer(buf
, &val
, 0, csum_size
);
300 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
301 "failed on %llu wanted %X found %X "
303 root
->fs_info
->sb
->s_id
,
304 (unsigned long long)buf
->start
, val
, found
,
305 btrfs_header_level(buf
));
306 if (result
!= (char *)&inline_result
)
311 write_extent_buffer(buf
, result
, 0, csum_size
);
313 if (result
!= (char *)&inline_result
)
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
324 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
325 struct extent_buffer
*eb
, u64 parent_transid
)
327 struct extent_state
*cached_state
= NULL
;
330 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
333 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
334 0, &cached_state
, GFP_NOFS
);
335 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
336 btrfs_header_generation(eb
) == parent_transid
) {
340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 (unsigned long long)eb
->start
,
343 (unsigned long long)parent_transid
,
344 (unsigned long long)btrfs_header_generation(eb
));
346 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
348 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
349 &cached_state
, GFP_NOFS
);
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
357 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
358 struct extent_buffer
*eb
,
359 u64 start
, u64 parent_transid
)
361 struct extent_io_tree
*io_tree
;
366 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
367 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
369 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
371 btree_get_extent
, mirror_num
);
373 !verify_parent_transid(io_tree
, eb
, parent_transid
))
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
381 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
384 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
390 if (mirror_num
> num_copies
)
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
401 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
403 struct extent_io_tree
*tree
;
404 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
407 struct extent_buffer
*eb
;
410 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
412 if (page
->private == EXTENT_PAGE_PRIVATE
) {
416 if (!page
->private) {
420 len
= page
->private >> 2;
423 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
428 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
429 btrfs_header_generation(eb
));
431 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
433 found_start
= btrfs_header_bytenr(eb
);
434 if (found_start
!= start
) {
438 if (eb
->first_page
!= page
) {
442 if (!PageUptodate(page
)) {
446 csum_tree_block(root
, eb
, 0);
448 free_extent_buffer(eb
);
453 static int check_tree_block_fsid(struct btrfs_root
*root
,
454 struct extent_buffer
*eb
)
456 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
457 u8 fsid
[BTRFS_UUID_SIZE
];
460 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
463 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
467 fs_devices
= fs_devices
->seed
;
472 #define CORRUPT(reason, eb, root, slot) \
473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
474 "root=%llu, slot=%d\n", reason, \
475 (unsigned long long)btrfs_header_bytenr(eb), \
476 (unsigned long long)root->objectid, slot)
478 static noinline
int check_leaf(struct btrfs_root
*root
,
479 struct extent_buffer
*leaf
)
481 struct btrfs_key key
;
482 struct btrfs_key leaf_key
;
483 u32 nritems
= btrfs_header_nritems(leaf
);
489 /* Check the 0 item */
490 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
491 BTRFS_LEAF_DATA_SIZE(root
)) {
492 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
497 * Check to make sure each items keys are in the correct order and their
498 * offsets make sense. We only have to loop through nritems-1 because
499 * we check the current slot against the next slot, which verifies the
500 * next slot's offset+size makes sense and that the current's slot
503 for (slot
= 0; slot
< nritems
- 1; slot
++) {
504 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
505 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
507 /* Make sure the keys are in the right order */
508 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
509 CORRUPT("bad key order", leaf
, root
, slot
);
514 * Make sure the offset and ends are right, remember that the
515 * item data starts at the end of the leaf and grows towards the
518 if (btrfs_item_offset_nr(leaf
, slot
) !=
519 btrfs_item_end_nr(leaf
, slot
+ 1)) {
520 CORRUPT("slot offset bad", leaf
, root
, slot
);
525 * Check to make sure that we don't point outside of the leaf,
526 * just incase all the items are consistent to eachother, but
527 * all point outside of the leaf.
529 if (btrfs_item_end_nr(leaf
, slot
) >
530 BTRFS_LEAF_DATA_SIZE(root
)) {
531 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
539 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
540 struct extent_state
*state
)
542 struct extent_io_tree
*tree
;
546 struct extent_buffer
*eb
;
547 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
550 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
551 if (page
->private == EXTENT_PAGE_PRIVATE
)
556 len
= page
->private >> 2;
559 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
565 found_start
= btrfs_header_bytenr(eb
);
566 if (found_start
!= start
) {
567 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
569 (unsigned long long)found_start
,
570 (unsigned long long)eb
->start
);
574 if (eb
->first_page
!= page
) {
575 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
576 eb
->first_page
->index
, page
->index
);
581 if (check_tree_block_fsid(root
, eb
)) {
582 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
583 (unsigned long long)eb
->start
);
587 found_level
= btrfs_header_level(eb
);
589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
592 ret
= csum_tree_block(root
, eb
, 1);
599 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 * that we don't try and read the other copies of this block, just
603 if (found_level
== 0 && check_leaf(root
, eb
)) {
604 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
608 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
609 end
= eb
->start
+ end
- 1;
611 if (test_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
)) {
612 clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
);
613 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
616 free_extent_buffer(eb
);
621 static int btree_io_failed_hook(struct bio
*failed_bio
,
622 struct page
*page
, u64 start
, u64 end
,
623 int mirror_num
, struct extent_state
*state
)
625 struct extent_io_tree
*tree
;
627 struct extent_buffer
*eb
;
628 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
630 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
631 if (page
->private == EXTENT_PAGE_PRIVATE
)
636 len
= page
->private >> 2;
639 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
643 if (test_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
)) {
644 clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
);
645 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
647 free_extent_buffer(eb
);
650 return -EIO
; /* we fixed nothing */
653 static void end_workqueue_bio(struct bio
*bio
, int err
)
655 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
656 struct btrfs_fs_info
*fs_info
;
658 fs_info
= end_io_wq
->info
;
659 end_io_wq
->error
= err
;
660 end_io_wq
->work
.func
= end_workqueue_fn
;
661 end_io_wq
->work
.flags
= 0;
663 if (bio
->bi_rw
& REQ_WRITE
) {
664 if (end_io_wq
->metadata
== 1)
665 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
667 else if (end_io_wq
->metadata
== 2)
668 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
671 btrfs_queue_worker(&fs_info
->endio_write_workers
,
674 if (end_io_wq
->metadata
)
675 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
678 btrfs_queue_worker(&fs_info
->endio_workers
,
684 * For the metadata arg you want
687 * 1 - if normal metadta
688 * 2 - if writing to the free space cache area
690 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
693 struct end_io_wq
*end_io_wq
;
694 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
698 end_io_wq
->private = bio
->bi_private
;
699 end_io_wq
->end_io
= bio
->bi_end_io
;
700 end_io_wq
->info
= info
;
701 end_io_wq
->error
= 0;
702 end_io_wq
->bio
= bio
;
703 end_io_wq
->metadata
= metadata
;
705 bio
->bi_private
= end_io_wq
;
706 bio
->bi_end_io
= end_workqueue_bio
;
710 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
712 unsigned long limit
= min_t(unsigned long,
713 info
->workers
.max_workers
,
714 info
->fs_devices
->open_devices
);
718 static void run_one_async_start(struct btrfs_work
*work
)
720 struct async_submit_bio
*async
;
722 async
= container_of(work
, struct async_submit_bio
, work
);
723 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
724 async
->mirror_num
, async
->bio_flags
,
728 static void run_one_async_done(struct btrfs_work
*work
)
730 struct btrfs_fs_info
*fs_info
;
731 struct async_submit_bio
*async
;
734 async
= container_of(work
, struct async_submit_bio
, work
);
735 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
737 limit
= btrfs_async_submit_limit(fs_info
);
738 limit
= limit
* 2 / 3;
740 atomic_dec(&fs_info
->nr_async_submits
);
742 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
743 waitqueue_active(&fs_info
->async_submit_wait
))
744 wake_up(&fs_info
->async_submit_wait
);
746 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
747 async
->mirror_num
, async
->bio_flags
,
751 static void run_one_async_free(struct btrfs_work
*work
)
753 struct async_submit_bio
*async
;
755 async
= container_of(work
, struct async_submit_bio
, work
);
759 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
760 int rw
, struct bio
*bio
, int mirror_num
,
761 unsigned long bio_flags
,
763 extent_submit_bio_hook_t
*submit_bio_start
,
764 extent_submit_bio_hook_t
*submit_bio_done
)
766 struct async_submit_bio
*async
;
768 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
772 async
->inode
= inode
;
775 async
->mirror_num
= mirror_num
;
776 async
->submit_bio_start
= submit_bio_start
;
777 async
->submit_bio_done
= submit_bio_done
;
779 async
->work
.func
= run_one_async_start
;
780 async
->work
.ordered_func
= run_one_async_done
;
781 async
->work
.ordered_free
= run_one_async_free
;
783 async
->work
.flags
= 0;
784 async
->bio_flags
= bio_flags
;
785 async
->bio_offset
= bio_offset
;
787 atomic_inc(&fs_info
->nr_async_submits
);
790 btrfs_set_work_high_prio(&async
->work
);
792 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
794 while (atomic_read(&fs_info
->async_submit_draining
) &&
795 atomic_read(&fs_info
->nr_async_submits
)) {
796 wait_event(fs_info
->async_submit_wait
,
797 (atomic_read(&fs_info
->nr_async_submits
) == 0));
803 static int btree_csum_one_bio(struct bio
*bio
)
805 struct bio_vec
*bvec
= bio
->bi_io_vec
;
807 struct btrfs_root
*root
;
809 WARN_ON(bio
->bi_vcnt
<= 0);
810 while (bio_index
< bio
->bi_vcnt
) {
811 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
812 csum_dirty_buffer(root
, bvec
->bv_page
);
819 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
820 struct bio
*bio
, int mirror_num
,
821 unsigned long bio_flags
,
825 * when we're called for a write, we're already in the async
826 * submission context. Just jump into btrfs_map_bio
828 btree_csum_one_bio(bio
);
832 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
833 int mirror_num
, unsigned long bio_flags
,
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
840 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
843 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
844 int mirror_num
, unsigned long bio_flags
,
849 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
853 if (!(rw
& REQ_WRITE
)) {
855 * called for a read, do the setup so that checksum validation
856 * can happen in the async kernel threads
858 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
863 * kthread helpers are used to submit writes so that checksumming
864 * can happen in parallel across all CPUs
866 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
867 inode
, rw
, bio
, mirror_num
, 0,
869 __btree_submit_bio_start
,
870 __btree_submit_bio_done
);
873 #ifdef CONFIG_MIGRATION
874 static int btree_migratepage(struct address_space
*mapping
,
875 struct page
*newpage
, struct page
*page
, bool sync
)
878 * we can't safely write a btree page from here,
879 * we haven't done the locking hook
884 * Buffers may be managed in a filesystem specific way.
885 * We must have no buffers or drop them.
887 if (page_has_private(page
) &&
888 !try_to_release_page(page
, GFP_KERNEL
))
890 return migrate_page(mapping
, newpage
, page
, sync
);
894 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
896 struct extent_io_tree
*tree
;
897 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
898 struct extent_buffer
*eb
;
901 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
902 if (!(current
->flags
& PF_MEMALLOC
)) {
903 return extent_write_full_page(tree
, page
,
904 btree_get_extent
, wbc
);
907 redirty_page_for_writepage(wbc
, page
);
908 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
911 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
913 spin_lock(&root
->fs_info
->delalloc_lock
);
914 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
915 spin_unlock(&root
->fs_info
->delalloc_lock
);
917 free_extent_buffer(eb
);
923 static int btree_writepages(struct address_space
*mapping
,
924 struct writeback_control
*wbc
)
926 struct extent_io_tree
*tree
;
927 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
928 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
929 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
931 unsigned long thresh
= 32 * 1024 * 1024;
933 if (wbc
->for_kupdate
)
936 /* this is a bit racy, but that's ok */
937 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
938 if (num_dirty
< thresh
)
941 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
944 static int btree_readpage(struct file
*file
, struct page
*page
)
946 struct extent_io_tree
*tree
;
947 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
948 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
951 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
953 struct extent_io_tree
*tree
;
954 struct extent_map_tree
*map
;
957 if (PageWriteback(page
) || PageDirty(page
))
960 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
961 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
963 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
967 ret
= try_release_extent_buffer(tree
, page
);
969 ClearPagePrivate(page
);
970 set_page_private(page
, 0);
971 page_cache_release(page
);
977 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
979 struct extent_io_tree
*tree
;
980 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
981 extent_invalidatepage(tree
, page
, offset
);
982 btree_releasepage(page
, GFP_NOFS
);
983 if (PagePrivate(page
)) {
984 printk(KERN_WARNING
"btrfs warning page private not zero "
985 "on page %llu\n", (unsigned long long)page_offset(page
));
986 ClearPagePrivate(page
);
987 set_page_private(page
, 0);
988 page_cache_release(page
);
992 static const struct address_space_operations btree_aops
= {
993 .readpage
= btree_readpage
,
994 .writepage
= btree_writepage
,
995 .writepages
= btree_writepages
,
996 .releasepage
= btree_releasepage
,
997 .invalidatepage
= btree_invalidatepage
,
998 #ifdef CONFIG_MIGRATION
999 .migratepage
= btree_migratepage
,
1003 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1006 struct extent_buffer
*buf
= NULL
;
1007 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1010 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1013 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1014 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1015 free_extent_buffer(buf
);
1019 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1020 int mirror_num
, struct extent_buffer
**eb
)
1022 struct extent_buffer
*buf
= NULL
;
1023 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1024 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1027 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1031 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1033 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1034 btree_get_extent
, mirror_num
);
1036 free_extent_buffer(buf
);
1040 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1041 free_extent_buffer(buf
);
1043 } else if (extent_buffer_uptodate(io_tree
, buf
, NULL
)) {
1046 free_extent_buffer(buf
);
1051 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1052 u64 bytenr
, u32 blocksize
)
1054 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1055 struct extent_buffer
*eb
;
1056 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1061 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1062 u64 bytenr
, u32 blocksize
)
1064 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1065 struct extent_buffer
*eb
;
1067 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1068 bytenr
, blocksize
, NULL
);
1073 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1075 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
1076 buf
->start
+ buf
->len
- 1);
1079 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1081 return filemap_fdatawait_range(buf
->first_page
->mapping
,
1082 buf
->start
, buf
->start
+ buf
->len
- 1);
1085 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1086 u32 blocksize
, u64 parent_transid
)
1088 struct extent_buffer
*buf
= NULL
;
1091 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1095 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1098 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
1103 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1104 struct extent_buffer
*buf
)
1106 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1107 if (btrfs_header_generation(buf
) ==
1108 root
->fs_info
->running_transaction
->transid
) {
1109 btrfs_assert_tree_locked(buf
);
1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1112 spin_lock(&root
->fs_info
->delalloc_lock
);
1113 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1114 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1117 spin_unlock(&root
->fs_info
->delalloc_lock
);
1120 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1121 btrfs_set_lock_blocking(buf
);
1122 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
1128 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1129 u32 stripesize
, struct btrfs_root
*root
,
1130 struct btrfs_fs_info
*fs_info
,
1134 root
->commit_root
= NULL
;
1135 root
->sectorsize
= sectorsize
;
1136 root
->nodesize
= nodesize
;
1137 root
->leafsize
= leafsize
;
1138 root
->stripesize
= stripesize
;
1140 root
->track_dirty
= 0;
1142 root
->orphan_item_inserted
= 0;
1143 root
->orphan_cleanup_state
= 0;
1145 root
->fs_info
= fs_info
;
1146 root
->objectid
= objectid
;
1147 root
->last_trans
= 0;
1148 root
->highest_objectid
= 0;
1150 root
->inode_tree
= RB_ROOT
;
1151 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1152 root
->block_rsv
= NULL
;
1153 root
->orphan_block_rsv
= NULL
;
1155 INIT_LIST_HEAD(&root
->dirty_list
);
1156 INIT_LIST_HEAD(&root
->orphan_list
);
1157 INIT_LIST_HEAD(&root
->root_list
);
1158 spin_lock_init(&root
->orphan_lock
);
1159 spin_lock_init(&root
->inode_lock
);
1160 spin_lock_init(&root
->accounting_lock
);
1161 mutex_init(&root
->objectid_mutex
);
1162 mutex_init(&root
->log_mutex
);
1163 init_waitqueue_head(&root
->log_writer_wait
);
1164 init_waitqueue_head(&root
->log_commit_wait
[0]);
1165 init_waitqueue_head(&root
->log_commit_wait
[1]);
1166 atomic_set(&root
->log_commit
[0], 0);
1167 atomic_set(&root
->log_commit
[1], 0);
1168 atomic_set(&root
->log_writers
, 0);
1169 root
->log_batch
= 0;
1170 root
->log_transid
= 0;
1171 root
->last_log_commit
= 0;
1172 extent_io_tree_init(&root
->dirty_log_pages
,
1173 fs_info
->btree_inode
->i_mapping
);
1175 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1176 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1177 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1178 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1179 root
->defrag_trans_start
= fs_info
->generation
;
1180 init_completion(&root
->kobj_unregister
);
1181 root
->defrag_running
= 0;
1182 root
->root_key
.objectid
= objectid
;
1187 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1188 struct btrfs_fs_info
*fs_info
,
1190 struct btrfs_root
*root
)
1196 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1197 tree_root
->sectorsize
, tree_root
->stripesize
,
1198 root
, fs_info
, objectid
);
1199 ret
= btrfs_find_last_root(tree_root
, objectid
,
1200 &root
->root_item
, &root
->root_key
);
1205 generation
= btrfs_root_generation(&root
->root_item
);
1206 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1207 root
->commit_root
= NULL
;
1208 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1209 blocksize
, generation
);
1210 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1211 free_extent_buffer(root
->node
);
1215 root
->commit_root
= btrfs_root_node(root
);
1219 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1220 struct btrfs_fs_info
*fs_info
)
1222 struct btrfs_root
*root
;
1223 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1224 struct extent_buffer
*leaf
;
1226 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1228 return ERR_PTR(-ENOMEM
);
1230 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1231 tree_root
->sectorsize
, tree_root
->stripesize
,
1232 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1234 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1235 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1236 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1238 * log trees do not get reference counted because they go away
1239 * before a real commit is actually done. They do store pointers
1240 * to file data extents, and those reference counts still get
1241 * updated (along with back refs to the log tree).
1245 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1246 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1249 return ERR_CAST(leaf
);
1252 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1253 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1254 btrfs_set_header_generation(leaf
, trans
->transid
);
1255 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1256 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1259 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1260 (unsigned long)btrfs_header_fsid(root
->node
),
1262 btrfs_mark_buffer_dirty(root
->node
);
1263 btrfs_tree_unlock(root
->node
);
1267 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1268 struct btrfs_fs_info
*fs_info
)
1270 struct btrfs_root
*log_root
;
1272 log_root
= alloc_log_tree(trans
, fs_info
);
1273 if (IS_ERR(log_root
))
1274 return PTR_ERR(log_root
);
1275 WARN_ON(fs_info
->log_root_tree
);
1276 fs_info
->log_root_tree
= log_root
;
1280 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1281 struct btrfs_root
*root
)
1283 struct btrfs_root
*log_root
;
1284 struct btrfs_inode_item
*inode_item
;
1286 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1287 if (IS_ERR(log_root
))
1288 return PTR_ERR(log_root
);
1290 log_root
->last_trans
= trans
->transid
;
1291 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1293 inode_item
= &log_root
->root_item
.inode
;
1294 inode_item
->generation
= cpu_to_le64(1);
1295 inode_item
->size
= cpu_to_le64(3);
1296 inode_item
->nlink
= cpu_to_le32(1);
1297 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1298 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1300 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1302 WARN_ON(root
->log_root
);
1303 root
->log_root
= log_root
;
1304 root
->log_transid
= 0;
1305 root
->last_log_commit
= 0;
1309 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1310 struct btrfs_key
*location
)
1312 struct btrfs_root
*root
;
1313 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1314 struct btrfs_path
*path
;
1315 struct extent_buffer
*l
;
1320 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1322 return ERR_PTR(-ENOMEM
);
1323 if (location
->offset
== (u64
)-1) {
1324 ret
= find_and_setup_root(tree_root
, fs_info
,
1325 location
->objectid
, root
);
1328 return ERR_PTR(ret
);
1333 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1334 tree_root
->sectorsize
, tree_root
->stripesize
,
1335 root
, fs_info
, location
->objectid
);
1337 path
= btrfs_alloc_path();
1340 return ERR_PTR(-ENOMEM
);
1342 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1345 read_extent_buffer(l
, &root
->root_item
,
1346 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1347 sizeof(root
->root_item
));
1348 memcpy(&root
->root_key
, location
, sizeof(*location
));
1350 btrfs_free_path(path
);
1355 return ERR_PTR(ret
);
1358 generation
= btrfs_root_generation(&root
->root_item
);
1359 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1360 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1361 blocksize
, generation
);
1362 root
->commit_root
= btrfs_root_node(root
);
1363 BUG_ON(!root
->node
);
1365 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1367 btrfs_check_and_init_root_item(&root
->root_item
);
1373 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1374 struct btrfs_key
*location
)
1376 struct btrfs_root
*root
;
1379 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1380 return fs_info
->tree_root
;
1381 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1382 return fs_info
->extent_root
;
1383 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1384 return fs_info
->chunk_root
;
1385 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1386 return fs_info
->dev_root
;
1387 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1388 return fs_info
->csum_root
;
1390 spin_lock(&fs_info
->fs_roots_radix_lock
);
1391 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1392 (unsigned long)location
->objectid
);
1393 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1397 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1401 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1402 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1404 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1409 btrfs_init_free_ino_ctl(root
);
1410 mutex_init(&root
->fs_commit_mutex
);
1411 spin_lock_init(&root
->cache_lock
);
1412 init_waitqueue_head(&root
->cache_wait
);
1414 ret
= get_anon_bdev(&root
->anon_dev
);
1418 if (btrfs_root_refs(&root
->root_item
) == 0) {
1423 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1427 root
->orphan_item_inserted
= 1;
1429 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1433 spin_lock(&fs_info
->fs_roots_radix_lock
);
1434 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1435 (unsigned long)root
->root_key
.objectid
,
1440 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1441 radix_tree_preload_end();
1443 if (ret
== -EEXIST
) {
1450 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1451 root
->root_key
.objectid
);
1456 return ERR_PTR(ret
);
1459 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1461 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1463 struct btrfs_device
*device
;
1464 struct backing_dev_info
*bdi
;
1467 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1470 bdi
= blk_get_backing_dev_info(device
->bdev
);
1471 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1481 * If this fails, caller must call bdi_destroy() to get rid of the
1484 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1488 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1489 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1493 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1494 bdi
->congested_fn
= btrfs_congested_fn
;
1495 bdi
->congested_data
= info
;
1499 static int bio_ready_for_csum(struct bio
*bio
)
1505 struct extent_io_tree
*io_tree
= NULL
;
1506 struct bio_vec
*bvec
;
1510 bio_for_each_segment(bvec
, bio
, i
) {
1511 page
= bvec
->bv_page
;
1512 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1513 length
+= bvec
->bv_len
;
1516 if (!page
->private) {
1517 length
+= bvec
->bv_len
;
1520 length
= bvec
->bv_len
;
1521 buf_len
= page
->private >> 2;
1522 start
= page_offset(page
) + bvec
->bv_offset
;
1523 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1525 /* are we fully contained in this bio? */
1526 if (buf_len
<= length
)
1529 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1530 start
+ buf_len
- 1);
1535 * called by the kthread helper functions to finally call the bio end_io
1536 * functions. This is where read checksum verification actually happens
1538 static void end_workqueue_fn(struct btrfs_work
*work
)
1541 struct end_io_wq
*end_io_wq
;
1542 struct btrfs_fs_info
*fs_info
;
1545 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1546 bio
= end_io_wq
->bio
;
1547 fs_info
= end_io_wq
->info
;
1549 /* metadata bio reads are special because the whole tree block must
1550 * be checksummed at once. This makes sure the entire block is in
1551 * ram and up to date before trying to verify things. For
1552 * blocksize <= pagesize, it is basically a noop
1554 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1555 !bio_ready_for_csum(bio
)) {
1556 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1560 error
= end_io_wq
->error
;
1561 bio
->bi_private
= end_io_wq
->private;
1562 bio
->bi_end_io
= end_io_wq
->end_io
;
1564 bio_endio(bio
, error
);
1567 static int cleaner_kthread(void *arg
)
1569 struct btrfs_root
*root
= arg
;
1572 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1574 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1575 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1576 btrfs_run_delayed_iputs(root
);
1577 btrfs_clean_old_snapshots(root
);
1578 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1579 btrfs_run_defrag_inodes(root
->fs_info
);
1582 if (!try_to_freeze()) {
1583 set_current_state(TASK_INTERRUPTIBLE
);
1584 if (!kthread_should_stop())
1586 __set_current_state(TASK_RUNNING
);
1588 } while (!kthread_should_stop());
1592 static int transaction_kthread(void *arg
)
1594 struct btrfs_root
*root
= arg
;
1595 struct btrfs_trans_handle
*trans
;
1596 struct btrfs_transaction
*cur
;
1599 unsigned long delay
;
1604 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1605 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1607 spin_lock(&root
->fs_info
->trans_lock
);
1608 cur
= root
->fs_info
->running_transaction
;
1610 spin_unlock(&root
->fs_info
->trans_lock
);
1614 now
= get_seconds();
1615 if (!cur
->blocked
&&
1616 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1617 spin_unlock(&root
->fs_info
->trans_lock
);
1621 transid
= cur
->transid
;
1622 spin_unlock(&root
->fs_info
->trans_lock
);
1624 trans
= btrfs_join_transaction(root
);
1625 BUG_ON(IS_ERR(trans
));
1626 if (transid
== trans
->transid
) {
1627 ret
= btrfs_commit_transaction(trans
, root
);
1630 btrfs_end_transaction(trans
, root
);
1633 wake_up_process(root
->fs_info
->cleaner_kthread
);
1634 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1636 if (!try_to_freeze()) {
1637 set_current_state(TASK_INTERRUPTIBLE
);
1638 if (!kthread_should_stop() &&
1639 !btrfs_transaction_blocked(root
->fs_info
))
1640 schedule_timeout(delay
);
1641 __set_current_state(TASK_RUNNING
);
1643 } while (!kthread_should_stop());
1648 * this will find the highest generation in the array of
1649 * root backups. The index of the highest array is returned,
1650 * or -1 if we can't find anything.
1652 * We check to make sure the array is valid by comparing the
1653 * generation of the latest root in the array with the generation
1654 * in the super block. If they don't match we pitch it.
1656 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1659 int newest_index
= -1;
1660 struct btrfs_root_backup
*root_backup
;
1663 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1664 root_backup
= info
->super_copy
->super_roots
+ i
;
1665 cur
= btrfs_backup_tree_root_gen(root_backup
);
1666 if (cur
== newest_gen
)
1670 /* check to see if we actually wrapped around */
1671 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1672 root_backup
= info
->super_copy
->super_roots
;
1673 cur
= btrfs_backup_tree_root_gen(root_backup
);
1674 if (cur
== newest_gen
)
1677 return newest_index
;
1682 * find the oldest backup so we know where to store new entries
1683 * in the backup array. This will set the backup_root_index
1684 * field in the fs_info struct
1686 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1689 int newest_index
= -1;
1691 newest_index
= find_newest_super_backup(info
, newest_gen
);
1692 /* if there was garbage in there, just move along */
1693 if (newest_index
== -1) {
1694 info
->backup_root_index
= 0;
1696 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1701 * copy all the root pointers into the super backup array.
1702 * this will bump the backup pointer by one when it is
1705 static void backup_super_roots(struct btrfs_fs_info
*info
)
1708 struct btrfs_root_backup
*root_backup
;
1711 next_backup
= info
->backup_root_index
;
1712 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1713 BTRFS_NUM_BACKUP_ROOTS
;
1716 * just overwrite the last backup if we're at the same generation
1717 * this happens only at umount
1719 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1720 if (btrfs_backup_tree_root_gen(root_backup
) ==
1721 btrfs_header_generation(info
->tree_root
->node
))
1722 next_backup
= last_backup
;
1724 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1727 * make sure all of our padding and empty slots get zero filled
1728 * regardless of which ones we use today
1730 memset(root_backup
, 0, sizeof(*root_backup
));
1732 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1734 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1735 btrfs_set_backup_tree_root_gen(root_backup
,
1736 btrfs_header_generation(info
->tree_root
->node
));
1738 btrfs_set_backup_tree_root_level(root_backup
,
1739 btrfs_header_level(info
->tree_root
->node
));
1741 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1742 btrfs_set_backup_chunk_root_gen(root_backup
,
1743 btrfs_header_generation(info
->chunk_root
->node
));
1744 btrfs_set_backup_chunk_root_level(root_backup
,
1745 btrfs_header_level(info
->chunk_root
->node
));
1747 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1748 btrfs_set_backup_extent_root_gen(root_backup
,
1749 btrfs_header_generation(info
->extent_root
->node
));
1750 btrfs_set_backup_extent_root_level(root_backup
,
1751 btrfs_header_level(info
->extent_root
->node
));
1754 * we might commit during log recovery, which happens before we set
1755 * the fs_root. Make sure it is valid before we fill it in.
1757 if (info
->fs_root
&& info
->fs_root
->node
) {
1758 btrfs_set_backup_fs_root(root_backup
,
1759 info
->fs_root
->node
->start
);
1760 btrfs_set_backup_fs_root_gen(root_backup
,
1761 btrfs_header_generation(info
->fs_root
->node
));
1762 btrfs_set_backup_fs_root_level(root_backup
,
1763 btrfs_header_level(info
->fs_root
->node
));
1766 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1767 btrfs_set_backup_dev_root_gen(root_backup
,
1768 btrfs_header_generation(info
->dev_root
->node
));
1769 btrfs_set_backup_dev_root_level(root_backup
,
1770 btrfs_header_level(info
->dev_root
->node
));
1772 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1773 btrfs_set_backup_csum_root_gen(root_backup
,
1774 btrfs_header_generation(info
->csum_root
->node
));
1775 btrfs_set_backup_csum_root_level(root_backup
,
1776 btrfs_header_level(info
->csum_root
->node
));
1778 btrfs_set_backup_total_bytes(root_backup
,
1779 btrfs_super_total_bytes(info
->super_copy
));
1780 btrfs_set_backup_bytes_used(root_backup
,
1781 btrfs_super_bytes_used(info
->super_copy
));
1782 btrfs_set_backup_num_devices(root_backup
,
1783 btrfs_super_num_devices(info
->super_copy
));
1786 * if we don't copy this out to the super_copy, it won't get remembered
1787 * for the next commit
1789 memcpy(&info
->super_copy
->super_roots
,
1790 &info
->super_for_commit
->super_roots
,
1791 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1795 * this copies info out of the root backup array and back into
1796 * the in-memory super block. It is meant to help iterate through
1797 * the array, so you send it the number of backups you've already
1798 * tried and the last backup index you used.
1800 * this returns -1 when it has tried all the backups
1802 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1803 struct btrfs_super_block
*super
,
1804 int *num_backups_tried
, int *backup_index
)
1806 struct btrfs_root_backup
*root_backup
;
1807 int newest
= *backup_index
;
1809 if (*num_backups_tried
== 0) {
1810 u64 gen
= btrfs_super_generation(super
);
1812 newest
= find_newest_super_backup(info
, gen
);
1816 *backup_index
= newest
;
1817 *num_backups_tried
= 1;
1818 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1819 /* we've tried all the backups, all done */
1822 /* jump to the next oldest backup */
1823 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1824 BTRFS_NUM_BACKUP_ROOTS
;
1825 *backup_index
= newest
;
1826 *num_backups_tried
+= 1;
1828 root_backup
= super
->super_roots
+ newest
;
1830 btrfs_set_super_generation(super
,
1831 btrfs_backup_tree_root_gen(root_backup
));
1832 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1833 btrfs_set_super_root_level(super
,
1834 btrfs_backup_tree_root_level(root_backup
));
1835 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1838 * fixme: the total bytes and num_devices need to match or we should
1841 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1842 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1846 /* helper to cleanup tree roots */
1847 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
1849 free_extent_buffer(info
->tree_root
->node
);
1850 free_extent_buffer(info
->tree_root
->commit_root
);
1851 free_extent_buffer(info
->dev_root
->node
);
1852 free_extent_buffer(info
->dev_root
->commit_root
);
1853 free_extent_buffer(info
->extent_root
->node
);
1854 free_extent_buffer(info
->extent_root
->commit_root
);
1855 free_extent_buffer(info
->csum_root
->node
);
1856 free_extent_buffer(info
->csum_root
->commit_root
);
1858 info
->tree_root
->node
= NULL
;
1859 info
->tree_root
->commit_root
= NULL
;
1860 info
->dev_root
->node
= NULL
;
1861 info
->dev_root
->commit_root
= NULL
;
1862 info
->extent_root
->node
= NULL
;
1863 info
->extent_root
->commit_root
= NULL
;
1864 info
->csum_root
->node
= NULL
;
1865 info
->csum_root
->commit_root
= NULL
;
1868 free_extent_buffer(info
->chunk_root
->node
);
1869 free_extent_buffer(info
->chunk_root
->commit_root
);
1870 info
->chunk_root
->node
= NULL
;
1871 info
->chunk_root
->commit_root
= NULL
;
1876 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1877 struct btrfs_fs_devices
*fs_devices
,
1887 struct btrfs_key location
;
1888 struct buffer_head
*bh
;
1889 struct btrfs_super_block
*disk_super
;
1890 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1891 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1892 struct btrfs_root
*extent_root
;
1893 struct btrfs_root
*csum_root
;
1894 struct btrfs_root
*chunk_root
;
1895 struct btrfs_root
*dev_root
;
1896 struct btrfs_root
*log_tree_root
;
1899 int num_backups_tried
= 0;
1900 int backup_index
= 0;
1902 extent_root
= fs_info
->extent_root
=
1903 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1904 csum_root
= fs_info
->csum_root
=
1905 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1906 chunk_root
= fs_info
->chunk_root
=
1907 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1908 dev_root
= fs_info
->dev_root
=
1909 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1911 if (!extent_root
|| !csum_root
|| !chunk_root
|| !dev_root
) {
1916 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1922 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1928 fs_info
->btree_inode
= new_inode(sb
);
1929 if (!fs_info
->btree_inode
) {
1934 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1936 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1937 INIT_LIST_HEAD(&fs_info
->trans_list
);
1938 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1939 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1940 INIT_LIST_HEAD(&fs_info
->hashers
);
1941 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1942 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1943 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1944 spin_lock_init(&fs_info
->delalloc_lock
);
1945 spin_lock_init(&fs_info
->trans_lock
);
1946 spin_lock_init(&fs_info
->ref_cache_lock
);
1947 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1948 spin_lock_init(&fs_info
->delayed_iput_lock
);
1949 spin_lock_init(&fs_info
->defrag_inodes_lock
);
1950 spin_lock_init(&fs_info
->free_chunk_lock
);
1951 mutex_init(&fs_info
->reloc_mutex
);
1953 init_completion(&fs_info
->kobj_unregister
);
1954 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1955 INIT_LIST_HEAD(&fs_info
->space_info
);
1956 btrfs_mapping_init(&fs_info
->mapping_tree
);
1957 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1958 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1959 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1960 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1961 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1962 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
);
1963 atomic_set(&fs_info
->nr_async_submits
, 0);
1964 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1965 atomic_set(&fs_info
->async_submit_draining
, 0);
1966 atomic_set(&fs_info
->nr_async_bios
, 0);
1967 atomic_set(&fs_info
->defrag_running
, 0);
1969 fs_info
->max_inline
= 8192 * 1024;
1970 fs_info
->metadata_ratio
= 0;
1971 fs_info
->defrag_inodes
= RB_ROOT
;
1972 fs_info
->trans_no_join
= 0;
1973 fs_info
->free_chunk_space
= 0;
1975 /* readahead state */
1976 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
1977 spin_lock_init(&fs_info
->reada_lock
);
1979 fs_info
->thread_pool_size
= min_t(unsigned long,
1980 num_online_cpus() + 2, 8);
1982 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1983 spin_lock_init(&fs_info
->ordered_extent_lock
);
1984 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
1986 if (!fs_info
->delayed_root
) {
1990 btrfs_init_delayed_root(fs_info
->delayed_root
);
1992 mutex_init(&fs_info
->scrub_lock
);
1993 atomic_set(&fs_info
->scrubs_running
, 0);
1994 atomic_set(&fs_info
->scrub_pause_req
, 0);
1995 atomic_set(&fs_info
->scrubs_paused
, 0);
1996 atomic_set(&fs_info
->scrub_cancel_req
, 0);
1997 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
1998 init_rwsem(&fs_info
->scrub_super_lock
);
1999 fs_info
->scrub_workers_refcnt
= 0;
2001 sb
->s_blocksize
= 4096;
2002 sb
->s_blocksize_bits
= blksize_bits(4096);
2003 sb
->s_bdi
= &fs_info
->bdi
;
2005 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2006 set_nlink(fs_info
->btree_inode
, 1);
2008 * we set the i_size on the btree inode to the max possible int.
2009 * the real end of the address space is determined by all of
2010 * the devices in the system
2012 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2013 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2014 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2016 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2017 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2018 fs_info
->btree_inode
->i_mapping
);
2019 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2021 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2023 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2024 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2025 sizeof(struct btrfs_key
));
2026 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
2027 insert_inode_hash(fs_info
->btree_inode
);
2029 spin_lock_init(&fs_info
->block_group_cache_lock
);
2030 fs_info
->block_group_cache_tree
= RB_ROOT
;
2032 extent_io_tree_init(&fs_info
->freed_extents
[0],
2033 fs_info
->btree_inode
->i_mapping
);
2034 extent_io_tree_init(&fs_info
->freed_extents
[1],
2035 fs_info
->btree_inode
->i_mapping
);
2036 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2037 fs_info
->do_barriers
= 1;
2040 mutex_init(&fs_info
->ordered_operations_mutex
);
2041 mutex_init(&fs_info
->tree_log_mutex
);
2042 mutex_init(&fs_info
->chunk_mutex
);
2043 mutex_init(&fs_info
->transaction_kthread_mutex
);
2044 mutex_init(&fs_info
->cleaner_mutex
);
2045 mutex_init(&fs_info
->volume_mutex
);
2046 init_rwsem(&fs_info
->extent_commit_sem
);
2047 init_rwsem(&fs_info
->cleanup_work_sem
);
2048 init_rwsem(&fs_info
->subvol_sem
);
2050 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2051 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2053 init_waitqueue_head(&fs_info
->transaction_throttle
);
2054 init_waitqueue_head(&fs_info
->transaction_wait
);
2055 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2056 init_waitqueue_head(&fs_info
->async_submit_wait
);
2058 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2059 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2061 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2067 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2068 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2069 sizeof(*fs_info
->super_for_commit
));
2072 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2074 disk_super
= fs_info
->super_copy
;
2075 if (!btrfs_super_root(disk_super
))
2078 /* check FS state, whether FS is broken. */
2079 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
2081 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2084 * run through our array of backup supers and setup
2085 * our ring pointer to the oldest one
2087 generation
= btrfs_super_generation(disk_super
);
2088 find_oldest_super_backup(fs_info
, generation
);
2091 * In the long term, we'll store the compression type in the super
2092 * block, and it'll be used for per file compression control.
2094 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2096 ret
= btrfs_parse_options(tree_root
, options
);
2102 features
= btrfs_super_incompat_flags(disk_super
) &
2103 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2105 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2106 "unsupported optional features (%Lx).\n",
2107 (unsigned long long)features
);
2112 features
= btrfs_super_incompat_flags(disk_super
);
2113 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2114 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
2115 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2116 btrfs_set_super_incompat_flags(disk_super
, features
);
2118 features
= btrfs_super_compat_ro_flags(disk_super
) &
2119 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2120 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2121 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2122 "unsupported option features (%Lx).\n",
2123 (unsigned long long)features
);
2128 btrfs_init_workers(&fs_info
->generic_worker
,
2129 "genwork", 1, NULL
);
2131 btrfs_init_workers(&fs_info
->workers
, "worker",
2132 fs_info
->thread_pool_size
,
2133 &fs_info
->generic_worker
);
2135 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2136 fs_info
->thread_pool_size
,
2137 &fs_info
->generic_worker
);
2139 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2140 min_t(u64
, fs_devices
->num_devices
,
2141 fs_info
->thread_pool_size
),
2142 &fs_info
->generic_worker
);
2144 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2145 2, &fs_info
->generic_worker
);
2147 /* a higher idle thresh on the submit workers makes it much more
2148 * likely that bios will be send down in a sane order to the
2151 fs_info
->submit_workers
.idle_thresh
= 64;
2153 fs_info
->workers
.idle_thresh
= 16;
2154 fs_info
->workers
.ordered
= 1;
2156 fs_info
->delalloc_workers
.idle_thresh
= 2;
2157 fs_info
->delalloc_workers
.ordered
= 1;
2159 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2160 &fs_info
->generic_worker
);
2161 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2162 fs_info
->thread_pool_size
,
2163 &fs_info
->generic_worker
);
2164 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2165 fs_info
->thread_pool_size
,
2166 &fs_info
->generic_worker
);
2167 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2168 "endio-meta-write", fs_info
->thread_pool_size
,
2169 &fs_info
->generic_worker
);
2170 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2171 fs_info
->thread_pool_size
,
2172 &fs_info
->generic_worker
);
2173 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2174 1, &fs_info
->generic_worker
);
2175 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2176 fs_info
->thread_pool_size
,
2177 &fs_info
->generic_worker
);
2178 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2179 fs_info
->thread_pool_size
,
2180 &fs_info
->generic_worker
);
2183 * endios are largely parallel and should have a very
2186 fs_info
->endio_workers
.idle_thresh
= 4;
2187 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2189 fs_info
->endio_write_workers
.idle_thresh
= 2;
2190 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2191 fs_info
->readahead_workers
.idle_thresh
= 2;
2194 * btrfs_start_workers can really only fail because of ENOMEM so just
2195 * return -ENOMEM if any of these fail.
2197 ret
= btrfs_start_workers(&fs_info
->workers
);
2198 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2199 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2200 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2201 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2202 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2203 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2204 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2205 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2206 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2207 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2208 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2209 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2212 goto fail_sb_buffer
;
2215 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2216 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2217 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2219 nodesize
= btrfs_super_nodesize(disk_super
);
2220 leafsize
= btrfs_super_leafsize(disk_super
);
2221 sectorsize
= btrfs_super_sectorsize(disk_super
);
2222 stripesize
= btrfs_super_stripesize(disk_super
);
2223 tree_root
->nodesize
= nodesize
;
2224 tree_root
->leafsize
= leafsize
;
2225 tree_root
->sectorsize
= sectorsize
;
2226 tree_root
->stripesize
= stripesize
;
2228 sb
->s_blocksize
= sectorsize
;
2229 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2231 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
2232 sizeof(disk_super
->magic
))) {
2233 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2234 goto fail_sb_buffer
;
2237 mutex_lock(&fs_info
->chunk_mutex
);
2238 ret
= btrfs_read_sys_array(tree_root
);
2239 mutex_unlock(&fs_info
->chunk_mutex
);
2241 printk(KERN_WARNING
"btrfs: failed to read the system "
2242 "array on %s\n", sb
->s_id
);
2243 goto fail_sb_buffer
;
2246 blocksize
= btrfs_level_size(tree_root
,
2247 btrfs_super_chunk_root_level(disk_super
));
2248 generation
= btrfs_super_chunk_root_generation(disk_super
);
2250 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2251 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2253 chunk_root
->node
= read_tree_block(chunk_root
,
2254 btrfs_super_chunk_root(disk_super
),
2255 blocksize
, generation
);
2256 BUG_ON(!chunk_root
->node
);
2257 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2258 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2260 goto fail_tree_roots
;
2262 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2263 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2265 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2266 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
2269 mutex_lock(&fs_info
->chunk_mutex
);
2270 ret
= btrfs_read_chunk_tree(chunk_root
);
2271 mutex_unlock(&fs_info
->chunk_mutex
);
2273 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2275 goto fail_tree_roots
;
2278 btrfs_close_extra_devices(fs_devices
);
2281 blocksize
= btrfs_level_size(tree_root
,
2282 btrfs_super_root_level(disk_super
));
2283 generation
= btrfs_super_generation(disk_super
);
2285 tree_root
->node
= read_tree_block(tree_root
,
2286 btrfs_super_root(disk_super
),
2287 blocksize
, generation
);
2288 if (!tree_root
->node
||
2289 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2290 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2293 goto recovery_tree_root
;
2296 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2297 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2299 ret
= find_and_setup_root(tree_root
, fs_info
,
2300 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
2302 goto recovery_tree_root
;
2303 extent_root
->track_dirty
= 1;
2305 ret
= find_and_setup_root(tree_root
, fs_info
,
2306 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
2308 goto recovery_tree_root
;
2309 dev_root
->track_dirty
= 1;
2311 ret
= find_and_setup_root(tree_root
, fs_info
,
2312 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
2314 goto recovery_tree_root
;
2316 csum_root
->track_dirty
= 1;
2318 fs_info
->generation
= generation
;
2319 fs_info
->last_trans_committed
= generation
;
2320 fs_info
->data_alloc_profile
= (u64
)-1;
2321 fs_info
->metadata_alloc_profile
= (u64
)-1;
2322 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
2324 ret
= btrfs_init_space_info(fs_info
);
2326 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2327 goto fail_block_groups
;
2330 ret
= btrfs_read_block_groups(extent_root
);
2332 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2333 goto fail_block_groups
;
2336 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2338 if (IS_ERR(fs_info
->cleaner_kthread
))
2339 goto fail_block_groups
;
2341 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2343 "btrfs-transaction");
2344 if (IS_ERR(fs_info
->transaction_kthread
))
2347 if (!btrfs_test_opt(tree_root
, SSD
) &&
2348 !btrfs_test_opt(tree_root
, NOSSD
) &&
2349 !fs_info
->fs_devices
->rotating
) {
2350 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2352 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2355 /* do not make disk changes in broken FS */
2356 if (btrfs_super_log_root(disk_super
) != 0 &&
2357 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
2358 u64 bytenr
= btrfs_super_log_root(disk_super
);
2360 if (fs_devices
->rw_devices
== 0) {
2361 printk(KERN_WARNING
"Btrfs log replay required "
2364 goto fail_trans_kthread
;
2367 btrfs_level_size(tree_root
,
2368 btrfs_super_log_root_level(disk_super
));
2370 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
2371 if (!log_tree_root
) {
2373 goto fail_trans_kthread
;
2376 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2377 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2379 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2382 ret
= btrfs_recover_log_trees(log_tree_root
);
2385 if (sb
->s_flags
& MS_RDONLY
) {
2386 ret
= btrfs_commit_super(tree_root
);
2391 ret
= btrfs_find_orphan_roots(tree_root
);
2394 if (!(sb
->s_flags
& MS_RDONLY
)) {
2395 ret
= btrfs_cleanup_fs_roots(fs_info
);
2398 ret
= btrfs_recover_relocation(tree_root
);
2401 "btrfs: failed to recover relocation\n");
2403 goto fail_trans_kthread
;
2407 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2408 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2409 location
.offset
= (u64
)-1;
2411 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2412 if (!fs_info
->fs_root
)
2413 goto fail_trans_kthread
;
2414 if (IS_ERR(fs_info
->fs_root
)) {
2415 err
= PTR_ERR(fs_info
->fs_root
);
2416 goto fail_trans_kthread
;
2419 if (!(sb
->s_flags
& MS_RDONLY
)) {
2420 down_read(&fs_info
->cleanup_work_sem
);
2421 err
= btrfs_orphan_cleanup(fs_info
->fs_root
);
2423 err
= btrfs_orphan_cleanup(fs_info
->tree_root
);
2424 up_read(&fs_info
->cleanup_work_sem
);
2426 close_ctree(tree_root
);
2427 return ERR_PTR(err
);
2434 kthread_stop(fs_info
->transaction_kthread
);
2436 kthread_stop(fs_info
->cleaner_kthread
);
2439 * make sure we're done with the btree inode before we stop our
2442 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2443 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2446 btrfs_free_block_groups(fs_info
);
2449 free_root_pointers(fs_info
, 1);
2452 btrfs_stop_workers(&fs_info
->generic_worker
);
2453 btrfs_stop_workers(&fs_info
->readahead_workers
);
2454 btrfs_stop_workers(&fs_info
->fixup_workers
);
2455 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2456 btrfs_stop_workers(&fs_info
->workers
);
2457 btrfs_stop_workers(&fs_info
->endio_workers
);
2458 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2459 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2460 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2461 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2462 btrfs_stop_workers(&fs_info
->submit_workers
);
2463 btrfs_stop_workers(&fs_info
->delayed_workers
);
2464 btrfs_stop_workers(&fs_info
->caching_workers
);
2467 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2469 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2470 iput(fs_info
->btree_inode
);
2472 bdi_destroy(&fs_info
->bdi
);
2474 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2476 btrfs_close_devices(fs_info
->fs_devices
);
2477 free_fs_info(fs_info
);
2478 return ERR_PTR(err
);
2481 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2482 goto fail_tree_roots
;
2484 free_root_pointers(fs_info
, 0);
2486 /* don't use the log in recovery mode, it won't be valid */
2487 btrfs_set_super_log_root(disk_super
, 0);
2489 /* we can't trust the free space cache either */
2490 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2492 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2493 &num_backups_tried
, &backup_index
);
2495 goto fail_block_groups
;
2496 goto retry_root_backup
;
2499 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2501 char b
[BDEVNAME_SIZE
];
2504 set_buffer_uptodate(bh
);
2506 printk_ratelimited(KERN_WARNING
"lost page write due to "
2507 "I/O error on %s\n",
2508 bdevname(bh
->b_bdev
, b
));
2509 /* note, we dont' set_buffer_write_io_error because we have
2510 * our own ways of dealing with the IO errors
2512 clear_buffer_uptodate(bh
);
2518 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2520 struct buffer_head
*bh
;
2521 struct buffer_head
*latest
= NULL
;
2522 struct btrfs_super_block
*super
;
2527 /* we would like to check all the supers, but that would make
2528 * a btrfs mount succeed after a mkfs from a different FS.
2529 * So, we need to add a special mount option to scan for
2530 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2532 for (i
= 0; i
< 1; i
++) {
2533 bytenr
= btrfs_sb_offset(i
);
2534 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2536 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2540 super
= (struct btrfs_super_block
*)bh
->b_data
;
2541 if (btrfs_super_bytenr(super
) != bytenr
||
2542 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2543 sizeof(super
->magic
))) {
2548 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2551 transid
= btrfs_super_generation(super
);
2560 * this should be called twice, once with wait == 0 and
2561 * once with wait == 1. When wait == 0 is done, all the buffer heads
2562 * we write are pinned.
2564 * They are released when wait == 1 is done.
2565 * max_mirrors must be the same for both runs, and it indicates how
2566 * many supers on this one device should be written.
2568 * max_mirrors == 0 means to write them all.
2570 static int write_dev_supers(struct btrfs_device
*device
,
2571 struct btrfs_super_block
*sb
,
2572 int do_barriers
, int wait
, int max_mirrors
)
2574 struct buffer_head
*bh
;
2581 if (max_mirrors
== 0)
2582 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2584 for (i
= 0; i
< max_mirrors
; i
++) {
2585 bytenr
= btrfs_sb_offset(i
);
2586 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2590 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2591 BTRFS_SUPER_INFO_SIZE
);
2594 if (!buffer_uptodate(bh
))
2597 /* drop our reference */
2600 /* drop the reference from the wait == 0 run */
2604 btrfs_set_super_bytenr(sb
, bytenr
);
2607 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2608 BTRFS_CSUM_SIZE
, crc
,
2609 BTRFS_SUPER_INFO_SIZE
-
2611 btrfs_csum_final(crc
, sb
->csum
);
2614 * one reference for us, and we leave it for the
2617 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2618 BTRFS_SUPER_INFO_SIZE
);
2619 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2621 /* one reference for submit_bh */
2624 set_buffer_uptodate(bh
);
2626 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2630 * we fua the first super. The others we allow
2633 ret
= submit_bh(WRITE_FUA
, bh
);
2637 return errors
< i
? 0 : -1;
2641 * endio for the write_dev_flush, this will wake anyone waiting
2642 * for the barrier when it is done
2644 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
2647 if (err
== -EOPNOTSUPP
)
2648 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2649 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2651 if (bio
->bi_private
)
2652 complete(bio
->bi_private
);
2657 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2658 * sent down. With wait == 1, it waits for the previous flush.
2660 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2663 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
2668 if (device
->nobarriers
)
2672 bio
= device
->flush_bio
;
2676 wait_for_completion(&device
->flush_wait
);
2678 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
2679 printk("btrfs: disabling barriers on dev %s\n",
2681 device
->nobarriers
= 1;
2683 if (!bio_flagged(bio
, BIO_UPTODATE
)) {
2687 /* drop the reference from the wait == 0 run */
2689 device
->flush_bio
= NULL
;
2695 * one reference for us, and we leave it for the
2698 device
->flush_bio
= NULL
;;
2699 bio
= bio_alloc(GFP_NOFS
, 0);
2703 bio
->bi_end_io
= btrfs_end_empty_barrier
;
2704 bio
->bi_bdev
= device
->bdev
;
2705 init_completion(&device
->flush_wait
);
2706 bio
->bi_private
= &device
->flush_wait
;
2707 device
->flush_bio
= bio
;
2710 submit_bio(WRITE_FLUSH
, bio
);
2716 * send an empty flush down to each device in parallel,
2717 * then wait for them
2719 static int barrier_all_devices(struct btrfs_fs_info
*info
)
2721 struct list_head
*head
;
2722 struct btrfs_device
*dev
;
2726 /* send down all the barriers */
2727 head
= &info
->fs_devices
->devices
;
2728 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2733 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2736 ret
= write_dev_flush(dev
, 0);
2741 /* wait for all the barriers */
2742 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2747 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2750 ret
= write_dev_flush(dev
, 1);
2759 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2761 struct list_head
*head
;
2762 struct btrfs_device
*dev
;
2763 struct btrfs_super_block
*sb
;
2764 struct btrfs_dev_item
*dev_item
;
2768 int total_errors
= 0;
2771 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
2772 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2773 backup_super_roots(root
->fs_info
);
2775 sb
= root
->fs_info
->super_for_commit
;
2776 dev_item
= &sb
->dev_item
;
2778 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2779 head
= &root
->fs_info
->fs_devices
->devices
;
2782 barrier_all_devices(root
->fs_info
);
2784 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2789 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2792 btrfs_set_stack_device_generation(dev_item
, 0);
2793 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2794 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2795 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2796 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2797 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2798 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2799 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2800 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2801 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2803 flags
= btrfs_super_flags(sb
);
2804 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2806 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2810 if (total_errors
> max_errors
) {
2811 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2817 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2820 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2823 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2827 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2828 if (total_errors
> max_errors
) {
2829 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2836 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2837 struct btrfs_root
*root
, int max_mirrors
)
2841 ret
= write_all_supers(root
, max_mirrors
);
2845 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2847 spin_lock(&fs_info
->fs_roots_radix_lock
);
2848 radix_tree_delete(&fs_info
->fs_roots_radix
,
2849 (unsigned long)root
->root_key
.objectid
);
2850 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2852 if (btrfs_root_refs(&root
->root_item
) == 0)
2853 synchronize_srcu(&fs_info
->subvol_srcu
);
2855 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
2856 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
2861 static void free_fs_root(struct btrfs_root
*root
)
2863 iput(root
->cache_inode
);
2864 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2866 free_anon_bdev(root
->anon_dev
);
2867 free_extent_buffer(root
->node
);
2868 free_extent_buffer(root
->commit_root
);
2869 kfree(root
->free_ino_ctl
);
2870 kfree(root
->free_ino_pinned
);
2875 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2878 struct btrfs_root
*gang
[8];
2881 while (!list_empty(&fs_info
->dead_roots
)) {
2882 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2883 struct btrfs_root
, root_list
);
2884 list_del(&gang
[0]->root_list
);
2886 if (gang
[0]->in_radix
) {
2887 btrfs_free_fs_root(fs_info
, gang
[0]);
2889 free_extent_buffer(gang
[0]->node
);
2890 free_extent_buffer(gang
[0]->commit_root
);
2896 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2901 for (i
= 0; i
< ret
; i
++)
2902 btrfs_free_fs_root(fs_info
, gang
[i
]);
2907 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2909 u64 root_objectid
= 0;
2910 struct btrfs_root
*gang
[8];
2915 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2916 (void **)gang
, root_objectid
,
2921 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2922 for (i
= 0; i
< ret
; i
++) {
2925 root_objectid
= gang
[i
]->root_key
.objectid
;
2926 err
= btrfs_orphan_cleanup(gang
[i
]);
2935 int btrfs_commit_super(struct btrfs_root
*root
)
2937 struct btrfs_trans_handle
*trans
;
2940 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2941 btrfs_run_delayed_iputs(root
);
2942 btrfs_clean_old_snapshots(root
);
2943 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2945 /* wait until ongoing cleanup work done */
2946 down_write(&root
->fs_info
->cleanup_work_sem
);
2947 up_write(&root
->fs_info
->cleanup_work_sem
);
2949 trans
= btrfs_join_transaction(root
);
2951 return PTR_ERR(trans
);
2952 ret
= btrfs_commit_transaction(trans
, root
);
2954 /* run commit again to drop the original snapshot */
2955 trans
= btrfs_join_transaction(root
);
2957 return PTR_ERR(trans
);
2958 btrfs_commit_transaction(trans
, root
);
2959 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2962 ret
= write_ctree_super(NULL
, root
, 0);
2966 int close_ctree(struct btrfs_root
*root
)
2968 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2971 fs_info
->closing
= 1;
2974 btrfs_scrub_cancel(root
);
2976 /* wait for any defraggers to finish */
2977 wait_event(fs_info
->transaction_wait
,
2978 (atomic_read(&fs_info
->defrag_running
) == 0));
2980 /* clear out the rbtree of defraggable inodes */
2981 btrfs_run_defrag_inodes(root
->fs_info
);
2984 * Here come 2 situations when btrfs is broken to flip readonly:
2986 * 1. when btrfs flips readonly somewhere else before
2987 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2988 * and btrfs will skip to write sb directly to keep
2989 * ERROR state on disk.
2991 * 2. when btrfs flips readonly just in btrfs_commit_super,
2992 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2993 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2994 * btrfs will cleanup all FS resources first and write sb then.
2996 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2997 ret
= btrfs_commit_super(root
);
2999 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3002 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
3003 ret
= btrfs_error_commit_super(root
);
3005 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3008 btrfs_put_block_group_cache(fs_info
);
3010 kthread_stop(root
->fs_info
->transaction_kthread
);
3011 kthread_stop(root
->fs_info
->cleaner_kthread
);
3013 fs_info
->closing
= 2;
3016 if (fs_info
->delalloc_bytes
) {
3017 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
3018 (unsigned long long)fs_info
->delalloc_bytes
);
3020 if (fs_info
->total_ref_cache_size
) {
3021 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
3022 (unsigned long long)fs_info
->total_ref_cache_size
);
3025 free_extent_buffer(fs_info
->extent_root
->node
);
3026 free_extent_buffer(fs_info
->extent_root
->commit_root
);
3027 free_extent_buffer(fs_info
->tree_root
->node
);
3028 free_extent_buffer(fs_info
->tree_root
->commit_root
);
3029 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
3030 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
3031 free_extent_buffer(root
->fs_info
->dev_root
->node
);
3032 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
3033 free_extent_buffer(root
->fs_info
->csum_root
->node
);
3034 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
3036 btrfs_free_block_groups(root
->fs_info
);
3038 del_fs_roots(fs_info
);
3040 iput(fs_info
->btree_inode
);
3042 btrfs_stop_workers(&fs_info
->generic_worker
);
3043 btrfs_stop_workers(&fs_info
->fixup_workers
);
3044 btrfs_stop_workers(&fs_info
->delalloc_workers
);
3045 btrfs_stop_workers(&fs_info
->workers
);
3046 btrfs_stop_workers(&fs_info
->endio_workers
);
3047 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
3048 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
3049 btrfs_stop_workers(&fs_info
->endio_write_workers
);
3050 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
3051 btrfs_stop_workers(&fs_info
->submit_workers
);
3052 btrfs_stop_workers(&fs_info
->delayed_workers
);
3053 btrfs_stop_workers(&fs_info
->caching_workers
);
3054 btrfs_stop_workers(&fs_info
->readahead_workers
);
3056 btrfs_close_devices(fs_info
->fs_devices
);
3057 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3059 bdi_destroy(&fs_info
->bdi
);
3060 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3062 free_fs_info(fs_info
);
3067 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
3070 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
3072 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3077 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3082 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3084 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
3085 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
3089 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3091 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
3092 u64 transid
= btrfs_header_generation(buf
);
3093 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
3096 btrfs_assert_tree_locked(buf
);
3097 if (transid
!= root
->fs_info
->generation
) {
3098 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3099 "found %llu running %llu\n",
3100 (unsigned long long)buf
->start
,
3101 (unsigned long long)transid
,
3102 (unsigned long long)root
->fs_info
->generation
);
3105 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
3108 spin_lock(&root
->fs_info
->delalloc_lock
);
3109 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
3110 spin_unlock(&root
->fs_info
->delalloc_lock
);
3114 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
3117 * looks as though older kernels can get into trouble with
3118 * this code, they end up stuck in balance_dirty_pages forever
3121 unsigned long thresh
= 32 * 1024 * 1024;
3123 if (current
->flags
& PF_MEMALLOC
)
3126 btrfs_balance_delayed_items(root
);
3128 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
3130 if (num_dirty
> thresh
) {
3131 balance_dirty_pages_ratelimited_nr(
3132 root
->fs_info
->btree_inode
->i_mapping
, 1);
3137 void __btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
3140 * looks as though older kernels can get into trouble with
3141 * this code, they end up stuck in balance_dirty_pages forever
3144 unsigned long thresh
= 32 * 1024 * 1024;
3146 if (current
->flags
& PF_MEMALLOC
)
3149 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
3151 if (num_dirty
> thresh
) {
3152 balance_dirty_pages_ratelimited_nr(
3153 root
->fs_info
->btree_inode
->i_mapping
, 1);
3158 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3160 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
3162 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3164 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
3168 static int btree_lock_page_hook(struct page
*page
, void *data
,
3169 void (*flush_fn
)(void *))
3171 struct inode
*inode
= page
->mapping
->host
;
3172 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3173 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3174 struct extent_buffer
*eb
;
3176 u64 bytenr
= page_offset(page
);
3178 if (page
->private == EXTENT_PAGE_PRIVATE
)
3181 len
= page
->private >> 2;
3182 eb
= find_extent_buffer(io_tree
, bytenr
, len
);
3186 if (!btrfs_try_tree_write_lock(eb
)) {
3188 btrfs_tree_lock(eb
);
3190 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3192 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3193 spin_lock(&root
->fs_info
->delalloc_lock
);
3194 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
3195 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
3198 spin_unlock(&root
->fs_info
->delalloc_lock
);
3201 btrfs_tree_unlock(eb
);
3202 free_extent_buffer(eb
);
3204 if (!trylock_page(page
)) {
3211 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3217 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
3218 printk(KERN_WARNING
"warning: mount fs with errors, "
3219 "running btrfsck is recommended\n");
3222 int btrfs_error_commit_super(struct btrfs_root
*root
)
3226 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3227 btrfs_run_delayed_iputs(root
);
3228 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3230 down_write(&root
->fs_info
->cleanup_work_sem
);
3231 up_write(&root
->fs_info
->cleanup_work_sem
);
3233 /* cleanup FS via transaction */
3234 btrfs_cleanup_transaction(root
);
3236 ret
= write_ctree_super(NULL
, root
, 0);
3241 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
3243 struct btrfs_inode
*btrfs_inode
;
3244 struct list_head splice
;
3246 INIT_LIST_HEAD(&splice
);
3248 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3249 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3251 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
3252 while (!list_empty(&splice
)) {
3253 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3254 ordered_operations
);
3256 list_del_init(&btrfs_inode
->ordered_operations
);
3258 btrfs_invalidate_inodes(btrfs_inode
->root
);
3261 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3262 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3267 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3269 struct list_head splice
;
3270 struct btrfs_ordered_extent
*ordered
;
3271 struct inode
*inode
;
3273 INIT_LIST_HEAD(&splice
);
3275 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3277 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
3278 while (!list_empty(&splice
)) {
3279 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
3282 list_del_init(&ordered
->root_extent_list
);
3283 atomic_inc(&ordered
->refs
);
3285 /* the inode may be getting freed (in sys_unlink path). */
3286 inode
= igrab(ordered
->inode
);
3288 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3292 atomic_set(&ordered
->refs
, 1);
3293 btrfs_put_ordered_extent(ordered
);
3295 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3298 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3303 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3304 struct btrfs_root
*root
)
3306 struct rb_node
*node
;
3307 struct btrfs_delayed_ref_root
*delayed_refs
;
3308 struct btrfs_delayed_ref_node
*ref
;
3311 delayed_refs
= &trans
->delayed_refs
;
3313 spin_lock(&delayed_refs
->lock
);
3314 if (delayed_refs
->num_entries
== 0) {
3315 spin_unlock(&delayed_refs
->lock
);
3316 printk(KERN_INFO
"delayed_refs has NO entry\n");
3320 node
= rb_first(&delayed_refs
->root
);
3322 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3323 node
= rb_next(node
);
3326 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3327 delayed_refs
->num_entries
--;
3329 atomic_set(&ref
->refs
, 1);
3330 if (btrfs_delayed_ref_is_head(ref
)) {
3331 struct btrfs_delayed_ref_head
*head
;
3333 head
= btrfs_delayed_node_to_head(ref
);
3334 mutex_lock(&head
->mutex
);
3335 kfree(head
->extent_op
);
3336 delayed_refs
->num_heads
--;
3337 if (list_empty(&head
->cluster
))
3338 delayed_refs
->num_heads_ready
--;
3339 list_del_init(&head
->cluster
);
3340 mutex_unlock(&head
->mutex
);
3343 spin_unlock(&delayed_refs
->lock
);
3344 btrfs_put_delayed_ref(ref
);
3347 spin_lock(&delayed_refs
->lock
);
3350 spin_unlock(&delayed_refs
->lock
);
3355 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
3357 struct btrfs_pending_snapshot
*snapshot
;
3358 struct list_head splice
;
3360 INIT_LIST_HEAD(&splice
);
3362 list_splice_init(&t
->pending_snapshots
, &splice
);
3364 while (!list_empty(&splice
)) {
3365 snapshot
= list_entry(splice
.next
,
3366 struct btrfs_pending_snapshot
,
3369 list_del_init(&snapshot
->list
);
3377 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3379 struct btrfs_inode
*btrfs_inode
;
3380 struct list_head splice
;
3382 INIT_LIST_HEAD(&splice
);
3384 spin_lock(&root
->fs_info
->delalloc_lock
);
3385 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
3387 while (!list_empty(&splice
)) {
3388 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3391 list_del_init(&btrfs_inode
->delalloc_inodes
);
3393 btrfs_invalidate_inodes(btrfs_inode
->root
);
3396 spin_unlock(&root
->fs_info
->delalloc_lock
);
3401 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3402 struct extent_io_tree
*dirty_pages
,
3407 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
3408 struct extent_buffer
*eb
;
3412 unsigned long index
;
3415 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3420 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3421 while (start
<= end
) {
3422 index
= start
>> PAGE_CACHE_SHIFT
;
3423 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
3424 page
= find_get_page(btree_inode
->i_mapping
, index
);
3427 offset
= page_offset(page
);
3429 spin_lock(&dirty_pages
->buffer_lock
);
3430 eb
= radix_tree_lookup(
3431 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
3432 offset
>> PAGE_CACHE_SHIFT
);
3433 spin_unlock(&dirty_pages
->buffer_lock
);
3435 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3437 atomic_set(&eb
->refs
, 1);
3439 if (PageWriteback(page
))
3440 end_page_writeback(page
);
3443 if (PageDirty(page
)) {
3444 clear_page_dirty_for_io(page
);
3445 spin_lock_irq(&page
->mapping
->tree_lock
);
3446 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3448 PAGECACHE_TAG_DIRTY
);
3449 spin_unlock_irq(&page
->mapping
->tree_lock
);
3452 page
->mapping
->a_ops
->invalidatepage(page
, 0);
3460 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3461 struct extent_io_tree
*pinned_extents
)
3463 struct extent_io_tree
*unpin
;
3468 unpin
= pinned_extents
;
3470 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3476 if (btrfs_test_opt(root
, DISCARD
))
3477 ret
= btrfs_error_discard_extent(root
, start
,
3481 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3482 btrfs_error_unpin_extent_range(root
, start
, end
);
3489 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3491 struct btrfs_transaction
*t
;
3496 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3498 spin_lock(&root
->fs_info
->trans_lock
);
3499 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3500 root
->fs_info
->trans_no_join
= 1;
3501 spin_unlock(&root
->fs_info
->trans_lock
);
3503 while (!list_empty(&list
)) {
3504 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3508 btrfs_destroy_ordered_operations(root
);
3510 btrfs_destroy_ordered_extents(root
);
3512 btrfs_destroy_delayed_refs(t
, root
);
3514 btrfs_block_rsv_release(root
,
3515 &root
->fs_info
->trans_block_rsv
,
3516 t
->dirty_pages
.dirty_bytes
);
3518 /* FIXME: cleanup wait for commit */
3521 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3522 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3525 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3526 wake_up(&root
->fs_info
->transaction_wait
);
3529 if (waitqueue_active(&t
->commit_wait
))
3530 wake_up(&t
->commit_wait
);
3532 btrfs_destroy_pending_snapshots(t
);
3534 btrfs_destroy_delalloc_inodes(root
);
3536 spin_lock(&root
->fs_info
->trans_lock
);
3537 root
->fs_info
->running_transaction
= NULL
;
3538 spin_unlock(&root
->fs_info
->trans_lock
);
3540 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3543 btrfs_destroy_pinned_extent(root
,
3544 root
->fs_info
->pinned_extents
);
3546 atomic_set(&t
->use_count
, 0);
3547 list_del_init(&t
->list
);
3548 memset(t
, 0, sizeof(*t
));
3549 kmem_cache_free(btrfs_transaction_cachep
, t
);
3552 spin_lock(&root
->fs_info
->trans_lock
);
3553 root
->fs_info
->trans_no_join
= 0;
3554 spin_unlock(&root
->fs_info
->trans_lock
);
3555 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3560 static struct extent_io_ops btree_extent_io_ops
= {
3561 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3562 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3563 .readpage_io_failed_hook
= btree_io_failed_hook
,
3564 .submit_bio_hook
= btree_submit_bio_hook
,
3565 /* note we're sharing with inode.c for the merge bio hook */
3566 .merge_bio_hook
= btrfs_merge_bio_hook
,