4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC: Do not block
60 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 * page from the LRU and reclaim all pages within a
63 * naturally aligned range
64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65 * order-0 pages and then compact the zone
67 typedef unsigned __bitwise__ reclaim_mode_t
;
68 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
75 /* Incremented by the number of inactive pages that were scanned */
76 unsigned long nr_scanned
;
78 /* Number of pages freed so far during a call to shrink_zones() */
79 unsigned long nr_reclaimed
;
81 /* How many pages shrink_list() should reclaim */
82 unsigned long nr_to_reclaim
;
84 unsigned long hibernation_mode
;
86 /* This context's GFP mask */
91 /* Can mapped pages be reclaimed? */
94 /* Can pages be swapped as part of reclaim? */
102 * Intend to reclaim enough continuous memory rather than reclaim
103 * enough amount of memory. i.e, mode for high order allocation.
105 reclaim_mode_t reclaim_mode
;
107 /* Which cgroup do we reclaim from */
108 struct mem_cgroup
*mem_cgroup
;
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 nodemask_t
*nodemask
;
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field) \
122 if ((_page)->lru.prev != _base) { \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 if ((_page)->lru.prev != _base) { \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
148 * From 0 .. 100. Higher means more swappy.
150 int vm_swappiness
= 60;
151 long vm_total_pages
; /* The total number of pages which the VM controls */
153 static LIST_HEAD(shrinker_list
);
154 static DECLARE_RWSEM(shrinker_rwsem
);
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #define scanning_global_lru(sc) (1)
162 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
163 struct scan_control
*sc
)
165 if (!scanning_global_lru(sc
))
166 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
168 return &zone
->reclaim_stat
;
171 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
172 struct scan_control
*sc
, enum lru_list lru
)
174 if (!scanning_global_lru(sc
))
175 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
177 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
182 * Add a shrinker callback to be called from the vm
184 void register_shrinker(struct shrinker
*shrinker
)
187 down_write(&shrinker_rwsem
);
188 list_add_tail(&shrinker
->list
, &shrinker_list
);
189 up_write(&shrinker_rwsem
);
191 EXPORT_SYMBOL(register_shrinker
);
196 void unregister_shrinker(struct shrinker
*shrinker
)
198 down_write(&shrinker_rwsem
);
199 list_del(&shrinker
->list
);
200 up_write(&shrinker_rwsem
);
202 EXPORT_SYMBOL(unregister_shrinker
);
204 #define SHRINK_BATCH 128
206 * Call the shrink functions to age shrinkable caches
208 * Here we assume it costs one seek to replace a lru page and that it also
209 * takes a seek to recreate a cache object. With this in mind we age equal
210 * percentages of the lru and ageable caches. This should balance the seeks
211 * generated by these structures.
213 * If the vm encountered mapped pages on the LRU it increase the pressure on
214 * slab to avoid swapping.
216 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
218 * `lru_pages' represents the number of on-LRU pages in all the zones which
219 * are eligible for the caller's allocation attempt. It is used for balancing
220 * slab reclaim versus page reclaim.
222 * Returns the number of slab objects which we shrunk.
224 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
225 unsigned long lru_pages
)
227 struct shrinker
*shrinker
;
228 unsigned long ret
= 0;
231 scanned
= SWAP_CLUSTER_MAX
;
233 if (!down_read_trylock(&shrinker_rwsem
))
234 return 1; /* Assume we'll be able to shrink next time */
236 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
237 unsigned long long delta
;
238 unsigned long total_scan
;
239 unsigned long max_pass
;
241 max_pass
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
242 delta
= (4 * scanned
) / shrinker
->seeks
;
244 do_div(delta
, lru_pages
+ 1);
245 shrinker
->nr
+= delta
;
246 if (shrinker
->nr
< 0) {
247 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
249 shrinker
->shrink
, shrinker
->nr
);
250 shrinker
->nr
= max_pass
;
254 * Avoid risking looping forever due to too large nr value:
255 * never try to free more than twice the estimate number of
258 if (shrinker
->nr
> max_pass
* 2)
259 shrinker
->nr
= max_pass
* 2;
261 total_scan
= shrinker
->nr
;
264 while (total_scan
>= SHRINK_BATCH
) {
265 long this_scan
= SHRINK_BATCH
;
269 nr_before
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
270 shrink_ret
= (*shrinker
->shrink
)(shrinker
, this_scan
,
272 if (shrink_ret
== -1)
274 if (shrink_ret
< nr_before
)
275 ret
+= nr_before
- shrink_ret
;
276 count_vm_events(SLABS_SCANNED
, this_scan
);
277 total_scan
-= this_scan
;
282 shrinker
->nr
+= total_scan
;
284 up_read(&shrinker_rwsem
);
288 static void set_reclaim_mode(int priority
, struct scan_control
*sc
,
291 reclaim_mode_t syncmode
= sync
? RECLAIM_MODE_SYNC
: RECLAIM_MODE_ASYNC
;
294 * Initially assume we are entering either lumpy reclaim or
295 * reclaim/compaction.Depending on the order, we will either set the
296 * sync mode or just reclaim order-0 pages later.
298 if (COMPACTION_BUILD
)
299 sc
->reclaim_mode
= RECLAIM_MODE_COMPACTION
;
301 sc
->reclaim_mode
= RECLAIM_MODE_LUMPYRECLAIM
;
304 * Avoid using lumpy reclaim or reclaim/compaction if possible by
305 * restricting when its set to either costly allocations or when
306 * under memory pressure
308 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
309 sc
->reclaim_mode
|= syncmode
;
310 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
311 sc
->reclaim_mode
|= syncmode
;
313 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
316 static void reset_reclaim_mode(struct scan_control
*sc
)
318 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
321 static inline int is_page_cache_freeable(struct page
*page
)
324 * A freeable page cache page is referenced only by the caller
325 * that isolated the page, the page cache radix tree and
326 * optional buffer heads at page->private.
328 return page_count(page
) - page_has_private(page
) == 2;
331 static int may_write_to_queue(struct backing_dev_info
*bdi
,
332 struct scan_control
*sc
)
334 if (current
->flags
& PF_SWAPWRITE
)
336 if (!bdi_write_congested(bdi
))
338 if (bdi
== current
->backing_dev_info
)
341 /* lumpy reclaim for hugepage often need a lot of write */
342 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
348 * We detected a synchronous write error writing a page out. Probably
349 * -ENOSPC. We need to propagate that into the address_space for a subsequent
350 * fsync(), msync() or close().
352 * The tricky part is that after writepage we cannot touch the mapping: nothing
353 * prevents it from being freed up. But we have a ref on the page and once
354 * that page is locked, the mapping is pinned.
356 * We're allowed to run sleeping lock_page() here because we know the caller has
359 static void handle_write_error(struct address_space
*mapping
,
360 struct page
*page
, int error
)
363 if (page_mapping(page
) == mapping
)
364 mapping_set_error(mapping
, error
);
368 /* possible outcome of pageout() */
370 /* failed to write page out, page is locked */
372 /* move page to the active list, page is locked */
374 /* page has been sent to the disk successfully, page is unlocked */
376 /* page is clean and locked */
381 * pageout is called by shrink_page_list() for each dirty page.
382 * Calls ->writepage().
384 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
385 struct scan_control
*sc
)
388 * If the page is dirty, only perform writeback if that write
389 * will be non-blocking. To prevent this allocation from being
390 * stalled by pagecache activity. But note that there may be
391 * stalls if we need to run get_block(). We could test
392 * PagePrivate for that.
394 * If this process is currently in __generic_file_aio_write() against
395 * this page's queue, we can perform writeback even if that
398 * If the page is swapcache, write it back even if that would
399 * block, for some throttling. This happens by accident, because
400 * swap_backing_dev_info is bust: it doesn't reflect the
401 * congestion state of the swapdevs. Easy to fix, if needed.
403 if (!is_page_cache_freeable(page
))
407 * Some data journaling orphaned pages can have
408 * page->mapping == NULL while being dirty with clean buffers.
410 if (page_has_private(page
)) {
411 if (try_to_free_buffers(page
)) {
412 ClearPageDirty(page
);
413 printk("%s: orphaned page\n", __func__
);
419 if (mapping
->a_ops
->writepage
== NULL
)
420 return PAGE_ACTIVATE
;
421 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
424 if (clear_page_dirty_for_io(page
)) {
426 struct writeback_control wbc
= {
427 .sync_mode
= WB_SYNC_NONE
,
428 .nr_to_write
= SWAP_CLUSTER_MAX
,
430 .range_end
= LLONG_MAX
,
434 SetPageReclaim(page
);
435 res
= mapping
->a_ops
->writepage(page
, &wbc
);
437 handle_write_error(mapping
, page
, res
);
438 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
439 ClearPageReclaim(page
);
440 return PAGE_ACTIVATE
;
444 * Wait on writeback if requested to. This happens when
445 * direct reclaiming a large contiguous area and the
446 * first attempt to free a range of pages fails.
448 if (PageWriteback(page
) &&
449 (sc
->reclaim_mode
& RECLAIM_MODE_SYNC
))
450 wait_on_page_writeback(page
);
452 if (!PageWriteback(page
)) {
453 /* synchronous write or broken a_ops? */
454 ClearPageReclaim(page
);
456 trace_mm_vmscan_writepage(page
,
457 trace_reclaim_flags(page
, sc
->reclaim_mode
));
458 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
466 * Same as remove_mapping, but if the page is removed from the mapping, it
467 * gets returned with a refcount of 0.
469 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
471 BUG_ON(!PageLocked(page
));
472 BUG_ON(mapping
!= page_mapping(page
));
474 spin_lock_irq(&mapping
->tree_lock
);
476 * The non racy check for a busy page.
478 * Must be careful with the order of the tests. When someone has
479 * a ref to the page, it may be possible that they dirty it then
480 * drop the reference. So if PageDirty is tested before page_count
481 * here, then the following race may occur:
483 * get_user_pages(&page);
484 * [user mapping goes away]
486 * !PageDirty(page) [good]
487 * SetPageDirty(page);
489 * !page_count(page) [good, discard it]
491 * [oops, our write_to data is lost]
493 * Reversing the order of the tests ensures such a situation cannot
494 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
495 * load is not satisfied before that of page->_count.
497 * Note that if SetPageDirty is always performed via set_page_dirty,
498 * and thus under tree_lock, then this ordering is not required.
500 if (!page_freeze_refs(page
, 2))
502 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
503 if (unlikely(PageDirty(page
))) {
504 page_unfreeze_refs(page
, 2);
508 if (PageSwapCache(page
)) {
509 swp_entry_t swap
= { .val
= page_private(page
) };
510 __delete_from_swap_cache(page
);
511 spin_unlock_irq(&mapping
->tree_lock
);
512 swapcache_free(swap
, page
);
514 void (*freepage
)(struct page
*);
516 freepage
= mapping
->a_ops
->freepage
;
518 __delete_from_page_cache(page
);
519 spin_unlock_irq(&mapping
->tree_lock
);
520 mem_cgroup_uncharge_cache_page(page
);
522 if (freepage
!= NULL
)
529 spin_unlock_irq(&mapping
->tree_lock
);
534 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
535 * someone else has a ref on the page, abort and return 0. If it was
536 * successfully detached, return 1. Assumes the caller has a single ref on
539 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
541 if (__remove_mapping(mapping
, page
)) {
543 * Unfreezing the refcount with 1 rather than 2 effectively
544 * drops the pagecache ref for us without requiring another
547 page_unfreeze_refs(page
, 1);
554 * putback_lru_page - put previously isolated page onto appropriate LRU list
555 * @page: page to be put back to appropriate lru list
557 * Add previously isolated @page to appropriate LRU list.
558 * Page may still be unevictable for other reasons.
560 * lru_lock must not be held, interrupts must be enabled.
562 void putback_lru_page(struct page
*page
)
565 int active
= !!TestClearPageActive(page
);
566 int was_unevictable
= PageUnevictable(page
);
568 VM_BUG_ON(PageLRU(page
));
571 ClearPageUnevictable(page
);
573 if (page_evictable(page
, NULL
)) {
575 * For evictable pages, we can use the cache.
576 * In event of a race, worst case is we end up with an
577 * unevictable page on [in]active list.
578 * We know how to handle that.
580 lru
= active
+ page_lru_base_type(page
);
581 lru_cache_add_lru(page
, lru
);
584 * Put unevictable pages directly on zone's unevictable
587 lru
= LRU_UNEVICTABLE
;
588 add_page_to_unevictable_list(page
);
590 * When racing with an mlock clearing (page is
591 * unlocked), make sure that if the other thread does
592 * not observe our setting of PG_lru and fails
593 * isolation, we see PG_mlocked cleared below and move
594 * the page back to the evictable list.
596 * The other side is TestClearPageMlocked().
602 * page's status can change while we move it among lru. If an evictable
603 * page is on unevictable list, it never be freed. To avoid that,
604 * check after we added it to the list, again.
606 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
607 if (!isolate_lru_page(page
)) {
611 /* This means someone else dropped this page from LRU
612 * So, it will be freed or putback to LRU again. There is
613 * nothing to do here.
617 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
618 count_vm_event(UNEVICTABLE_PGRESCUED
);
619 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
620 count_vm_event(UNEVICTABLE_PGCULLED
);
622 put_page(page
); /* drop ref from isolate */
625 enum page_references
{
627 PAGEREF_RECLAIM_CLEAN
,
632 static enum page_references
page_check_references(struct page
*page
,
633 struct scan_control
*sc
)
635 int referenced_ptes
, referenced_page
;
636 unsigned long vm_flags
;
638 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
639 referenced_page
= TestClearPageReferenced(page
);
641 /* Lumpy reclaim - ignore references */
642 if (sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
)
643 return PAGEREF_RECLAIM
;
646 * Mlock lost the isolation race with us. Let try_to_unmap()
647 * move the page to the unevictable list.
649 if (vm_flags
& VM_LOCKED
)
650 return PAGEREF_RECLAIM
;
652 if (referenced_ptes
) {
654 return PAGEREF_ACTIVATE
;
656 * All mapped pages start out with page table
657 * references from the instantiating fault, so we need
658 * to look twice if a mapped file page is used more
661 * Mark it and spare it for another trip around the
662 * inactive list. Another page table reference will
663 * lead to its activation.
665 * Note: the mark is set for activated pages as well
666 * so that recently deactivated but used pages are
669 SetPageReferenced(page
);
672 return PAGEREF_ACTIVATE
;
677 /* Reclaim if clean, defer dirty pages to writeback */
678 if (referenced_page
&& !PageSwapBacked(page
))
679 return PAGEREF_RECLAIM_CLEAN
;
681 return PAGEREF_RECLAIM
;
684 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
686 struct pagevec freed_pvec
;
687 struct page
*page
, *tmp
;
689 pagevec_init(&freed_pvec
, 1);
691 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
692 list_del(&page
->lru
);
693 if (!pagevec_add(&freed_pvec
, page
)) {
694 __pagevec_free(&freed_pvec
);
695 pagevec_reinit(&freed_pvec
);
699 pagevec_free(&freed_pvec
);
703 * shrink_page_list() returns the number of reclaimed pages
705 static unsigned long shrink_page_list(struct list_head
*page_list
,
707 struct scan_control
*sc
)
709 LIST_HEAD(ret_pages
);
710 LIST_HEAD(free_pages
);
712 unsigned long nr_dirty
= 0;
713 unsigned long nr_congested
= 0;
714 unsigned long nr_reclaimed
= 0;
718 while (!list_empty(page_list
)) {
719 enum page_references references
;
720 struct address_space
*mapping
;
726 page
= lru_to_page(page_list
);
727 list_del(&page
->lru
);
729 if (!trylock_page(page
))
732 VM_BUG_ON(PageActive(page
));
733 VM_BUG_ON(page_zone(page
) != zone
);
737 if (unlikely(!page_evictable(page
, NULL
)))
740 if (!sc
->may_unmap
&& page_mapped(page
))
743 /* Double the slab pressure for mapped and swapcache pages */
744 if (page_mapped(page
) || PageSwapCache(page
))
747 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
748 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
750 if (PageWriteback(page
)) {
752 * Synchronous reclaim is performed in two passes,
753 * first an asynchronous pass over the list to
754 * start parallel writeback, and a second synchronous
755 * pass to wait for the IO to complete. Wait here
756 * for any page for which writeback has already
759 if ((sc
->reclaim_mode
& RECLAIM_MODE_SYNC
) &&
761 wait_on_page_writeback(page
);
768 references
= page_check_references(page
, sc
);
769 switch (references
) {
770 case PAGEREF_ACTIVATE
:
771 goto activate_locked
;
774 case PAGEREF_RECLAIM
:
775 case PAGEREF_RECLAIM_CLEAN
:
776 ; /* try to reclaim the page below */
780 * Anonymous process memory has backing store?
781 * Try to allocate it some swap space here.
783 if (PageAnon(page
) && !PageSwapCache(page
)) {
784 if (!(sc
->gfp_mask
& __GFP_IO
))
786 if (!add_to_swap(page
))
787 goto activate_locked
;
791 mapping
= page_mapping(page
);
794 * The page is mapped into the page tables of one or more
795 * processes. Try to unmap it here.
797 if (page_mapped(page
) && mapping
) {
798 switch (try_to_unmap(page
, TTU_UNMAP
)) {
800 goto activate_locked
;
806 ; /* try to free the page below */
810 if (PageDirty(page
)) {
813 if (references
== PAGEREF_RECLAIM_CLEAN
)
817 if (!sc
->may_writepage
)
820 /* Page is dirty, try to write it out here */
821 switch (pageout(page
, mapping
, sc
)) {
826 goto activate_locked
;
828 if (PageWriteback(page
))
834 * A synchronous write - probably a ramdisk. Go
835 * ahead and try to reclaim the page.
837 if (!trylock_page(page
))
839 if (PageDirty(page
) || PageWriteback(page
))
841 mapping
= page_mapping(page
);
843 ; /* try to free the page below */
848 * If the page has buffers, try to free the buffer mappings
849 * associated with this page. If we succeed we try to free
852 * We do this even if the page is PageDirty().
853 * try_to_release_page() does not perform I/O, but it is
854 * possible for a page to have PageDirty set, but it is actually
855 * clean (all its buffers are clean). This happens if the
856 * buffers were written out directly, with submit_bh(). ext3
857 * will do this, as well as the blockdev mapping.
858 * try_to_release_page() will discover that cleanness and will
859 * drop the buffers and mark the page clean - it can be freed.
861 * Rarely, pages can have buffers and no ->mapping. These are
862 * the pages which were not successfully invalidated in
863 * truncate_complete_page(). We try to drop those buffers here
864 * and if that worked, and the page is no longer mapped into
865 * process address space (page_count == 1) it can be freed.
866 * Otherwise, leave the page on the LRU so it is swappable.
868 if (page_has_private(page
)) {
869 if (!try_to_release_page(page
, sc
->gfp_mask
))
870 goto activate_locked
;
871 if (!mapping
&& page_count(page
) == 1) {
873 if (put_page_testzero(page
))
877 * rare race with speculative reference.
878 * the speculative reference will free
879 * this page shortly, so we may
880 * increment nr_reclaimed here (and
881 * leave it off the LRU).
889 if (!mapping
|| !__remove_mapping(mapping
, page
))
893 * At this point, we have no other references and there is
894 * no way to pick any more up (removed from LRU, removed
895 * from pagecache). Can use non-atomic bitops now (and
896 * we obviously don't have to worry about waking up a process
897 * waiting on the page lock, because there are no references.
899 __clear_page_locked(page
);
904 * Is there need to periodically free_page_list? It would
905 * appear not as the counts should be low
907 list_add(&page
->lru
, &free_pages
);
911 if (PageSwapCache(page
))
912 try_to_free_swap(page
);
914 putback_lru_page(page
);
915 reset_reclaim_mode(sc
);
919 /* Not a candidate for swapping, so reclaim swap space. */
920 if (PageSwapCache(page
) && vm_swap_full())
921 try_to_free_swap(page
);
922 VM_BUG_ON(PageActive(page
));
928 reset_reclaim_mode(sc
);
930 list_add(&page
->lru
, &ret_pages
);
931 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
935 * Tag a zone as congested if all the dirty pages encountered were
936 * backed by a congested BDI. In this case, reclaimers should just
937 * back off and wait for congestion to clear because further reclaim
938 * will encounter the same problem
940 if (nr_dirty
&& nr_dirty
== nr_congested
&& scanning_global_lru(sc
))
941 zone_set_flag(zone
, ZONE_CONGESTED
);
943 free_page_list(&free_pages
);
945 list_splice(&ret_pages
, page_list
);
946 count_vm_events(PGACTIVATE
, pgactivate
);
951 * Attempt to remove the specified page from its LRU. Only take this page
952 * if it is of the appropriate PageActive status. Pages which are being
953 * freed elsewhere are also ignored.
955 * page: page to consider
956 * mode: one of the LRU isolation modes defined above
958 * returns 0 on success, -ve errno on failure.
960 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
964 /* Only take pages on the LRU. */
969 * When checking the active state, we need to be sure we are
970 * dealing with comparible boolean values. Take the logical not
973 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
976 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
980 * When this function is being called for lumpy reclaim, we
981 * initially look into all LRU pages, active, inactive and
982 * unevictable; only give shrink_page_list evictable pages.
984 if (PageUnevictable(page
))
989 if (likely(get_page_unless_zero(page
))) {
991 * Be careful not to clear PageLRU until after we're
992 * sure the page is not being freed elsewhere -- the
993 * page release code relies on it.
1003 * zone->lru_lock is heavily contended. Some of the functions that
1004 * shrink the lists perform better by taking out a batch of pages
1005 * and working on them outside the LRU lock.
1007 * For pagecache intensive workloads, this function is the hottest
1008 * spot in the kernel (apart from copy_*_user functions).
1010 * Appropriate locks must be held before calling this function.
1012 * @nr_to_scan: The number of pages to look through on the list.
1013 * @src: The LRU list to pull pages off.
1014 * @dst: The temp list to put pages on to.
1015 * @scanned: The number of pages that were scanned.
1016 * @order: The caller's attempted allocation order
1017 * @mode: One of the LRU isolation modes
1018 * @file: True [1] if isolating file [!anon] pages
1020 * returns how many pages were moved onto *@dst.
1022 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1023 struct list_head
*src
, struct list_head
*dst
,
1024 unsigned long *scanned
, int order
, int mode
, int file
)
1026 unsigned long nr_taken
= 0;
1027 unsigned long nr_lumpy_taken
= 0;
1028 unsigned long nr_lumpy_dirty
= 0;
1029 unsigned long nr_lumpy_failed
= 0;
1032 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1035 unsigned long end_pfn
;
1036 unsigned long page_pfn
;
1039 page
= lru_to_page(src
);
1040 prefetchw_prev_lru_page(page
, src
, flags
);
1042 VM_BUG_ON(!PageLRU(page
));
1044 switch (__isolate_lru_page(page
, mode
, file
)) {
1046 list_move(&page
->lru
, dst
);
1047 mem_cgroup_del_lru(page
);
1048 nr_taken
+= hpage_nr_pages(page
);
1052 /* else it is being freed elsewhere */
1053 list_move(&page
->lru
, src
);
1054 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1065 * Attempt to take all pages in the order aligned region
1066 * surrounding the tag page. Only take those pages of
1067 * the same active state as that tag page. We may safely
1068 * round the target page pfn down to the requested order
1069 * as the mem_map is guaranteed valid out to MAX_ORDER,
1070 * where that page is in a different zone we will detect
1071 * it from its zone id and abort this block scan.
1073 zone_id
= page_zone_id(page
);
1074 page_pfn
= page_to_pfn(page
);
1075 pfn
= page_pfn
& ~((1 << order
) - 1);
1076 end_pfn
= pfn
+ (1 << order
);
1077 for (; pfn
< end_pfn
; pfn
++) {
1078 struct page
*cursor_page
;
1080 /* The target page is in the block, ignore it. */
1081 if (unlikely(pfn
== page_pfn
))
1084 /* Avoid holes within the zone. */
1085 if (unlikely(!pfn_valid_within(pfn
)))
1088 cursor_page
= pfn_to_page(pfn
);
1090 /* Check that we have not crossed a zone boundary. */
1091 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1095 * If we don't have enough swap space, reclaiming of
1096 * anon page which don't already have a swap slot is
1099 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1100 !PageSwapCache(cursor_page
))
1103 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1104 list_move(&cursor_page
->lru
, dst
);
1105 mem_cgroup_del_lru(cursor_page
);
1106 nr_taken
+= hpage_nr_pages(page
);
1108 if (PageDirty(cursor_page
))
1112 /* the page is freed already. */
1113 if (!page_count(cursor_page
))
1119 /* If we break out of the loop above, lumpy reclaim failed */
1126 trace_mm_vmscan_lru_isolate(order
,
1129 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1134 static unsigned long isolate_pages_global(unsigned long nr
,
1135 struct list_head
*dst
,
1136 unsigned long *scanned
, int order
,
1137 int mode
, struct zone
*z
,
1138 int active
, int file
)
1145 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1150 * clear_active_flags() is a helper for shrink_active_list(), clearing
1151 * any active bits from the pages in the list.
1153 static unsigned long clear_active_flags(struct list_head
*page_list
,
1154 unsigned int *count
)
1160 list_for_each_entry(page
, page_list
, lru
) {
1161 int numpages
= hpage_nr_pages(page
);
1162 lru
= page_lru_base_type(page
);
1163 if (PageActive(page
)) {
1165 ClearPageActive(page
);
1166 nr_active
+= numpages
;
1169 count
[lru
] += numpages
;
1176 * isolate_lru_page - tries to isolate a page from its LRU list
1177 * @page: page to isolate from its LRU list
1179 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1180 * vmstat statistic corresponding to whatever LRU list the page was on.
1182 * Returns 0 if the page was removed from an LRU list.
1183 * Returns -EBUSY if the page was not on an LRU list.
1185 * The returned page will have PageLRU() cleared. If it was found on
1186 * the active list, it will have PageActive set. If it was found on
1187 * the unevictable list, it will have the PageUnevictable bit set. That flag
1188 * may need to be cleared by the caller before letting the page go.
1190 * The vmstat statistic corresponding to the list on which the page was
1191 * found will be decremented.
1194 * (1) Must be called with an elevated refcount on the page. This is a
1195 * fundamentnal difference from isolate_lru_pages (which is called
1196 * without a stable reference).
1197 * (2) the lru_lock must not be held.
1198 * (3) interrupts must be enabled.
1200 int isolate_lru_page(struct page
*page
)
1204 if (PageLRU(page
)) {
1205 struct zone
*zone
= page_zone(page
);
1207 spin_lock_irq(&zone
->lru_lock
);
1208 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1209 int lru
= page_lru(page
);
1213 del_page_from_lru_list(zone
, page
, lru
);
1215 spin_unlock_irq(&zone
->lru_lock
);
1221 * Are there way too many processes in the direct reclaim path already?
1223 static int too_many_isolated(struct zone
*zone
, int file
,
1224 struct scan_control
*sc
)
1226 unsigned long inactive
, isolated
;
1228 if (current_is_kswapd())
1231 if (!scanning_global_lru(sc
))
1235 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1236 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1238 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1239 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1242 return isolated
> inactive
;
1246 * TODO: Try merging with migrations version of putback_lru_pages
1248 static noinline_for_stack
void
1249 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1250 unsigned long nr_anon
, unsigned long nr_file
,
1251 struct list_head
*page_list
)
1254 struct pagevec pvec
;
1255 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1257 pagevec_init(&pvec
, 1);
1260 * Put back any unfreeable pages.
1262 spin_lock(&zone
->lru_lock
);
1263 while (!list_empty(page_list
)) {
1265 page
= lru_to_page(page_list
);
1266 VM_BUG_ON(PageLRU(page
));
1267 list_del(&page
->lru
);
1268 if (unlikely(!page_evictable(page
, NULL
))) {
1269 spin_unlock_irq(&zone
->lru_lock
);
1270 putback_lru_page(page
);
1271 spin_lock_irq(&zone
->lru_lock
);
1275 lru
= page_lru(page
);
1276 add_page_to_lru_list(zone
, page
, lru
);
1277 if (is_active_lru(lru
)) {
1278 int file
= is_file_lru(lru
);
1279 int numpages
= hpage_nr_pages(page
);
1280 reclaim_stat
->recent_rotated
[file
] += numpages
;
1282 if (!pagevec_add(&pvec
, page
)) {
1283 spin_unlock_irq(&zone
->lru_lock
);
1284 __pagevec_release(&pvec
);
1285 spin_lock_irq(&zone
->lru_lock
);
1288 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1289 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1291 spin_unlock_irq(&zone
->lru_lock
);
1292 pagevec_release(&pvec
);
1295 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1296 struct scan_control
*sc
,
1297 unsigned long *nr_anon
,
1298 unsigned long *nr_file
,
1299 struct list_head
*isolated_list
)
1301 unsigned long nr_active
;
1302 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1303 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1305 nr_active
= clear_active_flags(isolated_list
, count
);
1306 __count_vm_events(PGDEACTIVATE
, nr_active
);
1308 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1309 -count
[LRU_ACTIVE_FILE
]);
1310 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1311 -count
[LRU_INACTIVE_FILE
]);
1312 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1313 -count
[LRU_ACTIVE_ANON
]);
1314 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1315 -count
[LRU_INACTIVE_ANON
]);
1317 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1318 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1319 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1320 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1322 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1323 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1327 * Returns true if the caller should wait to clean dirty/writeback pages.
1329 * If we are direct reclaiming for contiguous pages and we do not reclaim
1330 * everything in the list, try again and wait for writeback IO to complete.
1331 * This will stall high-order allocations noticeably. Only do that when really
1332 * need to free the pages under high memory pressure.
1334 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1335 unsigned long nr_freed
,
1337 struct scan_control
*sc
)
1339 int lumpy_stall_priority
;
1341 /* kswapd should not stall on sync IO */
1342 if (current_is_kswapd())
1345 /* Only stall on lumpy reclaim */
1346 if (sc
->reclaim_mode
& RECLAIM_MODE_SINGLE
)
1349 /* If we have relaimed everything on the isolated list, no stall */
1350 if (nr_freed
== nr_taken
)
1354 * For high-order allocations, there are two stall thresholds.
1355 * High-cost allocations stall immediately where as lower
1356 * order allocations such as stacks require the scanning
1357 * priority to be much higher before stalling.
1359 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1360 lumpy_stall_priority
= DEF_PRIORITY
;
1362 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1364 return priority
<= lumpy_stall_priority
;
1368 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1369 * of reclaimed pages
1371 static noinline_for_stack
unsigned long
1372 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1373 struct scan_control
*sc
, int priority
, int file
)
1375 LIST_HEAD(page_list
);
1376 unsigned long nr_scanned
;
1377 unsigned long nr_reclaimed
= 0;
1378 unsigned long nr_taken
;
1379 unsigned long nr_anon
;
1380 unsigned long nr_file
;
1382 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1383 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1385 /* We are about to die and free our memory. Return now. */
1386 if (fatal_signal_pending(current
))
1387 return SWAP_CLUSTER_MAX
;
1390 set_reclaim_mode(priority
, sc
, false);
1392 spin_lock_irq(&zone
->lru_lock
);
1394 if (scanning_global_lru(sc
)) {
1395 nr_taken
= isolate_pages_global(nr_to_scan
,
1396 &page_list
, &nr_scanned
, sc
->order
,
1397 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1398 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1400 zone
->pages_scanned
+= nr_scanned
;
1401 if (current_is_kswapd())
1402 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1405 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1408 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1409 &page_list
, &nr_scanned
, sc
->order
,
1410 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1411 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1412 zone
, sc
->mem_cgroup
,
1415 * mem_cgroup_isolate_pages() keeps track of
1416 * scanned pages on its own.
1420 if (nr_taken
== 0) {
1421 spin_unlock_irq(&zone
->lru_lock
);
1425 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1427 spin_unlock_irq(&zone
->lru_lock
);
1429 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
);
1431 /* Check if we should syncronously wait for writeback */
1432 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1433 set_reclaim_mode(priority
, sc
, true);
1434 nr_reclaimed
+= shrink_page_list(&page_list
, zone
, sc
);
1437 local_irq_disable();
1438 if (current_is_kswapd())
1439 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1440 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1442 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1444 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1446 nr_scanned
, nr_reclaimed
,
1448 trace_shrink_flags(file
, sc
->reclaim_mode
));
1449 return nr_reclaimed
;
1453 * This moves pages from the active list to the inactive list.
1455 * We move them the other way if the page is referenced by one or more
1456 * processes, from rmap.
1458 * If the pages are mostly unmapped, the processing is fast and it is
1459 * appropriate to hold zone->lru_lock across the whole operation. But if
1460 * the pages are mapped, the processing is slow (page_referenced()) so we
1461 * should drop zone->lru_lock around each page. It's impossible to balance
1462 * this, so instead we remove the pages from the LRU while processing them.
1463 * It is safe to rely on PG_active against the non-LRU pages in here because
1464 * nobody will play with that bit on a non-LRU page.
1466 * The downside is that we have to touch page->_count against each page.
1467 * But we had to alter page->flags anyway.
1470 static void move_active_pages_to_lru(struct zone
*zone
,
1471 struct list_head
*list
,
1474 unsigned long pgmoved
= 0;
1475 struct pagevec pvec
;
1478 pagevec_init(&pvec
, 1);
1480 while (!list_empty(list
)) {
1481 page
= lru_to_page(list
);
1483 VM_BUG_ON(PageLRU(page
));
1486 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1487 mem_cgroup_add_lru_list(page
, lru
);
1488 pgmoved
+= hpage_nr_pages(page
);
1490 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1491 spin_unlock_irq(&zone
->lru_lock
);
1492 if (buffer_heads_over_limit
)
1493 pagevec_strip(&pvec
);
1494 __pagevec_release(&pvec
);
1495 spin_lock_irq(&zone
->lru_lock
);
1498 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1499 if (!is_active_lru(lru
))
1500 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1503 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1504 struct scan_control
*sc
, int priority
, int file
)
1506 unsigned long nr_taken
;
1507 unsigned long pgscanned
;
1508 unsigned long vm_flags
;
1509 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1510 LIST_HEAD(l_active
);
1511 LIST_HEAD(l_inactive
);
1513 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1514 unsigned long nr_rotated
= 0;
1517 spin_lock_irq(&zone
->lru_lock
);
1518 if (scanning_global_lru(sc
)) {
1519 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1520 &pgscanned
, sc
->order
,
1521 ISOLATE_ACTIVE
, zone
,
1523 zone
->pages_scanned
+= pgscanned
;
1525 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1526 &pgscanned
, sc
->order
,
1527 ISOLATE_ACTIVE
, zone
,
1528 sc
->mem_cgroup
, 1, file
);
1530 * mem_cgroup_isolate_pages() keeps track of
1531 * scanned pages on its own.
1535 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1537 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1539 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1541 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1542 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1543 spin_unlock_irq(&zone
->lru_lock
);
1545 while (!list_empty(&l_hold
)) {
1547 page
= lru_to_page(&l_hold
);
1548 list_del(&page
->lru
);
1550 if (unlikely(!page_evictable(page
, NULL
))) {
1551 putback_lru_page(page
);
1555 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1556 nr_rotated
+= hpage_nr_pages(page
);
1558 * Identify referenced, file-backed active pages and
1559 * give them one more trip around the active list. So
1560 * that executable code get better chances to stay in
1561 * memory under moderate memory pressure. Anon pages
1562 * are not likely to be evicted by use-once streaming
1563 * IO, plus JVM can create lots of anon VM_EXEC pages,
1564 * so we ignore them here.
1566 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1567 list_add(&page
->lru
, &l_active
);
1572 ClearPageActive(page
); /* we are de-activating */
1573 list_add(&page
->lru
, &l_inactive
);
1577 * Move pages back to the lru list.
1579 spin_lock_irq(&zone
->lru_lock
);
1581 * Count referenced pages from currently used mappings as rotated,
1582 * even though only some of them are actually re-activated. This
1583 * helps balance scan pressure between file and anonymous pages in
1586 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1588 move_active_pages_to_lru(zone
, &l_active
,
1589 LRU_ACTIVE
+ file
* LRU_FILE
);
1590 move_active_pages_to_lru(zone
, &l_inactive
,
1591 LRU_BASE
+ file
* LRU_FILE
);
1592 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1593 spin_unlock_irq(&zone
->lru_lock
);
1597 static int inactive_anon_is_low_global(struct zone
*zone
)
1599 unsigned long active
, inactive
;
1601 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1602 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1604 if (inactive
* zone
->inactive_ratio
< active
)
1611 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1612 * @zone: zone to check
1613 * @sc: scan control of this context
1615 * Returns true if the zone does not have enough inactive anon pages,
1616 * meaning some active anon pages need to be deactivated.
1618 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1623 * If we don't have swap space, anonymous page deactivation
1626 if (!total_swap_pages
)
1629 if (scanning_global_lru(sc
))
1630 low
= inactive_anon_is_low_global(zone
);
1632 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1636 static inline int inactive_anon_is_low(struct zone
*zone
,
1637 struct scan_control
*sc
)
1643 static int inactive_file_is_low_global(struct zone
*zone
)
1645 unsigned long active
, inactive
;
1647 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1648 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1650 return (active
> inactive
);
1654 * inactive_file_is_low - check if file pages need to be deactivated
1655 * @zone: zone to check
1656 * @sc: scan control of this context
1658 * When the system is doing streaming IO, memory pressure here
1659 * ensures that active file pages get deactivated, until more
1660 * than half of the file pages are on the inactive list.
1662 * Once we get to that situation, protect the system's working
1663 * set from being evicted by disabling active file page aging.
1665 * This uses a different ratio than the anonymous pages, because
1666 * the page cache uses a use-once replacement algorithm.
1668 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1672 if (scanning_global_lru(sc
))
1673 low
= inactive_file_is_low_global(zone
);
1675 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1679 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1683 return inactive_file_is_low(zone
, sc
);
1685 return inactive_anon_is_low(zone
, sc
);
1688 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1689 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1691 int file
= is_file_lru(lru
);
1693 if (is_active_lru(lru
)) {
1694 if (inactive_list_is_low(zone
, sc
, file
))
1695 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1699 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1703 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1704 * until we collected @swap_cluster_max pages to scan.
1706 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1707 unsigned long *nr_saved_scan
)
1711 *nr_saved_scan
+= nr_to_scan
;
1712 nr
= *nr_saved_scan
;
1714 if (nr
>= SWAP_CLUSTER_MAX
)
1723 * Determine how aggressively the anon and file LRU lists should be
1724 * scanned. The relative value of each set of LRU lists is determined
1725 * by looking at the fraction of the pages scanned we did rotate back
1726 * onto the active list instead of evict.
1728 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1730 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1731 unsigned long *nr
, int priority
)
1733 unsigned long anon
, file
, free
;
1734 unsigned long anon_prio
, file_prio
;
1735 unsigned long ap
, fp
;
1736 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1737 u64 fraction
[2], denominator
;
1741 /* If we have no swap space, do not bother scanning anon pages. */
1742 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1750 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1751 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1752 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1753 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1755 if (scanning_global_lru(sc
)) {
1756 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1757 /* If we have very few page cache pages,
1758 force-scan anon pages. */
1759 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1768 * With swappiness at 100, anonymous and file have the same priority.
1769 * This scanning priority is essentially the inverse of IO cost.
1771 anon_prio
= sc
->swappiness
;
1772 file_prio
= 200 - sc
->swappiness
;
1775 * OK, so we have swap space and a fair amount of page cache
1776 * pages. We use the recently rotated / recently scanned
1777 * ratios to determine how valuable each cache is.
1779 * Because workloads change over time (and to avoid overflow)
1780 * we keep these statistics as a floating average, which ends
1781 * up weighing recent references more than old ones.
1783 * anon in [0], file in [1]
1785 spin_lock_irq(&zone
->lru_lock
);
1786 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1787 reclaim_stat
->recent_scanned
[0] /= 2;
1788 reclaim_stat
->recent_rotated
[0] /= 2;
1791 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1792 reclaim_stat
->recent_scanned
[1] /= 2;
1793 reclaim_stat
->recent_rotated
[1] /= 2;
1797 * The amount of pressure on anon vs file pages is inversely
1798 * proportional to the fraction of recently scanned pages on
1799 * each list that were recently referenced and in active use.
1801 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1802 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1804 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1805 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1806 spin_unlock_irq(&zone
->lru_lock
);
1810 denominator
= ap
+ fp
+ 1;
1812 for_each_evictable_lru(l
) {
1813 int file
= is_file_lru(l
);
1816 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1817 if (priority
|| noswap
) {
1819 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1821 nr
[l
] = nr_scan_try_batch(scan
,
1822 &reclaim_stat
->nr_saved_scan
[l
]);
1827 * Reclaim/compaction depends on a number of pages being freed. To avoid
1828 * disruption to the system, a small number of order-0 pages continue to be
1829 * rotated and reclaimed in the normal fashion. However, by the time we get
1830 * back to the allocator and call try_to_compact_zone(), we ensure that
1831 * there are enough free pages for it to be likely successful
1833 static inline bool should_continue_reclaim(struct zone
*zone
,
1834 unsigned long nr_reclaimed
,
1835 unsigned long nr_scanned
,
1836 struct scan_control
*sc
)
1838 unsigned long pages_for_compaction
;
1839 unsigned long inactive_lru_pages
;
1841 /* If not in reclaim/compaction mode, stop */
1842 if (!(sc
->reclaim_mode
& RECLAIM_MODE_COMPACTION
))
1845 /* Consider stopping depending on scan and reclaim activity */
1846 if (sc
->gfp_mask
& __GFP_REPEAT
) {
1848 * For __GFP_REPEAT allocations, stop reclaiming if the
1849 * full LRU list has been scanned and we are still failing
1850 * to reclaim pages. This full LRU scan is potentially
1851 * expensive but a __GFP_REPEAT caller really wants to succeed
1853 if (!nr_reclaimed
&& !nr_scanned
)
1857 * For non-__GFP_REPEAT allocations which can presumably
1858 * fail without consequence, stop if we failed to reclaim
1859 * any pages from the last SWAP_CLUSTER_MAX number of
1860 * pages that were scanned. This will return to the
1861 * caller faster at the risk reclaim/compaction and
1862 * the resulting allocation attempt fails
1869 * If we have not reclaimed enough pages for compaction and the
1870 * inactive lists are large enough, continue reclaiming
1872 pages_for_compaction
= (2UL << sc
->order
);
1873 inactive_lru_pages
= zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
) +
1874 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1875 if (sc
->nr_reclaimed
< pages_for_compaction
&&
1876 inactive_lru_pages
> pages_for_compaction
)
1879 /* If compaction would go ahead or the allocation would succeed, stop */
1880 switch (compaction_suitable(zone
, sc
->order
)) {
1881 case COMPACT_PARTIAL
:
1882 case COMPACT_CONTINUE
:
1890 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1892 static void shrink_zone(int priority
, struct zone
*zone
,
1893 struct scan_control
*sc
)
1895 unsigned long nr
[NR_LRU_LISTS
];
1896 unsigned long nr_to_scan
;
1898 unsigned long nr_reclaimed
, nr_scanned
;
1899 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1903 nr_scanned
= sc
->nr_scanned
;
1904 get_scan_count(zone
, sc
, nr
, priority
);
1906 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1907 nr
[LRU_INACTIVE_FILE
]) {
1908 for_each_evictable_lru(l
) {
1910 nr_to_scan
= min_t(unsigned long,
1911 nr
[l
], SWAP_CLUSTER_MAX
);
1912 nr
[l
] -= nr_to_scan
;
1914 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1915 zone
, sc
, priority
);
1919 * On large memory systems, scan >> priority can become
1920 * really large. This is fine for the starting priority;
1921 * we want to put equal scanning pressure on each zone.
1922 * However, if the VM has a harder time of freeing pages,
1923 * with multiple processes reclaiming pages, the total
1924 * freeing target can get unreasonably large.
1926 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1929 sc
->nr_reclaimed
+= nr_reclaimed
;
1932 * Even if we did not try to evict anon pages at all, we want to
1933 * rebalance the anon lru active/inactive ratio.
1935 if (inactive_anon_is_low(zone
, sc
))
1936 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1938 /* reclaim/compaction might need reclaim to continue */
1939 if (should_continue_reclaim(zone
, nr_reclaimed
,
1940 sc
->nr_scanned
- nr_scanned
, sc
))
1943 throttle_vm_writeout(sc
->gfp_mask
);
1947 * This is the direct reclaim path, for page-allocating processes. We only
1948 * try to reclaim pages from zones which will satisfy the caller's allocation
1951 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1953 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1955 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1956 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1957 * zone defense algorithm.
1959 * If a zone is deemed to be full of pinned pages then just give it a light
1960 * scan then give up on it.
1962 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1963 struct scan_control
*sc
)
1968 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1969 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1970 if (!populated_zone(zone
))
1973 * Take care memory controller reclaiming has small influence
1976 if (scanning_global_lru(sc
)) {
1977 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1979 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1980 continue; /* Let kswapd poll it */
1983 shrink_zone(priority
, zone
, sc
);
1987 static bool zone_reclaimable(struct zone
*zone
)
1989 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
1992 /* All zones in zonelist are unreclaimable? */
1993 static bool all_unreclaimable(struct zonelist
*zonelist
,
1994 struct scan_control
*sc
)
1999 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2000 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2001 if (!populated_zone(zone
))
2003 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2005 if (!zone
->all_unreclaimable
)
2013 * This is the main entry point to direct page reclaim.
2015 * If a full scan of the inactive list fails to free enough memory then we
2016 * are "out of memory" and something needs to be killed.
2018 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2019 * high - the zone may be full of dirty or under-writeback pages, which this
2020 * caller can't do much about. We kick the writeback threads and take explicit
2021 * naps in the hope that some of these pages can be written. But if the
2022 * allocating task holds filesystem locks which prevent writeout this might not
2023 * work, and the allocation attempt will fail.
2025 * returns: 0, if no pages reclaimed
2026 * else, the number of pages reclaimed
2028 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2029 struct scan_control
*sc
)
2032 unsigned long total_scanned
= 0;
2033 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2036 unsigned long writeback_threshold
;
2039 delayacct_freepages_start();
2041 if (scanning_global_lru(sc
))
2042 count_vm_event(ALLOCSTALL
);
2044 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2047 disable_swap_token();
2048 shrink_zones(priority
, zonelist
, sc
);
2050 * Don't shrink slabs when reclaiming memory from
2051 * over limit cgroups
2053 if (scanning_global_lru(sc
)) {
2054 unsigned long lru_pages
= 0;
2055 for_each_zone_zonelist(zone
, z
, zonelist
,
2056 gfp_zone(sc
->gfp_mask
)) {
2057 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2060 lru_pages
+= zone_reclaimable_pages(zone
);
2063 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
2064 if (reclaim_state
) {
2065 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2066 reclaim_state
->reclaimed_slab
= 0;
2069 total_scanned
+= sc
->nr_scanned
;
2070 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2074 * Try to write back as many pages as we just scanned. This
2075 * tends to cause slow streaming writers to write data to the
2076 * disk smoothly, at the dirtying rate, which is nice. But
2077 * that's undesirable in laptop mode, where we *want* lumpy
2078 * writeout. So in laptop mode, write out the whole world.
2080 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2081 if (total_scanned
> writeback_threshold
) {
2082 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
2083 sc
->may_writepage
= 1;
2086 /* Take a nap, wait for some writeback to complete */
2087 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
2088 priority
< DEF_PRIORITY
- 2) {
2089 struct zone
*preferred_zone
;
2091 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2092 &cpuset_current_mems_allowed
,
2094 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2099 delayacct_freepages_end();
2102 if (sc
->nr_reclaimed
)
2103 return sc
->nr_reclaimed
;
2106 * As hibernation is going on, kswapd is freezed so that it can't mark
2107 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2110 if (oom_killer_disabled
)
2113 /* top priority shrink_zones still had more to do? don't OOM, then */
2114 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
2120 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2121 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2123 unsigned long nr_reclaimed
;
2124 struct scan_control sc
= {
2125 .gfp_mask
= gfp_mask
,
2126 .may_writepage
= !laptop_mode
,
2127 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2130 .swappiness
= vm_swappiness
,
2133 .nodemask
= nodemask
,
2136 trace_mm_vmscan_direct_reclaim_begin(order
,
2140 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2142 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2144 return nr_reclaimed
;
2147 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2149 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2150 gfp_t gfp_mask
, bool noswap
,
2151 unsigned int swappiness
,
2154 struct scan_control sc
= {
2155 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2156 .may_writepage
= !laptop_mode
,
2158 .may_swap
= !noswap
,
2159 .swappiness
= swappiness
,
2163 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2164 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2166 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2171 * NOTE: Although we can get the priority field, using it
2172 * here is not a good idea, since it limits the pages we can scan.
2173 * if we don't reclaim here, the shrink_zone from balance_pgdat
2174 * will pick up pages from other mem cgroup's as well. We hack
2175 * the priority and make it zero.
2177 shrink_zone(0, zone
, &sc
);
2179 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2181 return sc
.nr_reclaimed
;
2184 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2187 unsigned int swappiness
)
2189 struct zonelist
*zonelist
;
2190 unsigned long nr_reclaimed
;
2191 struct scan_control sc
= {
2192 .may_writepage
= !laptop_mode
,
2194 .may_swap
= !noswap
,
2195 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2196 .swappiness
= swappiness
,
2198 .mem_cgroup
= mem_cont
,
2199 .nodemask
= NULL
, /* we don't care the placement */
2202 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2203 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2204 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
2206 trace_mm_vmscan_memcg_reclaim_begin(0,
2210 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2212 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2214 return nr_reclaimed
;
2219 * pgdat_balanced is used when checking if a node is balanced for high-order
2220 * allocations. Only zones that meet watermarks and are in a zone allowed
2221 * by the callers classzone_idx are added to balanced_pages. The total of
2222 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2223 * for the node to be considered balanced. Forcing all zones to be balanced
2224 * for high orders can cause excessive reclaim when there are imbalanced zones.
2225 * The choice of 25% is due to
2226 * o a 16M DMA zone that is balanced will not balance a zone on any
2227 * reasonable sized machine
2228 * o On all other machines, the top zone must be at least a reasonable
2229 * percentage of the middle zones. For example, on 32-bit x86, highmem
2230 * would need to be at least 256M for it to be balance a whole node.
2231 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2232 * to balance a node on its own. These seemed like reasonable ratios.
2234 static bool pgdat_balanced(pg_data_t
*pgdat
, unsigned long balanced_pages
,
2237 unsigned long present_pages
= 0;
2240 for (i
= 0; i
<= classzone_idx
; i
++)
2241 present_pages
+= pgdat
->node_zones
[i
].present_pages
;
2243 return balanced_pages
> (present_pages
>> 2);
2246 /* is kswapd sleeping prematurely? */
2247 static bool sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
,
2251 unsigned long balanced
= 0;
2252 bool all_zones_ok
= true;
2254 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2258 /* Check the watermark levels */
2259 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2260 struct zone
*zone
= pgdat
->node_zones
+ i
;
2262 if (!populated_zone(zone
))
2266 * balance_pgdat() skips over all_unreclaimable after
2267 * DEF_PRIORITY. Effectively, it considers them balanced so
2268 * they must be considered balanced here as well if kswapd
2271 if (zone
->all_unreclaimable
) {
2272 balanced
+= zone
->present_pages
;
2276 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
),
2278 all_zones_ok
= false;
2280 balanced
+= zone
->present_pages
;
2284 * For high-order requests, the balanced zones must contain at least
2285 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2289 return pgdat_balanced(pgdat
, balanced
, classzone_idx
);
2291 return !all_zones_ok
;
2295 * For kswapd, balance_pgdat() will work across all this node's zones until
2296 * they are all at high_wmark_pages(zone).
2298 * Returns the final order kswapd was reclaiming at
2300 * There is special handling here for zones which are full of pinned pages.
2301 * This can happen if the pages are all mlocked, or if they are all used by
2302 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2303 * What we do is to detect the case where all pages in the zone have been
2304 * scanned twice and there has been zero successful reclaim. Mark the zone as
2305 * dead and from now on, only perform a short scan. Basically we're polling
2306 * the zone for when the problem goes away.
2308 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2309 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2310 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2311 * lower zones regardless of the number of free pages in the lower zones. This
2312 * interoperates with the page allocator fallback scheme to ensure that aging
2313 * of pages is balanced across the zones.
2315 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
2319 unsigned long balanced
;
2322 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2323 unsigned long total_scanned
;
2324 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2325 struct scan_control sc
= {
2326 .gfp_mask
= GFP_KERNEL
,
2330 * kswapd doesn't want to be bailed out while reclaim. because
2331 * we want to put equal scanning pressure on each zone.
2333 .nr_to_reclaim
= ULONG_MAX
,
2334 .swappiness
= vm_swappiness
,
2340 sc
.nr_reclaimed
= 0;
2341 sc
.may_writepage
= !laptop_mode
;
2342 count_vm_event(PAGEOUTRUN
);
2344 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2345 unsigned long lru_pages
= 0;
2346 int has_under_min_watermark_zone
= 0;
2348 /* The swap token gets in the way of swapout... */
2350 disable_swap_token();
2356 * Scan in the highmem->dma direction for the highest
2357 * zone which needs scanning
2359 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2360 struct zone
*zone
= pgdat
->node_zones
+ i
;
2362 if (!populated_zone(zone
))
2365 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2369 * Do some background aging of the anon list, to give
2370 * pages a chance to be referenced before reclaiming.
2372 if (inactive_anon_is_low(zone
, &sc
))
2373 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2376 if (!zone_watermark_ok_safe(zone
, order
,
2377 high_wmark_pages(zone
), 0, 0)) {
2386 for (i
= 0; i
<= end_zone
; i
++) {
2387 struct zone
*zone
= pgdat
->node_zones
+ i
;
2389 lru_pages
+= zone_reclaimable_pages(zone
);
2393 * Now scan the zone in the dma->highmem direction, stopping
2394 * at the last zone which needs scanning.
2396 * We do this because the page allocator works in the opposite
2397 * direction. This prevents the page allocator from allocating
2398 * pages behind kswapd's direction of progress, which would
2399 * cause too much scanning of the lower zones.
2401 for (i
= 0; i
<= end_zone
; i
++) {
2402 struct zone
*zone
= pgdat
->node_zones
+ i
;
2404 unsigned long balance_gap
;
2406 if (!populated_zone(zone
))
2409 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2415 * Call soft limit reclaim before calling shrink_zone.
2416 * For now we ignore the return value
2418 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
);
2421 * We put equal pressure on every zone, unless
2422 * one zone has way too many pages free
2423 * already. The "too many pages" is defined
2424 * as the high wmark plus a "gap" where the
2425 * gap is either the low watermark or 1%
2426 * of the zone, whichever is smaller.
2428 balance_gap
= min(low_wmark_pages(zone
),
2429 (zone
->present_pages
+
2430 KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2431 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2432 if (!zone_watermark_ok_safe(zone
, order
,
2433 high_wmark_pages(zone
) + balance_gap
,
2435 shrink_zone(priority
, zone
, &sc
);
2436 reclaim_state
->reclaimed_slab
= 0;
2437 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2439 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2440 total_scanned
+= sc
.nr_scanned
;
2442 if (zone
->all_unreclaimable
)
2445 !zone_reclaimable(zone
))
2446 zone
->all_unreclaimable
= 1;
2448 * If we've done a decent amount of scanning and
2449 * the reclaim ratio is low, start doing writepage
2450 * even in laptop mode
2452 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2453 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2454 sc
.may_writepage
= 1;
2456 if (!zone_watermark_ok_safe(zone
, order
,
2457 high_wmark_pages(zone
), end_zone
, 0)) {
2460 * We are still under min water mark. This
2461 * means that we have a GFP_ATOMIC allocation
2462 * failure risk. Hurry up!
2464 if (!zone_watermark_ok_safe(zone
, order
,
2465 min_wmark_pages(zone
), end_zone
, 0))
2466 has_under_min_watermark_zone
= 1;
2469 * If a zone reaches its high watermark,
2470 * consider it to be no longer congested. It's
2471 * possible there are dirty pages backed by
2472 * congested BDIs but as pressure is relieved,
2473 * spectulatively avoid congestion waits
2475 zone_clear_flag(zone
, ZONE_CONGESTED
);
2476 if (i
<= *classzone_idx
)
2477 balanced
+= zone
->present_pages
;
2481 if (all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))
2482 break; /* kswapd: all done */
2484 * OK, kswapd is getting into trouble. Take a nap, then take
2485 * another pass across the zones.
2487 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2488 if (has_under_min_watermark_zone
)
2489 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2491 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2495 * We do this so kswapd doesn't build up large priorities for
2496 * example when it is freeing in parallel with allocators. It
2497 * matches the direct reclaim path behaviour in terms of impact
2498 * on zone->*_priority.
2500 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2506 * order-0: All zones must meet high watermark for a balanced node
2507 * high-order: Balanced zones must make up at least 25% of the node
2508 * for the node to be balanced
2510 if (!(all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))) {
2516 * Fragmentation may mean that the system cannot be
2517 * rebalanced for high-order allocations in all zones.
2518 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2519 * it means the zones have been fully scanned and are still
2520 * not balanced. For high-order allocations, there is
2521 * little point trying all over again as kswapd may
2524 * Instead, recheck all watermarks at order-0 as they
2525 * are the most important. If watermarks are ok, kswapd will go
2526 * back to sleep. High-order users can still perform direct
2527 * reclaim if they wish.
2529 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2530 order
= sc
.order
= 0;
2536 * If kswapd was reclaiming at a higher order, it has the option of
2537 * sleeping without all zones being balanced. Before it does, it must
2538 * ensure that the watermarks for order-0 on *all* zones are met and
2539 * that the congestion flags are cleared. The congestion flag must
2540 * be cleared as kswapd is the only mechanism that clears the flag
2541 * and it is potentially going to sleep here.
2544 for (i
= 0; i
<= end_zone
; i
++) {
2545 struct zone
*zone
= pgdat
->node_zones
+ i
;
2547 if (!populated_zone(zone
))
2550 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2553 /* Confirm the zone is balanced for order-0 */
2554 if (!zone_watermark_ok(zone
, 0,
2555 high_wmark_pages(zone
), 0, 0)) {
2556 order
= sc
.order
= 0;
2560 /* If balanced, clear the congested flag */
2561 zone_clear_flag(zone
, ZONE_CONGESTED
);
2566 * Return the order we were reclaiming at so sleeping_prematurely()
2567 * makes a decision on the order we were last reclaiming at. However,
2568 * if another caller entered the allocator slow path while kswapd
2569 * was awake, order will remain at the higher level
2571 *classzone_idx
= end_zone
;
2575 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2580 if (freezing(current
) || kthread_should_stop())
2583 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2585 /* Try to sleep for a short interval */
2586 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2587 remaining
= schedule_timeout(HZ
/10);
2588 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2589 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2593 * After a short sleep, check if it was a premature sleep. If not, then
2594 * go fully to sleep until explicitly woken up.
2596 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2597 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2600 * vmstat counters are not perfectly accurate and the estimated
2601 * value for counters such as NR_FREE_PAGES can deviate from the
2602 * true value by nr_online_cpus * threshold. To avoid the zone
2603 * watermarks being breached while under pressure, we reduce the
2604 * per-cpu vmstat threshold while kswapd is awake and restore
2605 * them before going back to sleep.
2607 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
2609 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
2612 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2614 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2616 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2620 * The background pageout daemon, started as a kernel thread
2621 * from the init process.
2623 * This basically trickles out pages so that we have _some_
2624 * free memory available even if there is no other activity
2625 * that frees anything up. This is needed for things like routing
2626 * etc, where we otherwise might have all activity going on in
2627 * asynchronous contexts that cannot page things out.
2629 * If there are applications that are active memory-allocators
2630 * (most normal use), this basically shouldn't matter.
2632 static int kswapd(void *p
)
2634 unsigned long order
;
2636 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2637 struct task_struct
*tsk
= current
;
2639 struct reclaim_state reclaim_state
= {
2640 .reclaimed_slab
= 0,
2642 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2644 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2646 if (!cpumask_empty(cpumask
))
2647 set_cpus_allowed_ptr(tsk
, cpumask
);
2648 current
->reclaim_state
= &reclaim_state
;
2651 * Tell the memory management that we're a "memory allocator",
2652 * and that if we need more memory we should get access to it
2653 * regardless (see "__alloc_pages()"). "kswapd" should
2654 * never get caught in the normal page freeing logic.
2656 * (Kswapd normally doesn't need memory anyway, but sometimes
2657 * you need a small amount of memory in order to be able to
2658 * page out something else, and this flag essentially protects
2659 * us from recursively trying to free more memory as we're
2660 * trying to free the first piece of memory in the first place).
2662 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2666 classzone_idx
= MAX_NR_ZONES
- 1;
2668 unsigned long new_order
;
2669 int new_classzone_idx
;
2672 new_order
= pgdat
->kswapd_max_order
;
2673 new_classzone_idx
= pgdat
->classzone_idx
;
2674 pgdat
->kswapd_max_order
= 0;
2675 pgdat
->classzone_idx
= MAX_NR_ZONES
- 1;
2676 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
2678 * Don't sleep if someone wants a larger 'order'
2679 * allocation or has tigher zone constraints
2682 classzone_idx
= new_classzone_idx
;
2684 kswapd_try_to_sleep(pgdat
, order
, classzone_idx
);
2685 order
= pgdat
->kswapd_max_order
;
2686 classzone_idx
= pgdat
->classzone_idx
;
2687 pgdat
->kswapd_max_order
= 0;
2688 pgdat
->classzone_idx
= MAX_NR_ZONES
- 1;
2691 ret
= try_to_freeze();
2692 if (kthread_should_stop())
2696 * We can speed up thawing tasks if we don't call balance_pgdat
2697 * after returning from the refrigerator
2700 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2701 order
= balance_pgdat(pgdat
, order
, &classzone_idx
);
2708 * A zone is low on free memory, so wake its kswapd task to service it.
2710 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
2714 if (!populated_zone(zone
))
2717 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2719 pgdat
= zone
->zone_pgdat
;
2720 if (pgdat
->kswapd_max_order
< order
) {
2721 pgdat
->kswapd_max_order
= order
;
2722 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
2724 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2726 if (zone_watermark_ok_safe(zone
, order
, low_wmark_pages(zone
), 0, 0))
2729 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2730 wake_up_interruptible(&pgdat
->kswapd_wait
);
2734 * The reclaimable count would be mostly accurate.
2735 * The less reclaimable pages may be
2736 * - mlocked pages, which will be moved to unevictable list when encountered
2737 * - mapped pages, which may require several travels to be reclaimed
2738 * - dirty pages, which is not "instantly" reclaimable
2740 unsigned long global_reclaimable_pages(void)
2744 nr
= global_page_state(NR_ACTIVE_FILE
) +
2745 global_page_state(NR_INACTIVE_FILE
);
2747 if (nr_swap_pages
> 0)
2748 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2749 global_page_state(NR_INACTIVE_ANON
);
2754 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2758 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2759 zone_page_state(zone
, NR_INACTIVE_FILE
);
2761 if (nr_swap_pages
> 0)
2762 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2763 zone_page_state(zone
, NR_INACTIVE_ANON
);
2768 #ifdef CONFIG_HIBERNATION
2770 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2773 * Rather than trying to age LRUs the aim is to preserve the overall
2774 * LRU order by reclaiming preferentially
2775 * inactive > active > active referenced > active mapped
2777 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2779 struct reclaim_state reclaim_state
;
2780 struct scan_control sc
= {
2781 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2785 .nr_to_reclaim
= nr_to_reclaim
,
2786 .hibernation_mode
= 1,
2787 .swappiness
= vm_swappiness
,
2790 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2791 struct task_struct
*p
= current
;
2792 unsigned long nr_reclaimed
;
2794 p
->flags
|= PF_MEMALLOC
;
2795 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2796 reclaim_state
.reclaimed_slab
= 0;
2797 p
->reclaim_state
= &reclaim_state
;
2799 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2801 p
->reclaim_state
= NULL
;
2802 lockdep_clear_current_reclaim_state();
2803 p
->flags
&= ~PF_MEMALLOC
;
2805 return nr_reclaimed
;
2807 #endif /* CONFIG_HIBERNATION */
2809 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2810 not required for correctness. So if the last cpu in a node goes
2811 away, we get changed to run anywhere: as the first one comes back,
2812 restore their cpu bindings. */
2813 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2814 unsigned long action
, void *hcpu
)
2818 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2819 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2820 pg_data_t
*pgdat
= NODE_DATA(nid
);
2821 const struct cpumask
*mask
;
2823 mask
= cpumask_of_node(pgdat
->node_id
);
2825 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2826 /* One of our CPUs online: restore mask */
2827 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2834 * This kswapd start function will be called by init and node-hot-add.
2835 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2837 int kswapd_run(int nid
)
2839 pg_data_t
*pgdat
= NODE_DATA(nid
);
2845 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2846 if (IS_ERR(pgdat
->kswapd
)) {
2847 /* failure at boot is fatal */
2848 BUG_ON(system_state
== SYSTEM_BOOTING
);
2849 printk("Failed to start kswapd on node %d\n",nid
);
2856 * Called by memory hotplug when all memory in a node is offlined.
2858 void kswapd_stop(int nid
)
2860 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2863 kthread_stop(kswapd
);
2866 static int __init
kswapd_init(void)
2871 for_each_node_state(nid
, N_HIGH_MEMORY
)
2873 hotcpu_notifier(cpu_callback
, 0);
2877 module_init(kswapd_init
)
2883 * If non-zero call zone_reclaim when the number of free pages falls below
2886 int zone_reclaim_mode __read_mostly
;
2888 #define RECLAIM_OFF 0
2889 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2890 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2891 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2894 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2895 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2898 #define ZONE_RECLAIM_PRIORITY 4
2901 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2904 int sysctl_min_unmapped_ratio
= 1;
2907 * If the number of slab pages in a zone grows beyond this percentage then
2908 * slab reclaim needs to occur.
2910 int sysctl_min_slab_ratio
= 5;
2912 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2914 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2915 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2916 zone_page_state(zone
, NR_ACTIVE_FILE
);
2919 * It's possible for there to be more file mapped pages than
2920 * accounted for by the pages on the file LRU lists because
2921 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2923 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2926 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2927 static long zone_pagecache_reclaimable(struct zone
*zone
)
2929 long nr_pagecache_reclaimable
;
2933 * If RECLAIM_SWAP is set, then all file pages are considered
2934 * potentially reclaimable. Otherwise, we have to worry about
2935 * pages like swapcache and zone_unmapped_file_pages() provides
2938 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2939 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2941 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2943 /* If we can't clean pages, remove dirty pages from consideration */
2944 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2945 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2947 /* Watch for any possible underflows due to delta */
2948 if (unlikely(delta
> nr_pagecache_reclaimable
))
2949 delta
= nr_pagecache_reclaimable
;
2951 return nr_pagecache_reclaimable
- delta
;
2955 * Try to free up some pages from this zone through reclaim.
2957 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2959 /* Minimum pages needed in order to stay on node */
2960 const unsigned long nr_pages
= 1 << order
;
2961 struct task_struct
*p
= current
;
2962 struct reclaim_state reclaim_state
;
2964 struct scan_control sc
= {
2965 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2966 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2968 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2970 .gfp_mask
= gfp_mask
,
2971 .swappiness
= vm_swappiness
,
2974 unsigned long nr_slab_pages0
, nr_slab_pages1
;
2978 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2979 * and we also need to be able to write out pages for RECLAIM_WRITE
2982 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2983 lockdep_set_current_reclaim_state(gfp_mask
);
2984 reclaim_state
.reclaimed_slab
= 0;
2985 p
->reclaim_state
= &reclaim_state
;
2987 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2989 * Free memory by calling shrink zone with increasing
2990 * priorities until we have enough memory freed.
2992 priority
= ZONE_RECLAIM_PRIORITY
;
2994 shrink_zone(priority
, zone
, &sc
);
2996 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2999 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3000 if (nr_slab_pages0
> zone
->min_slab_pages
) {
3002 * shrink_slab() does not currently allow us to determine how
3003 * many pages were freed in this zone. So we take the current
3004 * number of slab pages and shake the slab until it is reduced
3005 * by the same nr_pages that we used for reclaiming unmapped
3008 * Note that shrink_slab will free memory on all zones and may
3012 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3014 /* No reclaimable slab or very low memory pressure */
3015 if (!shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
))
3018 /* Freed enough memory */
3019 nr_slab_pages1
= zone_page_state(zone
,
3020 NR_SLAB_RECLAIMABLE
);
3021 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3026 * Update nr_reclaimed by the number of slab pages we
3027 * reclaimed from this zone.
3029 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3030 if (nr_slab_pages1
< nr_slab_pages0
)
3031 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3034 p
->reclaim_state
= NULL
;
3035 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3036 lockdep_clear_current_reclaim_state();
3037 return sc
.nr_reclaimed
>= nr_pages
;
3040 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3046 * Zone reclaim reclaims unmapped file backed pages and
3047 * slab pages if we are over the defined limits.
3049 * A small portion of unmapped file backed pages is needed for
3050 * file I/O otherwise pages read by file I/O will be immediately
3051 * thrown out if the zone is overallocated. So we do not reclaim
3052 * if less than a specified percentage of the zone is used by
3053 * unmapped file backed pages.
3055 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3056 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3057 return ZONE_RECLAIM_FULL
;
3059 if (zone
->all_unreclaimable
)
3060 return ZONE_RECLAIM_FULL
;
3063 * Do not scan if the allocation should not be delayed.
3065 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3066 return ZONE_RECLAIM_NOSCAN
;
3069 * Only run zone reclaim on the local zone or on zones that do not
3070 * have associated processors. This will favor the local processor
3071 * over remote processors and spread off node memory allocations
3072 * as wide as possible.
3074 node_id
= zone_to_nid(zone
);
3075 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3076 return ZONE_RECLAIM_NOSCAN
;
3078 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3079 return ZONE_RECLAIM_NOSCAN
;
3081 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3082 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3085 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3092 * page_evictable - test whether a page is evictable
3093 * @page: the page to test
3094 * @vma: the VMA in which the page is or will be mapped, may be NULL
3096 * Test whether page is evictable--i.e., should be placed on active/inactive
3097 * lists vs unevictable list. The vma argument is !NULL when called from the
3098 * fault path to determine how to instantate a new page.
3100 * Reasons page might not be evictable:
3101 * (1) page's mapping marked unevictable
3102 * (2) page is part of an mlocked VMA
3105 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
3108 if (mapping_unevictable(page_mapping(page
)))
3111 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
3118 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3119 * @page: page to check evictability and move to appropriate lru list
3120 * @zone: zone page is in
3122 * Checks a page for evictability and moves the page to the appropriate
3125 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3126 * have PageUnevictable set.
3128 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
3130 VM_BUG_ON(PageActive(page
));
3133 ClearPageUnevictable(page
);
3134 if (page_evictable(page
, NULL
)) {
3135 enum lru_list l
= page_lru_base_type(page
);
3137 __dec_zone_state(zone
, NR_UNEVICTABLE
);
3138 list_move(&page
->lru
, &zone
->lru
[l
].list
);
3139 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
3140 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
3141 __count_vm_event(UNEVICTABLE_PGRESCUED
);
3144 * rotate unevictable list
3146 SetPageUnevictable(page
);
3147 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
3148 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
3149 if (page_evictable(page
, NULL
))
3155 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3156 * @mapping: struct address_space to scan for evictable pages
3158 * Scan all pages in mapping. Check unevictable pages for
3159 * evictability and move them to the appropriate zone lru list.
3161 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
3164 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
3167 struct pagevec pvec
;
3169 if (mapping
->nrpages
== 0)
3172 pagevec_init(&pvec
, 0);
3173 while (next
< end
&&
3174 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
3180 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
3181 struct page
*page
= pvec
.pages
[i
];
3182 pgoff_t page_index
= page
->index
;
3183 struct zone
*pagezone
= page_zone(page
);
3186 if (page_index
> next
)
3190 if (pagezone
!= zone
) {
3192 spin_unlock_irq(&zone
->lru_lock
);
3194 spin_lock_irq(&zone
->lru_lock
);
3197 if (PageLRU(page
) && PageUnevictable(page
))
3198 check_move_unevictable_page(page
, zone
);
3201 spin_unlock_irq(&zone
->lru_lock
);
3202 pagevec_release(&pvec
);
3204 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
3210 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3211 * @zone - zone of which to scan the unevictable list
3213 * Scan @zone's unevictable LRU lists to check for pages that have become
3214 * evictable. Move those that have to @zone's inactive list where they
3215 * become candidates for reclaim, unless shrink_inactive_zone() decides
3216 * to reactivate them. Pages that are still unevictable are rotated
3217 * back onto @zone's unevictable list.
3219 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3220 static void scan_zone_unevictable_pages(struct zone
*zone
)
3222 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
3224 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
3226 while (nr_to_scan
> 0) {
3227 unsigned long batch_size
= min(nr_to_scan
,
3228 SCAN_UNEVICTABLE_BATCH_SIZE
);
3230 spin_lock_irq(&zone
->lru_lock
);
3231 for (scan
= 0; scan
< batch_size
; scan
++) {
3232 struct page
*page
= lru_to_page(l_unevictable
);
3234 if (!trylock_page(page
))
3237 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
3239 if (likely(PageLRU(page
) && PageUnevictable(page
)))
3240 check_move_unevictable_page(page
, zone
);
3244 spin_unlock_irq(&zone
->lru_lock
);
3246 nr_to_scan
-= batch_size
;
3252 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3254 * A really big hammer: scan all zones' unevictable LRU lists to check for
3255 * pages that have become evictable. Move those back to the zones'
3256 * inactive list where they become candidates for reclaim.
3257 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3258 * and we add swap to the system. As such, it runs in the context of a task
3259 * that has possibly/probably made some previously unevictable pages
3262 static void scan_all_zones_unevictable_pages(void)
3266 for_each_zone(zone
) {
3267 scan_zone_unevictable_pages(zone
);
3272 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3273 * all nodes' unevictable lists for evictable pages
3275 unsigned long scan_unevictable_pages
;
3277 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3278 void __user
*buffer
,
3279 size_t *length
, loff_t
*ppos
)
3281 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3283 if (write
&& *(unsigned long *)table
->data
)
3284 scan_all_zones_unevictable_pages();
3286 scan_unevictable_pages
= 0;
3292 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3293 * a specified node's per zone unevictable lists for evictable pages.
3296 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3297 struct sysdev_attribute
*attr
,
3300 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3303 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3304 struct sysdev_attribute
*attr
,
3305 const char *buf
, size_t count
)
3307 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3310 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3313 return 1; /* zero is no-op */
3315 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3316 if (!populated_zone(zone
))
3318 scan_zone_unevictable_pages(zone
);
3324 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3325 read_scan_unevictable_node
,
3326 write_scan_unevictable_node
);
3328 int scan_unevictable_register_node(struct node
*node
)
3330 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3333 void scan_unevictable_unregister_node(struct node
*node
)
3335 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);