eCryptfs: Allow 2 scatterlist entries for encrypted filenames
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
bloba74bf72e5a679db572b85f8e6bb8128b58cb232e
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
51 #include "internal.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC: Do not block
60 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 * page from the LRU and reclaim all pages within a
63 * naturally aligned range
64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65 * order-0 pages and then compact the zone
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74 struct scan_control {
75 /* Incremented by the number of inactive pages that were scanned */
76 unsigned long nr_scanned;
78 /* Number of pages freed so far during a call to shrink_zones() */
79 unsigned long nr_reclaimed;
81 /* How many pages shrink_list() should reclaim */
82 unsigned long nr_to_reclaim;
84 unsigned long hibernation_mode;
86 /* This context's GFP mask */
87 gfp_t gfp_mask;
89 int may_writepage;
91 /* Can mapped pages be reclaimed? */
92 int may_unmap;
94 /* Can pages be swapped as part of reclaim? */
95 int may_swap;
97 int swappiness;
99 int order;
102 * Intend to reclaim enough continuous memory rather than reclaim
103 * enough amount of memory. i.e, mode for high order allocation.
105 reclaim_mode_t reclaim_mode;
107 /* Which cgroup do we reclaim from */
108 struct mem_cgroup *mem_cgroup;
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
112 * are scanned.
114 nodemask_t *nodemask;
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field) \
121 do { \
122 if ((_page)->lru.prev != _base) { \
123 struct page *prev; \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
128 } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field) \
135 do { \
136 if ((_page)->lru.prev != _base) { \
137 struct page *prev; \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
142 } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
148 * From 0 .. 100. Higher means more swappy.
150 int vm_swappiness = 60;
151 long vm_total_pages; /* The total number of pages which the VM controls */
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163 struct scan_control *sc)
165 if (!scanning_global_lru(sc))
166 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168 return &zone->reclaim_stat;
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172 struct scan_control *sc, enum lru_list lru)
174 if (!scanning_global_lru(sc))
175 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
177 return zone_page_state(zone, NR_LRU_BASE + lru);
182 * Add a shrinker callback to be called from the vm
184 void register_shrinker(struct shrinker *shrinker)
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
191 EXPORT_SYMBOL(register_shrinker);
194 * Remove one
196 void unregister_shrinker(struct shrinker *shrinker)
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
202 EXPORT_SYMBOL(unregister_shrinker);
204 #define SHRINK_BATCH 128
206 * Call the shrink functions to age shrinkable caches
208 * Here we assume it costs one seek to replace a lru page and that it also
209 * takes a seek to recreate a cache object. With this in mind we age equal
210 * percentages of the lru and ageable caches. This should balance the seeks
211 * generated by these structures.
213 * If the vm encountered mapped pages on the LRU it increase the pressure on
214 * slab to avoid swapping.
216 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
218 * `lru_pages' represents the number of on-LRU pages in all the zones which
219 * are eligible for the caller's allocation attempt. It is used for balancing
220 * slab reclaim versus page reclaim.
222 * Returns the number of slab objects which we shrunk.
224 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
225 unsigned long lru_pages)
227 struct shrinker *shrinker;
228 unsigned long ret = 0;
230 if (scanned == 0)
231 scanned = SWAP_CLUSTER_MAX;
233 if (!down_read_trylock(&shrinker_rwsem)) {
234 /* Assume we'll be able to shrink next time */
235 ret = 1;
236 goto out;
239 list_for_each_entry(shrinker, &shrinker_list, list) {
240 unsigned long long delta;
241 unsigned long total_scan;
242 unsigned long max_pass;
244 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
245 delta = (4 * scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 shrinker->nr += delta;
249 if (shrinker->nr < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, shrinker->nr);
253 shrinker->nr = max_pass;
257 * Avoid risking looping forever due to too large nr value:
258 * never try to free more than twice the estimate number of
259 * freeable entries.
261 if (shrinker->nr > max_pass * 2)
262 shrinker->nr = max_pass * 2;
264 total_scan = shrinker->nr;
265 shrinker->nr = 0;
267 while (total_scan >= SHRINK_BATCH) {
268 long this_scan = SHRINK_BATCH;
269 int shrink_ret;
270 int nr_before;
272 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
273 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
274 gfp_mask);
275 if (shrink_ret == -1)
276 break;
277 if (shrink_ret < nr_before)
278 ret += nr_before - shrink_ret;
279 count_vm_events(SLABS_SCANNED, this_scan);
280 total_scan -= this_scan;
282 cond_resched();
285 shrinker->nr += total_scan;
287 up_read(&shrinker_rwsem);
288 out:
289 cond_resched();
290 return ret;
293 static void set_reclaim_mode(int priority, struct scan_control *sc,
294 bool sync)
296 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
299 * Initially assume we are entering either lumpy reclaim or
300 * reclaim/compaction.Depending on the order, we will either set the
301 * sync mode or just reclaim order-0 pages later.
303 if (COMPACTION_BUILD)
304 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
305 else
306 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
309 * Avoid using lumpy reclaim or reclaim/compaction if possible by
310 * restricting when its set to either costly allocations or when
311 * under memory pressure
313 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
314 sc->reclaim_mode |= syncmode;
315 else if (sc->order && priority < DEF_PRIORITY - 2)
316 sc->reclaim_mode |= syncmode;
317 else
318 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
321 static void reset_reclaim_mode(struct scan_control *sc)
323 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
326 static inline int is_page_cache_freeable(struct page *page)
329 * A freeable page cache page is referenced only by the caller
330 * that isolated the page, the page cache radix tree and
331 * optional buffer heads at page->private.
333 return page_count(page) - page_has_private(page) == 2;
336 static int may_write_to_queue(struct backing_dev_info *bdi,
337 struct scan_control *sc)
339 if (current->flags & PF_SWAPWRITE)
340 return 1;
341 if (!bdi_write_congested(bdi))
342 return 1;
343 if (bdi == current->backing_dev_info)
344 return 1;
346 /* lumpy reclaim for hugepage often need a lot of write */
347 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
348 return 1;
349 return 0;
353 * We detected a synchronous write error writing a page out. Probably
354 * -ENOSPC. We need to propagate that into the address_space for a subsequent
355 * fsync(), msync() or close().
357 * The tricky part is that after writepage we cannot touch the mapping: nothing
358 * prevents it from being freed up. But we have a ref on the page and once
359 * that page is locked, the mapping is pinned.
361 * We're allowed to run sleeping lock_page() here because we know the caller has
362 * __GFP_FS.
364 static void handle_write_error(struct address_space *mapping,
365 struct page *page, int error)
367 lock_page_nosync(page);
368 if (page_mapping(page) == mapping)
369 mapping_set_error(mapping, error);
370 unlock_page(page);
373 /* possible outcome of pageout() */
374 typedef enum {
375 /* failed to write page out, page is locked */
376 PAGE_KEEP,
377 /* move page to the active list, page is locked */
378 PAGE_ACTIVATE,
379 /* page has been sent to the disk successfully, page is unlocked */
380 PAGE_SUCCESS,
381 /* page is clean and locked */
382 PAGE_CLEAN,
383 } pageout_t;
386 * pageout is called by shrink_page_list() for each dirty page.
387 * Calls ->writepage().
389 static pageout_t pageout(struct page *page, struct address_space *mapping,
390 struct scan_control *sc)
393 * If the page is dirty, only perform writeback if that write
394 * will be non-blocking. To prevent this allocation from being
395 * stalled by pagecache activity. But note that there may be
396 * stalls if we need to run get_block(). We could test
397 * PagePrivate for that.
399 * If this process is currently in __generic_file_aio_write() against
400 * this page's queue, we can perform writeback even if that
401 * will block.
403 * If the page is swapcache, write it back even if that would
404 * block, for some throttling. This happens by accident, because
405 * swap_backing_dev_info is bust: it doesn't reflect the
406 * congestion state of the swapdevs. Easy to fix, if needed.
408 if (!is_page_cache_freeable(page))
409 return PAGE_KEEP;
410 if (!mapping) {
412 * Some data journaling orphaned pages can have
413 * page->mapping == NULL while being dirty with clean buffers.
415 if (page_has_private(page)) {
416 if (try_to_free_buffers(page)) {
417 ClearPageDirty(page);
418 printk("%s: orphaned page\n", __func__);
419 return PAGE_CLEAN;
422 return PAGE_KEEP;
424 if (mapping->a_ops->writepage == NULL)
425 return PAGE_ACTIVATE;
426 if (!may_write_to_queue(mapping->backing_dev_info, sc))
427 return PAGE_KEEP;
429 if (clear_page_dirty_for_io(page)) {
430 int res;
431 struct writeback_control wbc = {
432 .sync_mode = WB_SYNC_NONE,
433 .nr_to_write = SWAP_CLUSTER_MAX,
434 .range_start = 0,
435 .range_end = LLONG_MAX,
436 .for_reclaim = 1,
439 SetPageReclaim(page);
440 res = mapping->a_ops->writepage(page, &wbc);
441 if (res < 0)
442 handle_write_error(mapping, page, res);
443 if (res == AOP_WRITEPAGE_ACTIVATE) {
444 ClearPageReclaim(page);
445 return PAGE_ACTIVATE;
449 * Wait on writeback if requested to. This happens when
450 * direct reclaiming a large contiguous area and the
451 * first attempt to free a range of pages fails.
453 if (PageWriteback(page) &&
454 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
455 wait_on_page_writeback(page);
457 if (!PageWriteback(page)) {
458 /* synchronous write or broken a_ops? */
459 ClearPageReclaim(page);
461 trace_mm_vmscan_writepage(page,
462 trace_reclaim_flags(page, sc->reclaim_mode));
463 inc_zone_page_state(page, NR_VMSCAN_WRITE);
464 return PAGE_SUCCESS;
467 return PAGE_CLEAN;
471 * Same as remove_mapping, but if the page is removed from the mapping, it
472 * gets returned with a refcount of 0.
474 static int __remove_mapping(struct address_space *mapping, struct page *page)
476 BUG_ON(!PageLocked(page));
477 BUG_ON(mapping != page_mapping(page));
479 spin_lock_irq(&mapping->tree_lock);
481 * The non racy check for a busy page.
483 * Must be careful with the order of the tests. When someone has
484 * a ref to the page, it may be possible that they dirty it then
485 * drop the reference. So if PageDirty is tested before page_count
486 * here, then the following race may occur:
488 * get_user_pages(&page);
489 * [user mapping goes away]
490 * write_to(page);
491 * !PageDirty(page) [good]
492 * SetPageDirty(page);
493 * put_page(page);
494 * !page_count(page) [good, discard it]
496 * [oops, our write_to data is lost]
498 * Reversing the order of the tests ensures such a situation cannot
499 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
500 * load is not satisfied before that of page->_count.
502 * Note that if SetPageDirty is always performed via set_page_dirty,
503 * and thus under tree_lock, then this ordering is not required.
505 if (!page_freeze_refs(page, 2))
506 goto cannot_free;
507 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
508 if (unlikely(PageDirty(page))) {
509 page_unfreeze_refs(page, 2);
510 goto cannot_free;
513 if (PageSwapCache(page)) {
514 swp_entry_t swap = { .val = page_private(page) };
515 __delete_from_swap_cache(page);
516 spin_unlock_irq(&mapping->tree_lock);
517 swapcache_free(swap, page);
518 } else {
519 void (*freepage)(struct page *);
521 freepage = mapping->a_ops->freepage;
523 __remove_from_page_cache(page);
524 spin_unlock_irq(&mapping->tree_lock);
525 mem_cgroup_uncharge_cache_page(page);
527 if (freepage != NULL)
528 freepage(page);
531 return 1;
533 cannot_free:
534 spin_unlock_irq(&mapping->tree_lock);
535 return 0;
539 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
540 * someone else has a ref on the page, abort and return 0. If it was
541 * successfully detached, return 1. Assumes the caller has a single ref on
542 * this page.
544 int remove_mapping(struct address_space *mapping, struct page *page)
546 if (__remove_mapping(mapping, page)) {
548 * Unfreezing the refcount with 1 rather than 2 effectively
549 * drops the pagecache ref for us without requiring another
550 * atomic operation.
552 page_unfreeze_refs(page, 1);
553 return 1;
555 return 0;
559 * putback_lru_page - put previously isolated page onto appropriate LRU list
560 * @page: page to be put back to appropriate lru list
562 * Add previously isolated @page to appropriate LRU list.
563 * Page may still be unevictable for other reasons.
565 * lru_lock must not be held, interrupts must be enabled.
567 void putback_lru_page(struct page *page)
569 int lru;
570 int active = !!TestClearPageActive(page);
571 int was_unevictable = PageUnevictable(page);
573 VM_BUG_ON(PageLRU(page));
575 redo:
576 ClearPageUnevictable(page);
578 if (page_evictable(page, NULL)) {
580 * For evictable pages, we can use the cache.
581 * In event of a race, worst case is we end up with an
582 * unevictable page on [in]active list.
583 * We know how to handle that.
585 lru = active + page_lru_base_type(page);
586 lru_cache_add_lru(page, lru);
587 } else {
589 * Put unevictable pages directly on zone's unevictable
590 * list.
592 lru = LRU_UNEVICTABLE;
593 add_page_to_unevictable_list(page);
595 * When racing with an mlock clearing (page is
596 * unlocked), make sure that if the other thread does
597 * not observe our setting of PG_lru and fails
598 * isolation, we see PG_mlocked cleared below and move
599 * the page back to the evictable list.
601 * The other side is TestClearPageMlocked().
603 smp_mb();
607 * page's status can change while we move it among lru. If an evictable
608 * page is on unevictable list, it never be freed. To avoid that,
609 * check after we added it to the list, again.
611 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
612 if (!isolate_lru_page(page)) {
613 put_page(page);
614 goto redo;
616 /* This means someone else dropped this page from LRU
617 * So, it will be freed or putback to LRU again. There is
618 * nothing to do here.
622 if (was_unevictable && lru != LRU_UNEVICTABLE)
623 count_vm_event(UNEVICTABLE_PGRESCUED);
624 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
625 count_vm_event(UNEVICTABLE_PGCULLED);
627 put_page(page); /* drop ref from isolate */
630 enum page_references {
631 PAGEREF_RECLAIM,
632 PAGEREF_RECLAIM_CLEAN,
633 PAGEREF_KEEP,
634 PAGEREF_ACTIVATE,
637 static enum page_references page_check_references(struct page *page,
638 struct scan_control *sc)
640 int referenced_ptes, referenced_page;
641 unsigned long vm_flags;
643 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
644 referenced_page = TestClearPageReferenced(page);
646 /* Lumpy reclaim - ignore references */
647 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
648 return PAGEREF_RECLAIM;
651 * Mlock lost the isolation race with us. Let try_to_unmap()
652 * move the page to the unevictable list.
654 if (vm_flags & VM_LOCKED)
655 return PAGEREF_RECLAIM;
657 if (referenced_ptes) {
658 if (PageAnon(page))
659 return PAGEREF_ACTIVATE;
661 * All mapped pages start out with page table
662 * references from the instantiating fault, so we need
663 * to look twice if a mapped file page is used more
664 * than once.
666 * Mark it and spare it for another trip around the
667 * inactive list. Another page table reference will
668 * lead to its activation.
670 * Note: the mark is set for activated pages as well
671 * so that recently deactivated but used pages are
672 * quickly recovered.
674 SetPageReferenced(page);
676 if (referenced_page)
677 return PAGEREF_ACTIVATE;
679 return PAGEREF_KEEP;
682 /* Reclaim if clean, defer dirty pages to writeback */
683 if (referenced_page && !PageSwapBacked(page))
684 return PAGEREF_RECLAIM_CLEAN;
686 return PAGEREF_RECLAIM;
689 static noinline_for_stack void free_page_list(struct list_head *free_pages)
691 struct pagevec freed_pvec;
692 struct page *page, *tmp;
694 pagevec_init(&freed_pvec, 1);
696 list_for_each_entry_safe(page, tmp, free_pages, lru) {
697 list_del(&page->lru);
698 if (!pagevec_add(&freed_pvec, page)) {
699 __pagevec_free(&freed_pvec);
700 pagevec_reinit(&freed_pvec);
704 pagevec_free(&freed_pvec);
708 * shrink_page_list() returns the number of reclaimed pages
710 static unsigned long shrink_page_list(struct list_head *page_list,
711 struct zone *zone,
712 struct scan_control *sc)
714 LIST_HEAD(ret_pages);
715 LIST_HEAD(free_pages);
716 int pgactivate = 0;
717 unsigned long nr_dirty = 0;
718 unsigned long nr_congested = 0;
719 unsigned long nr_reclaimed = 0;
721 cond_resched();
723 while (!list_empty(page_list)) {
724 enum page_references references;
725 struct address_space *mapping;
726 struct page *page;
727 int may_enter_fs;
729 cond_resched();
731 page = lru_to_page(page_list);
732 list_del(&page->lru);
734 if (!trylock_page(page))
735 goto keep;
737 VM_BUG_ON(PageActive(page));
738 VM_BUG_ON(page_zone(page) != zone);
740 sc->nr_scanned++;
742 if (unlikely(!page_evictable(page, NULL)))
743 goto cull_mlocked;
745 if (!sc->may_unmap && page_mapped(page))
746 goto keep_locked;
748 /* Double the slab pressure for mapped and swapcache pages */
749 if (page_mapped(page) || PageSwapCache(page))
750 sc->nr_scanned++;
752 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
753 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
755 if (PageWriteback(page)) {
757 * Synchronous reclaim is performed in two passes,
758 * first an asynchronous pass over the list to
759 * start parallel writeback, and a second synchronous
760 * pass to wait for the IO to complete. Wait here
761 * for any page for which writeback has already
762 * started.
764 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
765 may_enter_fs)
766 wait_on_page_writeback(page);
767 else {
768 unlock_page(page);
769 goto keep_lumpy;
773 references = page_check_references(page, sc);
774 switch (references) {
775 case PAGEREF_ACTIVATE:
776 goto activate_locked;
777 case PAGEREF_KEEP:
778 goto keep_locked;
779 case PAGEREF_RECLAIM:
780 case PAGEREF_RECLAIM_CLEAN:
781 ; /* try to reclaim the page below */
785 * Anonymous process memory has backing store?
786 * Try to allocate it some swap space here.
788 if (PageAnon(page) && !PageSwapCache(page)) {
789 if (!(sc->gfp_mask & __GFP_IO))
790 goto keep_locked;
791 if (!add_to_swap(page))
792 goto activate_locked;
793 may_enter_fs = 1;
796 mapping = page_mapping(page);
799 * The page is mapped into the page tables of one or more
800 * processes. Try to unmap it here.
802 if (page_mapped(page) && mapping) {
803 switch (try_to_unmap(page, TTU_UNMAP)) {
804 case SWAP_FAIL:
805 goto activate_locked;
806 case SWAP_AGAIN:
807 goto keep_locked;
808 case SWAP_MLOCK:
809 goto cull_mlocked;
810 case SWAP_SUCCESS:
811 ; /* try to free the page below */
815 if (PageDirty(page)) {
816 nr_dirty++;
818 if (references == PAGEREF_RECLAIM_CLEAN)
819 goto keep_locked;
820 if (!may_enter_fs)
821 goto keep_locked;
822 if (!sc->may_writepage)
823 goto keep_locked;
825 /* Page is dirty, try to write it out here */
826 switch (pageout(page, mapping, sc)) {
827 case PAGE_KEEP:
828 nr_congested++;
829 goto keep_locked;
830 case PAGE_ACTIVATE:
831 goto activate_locked;
832 case PAGE_SUCCESS:
833 if (PageWriteback(page))
834 goto keep_lumpy;
835 if (PageDirty(page))
836 goto keep;
839 * A synchronous write - probably a ramdisk. Go
840 * ahead and try to reclaim the page.
842 if (!trylock_page(page))
843 goto keep;
844 if (PageDirty(page) || PageWriteback(page))
845 goto keep_locked;
846 mapping = page_mapping(page);
847 case PAGE_CLEAN:
848 ; /* try to free the page below */
853 * If the page has buffers, try to free the buffer mappings
854 * associated with this page. If we succeed we try to free
855 * the page as well.
857 * We do this even if the page is PageDirty().
858 * try_to_release_page() does not perform I/O, but it is
859 * possible for a page to have PageDirty set, but it is actually
860 * clean (all its buffers are clean). This happens if the
861 * buffers were written out directly, with submit_bh(). ext3
862 * will do this, as well as the blockdev mapping.
863 * try_to_release_page() will discover that cleanness and will
864 * drop the buffers and mark the page clean - it can be freed.
866 * Rarely, pages can have buffers and no ->mapping. These are
867 * the pages which were not successfully invalidated in
868 * truncate_complete_page(). We try to drop those buffers here
869 * and if that worked, and the page is no longer mapped into
870 * process address space (page_count == 1) it can be freed.
871 * Otherwise, leave the page on the LRU so it is swappable.
873 if (page_has_private(page)) {
874 if (!try_to_release_page(page, sc->gfp_mask))
875 goto activate_locked;
876 if (!mapping && page_count(page) == 1) {
877 unlock_page(page);
878 if (put_page_testzero(page))
879 goto free_it;
880 else {
882 * rare race with speculative reference.
883 * the speculative reference will free
884 * this page shortly, so we may
885 * increment nr_reclaimed here (and
886 * leave it off the LRU).
888 nr_reclaimed++;
889 continue;
894 if (!mapping || !__remove_mapping(mapping, page))
895 goto keep_locked;
898 * At this point, we have no other references and there is
899 * no way to pick any more up (removed from LRU, removed
900 * from pagecache). Can use non-atomic bitops now (and
901 * we obviously don't have to worry about waking up a process
902 * waiting on the page lock, because there are no references.
904 __clear_page_locked(page);
905 free_it:
906 nr_reclaimed++;
909 * Is there need to periodically free_page_list? It would
910 * appear not as the counts should be low
912 list_add(&page->lru, &free_pages);
913 continue;
915 cull_mlocked:
916 if (PageSwapCache(page))
917 try_to_free_swap(page);
918 unlock_page(page);
919 putback_lru_page(page);
920 reset_reclaim_mode(sc);
921 continue;
923 activate_locked:
924 /* Not a candidate for swapping, so reclaim swap space. */
925 if (PageSwapCache(page) && vm_swap_full())
926 try_to_free_swap(page);
927 VM_BUG_ON(PageActive(page));
928 SetPageActive(page);
929 pgactivate++;
930 keep_locked:
931 unlock_page(page);
932 keep:
933 reset_reclaim_mode(sc);
934 keep_lumpy:
935 list_add(&page->lru, &ret_pages);
936 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
940 * Tag a zone as congested if all the dirty pages encountered were
941 * backed by a congested BDI. In this case, reclaimers should just
942 * back off and wait for congestion to clear because further reclaim
943 * will encounter the same problem
945 if (nr_dirty == nr_congested && nr_dirty != 0)
946 zone_set_flag(zone, ZONE_CONGESTED);
948 free_page_list(&free_pages);
950 list_splice(&ret_pages, page_list);
951 count_vm_events(PGACTIVATE, pgactivate);
952 return nr_reclaimed;
956 * Attempt to remove the specified page from its LRU. Only take this page
957 * if it is of the appropriate PageActive status. Pages which are being
958 * freed elsewhere are also ignored.
960 * page: page to consider
961 * mode: one of the LRU isolation modes defined above
963 * returns 0 on success, -ve errno on failure.
965 int __isolate_lru_page(struct page *page, int mode, int file)
967 int ret = -EINVAL;
969 /* Only take pages on the LRU. */
970 if (!PageLRU(page))
971 return ret;
974 * When checking the active state, we need to be sure we are
975 * dealing with comparible boolean values. Take the logical not
976 * of each.
978 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
979 return ret;
981 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
982 return ret;
985 * When this function is being called for lumpy reclaim, we
986 * initially look into all LRU pages, active, inactive and
987 * unevictable; only give shrink_page_list evictable pages.
989 if (PageUnevictable(page))
990 return ret;
992 ret = -EBUSY;
994 if (likely(get_page_unless_zero(page))) {
996 * Be careful not to clear PageLRU until after we're
997 * sure the page is not being freed elsewhere -- the
998 * page release code relies on it.
1000 ClearPageLRU(page);
1001 ret = 0;
1004 return ret;
1008 * zone->lru_lock is heavily contended. Some of the functions that
1009 * shrink the lists perform better by taking out a batch of pages
1010 * and working on them outside the LRU lock.
1012 * For pagecache intensive workloads, this function is the hottest
1013 * spot in the kernel (apart from copy_*_user functions).
1015 * Appropriate locks must be held before calling this function.
1017 * @nr_to_scan: The number of pages to look through on the list.
1018 * @src: The LRU list to pull pages off.
1019 * @dst: The temp list to put pages on to.
1020 * @scanned: The number of pages that were scanned.
1021 * @order: The caller's attempted allocation order
1022 * @mode: One of the LRU isolation modes
1023 * @file: True [1] if isolating file [!anon] pages
1025 * returns how many pages were moved onto *@dst.
1027 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1028 struct list_head *src, struct list_head *dst,
1029 unsigned long *scanned, int order, int mode, int file)
1031 unsigned long nr_taken = 0;
1032 unsigned long nr_lumpy_taken = 0;
1033 unsigned long nr_lumpy_dirty = 0;
1034 unsigned long nr_lumpy_failed = 0;
1035 unsigned long scan;
1037 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1038 struct page *page;
1039 unsigned long pfn;
1040 unsigned long end_pfn;
1041 unsigned long page_pfn;
1042 int zone_id;
1044 page = lru_to_page(src);
1045 prefetchw_prev_lru_page(page, src, flags);
1047 VM_BUG_ON(!PageLRU(page));
1049 switch (__isolate_lru_page(page, mode, file)) {
1050 case 0:
1051 list_move(&page->lru, dst);
1052 mem_cgroup_del_lru(page);
1053 nr_taken += hpage_nr_pages(page);
1054 break;
1056 case -EBUSY:
1057 /* else it is being freed elsewhere */
1058 list_move(&page->lru, src);
1059 mem_cgroup_rotate_lru_list(page, page_lru(page));
1060 continue;
1062 default:
1063 BUG();
1066 if (!order)
1067 continue;
1070 * Attempt to take all pages in the order aligned region
1071 * surrounding the tag page. Only take those pages of
1072 * the same active state as that tag page. We may safely
1073 * round the target page pfn down to the requested order
1074 * as the mem_map is guarenteed valid out to MAX_ORDER,
1075 * where that page is in a different zone we will detect
1076 * it from its zone id and abort this block scan.
1078 zone_id = page_zone_id(page);
1079 page_pfn = page_to_pfn(page);
1080 pfn = page_pfn & ~((1 << order) - 1);
1081 end_pfn = pfn + (1 << order);
1082 for (; pfn < end_pfn; pfn++) {
1083 struct page *cursor_page;
1085 /* The target page is in the block, ignore it. */
1086 if (unlikely(pfn == page_pfn))
1087 continue;
1089 /* Avoid holes within the zone. */
1090 if (unlikely(!pfn_valid_within(pfn)))
1091 break;
1093 cursor_page = pfn_to_page(pfn);
1095 /* Check that we have not crossed a zone boundary. */
1096 if (unlikely(page_zone_id(cursor_page) != zone_id))
1097 break;
1100 * If we don't have enough swap space, reclaiming of
1101 * anon page which don't already have a swap slot is
1102 * pointless.
1104 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1105 !PageSwapCache(cursor_page))
1106 break;
1108 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1109 list_move(&cursor_page->lru, dst);
1110 mem_cgroup_del_lru(cursor_page);
1111 nr_taken += hpage_nr_pages(page);
1112 nr_lumpy_taken++;
1113 if (PageDirty(cursor_page))
1114 nr_lumpy_dirty++;
1115 scan++;
1116 } else {
1117 /* the page is freed already. */
1118 if (!page_count(cursor_page))
1119 continue;
1120 break;
1124 /* If we break out of the loop above, lumpy reclaim failed */
1125 if (pfn < end_pfn)
1126 nr_lumpy_failed++;
1129 *scanned = scan;
1131 trace_mm_vmscan_lru_isolate(order,
1132 nr_to_scan, scan,
1133 nr_taken,
1134 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1135 mode);
1136 return nr_taken;
1139 static unsigned long isolate_pages_global(unsigned long nr,
1140 struct list_head *dst,
1141 unsigned long *scanned, int order,
1142 int mode, struct zone *z,
1143 int active, int file)
1145 int lru = LRU_BASE;
1146 if (active)
1147 lru += LRU_ACTIVE;
1148 if (file)
1149 lru += LRU_FILE;
1150 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1151 mode, file);
1155 * clear_active_flags() is a helper for shrink_active_list(), clearing
1156 * any active bits from the pages in the list.
1158 static unsigned long clear_active_flags(struct list_head *page_list,
1159 unsigned int *count)
1161 int nr_active = 0;
1162 int lru;
1163 struct page *page;
1165 list_for_each_entry(page, page_list, lru) {
1166 int numpages = hpage_nr_pages(page);
1167 lru = page_lru_base_type(page);
1168 if (PageActive(page)) {
1169 lru += LRU_ACTIVE;
1170 ClearPageActive(page);
1171 nr_active += numpages;
1173 if (count)
1174 count[lru] += numpages;
1177 return nr_active;
1181 * isolate_lru_page - tries to isolate a page from its LRU list
1182 * @page: page to isolate from its LRU list
1184 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1185 * vmstat statistic corresponding to whatever LRU list the page was on.
1187 * Returns 0 if the page was removed from an LRU list.
1188 * Returns -EBUSY if the page was not on an LRU list.
1190 * The returned page will have PageLRU() cleared. If it was found on
1191 * the active list, it will have PageActive set. If it was found on
1192 * the unevictable list, it will have the PageUnevictable bit set. That flag
1193 * may need to be cleared by the caller before letting the page go.
1195 * The vmstat statistic corresponding to the list on which the page was
1196 * found will be decremented.
1198 * Restrictions:
1199 * (1) Must be called with an elevated refcount on the page. This is a
1200 * fundamentnal difference from isolate_lru_pages (which is called
1201 * without a stable reference).
1202 * (2) the lru_lock must not be held.
1203 * (3) interrupts must be enabled.
1205 int isolate_lru_page(struct page *page)
1207 int ret = -EBUSY;
1209 if (PageLRU(page)) {
1210 struct zone *zone = page_zone(page);
1212 spin_lock_irq(&zone->lru_lock);
1213 if (PageLRU(page) && get_page_unless_zero(page)) {
1214 int lru = page_lru(page);
1215 ret = 0;
1216 ClearPageLRU(page);
1218 del_page_from_lru_list(zone, page, lru);
1220 spin_unlock_irq(&zone->lru_lock);
1222 return ret;
1226 * Are there way too many processes in the direct reclaim path already?
1228 static int too_many_isolated(struct zone *zone, int file,
1229 struct scan_control *sc)
1231 unsigned long inactive, isolated;
1233 if (current_is_kswapd())
1234 return 0;
1236 if (!scanning_global_lru(sc))
1237 return 0;
1239 if (file) {
1240 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1241 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1242 } else {
1243 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1244 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1247 return isolated > inactive;
1251 * TODO: Try merging with migrations version of putback_lru_pages
1253 static noinline_for_stack void
1254 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1255 unsigned long nr_anon, unsigned long nr_file,
1256 struct list_head *page_list)
1258 struct page *page;
1259 struct pagevec pvec;
1260 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1262 pagevec_init(&pvec, 1);
1265 * Put back any unfreeable pages.
1267 spin_lock(&zone->lru_lock);
1268 while (!list_empty(page_list)) {
1269 int lru;
1270 page = lru_to_page(page_list);
1271 VM_BUG_ON(PageLRU(page));
1272 list_del(&page->lru);
1273 if (unlikely(!page_evictable(page, NULL))) {
1274 spin_unlock_irq(&zone->lru_lock);
1275 putback_lru_page(page);
1276 spin_lock_irq(&zone->lru_lock);
1277 continue;
1279 SetPageLRU(page);
1280 lru = page_lru(page);
1281 add_page_to_lru_list(zone, page, lru);
1282 if (is_active_lru(lru)) {
1283 int file = is_file_lru(lru);
1284 int numpages = hpage_nr_pages(page);
1285 reclaim_stat->recent_rotated[file] += numpages;
1287 if (!pagevec_add(&pvec, page)) {
1288 spin_unlock_irq(&zone->lru_lock);
1289 __pagevec_release(&pvec);
1290 spin_lock_irq(&zone->lru_lock);
1293 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1294 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1296 spin_unlock_irq(&zone->lru_lock);
1297 pagevec_release(&pvec);
1300 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1301 struct scan_control *sc,
1302 unsigned long *nr_anon,
1303 unsigned long *nr_file,
1304 struct list_head *isolated_list)
1306 unsigned long nr_active;
1307 unsigned int count[NR_LRU_LISTS] = { 0, };
1308 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1310 nr_active = clear_active_flags(isolated_list, count);
1311 __count_vm_events(PGDEACTIVATE, nr_active);
1313 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1314 -count[LRU_ACTIVE_FILE]);
1315 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1316 -count[LRU_INACTIVE_FILE]);
1317 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1318 -count[LRU_ACTIVE_ANON]);
1319 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1320 -count[LRU_INACTIVE_ANON]);
1322 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1323 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1324 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1325 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1327 reclaim_stat->recent_scanned[0] += *nr_anon;
1328 reclaim_stat->recent_scanned[1] += *nr_file;
1332 * Returns true if the caller should wait to clean dirty/writeback pages.
1334 * If we are direct reclaiming for contiguous pages and we do not reclaim
1335 * everything in the list, try again and wait for writeback IO to complete.
1336 * This will stall high-order allocations noticeably. Only do that when really
1337 * need to free the pages under high memory pressure.
1339 static inline bool should_reclaim_stall(unsigned long nr_taken,
1340 unsigned long nr_freed,
1341 int priority,
1342 struct scan_control *sc)
1344 int lumpy_stall_priority;
1346 /* kswapd should not stall on sync IO */
1347 if (current_is_kswapd())
1348 return false;
1350 /* Only stall on lumpy reclaim */
1351 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1352 return false;
1354 /* If we have relaimed everything on the isolated list, no stall */
1355 if (nr_freed == nr_taken)
1356 return false;
1359 * For high-order allocations, there are two stall thresholds.
1360 * High-cost allocations stall immediately where as lower
1361 * order allocations such as stacks require the scanning
1362 * priority to be much higher before stalling.
1364 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1365 lumpy_stall_priority = DEF_PRIORITY;
1366 else
1367 lumpy_stall_priority = DEF_PRIORITY / 3;
1369 return priority <= lumpy_stall_priority;
1373 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1374 * of reclaimed pages
1376 static noinline_for_stack unsigned long
1377 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1378 struct scan_control *sc, int priority, int file)
1380 LIST_HEAD(page_list);
1381 unsigned long nr_scanned;
1382 unsigned long nr_reclaimed = 0;
1383 unsigned long nr_taken;
1384 unsigned long nr_anon;
1385 unsigned long nr_file;
1387 while (unlikely(too_many_isolated(zone, file, sc))) {
1388 congestion_wait(BLK_RW_ASYNC, HZ/10);
1390 /* We are about to die and free our memory. Return now. */
1391 if (fatal_signal_pending(current))
1392 return SWAP_CLUSTER_MAX;
1395 set_reclaim_mode(priority, sc, false);
1396 lru_add_drain();
1397 spin_lock_irq(&zone->lru_lock);
1399 if (scanning_global_lru(sc)) {
1400 nr_taken = isolate_pages_global(nr_to_scan,
1401 &page_list, &nr_scanned, sc->order,
1402 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1403 ISOLATE_BOTH : ISOLATE_INACTIVE,
1404 zone, 0, file);
1405 zone->pages_scanned += nr_scanned;
1406 if (current_is_kswapd())
1407 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1408 nr_scanned);
1409 else
1410 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1411 nr_scanned);
1412 } else {
1413 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1414 &page_list, &nr_scanned, sc->order,
1415 sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1416 ISOLATE_BOTH : ISOLATE_INACTIVE,
1417 zone, sc->mem_cgroup,
1418 0, file);
1420 * mem_cgroup_isolate_pages() keeps track of
1421 * scanned pages on its own.
1425 if (nr_taken == 0) {
1426 spin_unlock_irq(&zone->lru_lock);
1427 return 0;
1430 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1432 spin_unlock_irq(&zone->lru_lock);
1434 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1436 /* Check if we should syncronously wait for writeback */
1437 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1438 set_reclaim_mode(priority, sc, true);
1439 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1442 local_irq_disable();
1443 if (current_is_kswapd())
1444 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1445 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1447 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1449 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1450 zone_idx(zone),
1451 nr_scanned, nr_reclaimed,
1452 priority,
1453 trace_shrink_flags(file, sc->reclaim_mode));
1454 return nr_reclaimed;
1458 * This moves pages from the active list to the inactive list.
1460 * We move them the other way if the page is referenced by one or more
1461 * processes, from rmap.
1463 * If the pages are mostly unmapped, the processing is fast and it is
1464 * appropriate to hold zone->lru_lock across the whole operation. But if
1465 * the pages are mapped, the processing is slow (page_referenced()) so we
1466 * should drop zone->lru_lock around each page. It's impossible to balance
1467 * this, so instead we remove the pages from the LRU while processing them.
1468 * It is safe to rely on PG_active against the non-LRU pages in here because
1469 * nobody will play with that bit on a non-LRU page.
1471 * The downside is that we have to touch page->_count against each page.
1472 * But we had to alter page->flags anyway.
1475 static void move_active_pages_to_lru(struct zone *zone,
1476 struct list_head *list,
1477 enum lru_list lru)
1479 unsigned long pgmoved = 0;
1480 struct pagevec pvec;
1481 struct page *page;
1483 pagevec_init(&pvec, 1);
1485 while (!list_empty(list)) {
1486 page = lru_to_page(list);
1488 VM_BUG_ON(PageLRU(page));
1489 SetPageLRU(page);
1491 list_move(&page->lru, &zone->lru[lru].list);
1492 mem_cgroup_add_lru_list(page, lru);
1493 pgmoved += hpage_nr_pages(page);
1495 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1496 spin_unlock_irq(&zone->lru_lock);
1497 if (buffer_heads_over_limit)
1498 pagevec_strip(&pvec);
1499 __pagevec_release(&pvec);
1500 spin_lock_irq(&zone->lru_lock);
1503 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1504 if (!is_active_lru(lru))
1505 __count_vm_events(PGDEACTIVATE, pgmoved);
1508 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1509 struct scan_control *sc, int priority, int file)
1511 unsigned long nr_taken;
1512 unsigned long pgscanned;
1513 unsigned long vm_flags;
1514 LIST_HEAD(l_hold); /* The pages which were snipped off */
1515 LIST_HEAD(l_active);
1516 LIST_HEAD(l_inactive);
1517 struct page *page;
1518 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1519 unsigned long nr_rotated = 0;
1521 lru_add_drain();
1522 spin_lock_irq(&zone->lru_lock);
1523 if (scanning_global_lru(sc)) {
1524 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1525 &pgscanned, sc->order,
1526 ISOLATE_ACTIVE, zone,
1527 1, file);
1528 zone->pages_scanned += pgscanned;
1529 } else {
1530 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1531 &pgscanned, sc->order,
1532 ISOLATE_ACTIVE, zone,
1533 sc->mem_cgroup, 1, file);
1535 * mem_cgroup_isolate_pages() keeps track of
1536 * scanned pages on its own.
1540 reclaim_stat->recent_scanned[file] += nr_taken;
1542 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1543 if (file)
1544 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1545 else
1546 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1547 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1548 spin_unlock_irq(&zone->lru_lock);
1550 while (!list_empty(&l_hold)) {
1551 cond_resched();
1552 page = lru_to_page(&l_hold);
1553 list_del(&page->lru);
1555 if (unlikely(!page_evictable(page, NULL))) {
1556 putback_lru_page(page);
1557 continue;
1560 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1561 nr_rotated += hpage_nr_pages(page);
1563 * Identify referenced, file-backed active pages and
1564 * give them one more trip around the active list. So
1565 * that executable code get better chances to stay in
1566 * memory under moderate memory pressure. Anon pages
1567 * are not likely to be evicted by use-once streaming
1568 * IO, plus JVM can create lots of anon VM_EXEC pages,
1569 * so we ignore them here.
1571 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1572 list_add(&page->lru, &l_active);
1573 continue;
1577 ClearPageActive(page); /* we are de-activating */
1578 list_add(&page->lru, &l_inactive);
1582 * Move pages back to the lru list.
1584 spin_lock_irq(&zone->lru_lock);
1586 * Count referenced pages from currently used mappings as rotated,
1587 * even though only some of them are actually re-activated. This
1588 * helps balance scan pressure between file and anonymous pages in
1589 * get_scan_ratio.
1591 reclaim_stat->recent_rotated[file] += nr_rotated;
1593 move_active_pages_to_lru(zone, &l_active,
1594 LRU_ACTIVE + file * LRU_FILE);
1595 move_active_pages_to_lru(zone, &l_inactive,
1596 LRU_BASE + file * LRU_FILE);
1597 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1598 spin_unlock_irq(&zone->lru_lock);
1601 #ifdef CONFIG_SWAP
1602 static int inactive_anon_is_low_global(struct zone *zone)
1604 unsigned long active, inactive;
1606 active = zone_page_state(zone, NR_ACTIVE_ANON);
1607 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1609 if (inactive * zone->inactive_ratio < active)
1610 return 1;
1612 return 0;
1616 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1617 * @zone: zone to check
1618 * @sc: scan control of this context
1620 * Returns true if the zone does not have enough inactive anon pages,
1621 * meaning some active anon pages need to be deactivated.
1623 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1625 int low;
1628 * If we don't have swap space, anonymous page deactivation
1629 * is pointless.
1631 if (!total_swap_pages)
1632 return 0;
1634 if (scanning_global_lru(sc))
1635 low = inactive_anon_is_low_global(zone);
1636 else
1637 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1638 return low;
1640 #else
1641 static inline int inactive_anon_is_low(struct zone *zone,
1642 struct scan_control *sc)
1644 return 0;
1646 #endif
1648 static int inactive_file_is_low_global(struct zone *zone)
1650 unsigned long active, inactive;
1652 active = zone_page_state(zone, NR_ACTIVE_FILE);
1653 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1655 return (active > inactive);
1659 * inactive_file_is_low - check if file pages need to be deactivated
1660 * @zone: zone to check
1661 * @sc: scan control of this context
1663 * When the system is doing streaming IO, memory pressure here
1664 * ensures that active file pages get deactivated, until more
1665 * than half of the file pages are on the inactive list.
1667 * Once we get to that situation, protect the system's working
1668 * set from being evicted by disabling active file page aging.
1670 * This uses a different ratio than the anonymous pages, because
1671 * the page cache uses a use-once replacement algorithm.
1673 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1675 int low;
1677 if (scanning_global_lru(sc))
1678 low = inactive_file_is_low_global(zone);
1679 else
1680 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1681 return low;
1684 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1685 int file)
1687 if (file)
1688 return inactive_file_is_low(zone, sc);
1689 else
1690 return inactive_anon_is_low(zone, sc);
1693 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1694 struct zone *zone, struct scan_control *sc, int priority)
1696 int file = is_file_lru(lru);
1698 if (is_active_lru(lru)) {
1699 if (inactive_list_is_low(zone, sc, file))
1700 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1701 return 0;
1704 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1708 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1709 * until we collected @swap_cluster_max pages to scan.
1711 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1712 unsigned long *nr_saved_scan)
1714 unsigned long nr;
1716 *nr_saved_scan += nr_to_scan;
1717 nr = *nr_saved_scan;
1719 if (nr >= SWAP_CLUSTER_MAX)
1720 *nr_saved_scan = 0;
1721 else
1722 nr = 0;
1724 return nr;
1728 * Determine how aggressively the anon and file LRU lists should be
1729 * scanned. The relative value of each set of LRU lists is determined
1730 * by looking at the fraction of the pages scanned we did rotate back
1731 * onto the active list instead of evict.
1733 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1735 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1736 unsigned long *nr, int priority)
1738 unsigned long anon, file, free;
1739 unsigned long anon_prio, file_prio;
1740 unsigned long ap, fp;
1741 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1742 u64 fraction[2], denominator;
1743 enum lru_list l;
1744 int noswap = 0;
1746 /* If we have no swap space, do not bother scanning anon pages. */
1747 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1748 noswap = 1;
1749 fraction[0] = 0;
1750 fraction[1] = 1;
1751 denominator = 1;
1752 goto out;
1755 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1756 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1757 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1758 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1760 if (scanning_global_lru(sc)) {
1761 free = zone_page_state(zone, NR_FREE_PAGES);
1762 /* If we have very few page cache pages,
1763 force-scan anon pages. */
1764 if (unlikely(file + free <= high_wmark_pages(zone))) {
1765 fraction[0] = 1;
1766 fraction[1] = 0;
1767 denominator = 1;
1768 goto out;
1773 * With swappiness at 100, anonymous and file have the same priority.
1774 * This scanning priority is essentially the inverse of IO cost.
1776 anon_prio = sc->swappiness;
1777 file_prio = 200 - sc->swappiness;
1780 * OK, so we have swap space and a fair amount of page cache
1781 * pages. We use the recently rotated / recently scanned
1782 * ratios to determine how valuable each cache is.
1784 * Because workloads change over time (and to avoid overflow)
1785 * we keep these statistics as a floating average, which ends
1786 * up weighing recent references more than old ones.
1788 * anon in [0], file in [1]
1790 spin_lock_irq(&zone->lru_lock);
1791 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1792 reclaim_stat->recent_scanned[0] /= 2;
1793 reclaim_stat->recent_rotated[0] /= 2;
1796 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1797 reclaim_stat->recent_scanned[1] /= 2;
1798 reclaim_stat->recent_rotated[1] /= 2;
1802 * The amount of pressure on anon vs file pages is inversely
1803 * proportional to the fraction of recently scanned pages on
1804 * each list that were recently referenced and in active use.
1806 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1807 ap /= reclaim_stat->recent_rotated[0] + 1;
1809 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1810 fp /= reclaim_stat->recent_rotated[1] + 1;
1811 spin_unlock_irq(&zone->lru_lock);
1813 fraction[0] = ap;
1814 fraction[1] = fp;
1815 denominator = ap + fp + 1;
1816 out:
1817 for_each_evictable_lru(l) {
1818 int file = is_file_lru(l);
1819 unsigned long scan;
1821 scan = zone_nr_lru_pages(zone, sc, l);
1822 if (priority || noswap) {
1823 scan >>= priority;
1824 scan = div64_u64(scan * fraction[file], denominator);
1826 nr[l] = nr_scan_try_batch(scan,
1827 &reclaim_stat->nr_saved_scan[l]);
1832 * Reclaim/compaction depends on a number of pages being freed. To avoid
1833 * disruption to the system, a small number of order-0 pages continue to be
1834 * rotated and reclaimed in the normal fashion. However, by the time we get
1835 * back to the allocator and call try_to_compact_zone(), we ensure that
1836 * there are enough free pages for it to be likely successful
1838 static inline bool should_continue_reclaim(struct zone *zone,
1839 unsigned long nr_reclaimed,
1840 unsigned long nr_scanned,
1841 struct scan_control *sc)
1843 unsigned long pages_for_compaction;
1844 unsigned long inactive_lru_pages;
1846 /* If not in reclaim/compaction mode, stop */
1847 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1848 return false;
1850 /* Consider stopping depending on scan and reclaim activity */
1851 if (sc->gfp_mask & __GFP_REPEAT) {
1853 * For __GFP_REPEAT allocations, stop reclaiming if the
1854 * full LRU list has been scanned and we are still failing
1855 * to reclaim pages. This full LRU scan is potentially
1856 * expensive but a __GFP_REPEAT caller really wants to succeed
1858 if (!nr_reclaimed && !nr_scanned)
1859 return false;
1860 } else {
1862 * For non-__GFP_REPEAT allocations which can presumably
1863 * fail without consequence, stop if we failed to reclaim
1864 * any pages from the last SWAP_CLUSTER_MAX number of
1865 * pages that were scanned. This will return to the
1866 * caller faster at the risk reclaim/compaction and
1867 * the resulting allocation attempt fails
1869 if (!nr_reclaimed)
1870 return false;
1874 * If we have not reclaimed enough pages for compaction and the
1875 * inactive lists are large enough, continue reclaiming
1877 pages_for_compaction = (2UL << sc->order);
1878 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1879 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1880 if (sc->nr_reclaimed < pages_for_compaction &&
1881 inactive_lru_pages > pages_for_compaction)
1882 return true;
1884 /* If compaction would go ahead or the allocation would succeed, stop */
1885 switch (compaction_suitable(zone, sc->order)) {
1886 case COMPACT_PARTIAL:
1887 case COMPACT_CONTINUE:
1888 return false;
1889 default:
1890 return true;
1895 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1897 static void shrink_zone(int priority, struct zone *zone,
1898 struct scan_control *sc)
1900 unsigned long nr[NR_LRU_LISTS];
1901 unsigned long nr_to_scan;
1902 enum lru_list l;
1903 unsigned long nr_reclaimed, nr_scanned;
1904 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1906 restart:
1907 nr_reclaimed = 0;
1908 nr_scanned = sc->nr_scanned;
1909 get_scan_count(zone, sc, nr, priority);
1911 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1912 nr[LRU_INACTIVE_FILE]) {
1913 for_each_evictable_lru(l) {
1914 if (nr[l]) {
1915 nr_to_scan = min_t(unsigned long,
1916 nr[l], SWAP_CLUSTER_MAX);
1917 nr[l] -= nr_to_scan;
1919 nr_reclaimed += shrink_list(l, nr_to_scan,
1920 zone, sc, priority);
1924 * On large memory systems, scan >> priority can become
1925 * really large. This is fine for the starting priority;
1926 * we want to put equal scanning pressure on each zone.
1927 * However, if the VM has a harder time of freeing pages,
1928 * with multiple processes reclaiming pages, the total
1929 * freeing target can get unreasonably large.
1931 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1932 break;
1934 sc->nr_reclaimed += nr_reclaimed;
1937 * Even if we did not try to evict anon pages at all, we want to
1938 * rebalance the anon lru active/inactive ratio.
1940 if (inactive_anon_is_low(zone, sc))
1941 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1943 /* reclaim/compaction might need reclaim to continue */
1944 if (should_continue_reclaim(zone, nr_reclaimed,
1945 sc->nr_scanned - nr_scanned, sc))
1946 goto restart;
1948 throttle_vm_writeout(sc->gfp_mask);
1952 * This is the direct reclaim path, for page-allocating processes. We only
1953 * try to reclaim pages from zones which will satisfy the caller's allocation
1954 * request.
1956 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1957 * Because:
1958 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1959 * allocation or
1960 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1961 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1962 * zone defense algorithm.
1964 * If a zone is deemed to be full of pinned pages then just give it a light
1965 * scan then give up on it.
1967 static void shrink_zones(int priority, struct zonelist *zonelist,
1968 struct scan_control *sc)
1970 struct zoneref *z;
1971 struct zone *zone;
1973 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1974 gfp_zone(sc->gfp_mask), sc->nodemask) {
1975 if (!populated_zone(zone))
1976 continue;
1978 * Take care memory controller reclaiming has small influence
1979 * to global LRU.
1981 if (scanning_global_lru(sc)) {
1982 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1983 continue;
1984 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1985 continue; /* Let kswapd poll it */
1988 shrink_zone(priority, zone, sc);
1992 static bool zone_reclaimable(struct zone *zone)
1994 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1997 /* All zones in zonelist are unreclaimable? */
1998 static bool all_unreclaimable(struct zonelist *zonelist,
1999 struct scan_control *sc)
2001 struct zoneref *z;
2002 struct zone *zone;
2004 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2005 gfp_zone(sc->gfp_mask), sc->nodemask) {
2006 if (!populated_zone(zone))
2007 continue;
2008 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2009 continue;
2010 if (!zone->all_unreclaimable)
2011 return false;
2014 return true;
2018 * This is the main entry point to direct page reclaim.
2020 * If a full scan of the inactive list fails to free enough memory then we
2021 * are "out of memory" and something needs to be killed.
2023 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2024 * high - the zone may be full of dirty or under-writeback pages, which this
2025 * caller can't do much about. We kick the writeback threads and take explicit
2026 * naps in the hope that some of these pages can be written. But if the
2027 * allocating task holds filesystem locks which prevent writeout this might not
2028 * work, and the allocation attempt will fail.
2030 * returns: 0, if no pages reclaimed
2031 * else, the number of pages reclaimed
2033 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2034 struct scan_control *sc)
2036 int priority;
2037 unsigned long total_scanned = 0;
2038 struct reclaim_state *reclaim_state = current->reclaim_state;
2039 struct zoneref *z;
2040 struct zone *zone;
2041 unsigned long writeback_threshold;
2043 get_mems_allowed();
2044 delayacct_freepages_start();
2046 if (scanning_global_lru(sc))
2047 count_vm_event(ALLOCSTALL);
2049 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2050 sc->nr_scanned = 0;
2051 if (!priority)
2052 disable_swap_token();
2053 shrink_zones(priority, zonelist, sc);
2055 * Don't shrink slabs when reclaiming memory from
2056 * over limit cgroups
2058 if (scanning_global_lru(sc)) {
2059 unsigned long lru_pages = 0;
2060 for_each_zone_zonelist(zone, z, zonelist,
2061 gfp_zone(sc->gfp_mask)) {
2062 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2063 continue;
2065 lru_pages += zone_reclaimable_pages(zone);
2068 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2069 if (reclaim_state) {
2070 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2071 reclaim_state->reclaimed_slab = 0;
2074 total_scanned += sc->nr_scanned;
2075 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2076 goto out;
2079 * Try to write back as many pages as we just scanned. This
2080 * tends to cause slow streaming writers to write data to the
2081 * disk smoothly, at the dirtying rate, which is nice. But
2082 * that's undesirable in laptop mode, where we *want* lumpy
2083 * writeout. So in laptop mode, write out the whole world.
2085 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2086 if (total_scanned > writeback_threshold) {
2087 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2088 sc->may_writepage = 1;
2091 /* Take a nap, wait for some writeback to complete */
2092 if (!sc->hibernation_mode && sc->nr_scanned &&
2093 priority < DEF_PRIORITY - 2) {
2094 struct zone *preferred_zone;
2096 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2097 &cpuset_current_mems_allowed,
2098 &preferred_zone);
2099 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2103 out:
2104 delayacct_freepages_end();
2105 put_mems_allowed();
2107 if (sc->nr_reclaimed)
2108 return sc->nr_reclaimed;
2111 * As hibernation is going on, kswapd is freezed so that it can't mark
2112 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2113 * check.
2115 if (oom_killer_disabled)
2116 return 0;
2118 /* top priority shrink_zones still had more to do? don't OOM, then */
2119 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2120 return 1;
2122 return 0;
2125 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2126 gfp_t gfp_mask, nodemask_t *nodemask)
2128 unsigned long nr_reclaimed;
2129 struct scan_control sc = {
2130 .gfp_mask = gfp_mask,
2131 .may_writepage = !laptop_mode,
2132 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2133 .may_unmap = 1,
2134 .may_swap = 1,
2135 .swappiness = vm_swappiness,
2136 .order = order,
2137 .mem_cgroup = NULL,
2138 .nodemask = nodemask,
2141 trace_mm_vmscan_direct_reclaim_begin(order,
2142 sc.may_writepage,
2143 gfp_mask);
2145 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2147 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2149 return nr_reclaimed;
2152 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2154 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2155 gfp_t gfp_mask, bool noswap,
2156 unsigned int swappiness,
2157 struct zone *zone)
2159 struct scan_control sc = {
2160 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2161 .may_writepage = !laptop_mode,
2162 .may_unmap = 1,
2163 .may_swap = !noswap,
2164 .swappiness = swappiness,
2165 .order = 0,
2166 .mem_cgroup = mem,
2168 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2169 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2171 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2172 sc.may_writepage,
2173 sc.gfp_mask);
2176 * NOTE: Although we can get the priority field, using it
2177 * here is not a good idea, since it limits the pages we can scan.
2178 * if we don't reclaim here, the shrink_zone from balance_pgdat
2179 * will pick up pages from other mem cgroup's as well. We hack
2180 * the priority and make it zero.
2182 shrink_zone(0, zone, &sc);
2184 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2186 return sc.nr_reclaimed;
2189 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2190 gfp_t gfp_mask,
2191 bool noswap,
2192 unsigned int swappiness)
2194 struct zonelist *zonelist;
2195 unsigned long nr_reclaimed;
2196 struct scan_control sc = {
2197 .may_writepage = !laptop_mode,
2198 .may_unmap = 1,
2199 .may_swap = !noswap,
2200 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2201 .swappiness = swappiness,
2202 .order = 0,
2203 .mem_cgroup = mem_cont,
2204 .nodemask = NULL, /* we don't care the placement */
2207 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2208 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2209 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2211 trace_mm_vmscan_memcg_reclaim_begin(0,
2212 sc.may_writepage,
2213 sc.gfp_mask);
2215 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2217 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2219 return nr_reclaimed;
2221 #endif
2224 * pgdat_balanced is used when checking if a node is balanced for high-order
2225 * allocations. Only zones that meet watermarks and are in a zone allowed
2226 * by the callers classzone_idx are added to balanced_pages. The total of
2227 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2228 * for the node to be considered balanced. Forcing all zones to be balanced
2229 * for high orders can cause excessive reclaim when there are imbalanced zones.
2230 * The choice of 25% is due to
2231 * o a 16M DMA zone that is balanced will not balance a zone on any
2232 * reasonable sized machine
2233 * o On all other machines, the top zone must be at least a reasonable
2234 * precentage of the middle zones. For example, on 32-bit x86, highmem
2235 * would need to be at least 256M for it to be balance a whole node.
2236 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2237 * to balance a node on its own. These seemed like reasonable ratios.
2239 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2240 int classzone_idx)
2242 unsigned long present_pages = 0;
2243 int i;
2245 for (i = 0; i <= classzone_idx; i++)
2246 present_pages += pgdat->node_zones[i].present_pages;
2248 return balanced_pages > (present_pages >> 2);
2251 /* is kswapd sleeping prematurely? */
2252 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2253 int classzone_idx)
2255 int i;
2256 unsigned long balanced = 0;
2257 bool all_zones_ok = true;
2259 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2260 if (remaining)
2261 return true;
2263 /* Check the watermark levels */
2264 for (i = 0; i < pgdat->nr_zones; i++) {
2265 struct zone *zone = pgdat->node_zones + i;
2267 if (!populated_zone(zone))
2268 continue;
2271 * balance_pgdat() skips over all_unreclaimable after
2272 * DEF_PRIORITY. Effectively, it considers them balanced so
2273 * they must be considered balanced here as well if kswapd
2274 * is to sleep
2276 if (zone->all_unreclaimable) {
2277 balanced += zone->present_pages;
2278 continue;
2281 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2282 classzone_idx, 0))
2283 all_zones_ok = false;
2284 else
2285 balanced += zone->present_pages;
2289 * For high-order requests, the balanced zones must contain at least
2290 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2291 * must be balanced
2293 if (order)
2294 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2295 else
2296 return !all_zones_ok;
2300 * For kswapd, balance_pgdat() will work across all this node's zones until
2301 * they are all at high_wmark_pages(zone).
2303 * Returns the final order kswapd was reclaiming at
2305 * There is special handling here for zones which are full of pinned pages.
2306 * This can happen if the pages are all mlocked, or if they are all used by
2307 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2308 * What we do is to detect the case where all pages in the zone have been
2309 * scanned twice and there has been zero successful reclaim. Mark the zone as
2310 * dead and from now on, only perform a short scan. Basically we're polling
2311 * the zone for when the problem goes away.
2313 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2314 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2315 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2316 * lower zones regardless of the number of free pages in the lower zones. This
2317 * interoperates with the page allocator fallback scheme to ensure that aging
2318 * of pages is balanced across the zones.
2320 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2321 int *classzone_idx)
2323 int all_zones_ok;
2324 unsigned long balanced;
2325 int priority;
2326 int i;
2327 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2328 unsigned long total_scanned;
2329 struct reclaim_state *reclaim_state = current->reclaim_state;
2330 struct scan_control sc = {
2331 .gfp_mask = GFP_KERNEL,
2332 .may_unmap = 1,
2333 .may_swap = 1,
2335 * kswapd doesn't want to be bailed out while reclaim. because
2336 * we want to put equal scanning pressure on each zone.
2338 .nr_to_reclaim = ULONG_MAX,
2339 .swappiness = vm_swappiness,
2340 .order = order,
2341 .mem_cgroup = NULL,
2343 loop_again:
2344 total_scanned = 0;
2345 sc.nr_reclaimed = 0;
2346 sc.may_writepage = !laptop_mode;
2347 count_vm_event(PAGEOUTRUN);
2349 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2350 unsigned long lru_pages = 0;
2351 int has_under_min_watermark_zone = 0;
2353 /* The swap token gets in the way of swapout... */
2354 if (!priority)
2355 disable_swap_token();
2357 all_zones_ok = 1;
2358 balanced = 0;
2361 * Scan in the highmem->dma direction for the highest
2362 * zone which needs scanning
2364 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2365 struct zone *zone = pgdat->node_zones + i;
2367 if (!populated_zone(zone))
2368 continue;
2370 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2371 continue;
2374 * Do some background aging of the anon list, to give
2375 * pages a chance to be referenced before reclaiming.
2377 if (inactive_anon_is_low(zone, &sc))
2378 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2379 &sc, priority, 0);
2381 if (!zone_watermark_ok_safe(zone, order,
2382 high_wmark_pages(zone), 0, 0)) {
2383 end_zone = i;
2384 *classzone_idx = i;
2385 break;
2388 if (i < 0)
2389 goto out;
2391 for (i = 0; i <= end_zone; i++) {
2392 struct zone *zone = pgdat->node_zones + i;
2394 lru_pages += zone_reclaimable_pages(zone);
2398 * Now scan the zone in the dma->highmem direction, stopping
2399 * at the last zone which needs scanning.
2401 * We do this because the page allocator works in the opposite
2402 * direction. This prevents the page allocator from allocating
2403 * pages behind kswapd's direction of progress, which would
2404 * cause too much scanning of the lower zones.
2406 for (i = 0; i <= end_zone; i++) {
2407 struct zone *zone = pgdat->node_zones + i;
2408 int nr_slab;
2410 if (!populated_zone(zone))
2411 continue;
2413 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2414 continue;
2416 sc.nr_scanned = 0;
2419 * Call soft limit reclaim before calling shrink_zone.
2420 * For now we ignore the return value
2422 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2425 * We put equal pressure on every zone, unless one
2426 * zone has way too many pages free already.
2428 if (!zone_watermark_ok_safe(zone, order,
2429 8*high_wmark_pages(zone), end_zone, 0))
2430 shrink_zone(priority, zone, &sc);
2431 reclaim_state->reclaimed_slab = 0;
2432 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2433 lru_pages);
2434 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2435 total_scanned += sc.nr_scanned;
2437 if (zone->all_unreclaimable)
2438 continue;
2439 if (nr_slab == 0 &&
2440 !zone_reclaimable(zone))
2441 zone->all_unreclaimable = 1;
2443 * If we've done a decent amount of scanning and
2444 * the reclaim ratio is low, start doing writepage
2445 * even in laptop mode
2447 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2448 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2449 sc.may_writepage = 1;
2451 if (!zone_watermark_ok_safe(zone, order,
2452 high_wmark_pages(zone), end_zone, 0)) {
2453 all_zones_ok = 0;
2455 * We are still under min water mark. This
2456 * means that we have a GFP_ATOMIC allocation
2457 * failure risk. Hurry up!
2459 if (!zone_watermark_ok_safe(zone, order,
2460 min_wmark_pages(zone), end_zone, 0))
2461 has_under_min_watermark_zone = 1;
2462 } else {
2464 * If a zone reaches its high watermark,
2465 * consider it to be no longer congested. It's
2466 * possible there are dirty pages backed by
2467 * congested BDIs but as pressure is relieved,
2468 * spectulatively avoid congestion waits
2470 zone_clear_flag(zone, ZONE_CONGESTED);
2471 if (i <= *classzone_idx)
2472 balanced += zone->present_pages;
2476 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2477 break; /* kswapd: all done */
2479 * OK, kswapd is getting into trouble. Take a nap, then take
2480 * another pass across the zones.
2482 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2483 if (has_under_min_watermark_zone)
2484 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2485 else
2486 congestion_wait(BLK_RW_ASYNC, HZ/10);
2490 * We do this so kswapd doesn't build up large priorities for
2491 * example when it is freeing in parallel with allocators. It
2492 * matches the direct reclaim path behaviour in terms of impact
2493 * on zone->*_priority.
2495 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2496 break;
2498 out:
2501 * order-0: All zones must meet high watermark for a balanced node
2502 * high-order: Balanced zones must make up at least 25% of the node
2503 * for the node to be balanced
2505 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2506 cond_resched();
2508 try_to_freeze();
2511 * Fragmentation may mean that the system cannot be
2512 * rebalanced for high-order allocations in all zones.
2513 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2514 * it means the zones have been fully scanned and are still
2515 * not balanced. For high-order allocations, there is
2516 * little point trying all over again as kswapd may
2517 * infinite loop.
2519 * Instead, recheck all watermarks at order-0 as they
2520 * are the most important. If watermarks are ok, kswapd will go
2521 * back to sleep. High-order users can still perform direct
2522 * reclaim if they wish.
2524 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2525 order = sc.order = 0;
2527 goto loop_again;
2531 * If kswapd was reclaiming at a higher order, it has the option of
2532 * sleeping without all zones being balanced. Before it does, it must
2533 * ensure that the watermarks for order-0 on *all* zones are met and
2534 * that the congestion flags are cleared. The congestion flag must
2535 * be cleared as kswapd is the only mechanism that clears the flag
2536 * and it is potentially going to sleep here.
2538 if (order) {
2539 for (i = 0; i <= end_zone; i++) {
2540 struct zone *zone = pgdat->node_zones + i;
2542 if (!populated_zone(zone))
2543 continue;
2545 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2546 continue;
2548 /* Confirm the zone is balanced for order-0 */
2549 if (!zone_watermark_ok(zone, 0,
2550 high_wmark_pages(zone), 0, 0)) {
2551 order = sc.order = 0;
2552 goto loop_again;
2555 /* If balanced, clear the congested flag */
2556 zone_clear_flag(zone, ZONE_CONGESTED);
2561 * Return the order we were reclaiming at so sleeping_prematurely()
2562 * makes a decision on the order we were last reclaiming at. However,
2563 * if another caller entered the allocator slow path while kswapd
2564 * was awake, order will remain at the higher level
2566 *classzone_idx = end_zone;
2567 return order;
2570 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2572 long remaining = 0;
2573 DEFINE_WAIT(wait);
2575 if (freezing(current) || kthread_should_stop())
2576 return;
2578 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2580 /* Try to sleep for a short interval */
2581 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2582 remaining = schedule_timeout(HZ/10);
2583 finish_wait(&pgdat->kswapd_wait, &wait);
2584 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2588 * After a short sleep, check if it was a premature sleep. If not, then
2589 * go fully to sleep until explicitly woken up.
2591 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2592 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2595 * vmstat counters are not perfectly accurate and the estimated
2596 * value for counters such as NR_FREE_PAGES can deviate from the
2597 * true value by nr_online_cpus * threshold. To avoid the zone
2598 * watermarks being breached while under pressure, we reduce the
2599 * per-cpu vmstat threshold while kswapd is awake and restore
2600 * them before going back to sleep.
2602 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2603 schedule();
2604 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2605 } else {
2606 if (remaining)
2607 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2608 else
2609 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2611 finish_wait(&pgdat->kswapd_wait, &wait);
2615 * The background pageout daemon, started as a kernel thread
2616 * from the init process.
2618 * This basically trickles out pages so that we have _some_
2619 * free memory available even if there is no other activity
2620 * that frees anything up. This is needed for things like routing
2621 * etc, where we otherwise might have all activity going on in
2622 * asynchronous contexts that cannot page things out.
2624 * If there are applications that are active memory-allocators
2625 * (most normal use), this basically shouldn't matter.
2627 static int kswapd(void *p)
2629 unsigned long order;
2630 int classzone_idx;
2631 pg_data_t *pgdat = (pg_data_t*)p;
2632 struct task_struct *tsk = current;
2634 struct reclaim_state reclaim_state = {
2635 .reclaimed_slab = 0,
2637 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2639 lockdep_set_current_reclaim_state(GFP_KERNEL);
2641 if (!cpumask_empty(cpumask))
2642 set_cpus_allowed_ptr(tsk, cpumask);
2643 current->reclaim_state = &reclaim_state;
2646 * Tell the memory management that we're a "memory allocator",
2647 * and that if we need more memory we should get access to it
2648 * regardless (see "__alloc_pages()"). "kswapd" should
2649 * never get caught in the normal page freeing logic.
2651 * (Kswapd normally doesn't need memory anyway, but sometimes
2652 * you need a small amount of memory in order to be able to
2653 * page out something else, and this flag essentially protects
2654 * us from recursively trying to free more memory as we're
2655 * trying to free the first piece of memory in the first place).
2657 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2658 set_freezable();
2660 order = 0;
2661 classzone_idx = MAX_NR_ZONES - 1;
2662 for ( ; ; ) {
2663 unsigned long new_order;
2664 int new_classzone_idx;
2665 int ret;
2667 new_order = pgdat->kswapd_max_order;
2668 new_classzone_idx = pgdat->classzone_idx;
2669 pgdat->kswapd_max_order = 0;
2670 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2671 if (order < new_order || classzone_idx > new_classzone_idx) {
2673 * Don't sleep if someone wants a larger 'order'
2674 * allocation or has tigher zone constraints
2676 order = new_order;
2677 classzone_idx = new_classzone_idx;
2678 } else {
2679 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2680 order = pgdat->kswapd_max_order;
2681 classzone_idx = pgdat->classzone_idx;
2682 pgdat->kswapd_max_order = 0;
2683 pgdat->classzone_idx = MAX_NR_ZONES - 1;
2686 ret = try_to_freeze();
2687 if (kthread_should_stop())
2688 break;
2691 * We can speed up thawing tasks if we don't call balance_pgdat
2692 * after returning from the refrigerator
2694 if (!ret) {
2695 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2696 order = balance_pgdat(pgdat, order, &classzone_idx);
2699 return 0;
2703 * A zone is low on free memory, so wake its kswapd task to service it.
2705 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2707 pg_data_t *pgdat;
2709 if (!populated_zone(zone))
2710 return;
2712 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2713 return;
2714 pgdat = zone->zone_pgdat;
2715 if (pgdat->kswapd_max_order < order) {
2716 pgdat->kswapd_max_order = order;
2717 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2719 if (!waitqueue_active(&pgdat->kswapd_wait))
2720 return;
2721 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2722 return;
2724 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2725 wake_up_interruptible(&pgdat->kswapd_wait);
2729 * The reclaimable count would be mostly accurate.
2730 * The less reclaimable pages may be
2731 * - mlocked pages, which will be moved to unevictable list when encountered
2732 * - mapped pages, which may require several travels to be reclaimed
2733 * - dirty pages, which is not "instantly" reclaimable
2735 unsigned long global_reclaimable_pages(void)
2737 int nr;
2739 nr = global_page_state(NR_ACTIVE_FILE) +
2740 global_page_state(NR_INACTIVE_FILE);
2742 if (nr_swap_pages > 0)
2743 nr += global_page_state(NR_ACTIVE_ANON) +
2744 global_page_state(NR_INACTIVE_ANON);
2746 return nr;
2749 unsigned long zone_reclaimable_pages(struct zone *zone)
2751 int nr;
2753 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2754 zone_page_state(zone, NR_INACTIVE_FILE);
2756 if (nr_swap_pages > 0)
2757 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2758 zone_page_state(zone, NR_INACTIVE_ANON);
2760 return nr;
2763 #ifdef CONFIG_HIBERNATION
2765 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2766 * freed pages.
2768 * Rather than trying to age LRUs the aim is to preserve the overall
2769 * LRU order by reclaiming preferentially
2770 * inactive > active > active referenced > active mapped
2772 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2774 struct reclaim_state reclaim_state;
2775 struct scan_control sc = {
2776 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2777 .may_swap = 1,
2778 .may_unmap = 1,
2779 .may_writepage = 1,
2780 .nr_to_reclaim = nr_to_reclaim,
2781 .hibernation_mode = 1,
2782 .swappiness = vm_swappiness,
2783 .order = 0,
2785 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2786 struct task_struct *p = current;
2787 unsigned long nr_reclaimed;
2789 p->flags |= PF_MEMALLOC;
2790 lockdep_set_current_reclaim_state(sc.gfp_mask);
2791 reclaim_state.reclaimed_slab = 0;
2792 p->reclaim_state = &reclaim_state;
2794 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2796 p->reclaim_state = NULL;
2797 lockdep_clear_current_reclaim_state();
2798 p->flags &= ~PF_MEMALLOC;
2800 return nr_reclaimed;
2802 #endif /* CONFIG_HIBERNATION */
2804 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2805 not required for correctness. So if the last cpu in a node goes
2806 away, we get changed to run anywhere: as the first one comes back,
2807 restore their cpu bindings. */
2808 static int __devinit cpu_callback(struct notifier_block *nfb,
2809 unsigned long action, void *hcpu)
2811 int nid;
2813 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2814 for_each_node_state(nid, N_HIGH_MEMORY) {
2815 pg_data_t *pgdat = NODE_DATA(nid);
2816 const struct cpumask *mask;
2818 mask = cpumask_of_node(pgdat->node_id);
2820 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2821 /* One of our CPUs online: restore mask */
2822 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2825 return NOTIFY_OK;
2829 * This kswapd start function will be called by init and node-hot-add.
2830 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2832 int kswapd_run(int nid)
2834 pg_data_t *pgdat = NODE_DATA(nid);
2835 int ret = 0;
2837 if (pgdat->kswapd)
2838 return 0;
2840 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2841 if (IS_ERR(pgdat->kswapd)) {
2842 /* failure at boot is fatal */
2843 BUG_ON(system_state == SYSTEM_BOOTING);
2844 printk("Failed to start kswapd on node %d\n",nid);
2845 ret = -1;
2847 return ret;
2851 * Called by memory hotplug when all memory in a node is offlined.
2853 void kswapd_stop(int nid)
2855 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2857 if (kswapd)
2858 kthread_stop(kswapd);
2861 static int __init kswapd_init(void)
2863 int nid;
2865 swap_setup();
2866 for_each_node_state(nid, N_HIGH_MEMORY)
2867 kswapd_run(nid);
2868 hotcpu_notifier(cpu_callback, 0);
2869 return 0;
2872 module_init(kswapd_init)
2874 #ifdef CONFIG_NUMA
2876 * Zone reclaim mode
2878 * If non-zero call zone_reclaim when the number of free pages falls below
2879 * the watermarks.
2881 int zone_reclaim_mode __read_mostly;
2883 #define RECLAIM_OFF 0
2884 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2885 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2886 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2889 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2890 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2891 * a zone.
2893 #define ZONE_RECLAIM_PRIORITY 4
2896 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2897 * occur.
2899 int sysctl_min_unmapped_ratio = 1;
2902 * If the number of slab pages in a zone grows beyond this percentage then
2903 * slab reclaim needs to occur.
2905 int sysctl_min_slab_ratio = 5;
2907 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2909 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2910 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2911 zone_page_state(zone, NR_ACTIVE_FILE);
2914 * It's possible for there to be more file mapped pages than
2915 * accounted for by the pages on the file LRU lists because
2916 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2918 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2921 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2922 static long zone_pagecache_reclaimable(struct zone *zone)
2924 long nr_pagecache_reclaimable;
2925 long delta = 0;
2928 * If RECLAIM_SWAP is set, then all file pages are considered
2929 * potentially reclaimable. Otherwise, we have to worry about
2930 * pages like swapcache and zone_unmapped_file_pages() provides
2931 * a better estimate
2933 if (zone_reclaim_mode & RECLAIM_SWAP)
2934 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2935 else
2936 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2938 /* If we can't clean pages, remove dirty pages from consideration */
2939 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2940 delta += zone_page_state(zone, NR_FILE_DIRTY);
2942 /* Watch for any possible underflows due to delta */
2943 if (unlikely(delta > nr_pagecache_reclaimable))
2944 delta = nr_pagecache_reclaimable;
2946 return nr_pagecache_reclaimable - delta;
2950 * Try to free up some pages from this zone through reclaim.
2952 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2954 /* Minimum pages needed in order to stay on node */
2955 const unsigned long nr_pages = 1 << order;
2956 struct task_struct *p = current;
2957 struct reclaim_state reclaim_state;
2958 int priority;
2959 struct scan_control sc = {
2960 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2961 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2962 .may_swap = 1,
2963 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2964 SWAP_CLUSTER_MAX),
2965 .gfp_mask = gfp_mask,
2966 .swappiness = vm_swappiness,
2967 .order = order,
2969 unsigned long nr_slab_pages0, nr_slab_pages1;
2971 cond_resched();
2973 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2974 * and we also need to be able to write out pages for RECLAIM_WRITE
2975 * and RECLAIM_SWAP.
2977 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2978 lockdep_set_current_reclaim_state(gfp_mask);
2979 reclaim_state.reclaimed_slab = 0;
2980 p->reclaim_state = &reclaim_state;
2982 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2984 * Free memory by calling shrink zone with increasing
2985 * priorities until we have enough memory freed.
2987 priority = ZONE_RECLAIM_PRIORITY;
2988 do {
2989 shrink_zone(priority, zone, &sc);
2990 priority--;
2991 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2994 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2995 if (nr_slab_pages0 > zone->min_slab_pages) {
2997 * shrink_slab() does not currently allow us to determine how
2998 * many pages were freed in this zone. So we take the current
2999 * number of slab pages and shake the slab until it is reduced
3000 * by the same nr_pages that we used for reclaiming unmapped
3001 * pages.
3003 * Note that shrink_slab will free memory on all zones and may
3004 * take a long time.
3006 for (;;) {
3007 unsigned long lru_pages = zone_reclaimable_pages(zone);
3009 /* No reclaimable slab or very low memory pressure */
3010 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3011 break;
3013 /* Freed enough memory */
3014 nr_slab_pages1 = zone_page_state(zone,
3015 NR_SLAB_RECLAIMABLE);
3016 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3017 break;
3021 * Update nr_reclaimed by the number of slab pages we
3022 * reclaimed from this zone.
3024 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3025 if (nr_slab_pages1 < nr_slab_pages0)
3026 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3029 p->reclaim_state = NULL;
3030 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3031 lockdep_clear_current_reclaim_state();
3032 return sc.nr_reclaimed >= nr_pages;
3035 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3037 int node_id;
3038 int ret;
3041 * Zone reclaim reclaims unmapped file backed pages and
3042 * slab pages if we are over the defined limits.
3044 * A small portion of unmapped file backed pages is needed for
3045 * file I/O otherwise pages read by file I/O will be immediately
3046 * thrown out if the zone is overallocated. So we do not reclaim
3047 * if less than a specified percentage of the zone is used by
3048 * unmapped file backed pages.
3050 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3051 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3052 return ZONE_RECLAIM_FULL;
3054 if (zone->all_unreclaimable)
3055 return ZONE_RECLAIM_FULL;
3058 * Do not scan if the allocation should not be delayed.
3060 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3061 return ZONE_RECLAIM_NOSCAN;
3064 * Only run zone reclaim on the local zone or on zones that do not
3065 * have associated processors. This will favor the local processor
3066 * over remote processors and spread off node memory allocations
3067 * as wide as possible.
3069 node_id = zone_to_nid(zone);
3070 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3071 return ZONE_RECLAIM_NOSCAN;
3073 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3074 return ZONE_RECLAIM_NOSCAN;
3076 ret = __zone_reclaim(zone, gfp_mask, order);
3077 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3079 if (!ret)
3080 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3082 return ret;
3084 #endif
3087 * page_evictable - test whether a page is evictable
3088 * @page: the page to test
3089 * @vma: the VMA in which the page is or will be mapped, may be NULL
3091 * Test whether page is evictable--i.e., should be placed on active/inactive
3092 * lists vs unevictable list. The vma argument is !NULL when called from the
3093 * fault path to determine how to instantate a new page.
3095 * Reasons page might not be evictable:
3096 * (1) page's mapping marked unevictable
3097 * (2) page is part of an mlocked VMA
3100 int page_evictable(struct page *page, struct vm_area_struct *vma)
3103 if (mapping_unevictable(page_mapping(page)))
3104 return 0;
3106 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3107 return 0;
3109 return 1;
3113 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3114 * @page: page to check evictability and move to appropriate lru list
3115 * @zone: zone page is in
3117 * Checks a page for evictability and moves the page to the appropriate
3118 * zone lru list.
3120 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3121 * have PageUnevictable set.
3123 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3125 VM_BUG_ON(PageActive(page));
3127 retry:
3128 ClearPageUnevictable(page);
3129 if (page_evictable(page, NULL)) {
3130 enum lru_list l = page_lru_base_type(page);
3132 __dec_zone_state(zone, NR_UNEVICTABLE);
3133 list_move(&page->lru, &zone->lru[l].list);
3134 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3135 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3136 __count_vm_event(UNEVICTABLE_PGRESCUED);
3137 } else {
3139 * rotate unevictable list
3141 SetPageUnevictable(page);
3142 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3143 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3144 if (page_evictable(page, NULL))
3145 goto retry;
3150 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3151 * @mapping: struct address_space to scan for evictable pages
3153 * Scan all pages in mapping. Check unevictable pages for
3154 * evictability and move them to the appropriate zone lru list.
3156 void scan_mapping_unevictable_pages(struct address_space *mapping)
3158 pgoff_t next = 0;
3159 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3160 PAGE_CACHE_SHIFT;
3161 struct zone *zone;
3162 struct pagevec pvec;
3164 if (mapping->nrpages == 0)
3165 return;
3167 pagevec_init(&pvec, 0);
3168 while (next < end &&
3169 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3170 int i;
3171 int pg_scanned = 0;
3173 zone = NULL;
3175 for (i = 0; i < pagevec_count(&pvec); i++) {
3176 struct page *page = pvec.pages[i];
3177 pgoff_t page_index = page->index;
3178 struct zone *pagezone = page_zone(page);
3180 pg_scanned++;
3181 if (page_index > next)
3182 next = page_index;
3183 next++;
3185 if (pagezone != zone) {
3186 if (zone)
3187 spin_unlock_irq(&zone->lru_lock);
3188 zone = pagezone;
3189 spin_lock_irq(&zone->lru_lock);
3192 if (PageLRU(page) && PageUnevictable(page))
3193 check_move_unevictable_page(page, zone);
3195 if (zone)
3196 spin_unlock_irq(&zone->lru_lock);
3197 pagevec_release(&pvec);
3199 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3205 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3206 * @zone - zone of which to scan the unevictable list
3208 * Scan @zone's unevictable LRU lists to check for pages that have become
3209 * evictable. Move those that have to @zone's inactive list where they
3210 * become candidates for reclaim, unless shrink_inactive_zone() decides
3211 * to reactivate them. Pages that are still unevictable are rotated
3212 * back onto @zone's unevictable list.
3214 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3215 static void scan_zone_unevictable_pages(struct zone *zone)
3217 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3218 unsigned long scan;
3219 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3221 while (nr_to_scan > 0) {
3222 unsigned long batch_size = min(nr_to_scan,
3223 SCAN_UNEVICTABLE_BATCH_SIZE);
3225 spin_lock_irq(&zone->lru_lock);
3226 for (scan = 0; scan < batch_size; scan++) {
3227 struct page *page = lru_to_page(l_unevictable);
3229 if (!trylock_page(page))
3230 continue;
3232 prefetchw_prev_lru_page(page, l_unevictable, flags);
3234 if (likely(PageLRU(page) && PageUnevictable(page)))
3235 check_move_unevictable_page(page, zone);
3237 unlock_page(page);
3239 spin_unlock_irq(&zone->lru_lock);
3241 nr_to_scan -= batch_size;
3247 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3249 * A really big hammer: scan all zones' unevictable LRU lists to check for
3250 * pages that have become evictable. Move those back to the zones'
3251 * inactive list where they become candidates for reclaim.
3252 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3253 * and we add swap to the system. As such, it runs in the context of a task
3254 * that has possibly/probably made some previously unevictable pages
3255 * evictable.
3257 static void scan_all_zones_unevictable_pages(void)
3259 struct zone *zone;
3261 for_each_zone(zone) {
3262 scan_zone_unevictable_pages(zone);
3267 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3268 * all nodes' unevictable lists for evictable pages
3270 unsigned long scan_unevictable_pages;
3272 int scan_unevictable_handler(struct ctl_table *table, int write,
3273 void __user *buffer,
3274 size_t *length, loff_t *ppos)
3276 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3278 if (write && *(unsigned long *)table->data)
3279 scan_all_zones_unevictable_pages();
3281 scan_unevictable_pages = 0;
3282 return 0;
3285 #ifdef CONFIG_NUMA
3287 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3288 * a specified node's per zone unevictable lists for evictable pages.
3291 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3292 struct sysdev_attribute *attr,
3293 char *buf)
3295 return sprintf(buf, "0\n"); /* always zero; should fit... */
3298 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3299 struct sysdev_attribute *attr,
3300 const char *buf, size_t count)
3302 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3303 struct zone *zone;
3304 unsigned long res;
3305 unsigned long req = strict_strtoul(buf, 10, &res);
3307 if (!req)
3308 return 1; /* zero is no-op */
3310 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3311 if (!populated_zone(zone))
3312 continue;
3313 scan_zone_unevictable_pages(zone);
3315 return 1;
3319 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3320 read_scan_unevictable_node,
3321 write_scan_unevictable_node);
3323 int scan_unevictable_register_node(struct node *node)
3325 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3328 void scan_unevictable_unregister_node(struct node *node)
3330 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3332 #endif