2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
47 * To use this allocator, arch code should do the followings.
49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 * regular address to percpu pointer and back if they need to be
53 * different from the default
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 * setup the first chunk containing the kernel static percpu area
59 #include <linux/bitmap.h>
60 #include <linux/bootmem.h>
61 #include <linux/err.h>
62 #include <linux/list.h>
63 #include <linux/log2.h>
65 #include <linux/module.h>
66 #include <linux/mutex.h>
67 #include <linux/percpu.h>
68 #include <linux/pfn.h>
69 #include <linux/slab.h>
70 #include <linux/spinlock.h>
71 #include <linux/vmalloc.h>
72 #include <linux/workqueue.h>
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
78 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
79 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \
84 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
85 + (unsigned long)__per_cpu_start)
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
90 - (unsigned long)__per_cpu_start)
94 struct list_head list
; /* linked to pcpu_slot lists */
95 int free_size
; /* free bytes in the chunk */
96 int contig_hint
; /* max contiguous size hint */
97 void *base_addr
; /* base address of this chunk */
98 int map_used
; /* # of map entries used */
99 int map_alloc
; /* # of map entries allocated */
100 int *map
; /* allocation map */
101 struct vm_struct
**vms
; /* mapped vmalloc regions */
102 bool immutable
; /* no [de]population allowed */
103 unsigned long populated
[]; /* populated bitmap */
106 static int pcpu_unit_pages __read_mostly
;
107 static int pcpu_unit_size __read_mostly
;
108 static int pcpu_nr_units __read_mostly
;
109 static int pcpu_atom_size __read_mostly
;
110 static int pcpu_nr_slots __read_mostly
;
111 static size_t pcpu_chunk_struct_size __read_mostly
;
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly
;
115 static unsigned int pcpu_last_unit_cpu __read_mostly
;
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly
;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
121 static const int *pcpu_unit_map __read_mostly
; /* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly
; /* cpu -> unit offset */
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly
;
126 static const unsigned long *pcpu_group_offsets __read_mostly
;
127 static const size_t *pcpu_group_sizes __read_mostly
;
130 * The first chunk which always exists. Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
134 static struct pcpu_chunk
*pcpu_first_chunk
;
137 * Optional reserved chunk. This chunk reserves part of the first
138 * chunk and serves it for reserved allocations. The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
140 * area doesn't exist, the following variables contain NULL and 0
143 static struct pcpu_chunk
*pcpu_reserved_chunk
;
144 static int pcpu_reserved_chunk_limit
;
147 * Synchronization rules.
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping. The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary. All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released.
158 * Free path accesses and alters only the index data structures, so it
159 * can be safely called from atomic context. When memory needs to be
160 * returned to the system, free path schedules reclaim_work which
161 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
162 * reclaimed, release both locks and frees the chunks. Note that it's
163 * necessary to grab both locks to remove a chunk from circulation as
164 * allocation path might be referencing the chunk with only
165 * pcpu_alloc_mutex locked.
167 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* protects whole alloc and reclaim */
168 static DEFINE_SPINLOCK(pcpu_lock
); /* protects index data structures */
170 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
172 /* reclaim work to release fully free chunks, scheduled from free path */
173 static void pcpu_reclaim(struct work_struct
*work
);
174 static DECLARE_WORK(pcpu_reclaim_work
, pcpu_reclaim
);
176 static int __pcpu_size_to_slot(int size
)
178 int highbit
= fls(size
); /* size is in bytes */
179 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
182 static int pcpu_size_to_slot(int size
)
184 if (size
== pcpu_unit_size
)
185 return pcpu_nr_slots
- 1;
186 return __pcpu_size_to_slot(size
);
189 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
191 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
194 return pcpu_size_to_slot(chunk
->free_size
);
197 static int pcpu_page_idx(unsigned int cpu
, int page_idx
)
199 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
202 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
203 unsigned int cpu
, int page_idx
)
205 return (unsigned long)chunk
->base_addr
+ pcpu_unit_offsets
[cpu
] +
206 (page_idx
<< PAGE_SHIFT
);
209 static struct page
*pcpu_chunk_page(struct pcpu_chunk
*chunk
,
210 unsigned int cpu
, int page_idx
)
212 /* must not be used on pre-mapped chunk */
213 WARN_ON(chunk
->immutable
);
215 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk
, cpu
, page_idx
));
218 /* set the pointer to a chunk in a page struct */
219 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
221 page
->index
= (unsigned long)pcpu
;
224 /* obtain pointer to a chunk from a page struct */
225 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
227 return (struct pcpu_chunk
*)page
->index
;
230 static void pcpu_next_unpop(struct pcpu_chunk
*chunk
, int *rs
, int *re
, int end
)
232 *rs
= find_next_zero_bit(chunk
->populated
, end
, *rs
);
233 *re
= find_next_bit(chunk
->populated
, end
, *rs
+ 1);
236 static void pcpu_next_pop(struct pcpu_chunk
*chunk
, int *rs
, int *re
, int end
)
238 *rs
= find_next_bit(chunk
->populated
, end
, *rs
);
239 *re
= find_next_zero_bit(chunk
->populated
, end
, *rs
+ 1);
243 * (Un)populated page region iterators. Iterate over (un)populated
244 * page regions betwen @start and @end in @chunk. @rs and @re should
245 * be integer variables and will be set to start and end page index of
246 * the current region.
248 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
249 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
251 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
253 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
254 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
256 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
259 * pcpu_mem_alloc - allocate memory
260 * @size: bytes to allocate
262 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
263 * kzalloc() is used; otherwise, vmalloc() is used. The returned
264 * memory is always zeroed.
267 * Does GFP_KERNEL allocation.
270 * Pointer to the allocated area on success, NULL on failure.
272 static void *pcpu_mem_alloc(size_t size
)
274 if (size
<= PAGE_SIZE
)
275 return kzalloc(size
, GFP_KERNEL
);
277 void *ptr
= vmalloc(size
);
279 memset(ptr
, 0, size
);
285 * pcpu_mem_free - free memory
286 * @ptr: memory to free
287 * @size: size of the area
289 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
291 static void pcpu_mem_free(void *ptr
, size_t size
)
293 if (size
<= PAGE_SIZE
)
300 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
301 * @chunk: chunk of interest
302 * @oslot: the previous slot it was on
304 * This function is called after an allocation or free changed @chunk.
305 * New slot according to the changed state is determined and @chunk is
306 * moved to the slot. Note that the reserved chunk is never put on
312 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
314 int nslot
= pcpu_chunk_slot(chunk
);
316 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
318 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
320 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
325 * pcpu_chunk_addr_search - determine chunk containing specified address
326 * @addr: address for which the chunk needs to be determined.
329 * The address of the found chunk.
331 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
333 void *first_start
= pcpu_first_chunk
->base_addr
;
335 /* is it in the first chunk? */
336 if (addr
>= first_start
&& addr
< first_start
+ pcpu_unit_size
) {
337 /* is it in the reserved area? */
338 if (addr
< first_start
+ pcpu_reserved_chunk_limit
)
339 return pcpu_reserved_chunk
;
340 return pcpu_first_chunk
;
344 * The address is relative to unit0 which might be unused and
345 * thus unmapped. Offset the address to the unit space of the
346 * current processor before looking it up in the vmalloc
347 * space. Note that any possible cpu id can be used here, so
348 * there's no need to worry about preemption or cpu hotplug.
350 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
351 return pcpu_get_page_chunk(vmalloc_to_page(addr
));
355 * pcpu_extend_area_map - extend area map for allocation
356 * @chunk: target chunk
358 * Extend area map of @chunk so that it can accomodate an allocation.
359 * A single allocation can split an area into three areas, so this
360 * function makes sure that @chunk->map has at least two extra slots.
363 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
364 * if area map is extended.
367 * 0 if noop, 1 if successfully extended, -errno on failure.
369 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
)
376 if (chunk
->map_alloc
>= chunk
->map_used
+ 2)
379 spin_unlock_irq(&pcpu_lock
);
381 new_alloc
= PCPU_DFL_MAP_ALLOC
;
382 while (new_alloc
< chunk
->map_used
+ 2)
385 new = pcpu_mem_alloc(new_alloc
* sizeof(new[0]));
387 spin_lock_irq(&pcpu_lock
);
392 * Acquire pcpu_lock and switch to new area map. Only free
393 * could have happened inbetween, so map_used couldn't have
396 spin_lock_irq(&pcpu_lock
);
397 BUG_ON(new_alloc
< chunk
->map_used
+ 2);
399 size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
400 memcpy(new, chunk
->map
, size
);
403 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
404 * one of the first chunks and still using static map.
406 if (chunk
->map_alloc
>= PCPU_DFL_MAP_ALLOC
)
407 pcpu_mem_free(chunk
->map
, size
);
409 chunk
->map_alloc
= new_alloc
;
415 * pcpu_split_block - split a map block
416 * @chunk: chunk of interest
417 * @i: index of map block to split
418 * @head: head size in bytes (can be 0)
419 * @tail: tail size in bytes (can be 0)
421 * Split the @i'th map block into two or three blocks. If @head is
422 * non-zero, @head bytes block is inserted before block @i moving it
423 * to @i+1 and reducing its size by @head bytes.
425 * If @tail is non-zero, the target block, which can be @i or @i+1
426 * depending on @head, is reduced by @tail bytes and @tail byte block
427 * is inserted after the target block.
429 * @chunk->map must have enough free slots to accomodate the split.
434 static void pcpu_split_block(struct pcpu_chunk
*chunk
, int i
,
437 int nr_extra
= !!head
+ !!tail
;
439 BUG_ON(chunk
->map_alloc
< chunk
->map_used
+ nr_extra
);
441 /* insert new subblocks */
442 memmove(&chunk
->map
[i
+ nr_extra
], &chunk
->map
[i
],
443 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
444 chunk
->map_used
+= nr_extra
;
447 chunk
->map
[i
+ 1] = chunk
->map
[i
] - head
;
448 chunk
->map
[i
++] = head
;
451 chunk
->map
[i
++] -= tail
;
452 chunk
->map
[i
] = tail
;
457 * pcpu_alloc_area - allocate area from a pcpu_chunk
458 * @chunk: chunk of interest
459 * @size: wanted size in bytes
460 * @align: wanted align
462 * Try to allocate @size bytes area aligned at @align from @chunk.
463 * Note that this function only allocates the offset. It doesn't
464 * populate or map the area.
466 * @chunk->map must have at least two free slots.
472 * Allocated offset in @chunk on success, -1 if no matching area is
475 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
)
477 int oslot
= pcpu_chunk_slot(chunk
);
481 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++])) {
482 bool is_last
= i
+ 1 == chunk
->map_used
;
485 /* extra for alignment requirement */
486 head
= ALIGN(off
, align
) - off
;
487 BUG_ON(i
== 0 && head
!= 0);
489 if (chunk
->map
[i
] < 0)
491 if (chunk
->map
[i
] < head
+ size
) {
492 max_contig
= max(chunk
->map
[i
], max_contig
);
497 * If head is small or the previous block is free,
498 * merge'em. Note that 'small' is defined as smaller
499 * than sizeof(int), which is very small but isn't too
500 * uncommon for percpu allocations.
502 if (head
&& (head
< sizeof(int) || chunk
->map
[i
- 1] > 0)) {
503 if (chunk
->map
[i
- 1] > 0)
504 chunk
->map
[i
- 1] += head
;
506 chunk
->map
[i
- 1] -= head
;
507 chunk
->free_size
-= head
;
509 chunk
->map
[i
] -= head
;
514 /* if tail is small, just keep it around */
515 tail
= chunk
->map
[i
] - head
- size
;
516 if (tail
< sizeof(int))
519 /* split if warranted */
521 pcpu_split_block(chunk
, i
, head
, tail
);
525 max_contig
= max(chunk
->map
[i
- 1], max_contig
);
528 max_contig
= max(chunk
->map
[i
+ 1], max_contig
);
531 /* update hint and mark allocated */
533 chunk
->contig_hint
= max_contig
; /* fully scanned */
535 chunk
->contig_hint
= max(chunk
->contig_hint
,
538 chunk
->free_size
-= chunk
->map
[i
];
539 chunk
->map
[i
] = -chunk
->map
[i
];
541 pcpu_chunk_relocate(chunk
, oslot
);
545 chunk
->contig_hint
= max_contig
; /* fully scanned */
546 pcpu_chunk_relocate(chunk
, oslot
);
548 /* tell the upper layer that this chunk has no matching area */
553 * pcpu_free_area - free area to a pcpu_chunk
554 * @chunk: chunk of interest
555 * @freeme: offset of area to free
557 * Free area starting from @freeme to @chunk. Note that this function
558 * only modifies the allocation map. It doesn't depopulate or unmap
564 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
)
566 int oslot
= pcpu_chunk_slot(chunk
);
569 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++]))
572 BUG_ON(off
!= freeme
);
573 BUG_ON(chunk
->map
[i
] > 0);
575 chunk
->map
[i
] = -chunk
->map
[i
];
576 chunk
->free_size
+= chunk
->map
[i
];
578 /* merge with previous? */
579 if (i
> 0 && chunk
->map
[i
- 1] >= 0) {
580 chunk
->map
[i
- 1] += chunk
->map
[i
];
582 memmove(&chunk
->map
[i
], &chunk
->map
[i
+ 1],
583 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
586 /* merge with next? */
587 if (i
+ 1 < chunk
->map_used
&& chunk
->map
[i
+ 1] >= 0) {
588 chunk
->map
[i
] += chunk
->map
[i
+ 1];
590 memmove(&chunk
->map
[i
+ 1], &chunk
->map
[i
+ 2],
591 (chunk
->map_used
- (i
+ 1)) * sizeof(chunk
->map
[0]));
594 chunk
->contig_hint
= max(chunk
->map
[i
], chunk
->contig_hint
);
595 pcpu_chunk_relocate(chunk
, oslot
);
599 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
600 * @chunk: chunk of interest
601 * @bitmapp: output parameter for bitmap
602 * @may_alloc: may allocate the array
604 * Returns pointer to array of pointers to struct page and bitmap,
605 * both of which can be indexed with pcpu_page_idx(). The returned
606 * array is cleared to zero and *@bitmapp is copied from
607 * @chunk->populated. Note that there is only one array and bitmap
608 * and access exclusion is the caller's responsibility.
611 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
612 * Otherwise, don't care.
615 * Pointer to temp pages array on success, NULL on failure.
617 static struct page
**pcpu_get_pages_and_bitmap(struct pcpu_chunk
*chunk
,
618 unsigned long **bitmapp
,
621 static struct page
**pages
;
622 static unsigned long *bitmap
;
623 size_t pages_size
= pcpu_nr_units
* pcpu_unit_pages
* sizeof(pages
[0]);
624 size_t bitmap_size
= BITS_TO_LONGS(pcpu_unit_pages
) *
625 sizeof(unsigned long);
627 if (!pages
|| !bitmap
) {
628 if (may_alloc
&& !pages
)
629 pages
= pcpu_mem_alloc(pages_size
);
630 if (may_alloc
&& !bitmap
)
631 bitmap
= pcpu_mem_alloc(bitmap_size
);
632 if (!pages
|| !bitmap
)
636 memset(pages
, 0, pages_size
);
637 bitmap_copy(bitmap
, chunk
->populated
, pcpu_unit_pages
);
644 * pcpu_free_pages - free pages which were allocated for @chunk
645 * @chunk: chunk pages were allocated for
646 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
647 * @populated: populated bitmap
648 * @page_start: page index of the first page to be freed
649 * @page_end: page index of the last page to be freed + 1
651 * Free pages [@page_start and @page_end) in @pages for all units.
652 * The pages were allocated for @chunk.
654 static void pcpu_free_pages(struct pcpu_chunk
*chunk
,
655 struct page
**pages
, unsigned long *populated
,
656 int page_start
, int page_end
)
661 for_each_possible_cpu(cpu
) {
662 for (i
= page_start
; i
< page_end
; i
++) {
663 struct page
*page
= pages
[pcpu_page_idx(cpu
, i
)];
672 * pcpu_alloc_pages - allocates pages for @chunk
673 * @chunk: target chunk
674 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
675 * @populated: populated bitmap
676 * @page_start: page index of the first page to be allocated
677 * @page_end: page index of the last page to be allocated + 1
679 * Allocate pages [@page_start,@page_end) into @pages for all units.
680 * The allocation is for @chunk. Percpu core doesn't care about the
681 * content of @pages and will pass it verbatim to pcpu_map_pages().
683 static int pcpu_alloc_pages(struct pcpu_chunk
*chunk
,
684 struct page
**pages
, unsigned long *populated
,
685 int page_start
, int page_end
)
687 const gfp_t gfp
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
691 for_each_possible_cpu(cpu
) {
692 for (i
= page_start
; i
< page_end
; i
++) {
693 struct page
**pagep
= &pages
[pcpu_page_idx(cpu
, i
)];
695 *pagep
= alloc_pages_node(cpu_to_node(cpu
), gfp
, 0);
697 pcpu_free_pages(chunk
, pages
, populated
,
698 page_start
, page_end
);
707 * pcpu_pre_unmap_flush - flush cache prior to unmapping
708 * @chunk: chunk the regions to be flushed belongs to
709 * @page_start: page index of the first page to be flushed
710 * @page_end: page index of the last page to be flushed + 1
712 * Pages in [@page_start,@page_end) of @chunk are about to be
713 * unmapped. Flush cache. As each flushing trial can be very
714 * expensive, issue flush on the whole region at once rather than
715 * doing it for each cpu. This could be an overkill but is more
718 static void pcpu_pre_unmap_flush(struct pcpu_chunk
*chunk
,
719 int page_start
, int page_end
)
722 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
723 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
726 static void __pcpu_unmap_pages(unsigned long addr
, int nr_pages
)
728 unmap_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
);
732 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
733 * @chunk: chunk of interest
734 * @pages: pages array which can be used to pass information to free
735 * @populated: populated bitmap
736 * @page_start: page index of the first page to unmap
737 * @page_end: page index of the last page to unmap + 1
739 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
740 * Corresponding elements in @pages were cleared by the caller and can
741 * be used to carry information to pcpu_free_pages() which will be
742 * called after all unmaps are finished. The caller should call
743 * proper pre/post flush functions.
745 static void pcpu_unmap_pages(struct pcpu_chunk
*chunk
,
746 struct page
**pages
, unsigned long *populated
,
747 int page_start
, int page_end
)
752 for_each_possible_cpu(cpu
) {
753 for (i
= page_start
; i
< page_end
; i
++) {
756 page
= pcpu_chunk_page(chunk
, cpu
, i
);
758 pages
[pcpu_page_idx(cpu
, i
)] = page
;
760 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
761 page_end
- page_start
);
764 for (i
= page_start
; i
< page_end
; i
++)
765 __clear_bit(i
, populated
);
769 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
770 * @chunk: pcpu_chunk the regions to be flushed belong to
771 * @page_start: page index of the first page to be flushed
772 * @page_end: page index of the last page to be flushed + 1
774 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
775 * TLB for the regions. This can be skipped if the area is to be
776 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
778 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
779 * for the whole region.
781 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
782 int page_start
, int page_end
)
784 flush_tlb_kernel_range(
785 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
786 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
789 static int __pcpu_map_pages(unsigned long addr
, struct page
**pages
,
792 return map_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
,
797 * pcpu_map_pages - map pages into a pcpu_chunk
798 * @chunk: chunk of interest
799 * @pages: pages array containing pages to be mapped
800 * @populated: populated bitmap
801 * @page_start: page index of the first page to map
802 * @page_end: page index of the last page to map + 1
804 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
805 * caller is responsible for calling pcpu_post_map_flush() after all
806 * mappings are complete.
808 * This function is responsible for setting corresponding bits in
809 * @chunk->populated bitmap and whatever is necessary for reverse
810 * lookup (addr -> chunk).
812 static int pcpu_map_pages(struct pcpu_chunk
*chunk
,
813 struct page
**pages
, unsigned long *populated
,
814 int page_start
, int page_end
)
816 unsigned int cpu
, tcpu
;
819 for_each_possible_cpu(cpu
) {
820 err
= __pcpu_map_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
821 &pages
[pcpu_page_idx(cpu
, page_start
)],
822 page_end
- page_start
);
827 /* mapping successful, link chunk and mark populated */
828 for (i
= page_start
; i
< page_end
; i
++) {
829 for_each_possible_cpu(cpu
)
830 pcpu_set_page_chunk(pages
[pcpu_page_idx(cpu
, i
)],
832 __set_bit(i
, populated
);
838 for_each_possible_cpu(tcpu
) {
841 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, tcpu
, page_start
),
842 page_end
- page_start
);
848 * pcpu_post_map_flush - flush cache after mapping
849 * @chunk: pcpu_chunk the regions to be flushed belong to
850 * @page_start: page index of the first page to be flushed
851 * @page_end: page index of the last page to be flushed + 1
853 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
856 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
857 * for the whole region.
859 static void pcpu_post_map_flush(struct pcpu_chunk
*chunk
,
860 int page_start
, int page_end
)
863 pcpu_chunk_addr(chunk
, pcpu_first_unit_cpu
, page_start
),
864 pcpu_chunk_addr(chunk
, pcpu_last_unit_cpu
, page_end
));
868 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
869 * @chunk: chunk to depopulate
870 * @off: offset to the area to depopulate
871 * @size: size of the area to depopulate in bytes
872 * @flush: whether to flush cache and tlb or not
874 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
875 * from @chunk. If @flush is true, vcache is flushed before unmapping
881 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
883 int page_start
= PFN_DOWN(off
);
884 int page_end
= PFN_UP(off
+ size
);
886 unsigned long *populated
;
889 /* quick path, check whether it's empty already */
890 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
891 if (rs
== page_start
&& re
== page_end
)
896 /* immutable chunks can't be depopulated */
897 WARN_ON(chunk
->immutable
);
900 * If control reaches here, there must have been at least one
901 * successful population attempt so the temp pages array must
904 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, false);
908 pcpu_pre_unmap_flush(chunk
, page_start
, page_end
);
910 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
911 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
913 /* no need to flush tlb, vmalloc will handle it lazily */
915 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
916 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
918 /* commit new bitmap */
919 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
923 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
924 * @chunk: chunk of interest
925 * @off: offset to the area to populate
926 * @size: size of the area to populate in bytes
928 * For each cpu, populate and map pages [@page_start,@page_end) into
929 * @chunk. The area is cleared on return.
932 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
934 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
936 int page_start
= PFN_DOWN(off
);
937 int page_end
= PFN_UP(off
+ size
);
938 int free_end
= page_start
, unmap_end
= page_start
;
940 unsigned long *populated
;
944 /* quick path, check whether all pages are already there */
945 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
) {
946 if (rs
== page_start
&& re
== page_end
)
951 /* need to allocate and map pages, this chunk can't be immutable */
952 WARN_ON(chunk
->immutable
);
954 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, true);
959 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
960 rc
= pcpu_alloc_pages(chunk
, pages
, populated
, rs
, re
);
966 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
967 rc
= pcpu_map_pages(chunk
, pages
, populated
, rs
, re
);
972 pcpu_post_map_flush(chunk
, page_start
, page_end
);
974 /* commit new bitmap */
975 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
977 for_each_possible_cpu(cpu
)
978 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
982 pcpu_pre_unmap_flush(chunk
, page_start
, unmap_end
);
983 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, unmap_end
)
984 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
985 pcpu_post_unmap_tlb_flush(chunk
, page_start
, unmap_end
);
987 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, free_end
)
988 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
992 static void free_pcpu_chunk(struct pcpu_chunk
*chunk
)
997 pcpu_free_vm_areas(chunk
->vms
, pcpu_nr_groups
);
998 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
1002 static struct pcpu_chunk
*alloc_pcpu_chunk(void)
1004 struct pcpu_chunk
*chunk
;
1006 chunk
= kzalloc(pcpu_chunk_struct_size
, GFP_KERNEL
);
1010 chunk
->map
= pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC
* sizeof(chunk
->map
[0]));
1011 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
1012 chunk
->map
[chunk
->map_used
++] = pcpu_unit_size
;
1014 chunk
->vms
= pcpu_get_vm_areas(pcpu_group_offsets
, pcpu_group_sizes
,
1015 pcpu_nr_groups
, pcpu_atom_size
,
1018 free_pcpu_chunk(chunk
);
1022 INIT_LIST_HEAD(&chunk
->list
);
1023 chunk
->free_size
= pcpu_unit_size
;
1024 chunk
->contig_hint
= pcpu_unit_size
;
1025 chunk
->base_addr
= chunk
->vms
[0]->addr
- pcpu_group_offsets
[0];
1031 * pcpu_alloc - the percpu allocator
1032 * @size: size of area to allocate in bytes
1033 * @align: alignment of area (max PAGE_SIZE)
1034 * @reserved: allocate from the reserved chunk if available
1036 * Allocate percpu area of @size bytes aligned at @align.
1039 * Does GFP_KERNEL allocation.
1042 * Percpu pointer to the allocated area on success, NULL on failure.
1044 static void *pcpu_alloc(size_t size
, size_t align
, bool reserved
)
1046 struct pcpu_chunk
*chunk
;
1049 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
1050 WARN(true, "illegal size (%zu) or align (%zu) for "
1051 "percpu allocation\n", size
, align
);
1055 mutex_lock(&pcpu_alloc_mutex
);
1056 spin_lock_irq(&pcpu_lock
);
1058 /* serve reserved allocations from the reserved chunk if available */
1059 if (reserved
&& pcpu_reserved_chunk
) {
1060 chunk
= pcpu_reserved_chunk
;
1061 if (size
> chunk
->contig_hint
||
1062 pcpu_extend_area_map(chunk
) < 0)
1064 off
= pcpu_alloc_area(chunk
, size
, align
);
1071 /* search through normal chunks */
1072 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
1073 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1074 if (size
> chunk
->contig_hint
)
1077 switch (pcpu_extend_area_map(chunk
)) {
1081 goto restart
; /* pcpu_lock dropped, restart */
1086 off
= pcpu_alloc_area(chunk
, size
, align
);
1092 /* hmmm... no space left, create a new chunk */
1093 spin_unlock_irq(&pcpu_lock
);
1095 chunk
= alloc_pcpu_chunk();
1097 goto fail_unlock_mutex
;
1099 spin_lock_irq(&pcpu_lock
);
1100 pcpu_chunk_relocate(chunk
, -1);
1104 spin_unlock_irq(&pcpu_lock
);
1106 /* populate, map and clear the area */
1107 if (pcpu_populate_chunk(chunk
, off
, size
)) {
1108 spin_lock_irq(&pcpu_lock
);
1109 pcpu_free_area(chunk
, off
);
1113 mutex_unlock(&pcpu_alloc_mutex
);
1115 /* return address relative to base address */
1116 return __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1119 spin_unlock_irq(&pcpu_lock
);
1121 mutex_unlock(&pcpu_alloc_mutex
);
1126 * __alloc_percpu - allocate dynamic percpu area
1127 * @size: size of area to allocate in bytes
1128 * @align: alignment of area (max PAGE_SIZE)
1130 * Allocate percpu area of @size bytes aligned at @align. Might
1131 * sleep. Might trigger writeouts.
1134 * Does GFP_KERNEL allocation.
1137 * Percpu pointer to the allocated area on success, NULL on failure.
1139 void *__alloc_percpu(size_t size
, size_t align
)
1141 return pcpu_alloc(size
, align
, false);
1143 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1146 * __alloc_reserved_percpu - allocate reserved percpu area
1147 * @size: size of area to allocate in bytes
1148 * @align: alignment of area (max PAGE_SIZE)
1150 * Allocate percpu area of @size bytes aligned at @align from reserved
1151 * percpu area if arch has set it up; otherwise, allocation is served
1152 * from the same dynamic area. Might sleep. Might trigger writeouts.
1155 * Does GFP_KERNEL allocation.
1158 * Percpu pointer to the allocated area on success, NULL on failure.
1160 void *__alloc_reserved_percpu(size_t size
, size_t align
)
1162 return pcpu_alloc(size
, align
, true);
1166 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1169 * Reclaim all fully free chunks except for the first one.
1172 * workqueue context.
1174 static void pcpu_reclaim(struct work_struct
*work
)
1177 struct list_head
*head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1178 struct pcpu_chunk
*chunk
, *next
;
1180 mutex_lock(&pcpu_alloc_mutex
);
1181 spin_lock_irq(&pcpu_lock
);
1183 list_for_each_entry_safe(chunk
, next
, head
, list
) {
1184 WARN_ON(chunk
->immutable
);
1186 /* spare the first one */
1187 if (chunk
== list_first_entry(head
, struct pcpu_chunk
, list
))
1190 list_move(&chunk
->list
, &todo
);
1193 spin_unlock_irq(&pcpu_lock
);
1195 list_for_each_entry_safe(chunk
, next
, &todo
, list
) {
1196 pcpu_depopulate_chunk(chunk
, 0, pcpu_unit_size
);
1197 free_pcpu_chunk(chunk
);
1200 mutex_unlock(&pcpu_alloc_mutex
);
1204 * free_percpu - free percpu area
1205 * @ptr: pointer to area to free
1207 * Free percpu area @ptr.
1210 * Can be called from atomic context.
1212 void free_percpu(void *ptr
)
1214 void *addr
= __pcpu_ptr_to_addr(ptr
);
1215 struct pcpu_chunk
*chunk
;
1216 unsigned long flags
;
1222 spin_lock_irqsave(&pcpu_lock
, flags
);
1224 chunk
= pcpu_chunk_addr_search(addr
);
1225 off
= addr
- chunk
->base_addr
;
1227 pcpu_free_area(chunk
, off
);
1229 /* if there are more than one fully free chunks, wake up grim reaper */
1230 if (chunk
->free_size
== pcpu_unit_size
) {
1231 struct pcpu_chunk
*pos
;
1233 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1235 schedule_work(&pcpu_reclaim_work
);
1240 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1242 EXPORT_SYMBOL_GPL(free_percpu
);
1244 static inline size_t pcpu_calc_fc_sizes(size_t static_size
,
1245 size_t reserved_size
,
1250 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
1251 (*dyn_sizep
>= 0 ? *dyn_sizep
: 0));
1252 if (*dyn_sizep
!= 0)
1253 *dyn_sizep
= size_sum
- static_size
- reserved_size
;
1259 * pcpu_alloc_alloc_info - allocate percpu allocation info
1260 * @nr_groups: the number of groups
1261 * @nr_units: the number of units
1263 * Allocate ai which is large enough for @nr_groups groups containing
1264 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1265 * cpu_map array which is long enough for @nr_units and filled with
1266 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1267 * pointer of other groups.
1270 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1273 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1276 struct pcpu_alloc_info
*ai
;
1277 size_t base_size
, ai_size
;
1281 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1282 __alignof__(ai
->groups
[0].cpu_map
[0]));
1283 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1285 ptr
= alloc_bootmem_nopanic(PFN_ALIGN(ai_size
));
1291 ai
->groups
[0].cpu_map
= ptr
;
1293 for (unit
= 0; unit
< nr_units
; unit
++)
1294 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1296 ai
->nr_groups
= nr_groups
;
1297 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1303 * pcpu_free_alloc_info - free percpu allocation info
1304 * @ai: pcpu_alloc_info to free
1306 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1308 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1310 free_bootmem(__pa(ai
), ai
->__ai_size
);
1314 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1315 * @reserved_size: the size of reserved percpu area in bytes
1316 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1317 * @atom_size: allocation atom size
1318 * @cpu_distance_fn: callback to determine distance between cpus, optional
1320 * This function determines grouping of units, their mappings to cpus
1321 * and other parameters considering needed percpu size, allocation
1322 * atom size and distances between CPUs.
1324 * Groups are always mutliples of atom size and CPUs which are of
1325 * LOCAL_DISTANCE both ways are grouped together and share space for
1326 * units in the same group. The returned configuration is guaranteed
1327 * to have CPUs on different nodes on different groups and >=75% usage
1328 * of allocated virtual address space.
1331 * On success, pointer to the new allocation_info is returned. On
1332 * failure, ERR_PTR value is returned.
1334 struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
1335 size_t reserved_size
, ssize_t dyn_size
,
1337 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
1339 static int group_map
[NR_CPUS
] __initdata
;
1340 static int group_cnt
[NR_CPUS
] __initdata
;
1341 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1342 int group_cnt_max
= 0, nr_groups
= 1, nr_units
= 0;
1343 size_t size_sum
, min_unit_size
, alloc_size
;
1344 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
1345 int last_allocs
, group
, unit
;
1346 unsigned int cpu
, tcpu
;
1347 struct pcpu_alloc_info
*ai
;
1348 unsigned int *cpu_map
;
1351 * Determine min_unit_size, alloc_size and max_upa such that
1352 * alloc_size is multiple of atom_size and is the smallest
1353 * which can accomodate 4k aligned segments which are equal to
1354 * or larger than min_unit_size.
1356 size_sum
= pcpu_calc_fc_sizes(static_size
, reserved_size
, &dyn_size
);
1357 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
1359 alloc_size
= roundup(min_unit_size
, atom_size
);
1360 upa
= alloc_size
/ min_unit_size
;
1361 while (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1365 /* group cpus according to their proximity */
1366 for_each_possible_cpu(cpu
) {
1369 for_each_possible_cpu(tcpu
) {
1372 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
1373 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
1374 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
1376 nr_groups
= max(nr_groups
, group
+ 1);
1380 group_map
[cpu
] = group
;
1382 group_cnt_max
= max(group_cnt_max
, group_cnt
[group
]);
1386 * Expand unit size until address space usage goes over 75%
1387 * and then as much as possible without using more address
1390 last_allocs
= INT_MAX
;
1391 for (upa
= max_upa
; upa
; upa
--) {
1392 int allocs
= 0, wasted
= 0;
1394 if (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1397 for (group
= 0; group
< nr_groups
; group
++) {
1398 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
1399 allocs
+= this_allocs
;
1400 wasted
+= this_allocs
* upa
- group_cnt
[group
];
1404 * Don't accept if wastage is over 25%. The
1405 * greater-than comparison ensures upa==1 always
1406 * passes the following check.
1408 if (wasted
> num_possible_cpus() / 3)
1411 /* and then don't consume more memory */
1412 if (allocs
> last_allocs
)
1414 last_allocs
= allocs
;
1419 /* allocate and fill alloc_info */
1420 for (group
= 0; group
< nr_groups
; group
++)
1421 nr_units
+= roundup(group_cnt
[group
], upa
);
1423 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
1425 return ERR_PTR(-ENOMEM
);
1426 cpu_map
= ai
->groups
[0].cpu_map
;
1428 for (group
= 0; group
< nr_groups
; group
++) {
1429 ai
->groups
[group
].cpu_map
= cpu_map
;
1430 cpu_map
+= roundup(group_cnt
[group
], upa
);
1433 ai
->static_size
= static_size
;
1434 ai
->reserved_size
= reserved_size
;
1435 ai
->dyn_size
= dyn_size
;
1436 ai
->unit_size
= alloc_size
/ upa
;
1437 ai
->atom_size
= atom_size
;
1438 ai
->alloc_size
= alloc_size
;
1440 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
1441 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1444 * Initialize base_offset as if all groups are located
1445 * back-to-back. The caller should update this to
1446 * reflect actual allocation.
1448 gi
->base_offset
= unit
* ai
->unit_size
;
1450 for_each_possible_cpu(cpu
)
1451 if (group_map
[cpu
] == group
)
1452 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
1453 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
1454 unit
+= gi
->nr_units
;
1456 BUG_ON(unit
!= nr_units
);
1462 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1464 * @ai: allocation info to dump
1466 * Print out information about @ai using loglevel @lvl.
1468 static void pcpu_dump_alloc_info(const char *lvl
,
1469 const struct pcpu_alloc_info
*ai
)
1471 int group_width
= 1, cpu_width
= 1, width
;
1472 char empty_str
[] = "--------";
1473 int alloc
= 0, alloc_end
= 0;
1475 int upa
, apl
; /* units per alloc, allocs per line */
1481 v
= num_possible_cpus();
1484 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1486 upa
= ai
->alloc_size
/ ai
->unit_size
;
1487 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1488 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1490 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1491 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1492 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1494 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1495 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1496 int unit
= 0, unit_end
= 0;
1498 BUG_ON(gi
->nr_units
% upa
);
1499 for (alloc_end
+= gi
->nr_units
/ upa
;
1500 alloc
< alloc_end
; alloc
++) {
1501 if (!(alloc
% apl
)) {
1503 printk("%spcpu-alloc: ", lvl
);
1505 printk("[%0*d] ", group_width
, group
);
1507 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1508 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1509 printk("%0*d ", cpu_width
,
1512 printk("%s ", empty_str
);
1519 * pcpu_setup_first_chunk - initialize the first percpu chunk
1520 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1521 * @base_addr: mapped address
1523 * Initialize the first percpu chunk which contains the kernel static
1524 * perpcu area. This function is to be called from arch percpu area
1527 * @ai contains all information necessary to initialize the first
1528 * chunk and prime the dynamic percpu allocator.
1530 * @ai->static_size is the size of static percpu area.
1532 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1533 * reserve after the static area in the first chunk. This reserves
1534 * the first chunk such that it's available only through reserved
1535 * percpu allocation. This is primarily used to serve module percpu
1536 * static areas on architectures where the addressing model has
1537 * limited offset range for symbol relocations to guarantee module
1538 * percpu symbols fall inside the relocatable range.
1540 * @ai->dyn_size determines the number of bytes available for dynamic
1541 * allocation in the first chunk. The area between @ai->static_size +
1542 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1544 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1545 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1548 * @ai->atom_size is the allocation atom size and used as alignment
1551 * @ai->alloc_size is the allocation size and always multiple of
1552 * @ai->atom_size. This is larger than @ai->atom_size if
1553 * @ai->unit_size is larger than @ai->atom_size.
1555 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1556 * percpu areas. Units which should be colocated are put into the
1557 * same group. Dynamic VM areas will be allocated according to these
1558 * groupings. If @ai->nr_groups is zero, a single group containing
1559 * all units is assumed.
1561 * The caller should have mapped the first chunk at @base_addr and
1562 * copied static data to each unit.
1564 * If the first chunk ends up with both reserved and dynamic areas, it
1565 * is served by two chunks - one to serve the core static and reserved
1566 * areas and the other for the dynamic area. They share the same vm
1567 * and page map but uses different area allocation map to stay away
1568 * from each other. The latter chunk is circulated in the chunk slots
1569 * and available for dynamic allocation like any other chunks.
1572 * 0 on success, -errno on failure.
1574 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
1577 static int smap
[2], dmap
[2];
1578 size_t dyn_size
= ai
->dyn_size
;
1579 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ dyn_size
;
1580 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1581 unsigned long *group_offsets
;
1582 size_t *group_sizes
;
1583 unsigned long *unit_off
;
1589 BUILD_BUG_ON(ARRAY_SIZE(smap
) >= PCPU_DFL_MAP_ALLOC
||
1590 ARRAY_SIZE(dmap
) >= PCPU_DFL_MAP_ALLOC
);
1591 BUG_ON(ai
->nr_groups
<= 0);
1592 BUG_ON(!ai
->static_size
);
1594 BUG_ON(ai
->unit_size
< size_sum
);
1595 BUG_ON(ai
->unit_size
& ~PAGE_MASK
);
1596 BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
1598 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
1600 /* process group information and build config tables accordingly */
1601 group_offsets
= alloc_bootmem(ai
->nr_groups
* sizeof(group_offsets
[0]));
1602 group_sizes
= alloc_bootmem(ai
->nr_groups
* sizeof(group_sizes
[0]));
1603 unit_map
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_map
[0]));
1604 unit_off
= alloc_bootmem(nr_cpu_ids
* sizeof(unit_off
[0]));
1606 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
1607 unit_map
[cpu
] = NR_CPUS
;
1608 pcpu_first_unit_cpu
= NR_CPUS
;
1610 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
1611 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1613 group_offsets
[group
] = gi
->base_offset
;
1614 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
1616 for (i
= 0; i
< gi
->nr_units
; i
++) {
1617 cpu
= gi
->cpu_map
[i
];
1621 BUG_ON(cpu
> nr_cpu_ids
|| !cpu_possible(cpu
));
1622 BUG_ON(unit_map
[cpu
] != NR_CPUS
);
1624 unit_map
[cpu
] = unit
+ i
;
1625 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
1627 if (pcpu_first_unit_cpu
== NR_CPUS
)
1628 pcpu_first_unit_cpu
= cpu
;
1631 pcpu_last_unit_cpu
= cpu
;
1632 pcpu_nr_units
= unit
;
1634 for_each_possible_cpu(cpu
)
1635 BUG_ON(unit_map
[cpu
] == NR_CPUS
);
1637 pcpu_nr_groups
= ai
->nr_groups
;
1638 pcpu_group_offsets
= group_offsets
;
1639 pcpu_group_sizes
= group_sizes
;
1640 pcpu_unit_map
= unit_map
;
1641 pcpu_unit_offsets
= unit_off
;
1643 /* determine basic parameters */
1644 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1645 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1646 pcpu_atom_size
= ai
->atom_size
;
1647 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
1648 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
1651 * Allocate chunk slots. The additional last slot is for
1654 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1655 pcpu_slot
= alloc_bootmem(pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
1656 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1657 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1660 * Initialize static chunk. If reserved_size is zero, the
1661 * static chunk covers static area + dynamic allocation area
1662 * in the first chunk. If reserved_size is not zero, it
1663 * covers static area + reserved area (mostly used for module
1664 * static percpu allocation).
1666 schunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1667 INIT_LIST_HEAD(&schunk
->list
);
1668 schunk
->base_addr
= base_addr
;
1670 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1671 schunk
->immutable
= true;
1672 bitmap_fill(schunk
->populated
, pcpu_unit_pages
);
1674 if (ai
->reserved_size
) {
1675 schunk
->free_size
= ai
->reserved_size
;
1676 pcpu_reserved_chunk
= schunk
;
1677 pcpu_reserved_chunk_limit
= ai
->static_size
+ ai
->reserved_size
;
1679 schunk
->free_size
= dyn_size
;
1680 dyn_size
= 0; /* dynamic area covered */
1682 schunk
->contig_hint
= schunk
->free_size
;
1684 schunk
->map
[schunk
->map_used
++] = -ai
->static_size
;
1685 if (schunk
->free_size
)
1686 schunk
->map
[schunk
->map_used
++] = schunk
->free_size
;
1688 /* init dynamic chunk if necessary */
1690 dchunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1691 INIT_LIST_HEAD(&dchunk
->list
);
1692 dchunk
->base_addr
= base_addr
;
1694 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1695 dchunk
->immutable
= true;
1696 bitmap_fill(dchunk
->populated
, pcpu_unit_pages
);
1698 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1699 dchunk
->map
[dchunk
->map_used
++] = -pcpu_reserved_chunk_limit
;
1700 dchunk
->map
[dchunk
->map_used
++] = dchunk
->free_size
;
1703 /* link the first chunk in */
1704 pcpu_first_chunk
= dchunk
?: schunk
;
1705 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1708 pcpu_base_addr
= base_addr
;
1712 const char *pcpu_fc_names
[PCPU_FC_NR
] __initdata
= {
1713 [PCPU_FC_AUTO
] = "auto",
1714 [PCPU_FC_EMBED
] = "embed",
1715 [PCPU_FC_PAGE
] = "page",
1718 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
1720 static int __init
percpu_alloc_setup(char *str
)
1724 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1725 else if (!strcmp(str
, "embed"))
1726 pcpu_chosen_fc
= PCPU_FC_EMBED
;
1728 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1729 else if (!strcmp(str
, "page"))
1730 pcpu_chosen_fc
= PCPU_FC_PAGE
;
1733 pr_warning("PERCPU: unknown allocator %s specified\n", str
);
1737 early_param("percpu_alloc", percpu_alloc_setup
);
1739 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1740 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1742 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1743 * @reserved_size: the size of reserved percpu area in bytes
1744 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1745 * @atom_size: allocation atom size
1746 * @cpu_distance_fn: callback to determine distance between cpus, optional
1747 * @alloc_fn: function to allocate percpu page
1748 * @free_fn: funtion to free percpu page
1750 * This is a helper to ease setting up embedded first percpu chunk and
1751 * can be called where pcpu_setup_first_chunk() is expected.
1753 * If this function is used to setup the first chunk, it is allocated
1754 * by calling @alloc_fn and used as-is without being mapped into
1755 * vmalloc area. Allocations are always whole multiples of @atom_size
1756 * aligned to @atom_size.
1758 * This enables the first chunk to piggy back on the linear physical
1759 * mapping which often uses larger page size. Please note that this
1760 * can result in very sparse cpu->unit mapping on NUMA machines thus
1761 * requiring large vmalloc address space. Don't use this allocator if
1762 * vmalloc space is not orders of magnitude larger than distances
1763 * between node memory addresses (ie. 32bit NUMA machines).
1765 * When @dyn_size is positive, dynamic area might be larger than
1766 * specified to fill page alignment. When @dyn_size is auto,
1767 * @dyn_size is just big enough to fill page alignment after static
1768 * and reserved areas.
1770 * If the needed size is smaller than the minimum or specified unit
1771 * size, the leftover is returned using @free_fn.
1774 * 0 on success, -errno on failure.
1776 int __init
pcpu_embed_first_chunk(size_t reserved_size
, ssize_t dyn_size
,
1778 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
1779 pcpu_fc_alloc_fn_t alloc_fn
,
1780 pcpu_fc_free_fn_t free_fn
)
1782 void *base
= (void *)ULONG_MAX
;
1783 void **areas
= NULL
;
1784 struct pcpu_alloc_info
*ai
;
1785 size_t size_sum
, areas_size
;
1788 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
1793 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
1794 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
1796 areas
= alloc_bootmem_nopanic(areas_size
);
1802 /* allocate, copy and determine base address */
1803 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1804 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1805 unsigned int cpu
= NR_CPUS
;
1808 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
1809 cpu
= gi
->cpu_map
[i
];
1810 BUG_ON(cpu
== NR_CPUS
);
1812 /* allocate space for the whole group */
1813 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
1816 goto out_free_areas
;
1820 base
= min(ptr
, base
);
1822 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
1823 if (gi
->cpu_map
[i
] == NR_CPUS
) {
1824 /* unused unit, free whole */
1825 free_fn(ptr
, ai
->unit_size
);
1828 /* copy and return the unused part */
1829 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
1830 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
1834 /* base address is now known, determine group base offsets */
1835 for (group
= 0; group
< ai
->nr_groups
; group
++)
1836 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
1838 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1839 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
1840 ai
->dyn_size
, ai
->unit_size
);
1842 rc
= pcpu_setup_first_chunk(ai
, base
);
1846 for (group
= 0; group
< ai
->nr_groups
; group
++)
1847 free_fn(areas
[group
],
1848 ai
->groups
[group
].nr_units
* ai
->unit_size
);
1850 pcpu_free_alloc_info(ai
);
1852 free_bootmem(__pa(areas
), areas_size
);
1855 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1856 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1858 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1860 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1861 * @reserved_size: the size of reserved percpu area in bytes
1862 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1863 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1864 * @populate_pte_fn: function to populate pte
1866 * This is a helper to ease setting up page-remapped first percpu
1867 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1869 * This is the basic allocator. Static percpu area is allocated
1870 * page-by-page into vmalloc area.
1873 * 0 on success, -errno on failure.
1875 int __init
pcpu_page_first_chunk(size_t reserved_size
,
1876 pcpu_fc_alloc_fn_t alloc_fn
,
1877 pcpu_fc_free_fn_t free_fn
,
1878 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
1880 static struct vm_struct vm
;
1881 struct pcpu_alloc_info
*ai
;
1885 struct page
**pages
;
1888 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
1890 ai
= pcpu_build_alloc_info(reserved_size
, -1, PAGE_SIZE
, NULL
);
1893 BUG_ON(ai
->nr_groups
!= 1);
1894 BUG_ON(ai
->groups
[0].nr_units
!= num_possible_cpus());
1896 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1898 /* unaligned allocations can't be freed, round up to page size */
1899 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
1901 pages
= alloc_bootmem(pages_size
);
1903 /* allocate pages */
1905 for (unit
= 0; unit
< num_possible_cpus(); unit
++)
1906 for (i
= 0; i
< unit_pages
; i
++) {
1907 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
1910 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
1912 pr_warning("PERCPU: failed to allocate %s page "
1913 "for cpu%u\n", psize_str
, cpu
);
1916 pages
[j
++] = virt_to_page(ptr
);
1919 /* allocate vm area, map the pages and copy static data */
1920 vm
.flags
= VM_ALLOC
;
1921 vm
.size
= num_possible_cpus() * ai
->unit_size
;
1922 vm_area_register_early(&vm
, PAGE_SIZE
);
1924 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
1925 unsigned long unit_addr
=
1926 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
1928 for (i
= 0; i
< unit_pages
; i
++)
1929 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
1931 /* pte already populated, the following shouldn't fail */
1932 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
1935 panic("failed to map percpu area, err=%d\n", rc
);
1938 * FIXME: Archs with virtual cache should flush local
1939 * cache for the linear mapping here - something
1940 * equivalent to flush_cache_vmap() on the local cpu.
1941 * flush_cache_vmap() can't be used as most supporting
1942 * data structures are not set up yet.
1945 /* copy static data */
1946 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
1949 /* we're ready, commit */
1950 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1951 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
1952 ai
->reserved_size
, ai
->dyn_size
);
1954 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
1959 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
1962 free_bootmem(__pa(pages
), pages_size
);
1963 pcpu_free_alloc_info(ai
);
1966 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1969 * Generic percpu area setup.
1971 * The embedding helper is used because its behavior closely resembles
1972 * the original non-dynamic generic percpu area setup. This is
1973 * important because many archs have addressing restrictions and might
1974 * fail if the percpu area is located far away from the previous
1975 * location. As an added bonus, in non-NUMA cases, embedding is
1976 * generally a good idea TLB-wise because percpu area can piggy back
1977 * on the physical linear memory mapping which uses large page
1978 * mappings on applicable archs.
1980 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1981 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
1982 EXPORT_SYMBOL(__per_cpu_offset
);
1984 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
1987 return __alloc_bootmem_nopanic(size
, align
, __pa(MAX_DMA_ADDRESS
));
1990 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
1992 free_bootmem(__pa(ptr
), size
);
1995 void __init
setup_per_cpu_areas(void)
1997 unsigned long delta
;
2002 * Always reserve area for module percpu variables. That's
2003 * what the legacy allocator did.
2005 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2006 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2007 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2009 panic("Failed to initialized percpu areas.");
2011 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2012 for_each_possible_cpu(cpu
)
2013 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2015 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */