cifs: cifs_parse_mount_options: do not tokenize mount options in-place
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / truncate.c
bloba9566752913596152022f5d22983cb4f2cb4d2cf
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/module.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
21 do_invalidatepage */
22 #include "internal.h"
25 /**
26 * do_invalidatepage - invalidate part or all of a page
27 * @page: the page which is affected
28 * @offset: the index of the truncation point
30 * do_invalidatepage() is called when all or part of the page has become
31 * invalidated by a truncate operation.
33 * do_invalidatepage() does not have to release all buffers, but it must
34 * ensure that no dirty buffer is left outside @offset and that no I/O
35 * is underway against any of the blocks which are outside the truncation
36 * point. Because the caller is about to free (and possibly reuse) those
37 * blocks on-disk.
39 void do_invalidatepage(struct page *page, unsigned long offset)
41 void (*invalidatepage)(struct page *, unsigned long);
42 invalidatepage = page->mapping->a_ops->invalidatepage;
43 #ifdef CONFIG_BLOCK
44 if (!invalidatepage)
45 invalidatepage = block_invalidatepage;
46 #endif
47 if (invalidatepage)
48 (*invalidatepage)(page, offset);
51 static inline void truncate_partial_page(struct page *page, unsigned partial)
53 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
54 if (page_has_private(page))
55 do_invalidatepage(page, partial);
59 * This cancels just the dirty bit on the kernel page itself, it
60 * does NOT actually remove dirty bits on any mmap's that may be
61 * around. It also leaves the page tagged dirty, so any sync
62 * activity will still find it on the dirty lists, and in particular,
63 * clear_page_dirty_for_io() will still look at the dirty bits in
64 * the VM.
66 * Doing this should *normally* only ever be done when a page
67 * is truncated, and is not actually mapped anywhere at all. However,
68 * fs/buffer.c does this when it notices that somebody has cleaned
69 * out all the buffers on a page without actually doing it through
70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
72 void cancel_dirty_page(struct page *page, unsigned int account_size)
74 if (TestClearPageDirty(page)) {
75 struct address_space *mapping = page->mapping;
76 if (mapping && mapping_cap_account_dirty(mapping)) {
77 dec_zone_page_state(page, NR_FILE_DIRTY);
78 dec_bdi_stat(mapping->backing_dev_info,
79 BDI_RECLAIMABLE);
80 if (account_size)
81 task_io_account_cancelled_write(account_size);
85 EXPORT_SYMBOL(cancel_dirty_page);
88 * If truncate cannot remove the fs-private metadata from the page, the page
89 * becomes orphaned. It will be left on the LRU and may even be mapped into
90 * user pagetables if we're racing with filemap_fault().
92 * We need to bale out if page->mapping is no longer equal to the original
93 * mapping. This happens a) when the VM reclaimed the page while we waited on
94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
97 static int
98 truncate_complete_page(struct address_space *mapping, struct page *page)
100 if (page->mapping != mapping)
101 return -EIO;
103 if (page_has_private(page))
104 do_invalidatepage(page, 0);
106 cancel_dirty_page(page, PAGE_CACHE_SIZE);
108 clear_page_mlock(page);
109 ClearPageMappedToDisk(page);
110 delete_from_page_cache(page);
111 return 0;
115 * This is for invalidate_mapping_pages(). That function can be called at
116 * any time, and is not supposed to throw away dirty pages. But pages can
117 * be marked dirty at any time too, so use remove_mapping which safely
118 * discards clean, unused pages.
120 * Returns non-zero if the page was successfully invalidated.
122 static int
123 invalidate_complete_page(struct address_space *mapping, struct page *page)
125 int ret;
127 if (page->mapping != mapping)
128 return 0;
130 if (page_has_private(page) && !try_to_release_page(page, 0))
131 return 0;
133 clear_page_mlock(page);
134 ret = remove_mapping(mapping, page);
136 return ret;
139 int truncate_inode_page(struct address_space *mapping, struct page *page)
141 if (page_mapped(page)) {
142 unmap_mapping_range(mapping,
143 (loff_t)page->index << PAGE_CACHE_SHIFT,
144 PAGE_CACHE_SIZE, 0);
146 return truncate_complete_page(mapping, page);
150 * Used to get rid of pages on hardware memory corruption.
152 int generic_error_remove_page(struct address_space *mapping, struct page *page)
154 if (!mapping)
155 return -EINVAL;
157 * Only punch for normal data pages for now.
158 * Handling other types like directories would need more auditing.
160 if (!S_ISREG(mapping->host->i_mode))
161 return -EIO;
162 return truncate_inode_page(mapping, page);
164 EXPORT_SYMBOL(generic_error_remove_page);
167 * Safely invalidate one page from its pagecache mapping.
168 * It only drops clean, unused pages. The page must be locked.
170 * Returns 1 if the page is successfully invalidated, otherwise 0.
172 int invalidate_inode_page(struct page *page)
174 struct address_space *mapping = page_mapping(page);
175 if (!mapping)
176 return 0;
177 if (PageDirty(page) || PageWriteback(page))
178 return 0;
179 if (page_mapped(page))
180 return 0;
181 return invalidate_complete_page(mapping, page);
185 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
186 * @mapping: mapping to truncate
187 * @lstart: offset from which to truncate
188 * @lend: offset to which to truncate
190 * Truncate the page cache, removing the pages that are between
191 * specified offsets (and zeroing out partial page
192 * (if lstart is not page aligned)).
194 * Truncate takes two passes - the first pass is nonblocking. It will not
195 * block on page locks and it will not block on writeback. The second pass
196 * will wait. This is to prevent as much IO as possible in the affected region.
197 * The first pass will remove most pages, so the search cost of the second pass
198 * is low.
200 * When looking at page->index outside the page lock we need to be careful to
201 * copy it into a local to avoid races (it could change at any time).
203 * We pass down the cache-hot hint to the page freeing code. Even if the
204 * mapping is large, it is probably the case that the final pages are the most
205 * recently touched, and freeing happens in ascending file offset order.
207 void truncate_inode_pages_range(struct address_space *mapping,
208 loff_t lstart, loff_t lend)
210 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
211 pgoff_t end;
212 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
213 struct pagevec pvec;
214 pgoff_t next;
215 int i;
217 if (mapping->nrpages == 0)
218 return;
220 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221 end = (lend >> PAGE_CACHE_SHIFT);
223 pagevec_init(&pvec, 0);
224 next = start;
225 while (next <= end &&
226 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
227 mem_cgroup_uncharge_start();
228 for (i = 0; i < pagevec_count(&pvec); i++) {
229 struct page *page = pvec.pages[i];
230 pgoff_t page_index = page->index;
232 if (page_index > end) {
233 next = page_index;
234 break;
237 if (page_index > next)
238 next = page_index;
239 next++;
240 if (!trylock_page(page))
241 continue;
242 if (PageWriteback(page)) {
243 unlock_page(page);
244 continue;
246 truncate_inode_page(mapping, page);
247 unlock_page(page);
249 pagevec_release(&pvec);
250 mem_cgroup_uncharge_end();
251 cond_resched();
254 if (partial) {
255 struct page *page = find_lock_page(mapping, start - 1);
256 if (page) {
257 wait_on_page_writeback(page);
258 truncate_partial_page(page, partial);
259 unlock_page(page);
260 page_cache_release(page);
264 next = start;
265 for ( ; ; ) {
266 cond_resched();
267 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
268 if (next == start)
269 break;
270 next = start;
271 continue;
273 if (pvec.pages[0]->index > end) {
274 pagevec_release(&pvec);
275 break;
277 mem_cgroup_uncharge_start();
278 for (i = 0; i < pagevec_count(&pvec); i++) {
279 struct page *page = pvec.pages[i];
281 if (page->index > end)
282 break;
283 lock_page(page);
284 wait_on_page_writeback(page);
285 truncate_inode_page(mapping, page);
286 if (page->index > next)
287 next = page->index;
288 next++;
289 unlock_page(page);
291 pagevec_release(&pvec);
292 mem_cgroup_uncharge_end();
295 EXPORT_SYMBOL(truncate_inode_pages_range);
298 * truncate_inode_pages - truncate *all* the pages from an offset
299 * @mapping: mapping to truncate
300 * @lstart: offset from which to truncate
302 * Called under (and serialised by) inode->i_mutex.
304 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
306 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
308 EXPORT_SYMBOL(truncate_inode_pages);
311 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
312 * @mapping: the address_space which holds the pages to invalidate
313 * @start: the offset 'from' which to invalidate
314 * @end: the offset 'to' which to invalidate (inclusive)
316 * This function only removes the unlocked pages, if you want to
317 * remove all the pages of one inode, you must call truncate_inode_pages.
319 * invalidate_mapping_pages() will not block on IO activity. It will not
320 * invalidate pages which are dirty, locked, under writeback or mapped into
321 * pagetables.
323 unsigned long invalidate_mapping_pages(struct address_space *mapping,
324 pgoff_t start, pgoff_t end)
326 struct pagevec pvec;
327 pgoff_t next = start;
328 unsigned long ret;
329 unsigned long count = 0;
330 int i;
332 pagevec_init(&pvec, 0);
333 while (next <= end &&
334 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
335 mem_cgroup_uncharge_start();
336 for (i = 0; i < pagevec_count(&pvec); i++) {
337 struct page *page = pvec.pages[i];
338 pgoff_t index;
339 int lock_failed;
341 lock_failed = !trylock_page(page);
344 * We really shouldn't be looking at the ->index of an
345 * unlocked page. But we're not allowed to lock these
346 * pages. So we rely upon nobody altering the ->index
347 * of this (pinned-by-us) page.
349 index = page->index;
350 if (index > next)
351 next = index;
352 next++;
353 if (lock_failed)
354 continue;
356 ret = invalidate_inode_page(page);
357 unlock_page(page);
359 * Invalidation is a hint that the page is no longer
360 * of interest and try to speed up its reclaim.
362 if (!ret)
363 deactivate_page(page);
364 count += ret;
365 if (next > end)
366 break;
368 pagevec_release(&pvec);
369 mem_cgroup_uncharge_end();
370 cond_resched();
372 return count;
374 EXPORT_SYMBOL(invalidate_mapping_pages);
377 * This is like invalidate_complete_page(), except it ignores the page's
378 * refcount. We do this because invalidate_inode_pages2() needs stronger
379 * invalidation guarantees, and cannot afford to leave pages behind because
380 * shrink_page_list() has a temp ref on them, or because they're transiently
381 * sitting in the lru_cache_add() pagevecs.
383 static int
384 invalidate_complete_page2(struct address_space *mapping, struct page *page)
386 if (page->mapping != mapping)
387 return 0;
389 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
390 return 0;
392 spin_lock_irq(&mapping->tree_lock);
393 if (PageDirty(page))
394 goto failed;
396 clear_page_mlock(page);
397 BUG_ON(page_has_private(page));
398 __delete_from_page_cache(page);
399 spin_unlock_irq(&mapping->tree_lock);
400 mem_cgroup_uncharge_cache_page(page);
402 if (mapping->a_ops->freepage)
403 mapping->a_ops->freepage(page);
405 page_cache_release(page); /* pagecache ref */
406 return 1;
407 failed:
408 spin_unlock_irq(&mapping->tree_lock);
409 return 0;
412 static int do_launder_page(struct address_space *mapping, struct page *page)
414 if (!PageDirty(page))
415 return 0;
416 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
417 return 0;
418 return mapping->a_ops->launder_page(page);
422 * invalidate_inode_pages2_range - remove range of pages from an address_space
423 * @mapping: the address_space
424 * @start: the page offset 'from' which to invalidate
425 * @end: the page offset 'to' which to invalidate (inclusive)
427 * Any pages which are found to be mapped into pagetables are unmapped prior to
428 * invalidation.
430 * Returns -EBUSY if any pages could not be invalidated.
432 int invalidate_inode_pages2_range(struct address_space *mapping,
433 pgoff_t start, pgoff_t end)
435 struct pagevec pvec;
436 pgoff_t next;
437 int i;
438 int ret = 0;
439 int ret2 = 0;
440 int did_range_unmap = 0;
441 int wrapped = 0;
443 pagevec_init(&pvec, 0);
444 next = start;
445 while (next <= end && !wrapped &&
446 pagevec_lookup(&pvec, mapping, next,
447 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
448 mem_cgroup_uncharge_start();
449 for (i = 0; i < pagevec_count(&pvec); i++) {
450 struct page *page = pvec.pages[i];
451 pgoff_t page_index;
453 lock_page(page);
454 if (page->mapping != mapping) {
455 unlock_page(page);
456 continue;
458 page_index = page->index;
459 next = page_index + 1;
460 if (next == 0)
461 wrapped = 1;
462 if (page_index > end) {
463 unlock_page(page);
464 break;
466 wait_on_page_writeback(page);
467 if (page_mapped(page)) {
468 if (!did_range_unmap) {
470 * Zap the rest of the file in one hit.
472 unmap_mapping_range(mapping,
473 (loff_t)page_index<<PAGE_CACHE_SHIFT,
474 (loff_t)(end - page_index + 1)
475 << PAGE_CACHE_SHIFT,
477 did_range_unmap = 1;
478 } else {
480 * Just zap this page
482 unmap_mapping_range(mapping,
483 (loff_t)page_index<<PAGE_CACHE_SHIFT,
484 PAGE_CACHE_SIZE, 0);
487 BUG_ON(page_mapped(page));
488 ret2 = do_launder_page(mapping, page);
489 if (ret2 == 0) {
490 if (!invalidate_complete_page2(mapping, page))
491 ret2 = -EBUSY;
493 if (ret2 < 0)
494 ret = ret2;
495 unlock_page(page);
497 pagevec_release(&pvec);
498 mem_cgroup_uncharge_end();
499 cond_resched();
501 return ret;
503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
506 * invalidate_inode_pages2 - remove all pages from an address_space
507 * @mapping: the address_space
509 * Any pages which are found to be mapped into pagetables are unmapped prior to
510 * invalidation.
512 * Returns -EBUSY if any pages could not be invalidated.
514 int invalidate_inode_pages2(struct address_space *mapping)
516 return invalidate_inode_pages2_range(mapping, 0, -1);
518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
521 * truncate_pagecache - unmap and remove pagecache that has been truncated
522 * @inode: inode
523 * @old: old file offset
524 * @new: new file offset
526 * inode's new i_size must already be written before truncate_pagecache
527 * is called.
529 * This function should typically be called before the filesystem
530 * releases resources associated with the freed range (eg. deallocates
531 * blocks). This way, pagecache will always stay logically coherent
532 * with on-disk format, and the filesystem would not have to deal with
533 * situations such as writepage being called for a page that has already
534 * had its underlying blocks deallocated.
536 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
538 struct address_space *mapping = inode->i_mapping;
541 * unmap_mapping_range is called twice, first simply for
542 * efficiency so that truncate_inode_pages does fewer
543 * single-page unmaps. However after this first call, and
544 * before truncate_inode_pages finishes, it is possible for
545 * private pages to be COWed, which remain after
546 * truncate_inode_pages finishes, hence the second
547 * unmap_mapping_range call must be made for correctness.
549 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
550 truncate_inode_pages(mapping, new);
551 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
553 EXPORT_SYMBOL(truncate_pagecache);
556 * truncate_setsize - update inode and pagecache for a new file size
557 * @inode: inode
558 * @newsize: new file size
560 * truncate_setsize updates i_size and performs pagecache truncation (if
561 * necessary) to @newsize. It will be typically be called from the filesystem's
562 * setattr function when ATTR_SIZE is passed in.
564 * Must be called with inode_mutex held and before all filesystem specific
565 * block truncation has been performed.
567 void truncate_setsize(struct inode *inode, loff_t newsize)
569 loff_t oldsize;
571 oldsize = inode->i_size;
572 i_size_write(inode, newsize);
574 truncate_pagecache(inode, oldsize, newsize);
576 EXPORT_SYMBOL(truncate_setsize);
579 * vmtruncate - unmap mappings "freed" by truncate() syscall
580 * @inode: inode of the file used
581 * @offset: file offset to start truncating
583 * This function is deprecated and truncate_setsize or truncate_pagecache
584 * should be used instead, together with filesystem specific block truncation.
586 int vmtruncate(struct inode *inode, loff_t offset)
588 int error;
590 error = inode_newsize_ok(inode, offset);
591 if (error)
592 return error;
594 truncate_setsize(inode, offset);
595 if (inode->i_op->truncate)
596 inode->i_op->truncate(inode);
597 return 0;
599 EXPORT_SYMBOL(vmtruncate);